f1b5a4ac6d
R=verwaest@chromium.org Review URL: https://codereview.chromium.org/216513003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@20420 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
5234 lines
185 KiB
C++
5234 lines
185 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#if V8_TARGET_ARCH_X64
|
|
|
|
#include "bootstrapper.h"
|
|
#include "code-stubs.h"
|
|
#include "regexp-macro-assembler.h"
|
|
#include "stub-cache.h"
|
|
#include "runtime.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
void FastNewClosureStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rbx };
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(Runtime::kHiddenNewClosureFromStubFailure)->entry;
|
|
}
|
|
|
|
|
|
void FastNewContextStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdi };
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ = NULL;
|
|
}
|
|
|
|
|
|
void ToNumberStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax };
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ = NULL;
|
|
}
|
|
|
|
|
|
void NumberToStringStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax };
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(Runtime::kHiddenNumberToString)->entry;
|
|
}
|
|
|
|
|
|
void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax, rbx, rcx };
|
|
descriptor->register_param_count_ = 3;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(
|
|
Runtime::kHiddenCreateArrayLiteralStubBailout)->entry;
|
|
}
|
|
|
|
|
|
void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax, rbx, rcx, rdx };
|
|
descriptor->register_param_count_ = 4;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(Runtime::kHiddenCreateObjectLiteral)->entry;
|
|
}
|
|
|
|
|
|
void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rbx, rdx };
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ = NULL;
|
|
}
|
|
|
|
|
|
void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdx, rax };
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
|
|
}
|
|
|
|
|
|
void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdx, rax };
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
|
|
}
|
|
|
|
|
|
void RegExpConstructResultStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rcx, rbx, rax };
|
|
descriptor->register_param_count_ = 3;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(Runtime::kHiddenRegExpConstructResult)->entry;
|
|
}
|
|
|
|
|
|
void LoadFieldStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax };
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ = NULL;
|
|
}
|
|
|
|
|
|
void KeyedLoadFieldStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdx };
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ = NULL;
|
|
}
|
|
|
|
|
|
void StringLengthStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax, rcx };
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ = NULL;
|
|
}
|
|
|
|
|
|
void KeyedStringLengthStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdx, rax };
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ = NULL;
|
|
}
|
|
|
|
|
|
void KeyedStoreFastElementStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdx, rcx, rax };
|
|
descriptor->register_param_count_ = 3;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure);
|
|
}
|
|
|
|
|
|
void TransitionElementsKindStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax, rbx };
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
|
|
}
|
|
|
|
|
|
static void InitializeArrayConstructorDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor,
|
|
int constant_stack_parameter_count) {
|
|
// register state
|
|
// rax -- number of arguments
|
|
// rdi -- function
|
|
// rbx -- allocation site with elements kind
|
|
static Register registers_variable_args[] = { rdi, rbx, rax };
|
|
static Register registers_no_args[] = { rdi, rbx };
|
|
|
|
if (constant_stack_parameter_count == 0) {
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers_no_args;
|
|
} else {
|
|
// stack param count needs (constructor pointer, and single argument)
|
|
descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
|
|
descriptor->stack_parameter_count_ = rax;
|
|
descriptor->register_param_count_ = 3;
|
|
descriptor->register_params_ = registers_variable_args;
|
|
}
|
|
|
|
descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
|
|
descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(Runtime::kHiddenArrayConstructor)->entry;
|
|
}
|
|
|
|
|
|
static void InitializeInternalArrayConstructorDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor,
|
|
int constant_stack_parameter_count) {
|
|
// register state
|
|
// rax -- number of arguments
|
|
// rdi -- constructor function
|
|
static Register registers_variable_args[] = { rdi, rax };
|
|
static Register registers_no_args[] = { rdi };
|
|
|
|
if (constant_stack_parameter_count == 0) {
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers_no_args;
|
|
} else {
|
|
// stack param count needs (constructor pointer, and single argument)
|
|
descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
|
|
descriptor->stack_parameter_count_ = rax;
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers_variable_args;
|
|
}
|
|
|
|
descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
|
|
descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(Runtime::kHiddenInternalArrayConstructor)->entry;
|
|
}
|
|
|
|
|
|
void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeArrayConstructorDescriptor(isolate, descriptor, 0);
|
|
}
|
|
|
|
|
|
void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeArrayConstructorDescriptor(isolate, descriptor, 1);
|
|
}
|
|
|
|
|
|
void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeArrayConstructorDescriptor(isolate, descriptor, -1);
|
|
}
|
|
|
|
|
|
void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0);
|
|
}
|
|
|
|
|
|
void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1);
|
|
}
|
|
|
|
|
|
void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1);
|
|
}
|
|
|
|
|
|
void CompareNilICStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax };
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
FUNCTION_ADDR(CompareNilIC_Miss);
|
|
descriptor->SetMissHandler(
|
|
ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate));
|
|
}
|
|
|
|
|
|
void ToBooleanStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax };
|
|
descriptor->register_param_count_ = 1;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
FUNCTION_ADDR(ToBooleanIC_Miss);
|
|
descriptor->SetMissHandler(
|
|
ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate));
|
|
}
|
|
|
|
|
|
void StoreGlobalStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdx, rcx, rax };
|
|
descriptor->register_param_count_ = 3;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
FUNCTION_ADDR(StoreIC_MissFromStubFailure);
|
|
}
|
|
|
|
|
|
void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rax, rbx, rcx, rdx };
|
|
descriptor->register_param_count_ = 4;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss);
|
|
}
|
|
|
|
|
|
void BinaryOpICStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdx, rax };
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
|
|
descriptor->SetMissHandler(
|
|
ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate));
|
|
}
|
|
|
|
|
|
void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rcx, rdx, rax };
|
|
descriptor->register_param_count_ = 3;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite);
|
|
}
|
|
|
|
|
|
void StringAddStub::InitializeInterfaceDescriptor(
|
|
Isolate* isolate,
|
|
CodeStubInterfaceDescriptor* descriptor) {
|
|
static Register registers[] = { rdx, rax };
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->deoptimization_handler_ =
|
|
Runtime::FunctionForId(Runtime::kHiddenStringAdd)->entry;
|
|
}
|
|
|
|
|
|
void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
|
|
static Register registers[] = { rdi, // JSFunction
|
|
rsi, // context
|
|
rax, // actual number of arguments
|
|
rbx, // expected number of arguments
|
|
};
|
|
static Representation representations[] = {
|
|
Representation::Tagged(), // JSFunction
|
|
Representation::Tagged(), // context
|
|
Representation::Integer32(), // actual number of arguments
|
|
Representation::Integer32(), // expected number of arguments
|
|
};
|
|
descriptor->register_param_count_ = 4;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->param_representations_ = representations;
|
|
}
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::KeyedCall);
|
|
static Register registers[] = { rsi, // context
|
|
rcx, // key
|
|
};
|
|
static Representation representations[] = {
|
|
Representation::Tagged(), // context
|
|
Representation::Tagged(), // key
|
|
};
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->param_representations_ = representations;
|
|
}
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::NamedCall);
|
|
static Register registers[] = { rsi, // context
|
|
rcx, // name
|
|
};
|
|
static Representation representations[] = {
|
|
Representation::Tagged(), // context
|
|
Representation::Tagged(), // name
|
|
};
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->param_representations_ = representations;
|
|
}
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::CallHandler);
|
|
static Register registers[] = { rsi, // context
|
|
rdx, // receiver
|
|
};
|
|
static Representation representations[] = {
|
|
Representation::Tagged(), // context
|
|
Representation::Tagged(), // receiver
|
|
};
|
|
descriptor->register_param_count_ = 2;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->param_representations_ = representations;
|
|
}
|
|
{
|
|
CallInterfaceDescriptor* descriptor =
|
|
isolate->call_descriptor(Isolate::ApiFunctionCall);
|
|
static Register registers[] = { rax, // callee
|
|
rbx, // call_data
|
|
rcx, // holder
|
|
rdx, // api_function_address
|
|
rsi, // context
|
|
};
|
|
static Representation representations[] = {
|
|
Representation::Tagged(), // callee
|
|
Representation::Tagged(), // call_data
|
|
Representation::Tagged(), // holder
|
|
Representation::External(), // api_function_address
|
|
Representation::Tagged(), // context
|
|
};
|
|
descriptor->register_param_count_ = 5;
|
|
descriptor->register_params_ = registers;
|
|
descriptor->param_representations_ = representations;
|
|
}
|
|
}
|
|
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
|
|
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
|
|
// Update the static counter each time a new code stub is generated.
|
|
Isolate* isolate = masm->isolate();
|
|
isolate->counters()->code_stubs()->Increment();
|
|
|
|
CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate);
|
|
int param_count = descriptor->register_param_count_;
|
|
{
|
|
// Call the runtime system in a fresh internal frame.
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
ASSERT(descriptor->register_param_count_ == 0 ||
|
|
rax.is(descriptor->register_params_[param_count - 1]));
|
|
// Push arguments
|
|
for (int i = 0; i < param_count; ++i) {
|
|
__ Push(descriptor->register_params_[i]);
|
|
}
|
|
ExternalReference miss = descriptor->miss_handler();
|
|
__ CallExternalReference(miss, descriptor->register_param_count_);
|
|
}
|
|
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
|
|
__ PushCallerSaved(save_doubles_);
|
|
const int argument_count = 1;
|
|
__ PrepareCallCFunction(argument_count);
|
|
__ LoadAddress(arg_reg_1,
|
|
ExternalReference::isolate_address(masm->isolate()));
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
__ CallCFunction(
|
|
ExternalReference::store_buffer_overflow_function(masm->isolate()),
|
|
argument_count);
|
|
__ PopCallerSaved(save_doubles_);
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
class FloatingPointHelper : public AllStatic {
|
|
public:
|
|
enum ConvertUndefined {
|
|
CONVERT_UNDEFINED_TO_ZERO,
|
|
BAILOUT_ON_UNDEFINED
|
|
};
|
|
// Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
|
|
// If the operands are not both numbers, jump to not_numbers.
|
|
// Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
|
|
// NumberOperands assumes both are smis or heap numbers.
|
|
static void LoadSSE2UnknownOperands(MacroAssembler* masm,
|
|
Label* not_numbers);
|
|
};
|
|
|
|
|
|
void DoubleToIStub::Generate(MacroAssembler* masm) {
|
|
Register input_reg = this->source();
|
|
Register final_result_reg = this->destination();
|
|
ASSERT(is_truncating());
|
|
|
|
Label check_negative, process_64_bits, done;
|
|
|
|
int double_offset = offset();
|
|
|
|
// Account for return address and saved regs if input is rsp.
|
|
if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize;
|
|
|
|
MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
|
|
MemOperand exponent_operand(MemOperand(input_reg,
|
|
double_offset + kDoubleSize / 2));
|
|
|
|
Register scratch1;
|
|
Register scratch_candidates[3] = { rbx, rdx, rdi };
|
|
for (int i = 0; i < 3; i++) {
|
|
scratch1 = scratch_candidates[i];
|
|
if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
|
|
}
|
|
|
|
// Since we must use rcx for shifts below, use some other register (rax)
|
|
// to calculate the result if ecx is the requested return register.
|
|
Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg;
|
|
// Save ecx if it isn't the return register and therefore volatile, or if it
|
|
// is the return register, then save the temp register we use in its stead
|
|
// for the result.
|
|
Register save_reg = final_result_reg.is(rcx) ? rax : rcx;
|
|
__ pushq(scratch1);
|
|
__ pushq(save_reg);
|
|
|
|
bool stash_exponent_copy = !input_reg.is(rsp);
|
|
__ movl(scratch1, mantissa_operand);
|
|
__ movsd(xmm0, mantissa_operand);
|
|
__ movl(rcx, exponent_operand);
|
|
if (stash_exponent_copy) __ pushq(rcx);
|
|
|
|
__ andl(rcx, Immediate(HeapNumber::kExponentMask));
|
|
__ shrl(rcx, Immediate(HeapNumber::kExponentShift));
|
|
__ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
|
|
__ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
|
|
__ j(below, &process_64_bits);
|
|
|
|
// Result is entirely in lower 32-bits of mantissa
|
|
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
|
|
__ subl(rcx, Immediate(delta));
|
|
__ xorl(result_reg, result_reg);
|
|
__ cmpl(rcx, Immediate(31));
|
|
__ j(above, &done);
|
|
__ shll_cl(scratch1);
|
|
__ jmp(&check_negative);
|
|
|
|
__ bind(&process_64_bits);
|
|
__ cvttsd2siq(result_reg, xmm0);
|
|
__ jmp(&done, Label::kNear);
|
|
|
|
// If the double was negative, negate the integer result.
|
|
__ bind(&check_negative);
|
|
__ movl(result_reg, scratch1);
|
|
__ negl(result_reg);
|
|
if (stash_exponent_copy) {
|
|
__ cmpl(MemOperand(rsp, 0), Immediate(0));
|
|
} else {
|
|
__ cmpl(exponent_operand, Immediate(0));
|
|
}
|
|
__ cmovl(greater, result_reg, scratch1);
|
|
|
|
// Restore registers
|
|
__ bind(&done);
|
|
if (stash_exponent_copy) {
|
|
__ addp(rsp, Immediate(kDoubleSize));
|
|
}
|
|
if (!final_result_reg.is(result_reg)) {
|
|
ASSERT(final_result_reg.is(rcx));
|
|
__ movl(final_result_reg, result_reg);
|
|
}
|
|
__ popq(save_reg);
|
|
__ popq(scratch1);
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
|
|
Label* not_numbers) {
|
|
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
|
|
// Load operand in rdx into xmm0, or branch to not_numbers.
|
|
__ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
|
|
__ JumpIfSmi(rdx, &load_smi_rdx);
|
|
__ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
|
|
__ j(not_equal, not_numbers); // Argument in rdx is not a number.
|
|
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
|
|
// Load operand in rax into xmm1, or branch to not_numbers.
|
|
__ JumpIfSmi(rax, &load_smi_rax);
|
|
|
|
__ bind(&load_nonsmi_rax);
|
|
__ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
|
|
__ j(not_equal, not_numbers);
|
|
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
|
|
__ jmp(&done);
|
|
|
|
__ bind(&load_smi_rdx);
|
|
__ SmiToInteger32(kScratchRegister, rdx);
|
|
__ Cvtlsi2sd(xmm0, kScratchRegister);
|
|
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
|
|
|
|
__ bind(&load_smi_rax);
|
|
__ SmiToInteger32(kScratchRegister, rax);
|
|
__ Cvtlsi2sd(xmm1, kScratchRegister);
|
|
__ bind(&done);
|
|
}
|
|
|
|
|
|
void MathPowStub::Generate(MacroAssembler* masm) {
|
|
const Register exponent = rdx;
|
|
const Register base = rax;
|
|
const Register scratch = rcx;
|
|
const XMMRegister double_result = xmm3;
|
|
const XMMRegister double_base = xmm2;
|
|
const XMMRegister double_exponent = xmm1;
|
|
const XMMRegister double_scratch = xmm4;
|
|
|
|
Label call_runtime, done, exponent_not_smi, int_exponent;
|
|
|
|
// Save 1 in double_result - we need this several times later on.
|
|
__ movp(scratch, Immediate(1));
|
|
__ Cvtlsi2sd(double_result, scratch);
|
|
|
|
if (exponent_type_ == ON_STACK) {
|
|
Label base_is_smi, unpack_exponent;
|
|
// The exponent and base are supplied as arguments on the stack.
|
|
// This can only happen if the stub is called from non-optimized code.
|
|
// Load input parameters from stack.
|
|
StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(base, args.GetArgumentOperand(0));
|
|
__ movp(exponent, args.GetArgumentOperand(1));
|
|
__ JumpIfSmi(base, &base_is_smi, Label::kNear);
|
|
__ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
|
|
Heap::kHeapNumberMapRootIndex);
|
|
__ j(not_equal, &call_runtime);
|
|
|
|
__ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
|
|
__ jmp(&unpack_exponent, Label::kNear);
|
|
|
|
__ bind(&base_is_smi);
|
|
__ SmiToInteger32(base, base);
|
|
__ Cvtlsi2sd(double_base, base);
|
|
__ bind(&unpack_exponent);
|
|
|
|
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
|
|
__ SmiToInteger32(exponent, exponent);
|
|
__ jmp(&int_exponent);
|
|
|
|
__ bind(&exponent_not_smi);
|
|
__ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
|
|
Heap::kHeapNumberMapRootIndex);
|
|
__ j(not_equal, &call_runtime);
|
|
__ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
|
|
} else if (exponent_type_ == TAGGED) {
|
|
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
|
|
__ SmiToInteger32(exponent, exponent);
|
|
__ jmp(&int_exponent);
|
|
|
|
__ bind(&exponent_not_smi);
|
|
__ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
|
|
}
|
|
|
|
if (exponent_type_ != INTEGER) {
|
|
Label fast_power, try_arithmetic_simplification;
|
|
// Detect integer exponents stored as double.
|
|
__ DoubleToI(exponent, double_exponent, double_scratch,
|
|
TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification);
|
|
__ jmp(&int_exponent);
|
|
|
|
__ bind(&try_arithmetic_simplification);
|
|
__ cvttsd2si(exponent, double_exponent);
|
|
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
|
|
__ cmpl(exponent, Immediate(0x1));
|
|
__ j(overflow, &call_runtime);
|
|
|
|
if (exponent_type_ == ON_STACK) {
|
|
// Detect square root case. Crankshaft detects constant +/-0.5 at
|
|
// compile time and uses DoMathPowHalf instead. We then skip this check
|
|
// for non-constant cases of +/-0.5 as these hardly occur.
|
|
Label continue_sqrt, continue_rsqrt, not_plus_half;
|
|
// Test for 0.5.
|
|
// Load double_scratch with 0.5.
|
|
__ movq(scratch, V8_UINT64_C(0x3FE0000000000000));
|
|
__ movq(double_scratch, scratch);
|
|
// Already ruled out NaNs for exponent.
|
|
__ ucomisd(double_scratch, double_exponent);
|
|
__ j(not_equal, ¬_plus_half, Label::kNear);
|
|
|
|
// Calculates square root of base. Check for the special case of
|
|
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
|
|
// According to IEEE-754, double-precision -Infinity has the highest
|
|
// 12 bits set and the lowest 52 bits cleared.
|
|
__ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
|
|
__ movq(double_scratch, scratch);
|
|
__ ucomisd(double_scratch, double_base);
|
|
// Comparing -Infinity with NaN results in "unordered", which sets the
|
|
// zero flag as if both were equal. However, it also sets the carry flag.
|
|
__ j(not_equal, &continue_sqrt, Label::kNear);
|
|
__ j(carry, &continue_sqrt, Label::kNear);
|
|
|
|
// Set result to Infinity in the special case.
|
|
__ xorps(double_result, double_result);
|
|
__ subsd(double_result, double_scratch);
|
|
__ jmp(&done);
|
|
|
|
__ bind(&continue_sqrt);
|
|
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
|
|
__ xorps(double_scratch, double_scratch);
|
|
__ addsd(double_scratch, double_base); // Convert -0 to 0.
|
|
__ sqrtsd(double_result, double_scratch);
|
|
__ jmp(&done);
|
|
|
|
// Test for -0.5.
|
|
__ bind(¬_plus_half);
|
|
// Load double_scratch with -0.5 by substracting 1.
|
|
__ subsd(double_scratch, double_result);
|
|
// Already ruled out NaNs for exponent.
|
|
__ ucomisd(double_scratch, double_exponent);
|
|
__ j(not_equal, &fast_power, Label::kNear);
|
|
|
|
// Calculates reciprocal of square root of base. Check for the special
|
|
// case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
|
|
// According to IEEE-754, double-precision -Infinity has the highest
|
|
// 12 bits set and the lowest 52 bits cleared.
|
|
__ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
|
|
__ movq(double_scratch, scratch);
|
|
__ ucomisd(double_scratch, double_base);
|
|
// Comparing -Infinity with NaN results in "unordered", which sets the
|
|
// zero flag as if both were equal. However, it also sets the carry flag.
|
|
__ j(not_equal, &continue_rsqrt, Label::kNear);
|
|
__ j(carry, &continue_rsqrt, Label::kNear);
|
|
|
|
// Set result to 0 in the special case.
|
|
__ xorps(double_result, double_result);
|
|
__ jmp(&done);
|
|
|
|
__ bind(&continue_rsqrt);
|
|
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
|
|
__ xorps(double_exponent, double_exponent);
|
|
__ addsd(double_exponent, double_base); // Convert -0 to +0.
|
|
__ sqrtsd(double_exponent, double_exponent);
|
|
__ divsd(double_result, double_exponent);
|
|
__ jmp(&done);
|
|
}
|
|
|
|
// Using FPU instructions to calculate power.
|
|
Label fast_power_failed;
|
|
__ bind(&fast_power);
|
|
__ fnclex(); // Clear flags to catch exceptions later.
|
|
// Transfer (B)ase and (E)xponent onto the FPU register stack.
|
|
__ subp(rsp, Immediate(kDoubleSize));
|
|
__ movsd(Operand(rsp, 0), double_exponent);
|
|
__ fld_d(Operand(rsp, 0)); // E
|
|
__ movsd(Operand(rsp, 0), double_base);
|
|
__ fld_d(Operand(rsp, 0)); // B, E
|
|
|
|
// Exponent is in st(1) and base is in st(0)
|
|
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
|
|
// FYL2X calculates st(1) * log2(st(0))
|
|
__ fyl2x(); // X
|
|
__ fld(0); // X, X
|
|
__ frndint(); // rnd(X), X
|
|
__ fsub(1); // rnd(X), X-rnd(X)
|
|
__ fxch(1); // X - rnd(X), rnd(X)
|
|
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
|
|
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
|
|
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
|
|
__ faddp(1); // 2^(X-rnd(X)), rnd(X)
|
|
// FSCALE calculates st(0) * 2^st(1)
|
|
__ fscale(); // 2^X, rnd(X)
|
|
__ fstp(1);
|
|
// Bail out to runtime in case of exceptions in the status word.
|
|
__ fnstsw_ax();
|
|
__ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
|
|
__ j(not_zero, &fast_power_failed, Label::kNear);
|
|
__ fstp_d(Operand(rsp, 0));
|
|
__ movsd(double_result, Operand(rsp, 0));
|
|
__ addp(rsp, Immediate(kDoubleSize));
|
|
__ jmp(&done);
|
|
|
|
__ bind(&fast_power_failed);
|
|
__ fninit();
|
|
__ addp(rsp, Immediate(kDoubleSize));
|
|
__ jmp(&call_runtime);
|
|
}
|
|
|
|
// Calculate power with integer exponent.
|
|
__ bind(&int_exponent);
|
|
const XMMRegister double_scratch2 = double_exponent;
|
|
// Back up exponent as we need to check if exponent is negative later.
|
|
__ movp(scratch, exponent); // Back up exponent.
|
|
__ movsd(double_scratch, double_base); // Back up base.
|
|
__ movsd(double_scratch2, double_result); // Load double_exponent with 1.
|
|
|
|
// Get absolute value of exponent.
|
|
Label no_neg, while_true, while_false;
|
|
__ testl(scratch, scratch);
|
|
__ j(positive, &no_neg, Label::kNear);
|
|
__ negl(scratch);
|
|
__ bind(&no_neg);
|
|
|
|
__ j(zero, &while_false, Label::kNear);
|
|
__ shrl(scratch, Immediate(1));
|
|
// Above condition means CF==0 && ZF==0. This means that the
|
|
// bit that has been shifted out is 0 and the result is not 0.
|
|
__ j(above, &while_true, Label::kNear);
|
|
__ movsd(double_result, double_scratch);
|
|
__ j(zero, &while_false, Label::kNear);
|
|
|
|
__ bind(&while_true);
|
|
__ shrl(scratch, Immediate(1));
|
|
__ mulsd(double_scratch, double_scratch);
|
|
__ j(above, &while_true, Label::kNear);
|
|
__ mulsd(double_result, double_scratch);
|
|
__ j(not_zero, &while_true);
|
|
|
|
__ bind(&while_false);
|
|
// If the exponent is negative, return 1/result.
|
|
__ testl(exponent, exponent);
|
|
__ j(greater, &done);
|
|
__ divsd(double_scratch2, double_result);
|
|
__ movsd(double_result, double_scratch2);
|
|
// Test whether result is zero. Bail out to check for subnormal result.
|
|
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
|
|
__ xorps(double_scratch2, double_scratch2);
|
|
__ ucomisd(double_scratch2, double_result);
|
|
// double_exponent aliased as double_scratch2 has already been overwritten
|
|
// and may not have contained the exponent value in the first place when the
|
|
// input was a smi. We reset it with exponent value before bailing out.
|
|
__ j(not_equal, &done);
|
|
__ Cvtlsi2sd(double_exponent, exponent);
|
|
|
|
// Returning or bailing out.
|
|
Counters* counters = masm->isolate()->counters();
|
|
if (exponent_type_ == ON_STACK) {
|
|
// The arguments are still on the stack.
|
|
__ bind(&call_runtime);
|
|
__ TailCallRuntime(Runtime::kHiddenMathPow, 2, 1);
|
|
|
|
// The stub is called from non-optimized code, which expects the result
|
|
// as heap number in rax.
|
|
__ bind(&done);
|
|
__ AllocateHeapNumber(rax, rcx, &call_runtime);
|
|
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
|
|
__ IncrementCounter(counters->math_pow(), 1);
|
|
__ ret(2 * kPointerSize);
|
|
} else {
|
|
__ bind(&call_runtime);
|
|
// Move base to the correct argument register. Exponent is already in xmm1.
|
|
__ movsd(xmm0, double_base);
|
|
ASSERT(double_exponent.is(xmm1));
|
|
{
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
__ PrepareCallCFunction(2);
|
|
__ CallCFunction(
|
|
ExternalReference::power_double_double_function(masm->isolate()), 2);
|
|
}
|
|
// Return value is in xmm0.
|
|
__ movsd(double_result, xmm0);
|
|
|
|
__ bind(&done);
|
|
__ IncrementCounter(counters->math_pow(), 1);
|
|
__ ret(0);
|
|
}
|
|
}
|
|
|
|
|
|
void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
|
|
Label miss;
|
|
Register receiver;
|
|
if (kind() == Code::KEYED_LOAD_IC) {
|
|
// ----------- S t a t e -------------
|
|
// -- rax : key
|
|
// -- rdx : receiver
|
|
// -- rsp[0] : return address
|
|
// -----------------------------------
|
|
__ Cmp(rax, masm->isolate()->factory()->prototype_string());
|
|
__ j(not_equal, &miss);
|
|
receiver = rdx;
|
|
} else {
|
|
ASSERT(kind() == Code::LOAD_IC);
|
|
// ----------- S t a t e -------------
|
|
// -- rax : receiver
|
|
// -- rcx : name
|
|
// -- rsp[0] : return address
|
|
// -----------------------------------
|
|
receiver = rax;
|
|
}
|
|
|
|
StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8, r9, &miss);
|
|
__ bind(&miss);
|
|
StubCompiler::TailCallBuiltin(
|
|
masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
|
// The key is in rdx and the parameter count is in rax.
|
|
|
|
// Check that the key is a smi.
|
|
Label slow;
|
|
__ JumpIfNotSmi(rdx, &slow);
|
|
|
|
// Check if the calling frame is an arguments adaptor frame. We look at the
|
|
// context offset, and if the frame is not a regular one, then we find a
|
|
// Smi instead of the context. We can't use SmiCompare here, because that
|
|
// only works for comparing two smis.
|
|
Label adaptor;
|
|
__ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
|
__ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
|
|
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
__ j(equal, &adaptor);
|
|
|
|
// Check index against formal parameters count limit passed in
|
|
// through register rax. Use unsigned comparison to get negative
|
|
// check for free.
|
|
__ cmpp(rdx, rax);
|
|
__ j(above_equal, &slow);
|
|
|
|
// Read the argument from the stack and return it.
|
|
__ SmiSub(rax, rax, rdx);
|
|
__ SmiToInteger32(rax, rax);
|
|
StackArgumentsAccessor args(rbp, rax, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rax, args.GetArgumentOperand(0));
|
|
__ Ret();
|
|
|
|
// Arguments adaptor case: Check index against actual arguments
|
|
// limit found in the arguments adaptor frame. Use unsigned
|
|
// comparison to get negative check for free.
|
|
__ bind(&adaptor);
|
|
__ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ cmpp(rdx, rcx);
|
|
__ j(above_equal, &slow);
|
|
|
|
// Read the argument from the stack and return it.
|
|
__ SmiSub(rcx, rcx, rdx);
|
|
__ SmiToInteger32(rcx, rcx);
|
|
StackArgumentsAccessor adaptor_args(rbx, rcx,
|
|
ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rax, adaptor_args.GetArgumentOperand(0));
|
|
__ Ret();
|
|
|
|
// Slow-case: Handle non-smi or out-of-bounds access to arguments
|
|
// by calling the runtime system.
|
|
__ bind(&slow);
|
|
__ PopReturnAddressTo(rbx);
|
|
__ Push(rdx);
|
|
__ PushReturnAddressFrom(rbx);
|
|
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
|
|
// Stack layout:
|
|
// rsp[0] : return address
|
|
// rsp[8] : number of parameters (tagged)
|
|
// rsp[16] : receiver displacement
|
|
// rsp[24] : function
|
|
// Registers used over the whole function:
|
|
// rbx: the mapped parameter count (untagged)
|
|
// rax: the allocated object (tagged).
|
|
|
|
Factory* factory = masm->isolate()->factory();
|
|
|
|
StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ SmiToInteger64(rbx, args.GetArgumentOperand(2));
|
|
// rbx = parameter count (untagged)
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Label runtime;
|
|
Label adaptor_frame, try_allocate;
|
|
__ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
|
__ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
|
|
__ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
__ j(equal, &adaptor_frame);
|
|
|
|
// No adaptor, parameter count = argument count.
|
|
__ movp(rcx, rbx);
|
|
__ jmp(&try_allocate, Label::kNear);
|
|
|
|
// We have an adaptor frame. Patch the parameters pointer.
|
|
__ bind(&adaptor_frame);
|
|
__ SmiToInteger64(rcx,
|
|
Operand(rdx,
|
|
ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ leap(rdx, Operand(rdx, rcx, times_pointer_size,
|
|
StandardFrameConstants::kCallerSPOffset));
|
|
__ movp(args.GetArgumentOperand(1), rdx);
|
|
|
|
// rbx = parameter count (untagged)
|
|
// rcx = argument count (untagged)
|
|
// Compute the mapped parameter count = min(rbx, rcx) in rbx.
|
|
__ cmpp(rbx, rcx);
|
|
__ j(less_equal, &try_allocate, Label::kNear);
|
|
__ movp(rbx, rcx);
|
|
|
|
__ bind(&try_allocate);
|
|
|
|
// Compute the sizes of backing store, parameter map, and arguments object.
|
|
// 1. Parameter map, has 2 extra words containing context and backing store.
|
|
const int kParameterMapHeaderSize =
|
|
FixedArray::kHeaderSize + 2 * kPointerSize;
|
|
Label no_parameter_map;
|
|
__ xorp(r8, r8);
|
|
__ testp(rbx, rbx);
|
|
__ j(zero, &no_parameter_map, Label::kNear);
|
|
__ leap(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize));
|
|
__ bind(&no_parameter_map);
|
|
|
|
// 2. Backing store.
|
|
__ leap(r8, Operand(r8, rcx, times_pointer_size, FixedArray::kHeaderSize));
|
|
|
|
// 3. Arguments object.
|
|
__ addp(r8, Immediate(Heap::kSloppyArgumentsObjectSize));
|
|
|
|
// Do the allocation of all three objects in one go.
|
|
__ Allocate(r8, rax, rdx, rdi, &runtime, TAG_OBJECT);
|
|
|
|
// rax = address of new object(s) (tagged)
|
|
// rcx = argument count (untagged)
|
|
// Get the arguments boilerplate from the current native context into rdi.
|
|
Label has_mapped_parameters, copy;
|
|
__ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
__ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset));
|
|
__ testp(rbx, rbx);
|
|
__ j(not_zero, &has_mapped_parameters, Label::kNear);
|
|
|
|
const int kIndex = Context::SLOPPY_ARGUMENTS_BOILERPLATE_INDEX;
|
|
__ movp(rdi, Operand(rdi, Context::SlotOffset(kIndex)));
|
|
__ jmp(©, Label::kNear);
|
|
|
|
const int kAliasedIndex = Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX;
|
|
__ bind(&has_mapped_parameters);
|
|
__ movp(rdi, Operand(rdi, Context::SlotOffset(kAliasedIndex)));
|
|
__ bind(©);
|
|
|
|
// rax = address of new object (tagged)
|
|
// rbx = mapped parameter count (untagged)
|
|
// rcx = argument count (untagged)
|
|
// rdi = address of boilerplate object (tagged)
|
|
// Copy the JS object part.
|
|
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
|
|
__ movp(rdx, FieldOperand(rdi, i));
|
|
__ movp(FieldOperand(rax, i), rdx);
|
|
}
|
|
|
|
// Set up the callee in-object property.
|
|
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
|
|
__ movp(rdx, args.GetArgumentOperand(0));
|
|
__ movp(FieldOperand(rax, JSObject::kHeaderSize +
|
|
Heap::kArgumentsCalleeIndex * kPointerSize),
|
|
rdx);
|
|
|
|
// Use the length (smi tagged) and set that as an in-object property too.
|
|
// Note: rcx is tagged from here on.
|
|
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
|
|
__ Integer32ToSmi(rcx, rcx);
|
|
__ movp(FieldOperand(rax, JSObject::kHeaderSize +
|
|
Heap::kArgumentsLengthIndex * kPointerSize),
|
|
rcx);
|
|
|
|
// Set up the elements pointer in the allocated arguments object.
|
|
// If we allocated a parameter map, edi will point there, otherwise to the
|
|
// backing store.
|
|
__ leap(rdi, Operand(rax, Heap::kSloppyArgumentsObjectSize));
|
|
__ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
|
|
|
|
// rax = address of new object (tagged)
|
|
// rbx = mapped parameter count (untagged)
|
|
// rcx = argument count (tagged)
|
|
// rdi = address of parameter map or backing store (tagged)
|
|
|
|
// Initialize parameter map. If there are no mapped arguments, we're done.
|
|
Label skip_parameter_map;
|
|
__ testp(rbx, rbx);
|
|
__ j(zero, &skip_parameter_map);
|
|
|
|
__ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex);
|
|
// rbx contains the untagged argument count. Add 2 and tag to write.
|
|
__ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
|
|
__ Integer64PlusConstantToSmi(r9, rbx, 2);
|
|
__ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9);
|
|
__ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi);
|
|
__ leap(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
|
|
__ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9);
|
|
|
|
// Copy the parameter slots and the holes in the arguments.
|
|
// We need to fill in mapped_parameter_count slots. They index the context,
|
|
// where parameters are stored in reverse order, at
|
|
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
|
|
// The mapped parameter thus need to get indices
|
|
// MIN_CONTEXT_SLOTS+parameter_count-1 ..
|
|
// MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
|
|
// We loop from right to left.
|
|
Label parameters_loop, parameters_test;
|
|
|
|
// Load tagged parameter count into r9.
|
|
__ Integer32ToSmi(r9, rbx);
|
|
__ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS));
|
|
__ addp(r8, args.GetArgumentOperand(2));
|
|
__ subp(r8, r9);
|
|
__ Move(r11, factory->the_hole_value());
|
|
__ movp(rdx, rdi);
|
|
__ leap(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
|
|
// r9 = loop variable (tagged)
|
|
// r8 = mapping index (tagged)
|
|
// r11 = the hole value
|
|
// rdx = address of parameter map (tagged)
|
|
// rdi = address of backing store (tagged)
|
|
__ jmp(¶meters_test, Label::kNear);
|
|
|
|
__ bind(¶meters_loop);
|
|
__ SmiSubConstant(r9, r9, Smi::FromInt(1));
|
|
__ SmiToInteger64(kScratchRegister, r9);
|
|
__ movp(FieldOperand(rdx, kScratchRegister,
|
|
times_pointer_size,
|
|
kParameterMapHeaderSize),
|
|
r8);
|
|
__ movp(FieldOperand(rdi, kScratchRegister,
|
|
times_pointer_size,
|
|
FixedArray::kHeaderSize),
|
|
r11);
|
|
__ SmiAddConstant(r8, r8, Smi::FromInt(1));
|
|
__ bind(¶meters_test);
|
|
__ SmiTest(r9);
|
|
__ j(not_zero, ¶meters_loop, Label::kNear);
|
|
|
|
__ bind(&skip_parameter_map);
|
|
|
|
// rcx = argument count (tagged)
|
|
// rdi = address of backing store (tagged)
|
|
// Copy arguments header and remaining slots (if there are any).
|
|
__ Move(FieldOperand(rdi, FixedArray::kMapOffset),
|
|
factory->fixed_array_map());
|
|
__ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
|
|
|
|
Label arguments_loop, arguments_test;
|
|
__ movp(r8, rbx);
|
|
__ movp(rdx, args.GetArgumentOperand(1));
|
|
// Untag rcx for the loop below.
|
|
__ SmiToInteger64(rcx, rcx);
|
|
__ leap(kScratchRegister, Operand(r8, times_pointer_size, 0));
|
|
__ subp(rdx, kScratchRegister);
|
|
__ jmp(&arguments_test, Label::kNear);
|
|
|
|
__ bind(&arguments_loop);
|
|
__ subp(rdx, Immediate(kPointerSize));
|
|
__ movp(r9, Operand(rdx, 0));
|
|
__ movp(FieldOperand(rdi, r8,
|
|
times_pointer_size,
|
|
FixedArray::kHeaderSize),
|
|
r9);
|
|
__ addp(r8, Immediate(1));
|
|
|
|
__ bind(&arguments_test);
|
|
__ cmpp(r8, rcx);
|
|
__ j(less, &arguments_loop, Label::kNear);
|
|
|
|
// Return and remove the on-stack parameters.
|
|
__ ret(3 * kPointerSize);
|
|
|
|
// Do the runtime call to allocate the arguments object.
|
|
// rcx = argument count (untagged)
|
|
__ bind(&runtime);
|
|
__ Integer32ToSmi(rcx, rcx);
|
|
__ movp(args.GetArgumentOperand(2), rcx); // Patch argument count.
|
|
__ TailCallRuntime(Runtime::kHiddenNewArgumentsFast, 3, 1);
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
|
|
// rsp[0] : return address
|
|
// rsp[8] : number of parameters
|
|
// rsp[16] : receiver displacement
|
|
// rsp[24] : function
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Label runtime;
|
|
__ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
|
__ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
|
|
__ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
__ j(not_equal, &runtime);
|
|
|
|
// Patch the arguments.length and the parameters pointer.
|
|
StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ movp(args.GetArgumentOperand(2), rcx);
|
|
__ SmiToInteger64(rcx, rcx);
|
|
__ leap(rdx, Operand(rdx, rcx, times_pointer_size,
|
|
StandardFrameConstants::kCallerSPOffset));
|
|
__ movp(args.GetArgumentOperand(1), rdx);
|
|
|
|
__ bind(&runtime);
|
|
__ TailCallRuntime(Runtime::kHiddenNewArgumentsFast, 3, 1);
|
|
}
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
|
|
// rsp[0] : return address
|
|
// rsp[8] : number of parameters
|
|
// rsp[16] : receiver displacement
|
|
// rsp[24] : function
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
Label adaptor_frame, try_allocate, runtime;
|
|
__ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
|
__ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
|
|
__ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
|
__ j(equal, &adaptor_frame);
|
|
|
|
// Get the length from the frame.
|
|
StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rcx, args.GetArgumentOperand(2));
|
|
__ SmiToInteger64(rcx, rcx);
|
|
__ jmp(&try_allocate);
|
|
|
|
// Patch the arguments.length and the parameters pointer.
|
|
__ bind(&adaptor_frame);
|
|
__ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
__ movp(args.GetArgumentOperand(2), rcx);
|
|
__ SmiToInteger64(rcx, rcx);
|
|
__ leap(rdx, Operand(rdx, rcx, times_pointer_size,
|
|
StandardFrameConstants::kCallerSPOffset));
|
|
__ movp(args.GetArgumentOperand(1), rdx);
|
|
|
|
// Try the new space allocation. Start out with computing the size of
|
|
// the arguments object and the elements array.
|
|
Label add_arguments_object;
|
|
__ bind(&try_allocate);
|
|
__ testp(rcx, rcx);
|
|
__ j(zero, &add_arguments_object, Label::kNear);
|
|
__ leap(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
|
|
__ bind(&add_arguments_object);
|
|
__ addp(rcx, Immediate(Heap::kStrictArgumentsObjectSize));
|
|
|
|
// Do the allocation of both objects in one go.
|
|
__ Allocate(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
|
|
|
|
// Get the arguments boilerplate from the current native context.
|
|
__ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
__ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset));
|
|
const int offset =
|
|
Context::SlotOffset(Context::STRICT_ARGUMENTS_BOILERPLATE_INDEX);
|
|
__ movp(rdi, Operand(rdi, offset));
|
|
|
|
// Copy the JS object part.
|
|
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
|
|
__ movp(rbx, FieldOperand(rdi, i));
|
|
__ movp(FieldOperand(rax, i), rbx);
|
|
}
|
|
|
|
// Get the length (smi tagged) and set that as an in-object property too.
|
|
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
|
|
__ movp(rcx, args.GetArgumentOperand(2));
|
|
__ movp(FieldOperand(rax, JSObject::kHeaderSize +
|
|
Heap::kArgumentsLengthIndex * kPointerSize),
|
|
rcx);
|
|
|
|
// If there are no actual arguments, we're done.
|
|
Label done;
|
|
__ testp(rcx, rcx);
|
|
__ j(zero, &done);
|
|
|
|
// Get the parameters pointer from the stack.
|
|
__ movp(rdx, args.GetArgumentOperand(1));
|
|
|
|
// Set up the elements pointer in the allocated arguments object and
|
|
// initialize the header in the elements fixed array.
|
|
__ leap(rdi, Operand(rax, Heap::kStrictArgumentsObjectSize));
|
|
__ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
|
|
__ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
|
|
__ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
|
|
|
|
|
|
__ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
|
|
// Untag the length for the loop below.
|
|
__ SmiToInteger64(rcx, rcx);
|
|
|
|
// Copy the fixed array slots.
|
|
Label loop;
|
|
__ bind(&loop);
|
|
__ movp(rbx, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
|
|
__ movp(FieldOperand(rdi, FixedArray::kHeaderSize), rbx);
|
|
__ addp(rdi, Immediate(kPointerSize));
|
|
__ subp(rdx, Immediate(kPointerSize));
|
|
__ decp(rcx);
|
|
__ j(not_zero, &loop);
|
|
|
|
// Return and remove the on-stack parameters.
|
|
__ bind(&done);
|
|
__ ret(3 * kPointerSize);
|
|
|
|
// Do the runtime call to allocate the arguments object.
|
|
__ bind(&runtime);
|
|
__ TailCallRuntime(Runtime::kHiddenNewStrictArgumentsFast, 3, 1);
|
|
}
|
|
|
|
|
|
void RegExpExecStub::Generate(MacroAssembler* masm) {
|
|
// Just jump directly to runtime if native RegExp is not selected at compile
|
|
// time or if regexp entry in generated code is turned off runtime switch or
|
|
// at compilation.
|
|
#ifdef V8_INTERPRETED_REGEXP
|
|
__ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
|
|
#else // V8_INTERPRETED_REGEXP
|
|
|
|
// Stack frame on entry.
|
|
// rsp[0] : return address
|
|
// rsp[8] : last_match_info (expected JSArray)
|
|
// rsp[16] : previous index
|
|
// rsp[24] : subject string
|
|
// rsp[32] : JSRegExp object
|
|
|
|
enum RegExpExecStubArgumentIndices {
|
|
JS_REG_EXP_OBJECT_ARGUMENT_INDEX,
|
|
SUBJECT_STRING_ARGUMENT_INDEX,
|
|
PREVIOUS_INDEX_ARGUMENT_INDEX,
|
|
LAST_MATCH_INFO_ARGUMENT_INDEX,
|
|
REG_EXP_EXEC_ARGUMENT_COUNT
|
|
};
|
|
|
|
StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT,
|
|
ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
Label runtime;
|
|
// Ensure that a RegExp stack is allocated.
|
|
Isolate* isolate = masm->isolate();
|
|
ExternalReference address_of_regexp_stack_memory_address =
|
|
ExternalReference::address_of_regexp_stack_memory_address(isolate);
|
|
ExternalReference address_of_regexp_stack_memory_size =
|
|
ExternalReference::address_of_regexp_stack_memory_size(isolate);
|
|
__ Load(kScratchRegister, address_of_regexp_stack_memory_size);
|
|
__ testp(kScratchRegister, kScratchRegister);
|
|
__ j(zero, &runtime);
|
|
|
|
// Check that the first argument is a JSRegExp object.
|
|
__ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
|
|
__ JumpIfSmi(rax, &runtime);
|
|
__ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
|
|
__ j(not_equal, &runtime);
|
|
|
|
// Check that the RegExp has been compiled (data contains a fixed array).
|
|
__ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset));
|
|
if (FLAG_debug_code) {
|
|
Condition is_smi = masm->CheckSmi(rax);
|
|
__ Check(NegateCondition(is_smi),
|
|
kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
|
__ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
|
|
__ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
|
}
|
|
|
|
// rax: RegExp data (FixedArray)
|
|
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
|
__ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
|
|
__ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
|
|
__ j(not_equal, &runtime);
|
|
|
|
// rax: RegExp data (FixedArray)
|
|
// Check that the number of captures fit in the static offsets vector buffer.
|
|
__ SmiToInteger32(rdx,
|
|
FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
|
|
// Check (number_of_captures + 1) * 2 <= offsets vector size
|
|
// Or number_of_captures <= offsets vector size / 2 - 1
|
|
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
|
|
__ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1));
|
|
__ j(above, &runtime);
|
|
|
|
// Reset offset for possibly sliced string.
|
|
__ Set(r14, 0);
|
|
__ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
|
|
__ JumpIfSmi(rdi, &runtime);
|
|
__ movp(r15, rdi); // Make a copy of the original subject string.
|
|
__ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
|
|
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
|
// rax: RegExp data (FixedArray)
|
|
// rdi: subject string
|
|
// r15: subject string
|
|
// Handle subject string according to its encoding and representation:
|
|
// (1) Sequential two byte? If yes, go to (9).
|
|
// (2) Sequential one byte? If yes, go to (6).
|
|
// (3) Anything but sequential or cons? If yes, go to (7).
|
|
// (4) Cons string. If the string is flat, replace subject with first string.
|
|
// Otherwise bailout.
|
|
// (5a) Is subject sequential two byte? If yes, go to (9).
|
|
// (5b) Is subject external? If yes, go to (8).
|
|
// (6) One byte sequential. Load regexp code for one byte.
|
|
// (E) Carry on.
|
|
/// [...]
|
|
|
|
// Deferred code at the end of the stub:
|
|
// (7) Not a long external string? If yes, go to (10).
|
|
// (8) External string. Make it, offset-wise, look like a sequential string.
|
|
// (8a) Is the external string one byte? If yes, go to (6).
|
|
// (9) Two byte sequential. Load regexp code for one byte. Go to (E).
|
|
// (10) Short external string or not a string? If yes, bail out to runtime.
|
|
// (11) Sliced string. Replace subject with parent. Go to (5a).
|
|
|
|
Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
|
|
external_string /* 8 */, check_underlying /* 5a */,
|
|
not_seq_nor_cons /* 7 */, check_code /* E */,
|
|
not_long_external /* 10 */;
|
|
|
|
// (1) Sequential two byte? If yes, go to (9).
|
|
__ andb(rbx, Immediate(kIsNotStringMask |
|
|
kStringRepresentationMask |
|
|
kStringEncodingMask |
|
|
kShortExternalStringMask));
|
|
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
|
|
__ j(zero, &seq_two_byte_string); // Go to (9).
|
|
|
|
// (2) Sequential one byte? If yes, go to (6).
|
|
// Any other sequential string must be one byte.
|
|
__ andb(rbx, Immediate(kIsNotStringMask |
|
|
kStringRepresentationMask |
|
|
kShortExternalStringMask));
|
|
__ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
|
|
|
|
// (3) Anything but sequential or cons? If yes, go to (7).
|
|
// We check whether the subject string is a cons, since sequential strings
|
|
// have already been covered.
|
|
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
|
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
|
|
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
|
|
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
|
|
__ cmpp(rbx, Immediate(kExternalStringTag));
|
|
__ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
|
|
|
|
// (4) Cons string. Check that it's flat.
|
|
// Replace subject with first string and reload instance type.
|
|
__ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
|
|
Heap::kempty_stringRootIndex);
|
|
__ j(not_equal, &runtime);
|
|
__ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
|
|
__ bind(&check_underlying);
|
|
__ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
|
|
__ movp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
|
|
|
// (5a) Is subject sequential two byte? If yes, go to (9).
|
|
__ testb(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask));
|
|
STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
|
|
__ j(zero, &seq_two_byte_string); // Go to (9).
|
|
// (5b) Is subject external? If yes, go to (8).
|
|
__ testb(rbx, Immediate(kStringRepresentationMask));
|
|
// The underlying external string is never a short external string.
|
|
STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength);
|
|
STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength);
|
|
__ j(not_zero, &external_string); // Go to (8)
|
|
|
|
// (6) One byte sequential. Load regexp code for one byte.
|
|
__ bind(&seq_one_byte_string);
|
|
// rax: RegExp data (FixedArray)
|
|
__ movp(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset));
|
|
__ Set(rcx, 1); // Type is one byte.
|
|
|
|
// (E) Carry on. String handling is done.
|
|
__ bind(&check_code);
|
|
// r11: irregexp code
|
|
// Check that the irregexp code has been generated for the actual string
|
|
// encoding. If it has, the field contains a code object otherwise it contains
|
|
// smi (code flushing support)
|
|
__ JumpIfSmi(r11, &runtime);
|
|
|
|
// rdi: sequential subject string (or look-alike, external string)
|
|
// r15: original subject string
|
|
// rcx: encoding of subject string (1 if ASCII, 0 if two_byte);
|
|
// r11: code
|
|
// Load used arguments before starting to push arguments for call to native
|
|
// RegExp code to avoid handling changing stack height.
|
|
// We have to use r15 instead of rdi to load the length because rdi might
|
|
// have been only made to look like a sequential string when it actually
|
|
// is an external string.
|
|
__ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX));
|
|
__ JumpIfNotSmi(rbx, &runtime);
|
|
__ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset));
|
|
__ j(above_equal, &runtime);
|
|
__ SmiToInteger64(rbx, rbx);
|
|
|
|
// rdi: subject string
|
|
// rbx: previous index
|
|
// rcx: encoding of subject string (1 if ASCII 0 if two_byte);
|
|
// r11: code
|
|
// All checks done. Now push arguments for native regexp code.
|
|
Counters* counters = masm->isolate()->counters();
|
|
__ IncrementCounter(counters->regexp_entry_native(), 1);
|
|
|
|
// Isolates: note we add an additional parameter here (isolate pointer).
|
|
static const int kRegExpExecuteArguments = 9;
|
|
int argument_slots_on_stack =
|
|
masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
|
|
__ EnterApiExitFrame(argument_slots_on_stack);
|
|
|
|
// Argument 9: Pass current isolate address.
|
|
__ LoadAddress(kScratchRegister,
|
|
ExternalReference::isolate_address(masm->isolate()));
|
|
__ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize),
|
|
kScratchRegister);
|
|
|
|
// Argument 8: Indicate that this is a direct call from JavaScript.
|
|
__ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize),
|
|
Immediate(1));
|
|
|
|
// Argument 7: Start (high end) of backtracking stack memory area.
|
|
__ Move(kScratchRegister, address_of_regexp_stack_memory_address);
|
|
__ movp(r9, Operand(kScratchRegister, 0));
|
|
__ Move(kScratchRegister, address_of_regexp_stack_memory_size);
|
|
__ addp(r9, Operand(kScratchRegister, 0));
|
|
__ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9);
|
|
|
|
// Argument 6: Set the number of capture registers to zero to force global
|
|
// regexps to behave as non-global. This does not affect non-global regexps.
|
|
// Argument 6 is passed in r9 on Linux and on the stack on Windows.
|
|
#ifdef _WIN64
|
|
__ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize),
|
|
Immediate(0));
|
|
#else
|
|
__ Set(r9, 0);
|
|
#endif
|
|
|
|
// Argument 5: static offsets vector buffer.
|
|
__ LoadAddress(r8,
|
|
ExternalReference::address_of_static_offsets_vector(isolate));
|
|
// Argument 5 passed in r8 on Linux and on the stack on Windows.
|
|
#ifdef _WIN64
|
|
__ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8);
|
|
#endif
|
|
|
|
// rdi: subject string
|
|
// rbx: previous index
|
|
// rcx: encoding of subject string (1 if ASCII 0 if two_byte);
|
|
// r11: code
|
|
// r14: slice offset
|
|
// r15: original subject string
|
|
|
|
// Argument 2: Previous index.
|
|
__ movp(arg_reg_2, rbx);
|
|
|
|
// Argument 4: End of string data
|
|
// Argument 3: Start of string data
|
|
Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
|
|
// Prepare start and end index of the input.
|
|
// Load the length from the original sliced string if that is the case.
|
|
__ addp(rbx, r14);
|
|
__ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset));
|
|
__ addp(r14, arg_reg_3); // Using arg3 as scratch.
|
|
|
|
// rbx: start index of the input
|
|
// r14: end index of the input
|
|
// r15: original subject string
|
|
__ testb(rcx, rcx); // Last use of rcx as encoding of subject string.
|
|
__ j(zero, &setup_two_byte, Label::kNear);
|
|
__ leap(arg_reg_4,
|
|
FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize));
|
|
__ leap(arg_reg_3,
|
|
FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize));
|
|
__ jmp(&setup_rest, Label::kNear);
|
|
__ bind(&setup_two_byte);
|
|
__ leap(arg_reg_4,
|
|
FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
|
|
__ leap(arg_reg_3,
|
|
FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
|
|
__ bind(&setup_rest);
|
|
|
|
// Argument 1: Original subject string.
|
|
// The original subject is in the previous stack frame. Therefore we have to
|
|
// use rbp, which points exactly to one pointer size below the previous rsp.
|
|
// (Because creating a new stack frame pushes the previous rbp onto the stack
|
|
// and thereby moves up rsp by one kPointerSize.)
|
|
__ movp(arg_reg_1, r15);
|
|
|
|
// Locate the code entry and call it.
|
|
__ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
|
|
__ call(r11);
|
|
|
|
__ LeaveApiExitFrame(true);
|
|
|
|
// Check the result.
|
|
Label success;
|
|
Label exception;
|
|
__ cmpl(rax, Immediate(1));
|
|
// We expect exactly one result since we force the called regexp to behave
|
|
// as non-global.
|
|
__ j(equal, &success, Label::kNear);
|
|
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
|
|
__ j(equal, &exception);
|
|
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
|
|
// If none of the above, it can only be retry.
|
|
// Handle that in the runtime system.
|
|
__ j(not_equal, &runtime);
|
|
|
|
// For failure return null.
|
|
__ LoadRoot(rax, Heap::kNullValueRootIndex);
|
|
__ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
|
|
|
|
// Load RegExp data.
|
|
__ bind(&success);
|
|
__ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
|
|
__ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
|
|
__ SmiToInteger32(rax,
|
|
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
|
|
// Calculate number of capture registers (number_of_captures + 1) * 2.
|
|
__ leal(rdx, Operand(rax, rax, times_1, 2));
|
|
|
|
// rdx: Number of capture registers
|
|
// Check that the fourth object is a JSArray object.
|
|
__ movp(r15, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX));
|
|
__ JumpIfSmi(r15, &runtime);
|
|
__ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister);
|
|
__ j(not_equal, &runtime);
|
|
// Check that the JSArray is in fast case.
|
|
__ movp(rbx, FieldOperand(r15, JSArray::kElementsOffset));
|
|
__ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset));
|
|
__ CompareRoot(rax, Heap::kFixedArrayMapRootIndex);
|
|
__ j(not_equal, &runtime);
|
|
// Check that the last match info has space for the capture registers and the
|
|
// additional information. Ensure no overflow in add.
|
|
STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
|
|
__ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
|
|
__ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead));
|
|
__ cmpl(rdx, rax);
|
|
__ j(greater, &runtime);
|
|
|
|
// rbx: last_match_info backing store (FixedArray)
|
|
// rdx: number of capture registers
|
|
// Store the capture count.
|
|
__ Integer32ToSmi(kScratchRegister, rdx);
|
|
__ movp(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
|
|
kScratchRegister);
|
|
// Store last subject and last input.
|
|
__ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
|
|
__ movp(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
|
|
__ movp(rcx, rax);
|
|
__ RecordWriteField(rbx,
|
|
RegExpImpl::kLastSubjectOffset,
|
|
rax,
|
|
rdi,
|
|
kDontSaveFPRegs);
|
|
__ movp(rax, rcx);
|
|
__ movp(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
|
|
__ RecordWriteField(rbx,
|
|
RegExpImpl::kLastInputOffset,
|
|
rax,
|
|
rdi,
|
|
kDontSaveFPRegs);
|
|
|
|
// Get the static offsets vector filled by the native regexp code.
|
|
__ LoadAddress(rcx,
|
|
ExternalReference::address_of_static_offsets_vector(isolate));
|
|
|
|
// rbx: last_match_info backing store (FixedArray)
|
|
// rcx: offsets vector
|
|
// rdx: number of capture registers
|
|
Label next_capture, done;
|
|
// Capture register counter starts from number of capture registers and
|
|
// counts down until wraping after zero.
|
|
__ bind(&next_capture);
|
|
__ subp(rdx, Immediate(1));
|
|
__ j(negative, &done, Label::kNear);
|
|
// Read the value from the static offsets vector buffer and make it a smi.
|
|
__ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
|
|
__ Integer32ToSmi(rdi, rdi);
|
|
// Store the smi value in the last match info.
|
|
__ movp(FieldOperand(rbx,
|
|
rdx,
|
|
times_pointer_size,
|
|
RegExpImpl::kFirstCaptureOffset),
|
|
rdi);
|
|
__ jmp(&next_capture);
|
|
__ bind(&done);
|
|
|
|
// Return last match info.
|
|
__ movp(rax, r15);
|
|
__ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
|
|
|
|
__ bind(&exception);
|
|
// Result must now be exception. If there is no pending exception already a
|
|
// stack overflow (on the backtrack stack) was detected in RegExp code but
|
|
// haven't created the exception yet. Handle that in the runtime system.
|
|
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
|
|
ExternalReference pending_exception_address(
|
|
Isolate::kPendingExceptionAddress, isolate);
|
|
Operand pending_exception_operand =
|
|
masm->ExternalOperand(pending_exception_address, rbx);
|
|
__ movp(rax, pending_exception_operand);
|
|
__ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
|
|
__ cmpp(rax, rdx);
|
|
__ j(equal, &runtime);
|
|
__ movp(pending_exception_operand, rdx);
|
|
|
|
__ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
|
|
Label termination_exception;
|
|
__ j(equal, &termination_exception, Label::kNear);
|
|
__ Throw(rax);
|
|
|
|
__ bind(&termination_exception);
|
|
__ ThrowUncatchable(rax);
|
|
|
|
// Do the runtime call to execute the regexp.
|
|
__ bind(&runtime);
|
|
__ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
|
|
|
|
// Deferred code for string handling.
|
|
// (7) Not a long external string? If yes, go to (10).
|
|
__ bind(¬_seq_nor_cons);
|
|
// Compare flags are still set from (3).
|
|
__ j(greater, ¬_long_external, Label::kNear); // Go to (10).
|
|
|
|
// (8) External string. Short external strings have been ruled out.
|
|
__ bind(&external_string);
|
|
__ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
|
|
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
|
if (FLAG_debug_code) {
|
|
// Assert that we do not have a cons or slice (indirect strings) here.
|
|
// Sequential strings have already been ruled out.
|
|
__ testb(rbx, Immediate(kIsIndirectStringMask));
|
|
__ Assert(zero, kExternalStringExpectedButNotFound);
|
|
}
|
|
__ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
|
|
// Move the pointer so that offset-wise, it looks like a sequential string.
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
|
__ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
|
STATIC_ASSERT(kTwoByteStringTag == 0);
|
|
// (8a) Is the external string one byte? If yes, go to (6).
|
|
__ testb(rbx, Immediate(kStringEncodingMask));
|
|
__ j(not_zero, &seq_one_byte_string); // Goto (6).
|
|
|
|
// rdi: subject string (flat two-byte)
|
|
// rax: RegExp data (FixedArray)
|
|
// (9) Two byte sequential. Load regexp code for one byte. Go to (E).
|
|
__ bind(&seq_two_byte_string);
|
|
__ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
|
|
__ Set(rcx, 0); // Type is two byte.
|
|
__ jmp(&check_code); // Go to (E).
|
|
|
|
// (10) Not a string or a short external string? If yes, bail out to runtime.
|
|
__ bind(¬_long_external);
|
|
// Catch non-string subject or short external string.
|
|
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
|
|
__ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
|
|
__ j(not_zero, &runtime);
|
|
|
|
// (11) Sliced string. Replace subject with parent. Go to (5a).
|
|
// Load offset into r14 and replace subject string with parent.
|
|
__ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
|
|
__ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
|
|
__ jmp(&check_underlying);
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
}
|
|
|
|
|
|
static int NegativeComparisonResult(Condition cc) {
|
|
ASSERT(cc != equal);
|
|
ASSERT((cc == less) || (cc == less_equal)
|
|
|| (cc == greater) || (cc == greater_equal));
|
|
return (cc == greater || cc == greater_equal) ? LESS : GREATER;
|
|
}
|
|
|
|
|
|
static void CheckInputType(MacroAssembler* masm,
|
|
Register input,
|
|
CompareIC::State expected,
|
|
Label* fail) {
|
|
Label ok;
|
|
if (expected == CompareIC::SMI) {
|
|
__ JumpIfNotSmi(input, fail);
|
|
} else if (expected == CompareIC::NUMBER) {
|
|
__ JumpIfSmi(input, &ok);
|
|
__ CompareMap(input, masm->isolate()->factory()->heap_number_map());
|
|
__ j(not_equal, fail);
|
|
}
|
|
// We could be strict about internalized/non-internalized here, but as long as
|
|
// hydrogen doesn't care, the stub doesn't have to care either.
|
|
__ bind(&ok);
|
|
}
|
|
|
|
|
|
static void BranchIfNotInternalizedString(MacroAssembler* masm,
|
|
Label* label,
|
|
Register object,
|
|
Register scratch) {
|
|
__ JumpIfSmi(object, label);
|
|
__ movp(scratch, FieldOperand(object, HeapObject::kMapOffset));
|
|
__ movzxbp(scratch,
|
|
FieldOperand(scratch, Map::kInstanceTypeOffset));
|
|
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
|
|
__ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
|
|
__ j(not_zero, label);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
|
|
Label check_unequal_objects, done;
|
|
Condition cc = GetCondition();
|
|
Factory* factory = masm->isolate()->factory();
|
|
|
|
Label miss;
|
|
CheckInputType(masm, rdx, left_, &miss);
|
|
CheckInputType(masm, rax, right_, &miss);
|
|
|
|
// Compare two smis.
|
|
Label non_smi, smi_done;
|
|
__ JumpIfNotBothSmi(rax, rdx, &non_smi);
|
|
__ subp(rdx, rax);
|
|
__ j(no_overflow, &smi_done);
|
|
__ notp(rdx); // Correct sign in case of overflow. rdx cannot be 0 here.
|
|
__ bind(&smi_done);
|
|
__ movp(rax, rdx);
|
|
__ ret(0);
|
|
__ bind(&non_smi);
|
|
|
|
// The compare stub returns a positive, negative, or zero 64-bit integer
|
|
// value in rax, corresponding to result of comparing the two inputs.
|
|
// NOTICE! This code is only reached after a smi-fast-case check, so
|
|
// it is certain that at least one operand isn't a smi.
|
|
|
|
// Two identical objects are equal unless they are both NaN or undefined.
|
|
{
|
|
Label not_identical;
|
|
__ cmpp(rax, rdx);
|
|
__ j(not_equal, ¬_identical, Label::kNear);
|
|
|
|
if (cc != equal) {
|
|
// Check for undefined. undefined OP undefined is false even though
|
|
// undefined == undefined.
|
|
Label check_for_nan;
|
|
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
|
|
__ j(not_equal, &check_for_nan, Label::kNear);
|
|
__ Set(rax, NegativeComparisonResult(cc));
|
|
__ ret(0);
|
|
__ bind(&check_for_nan);
|
|
}
|
|
|
|
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
|
|
// so we do the second best thing - test it ourselves.
|
|
Label heap_number;
|
|
// If it's not a heap number, then return equal for (in)equality operator.
|
|
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
|
|
factory->heap_number_map());
|
|
__ j(equal, &heap_number, Label::kNear);
|
|
if (cc != equal) {
|
|
// Call runtime on identical objects. Otherwise return equal.
|
|
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
|
|
__ j(above_equal, ¬_identical, Label::kNear);
|
|
}
|
|
__ Set(rax, EQUAL);
|
|
__ ret(0);
|
|
|
|
__ bind(&heap_number);
|
|
// It is a heap number, so return equal if it's not NaN.
|
|
// For NaN, return 1 for every condition except greater and
|
|
// greater-equal. Return -1 for them, so the comparison yields
|
|
// false for all conditions except not-equal.
|
|
__ Set(rax, EQUAL);
|
|
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
|
|
__ ucomisd(xmm0, xmm0);
|
|
__ setcc(parity_even, rax);
|
|
// rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
|
|
if (cc == greater_equal || cc == greater) {
|
|
__ negp(rax);
|
|
}
|
|
__ ret(0);
|
|
|
|
__ bind(¬_identical);
|
|
}
|
|
|
|
if (cc == equal) { // Both strict and non-strict.
|
|
Label slow; // Fallthrough label.
|
|
|
|
// If we're doing a strict equality comparison, we don't have to do
|
|
// type conversion, so we generate code to do fast comparison for objects
|
|
// and oddballs. Non-smi numbers and strings still go through the usual
|
|
// slow-case code.
|
|
if (strict()) {
|
|
// If either is a Smi (we know that not both are), then they can only
|
|
// be equal if the other is a HeapNumber. If so, use the slow case.
|
|
{
|
|
Label not_smis;
|
|
__ SelectNonSmi(rbx, rax, rdx, ¬_smis);
|
|
|
|
// Check if the non-smi operand is a heap number.
|
|
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
|
|
factory->heap_number_map());
|
|
// If heap number, handle it in the slow case.
|
|
__ j(equal, &slow);
|
|
// Return non-equal. ebx (the lower half of rbx) is not zero.
|
|
__ movp(rax, rbx);
|
|
__ ret(0);
|
|
|
|
__ bind(¬_smis);
|
|
}
|
|
|
|
// If either operand is a JSObject or an oddball value, then they are not
|
|
// equal since their pointers are different
|
|
// There is no test for undetectability in strict equality.
|
|
|
|
// If the first object is a JS object, we have done pointer comparison.
|
|
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
|
|
Label first_non_object;
|
|
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
|
|
__ j(below, &first_non_object, Label::kNear);
|
|
// Return non-zero (rax (not rax) is not zero)
|
|
Label return_not_equal;
|
|
STATIC_ASSERT(kHeapObjectTag != 0);
|
|
__ bind(&return_not_equal);
|
|
__ ret(0);
|
|
|
|
__ bind(&first_non_object);
|
|
// Check for oddballs: true, false, null, undefined.
|
|
__ CmpInstanceType(rcx, ODDBALL_TYPE);
|
|
__ j(equal, &return_not_equal);
|
|
|
|
__ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
|
|
__ j(above_equal, &return_not_equal);
|
|
|
|
// Check for oddballs: true, false, null, undefined.
|
|
__ CmpInstanceType(rcx, ODDBALL_TYPE);
|
|
__ j(equal, &return_not_equal);
|
|
|
|
// Fall through to the general case.
|
|
}
|
|
__ bind(&slow);
|
|
}
|
|
|
|
// Generate the number comparison code.
|
|
Label non_number_comparison;
|
|
Label unordered;
|
|
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
|
|
__ xorl(rax, rax);
|
|
__ xorl(rcx, rcx);
|
|
__ ucomisd(xmm0, xmm1);
|
|
|
|
// Don't base result on EFLAGS when a NaN is involved.
|
|
__ j(parity_even, &unordered, Label::kNear);
|
|
// Return a result of -1, 0, or 1, based on EFLAGS.
|
|
__ setcc(above, rax);
|
|
__ setcc(below, rcx);
|
|
__ subp(rax, rcx);
|
|
__ ret(0);
|
|
|
|
// If one of the numbers was NaN, then the result is always false.
|
|
// The cc is never not-equal.
|
|
__ bind(&unordered);
|
|
ASSERT(cc != not_equal);
|
|
if (cc == less || cc == less_equal) {
|
|
__ Set(rax, 1);
|
|
} else {
|
|
__ Set(rax, -1);
|
|
}
|
|
__ ret(0);
|
|
|
|
// The number comparison code did not provide a valid result.
|
|
__ bind(&non_number_comparison);
|
|
|
|
// Fast negative check for internalized-to-internalized equality.
|
|
Label check_for_strings;
|
|
if (cc == equal) {
|
|
BranchIfNotInternalizedString(
|
|
masm, &check_for_strings, rax, kScratchRegister);
|
|
BranchIfNotInternalizedString(
|
|
masm, &check_for_strings, rdx, kScratchRegister);
|
|
|
|
// We've already checked for object identity, so if both operands are
|
|
// internalized strings they aren't equal. Register rax (not rax) already
|
|
// holds a non-zero value, which indicates not equal, so just return.
|
|
__ ret(0);
|
|
}
|
|
|
|
__ bind(&check_for_strings);
|
|
|
|
__ JumpIfNotBothSequentialAsciiStrings(
|
|
rdx, rax, rcx, rbx, &check_unequal_objects);
|
|
|
|
// Inline comparison of ASCII strings.
|
|
if (cc == equal) {
|
|
StringCompareStub::GenerateFlatAsciiStringEquals(masm,
|
|
rdx,
|
|
rax,
|
|
rcx,
|
|
rbx);
|
|
} else {
|
|
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
|
|
rdx,
|
|
rax,
|
|
rcx,
|
|
rbx,
|
|
rdi,
|
|
r8);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
__ Abort(kUnexpectedFallThroughFromStringComparison);
|
|
#endif
|
|
|
|
__ bind(&check_unequal_objects);
|
|
if (cc == equal && !strict()) {
|
|
// Not strict equality. Objects are unequal if
|
|
// they are both JSObjects and not undetectable,
|
|
// and their pointers are different.
|
|
Label not_both_objects, return_unequal;
|
|
// At most one is a smi, so we can test for smi by adding the two.
|
|
// A smi plus a heap object has the low bit set, a heap object plus
|
|
// a heap object has the low bit clear.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
STATIC_ASSERT(kSmiTagMask == 1);
|
|
__ leap(rcx, Operand(rax, rdx, times_1, 0));
|
|
__ testb(rcx, Immediate(kSmiTagMask));
|
|
__ j(not_zero, ¬_both_objects, Label::kNear);
|
|
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx);
|
|
__ j(below, ¬_both_objects, Label::kNear);
|
|
__ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
|
|
__ j(below, ¬_both_objects, Label::kNear);
|
|
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
|
|
Immediate(1 << Map::kIsUndetectable));
|
|
__ j(zero, &return_unequal, Label::kNear);
|
|
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
|
|
Immediate(1 << Map::kIsUndetectable));
|
|
__ j(zero, &return_unequal, Label::kNear);
|
|
// The objects are both undetectable, so they both compare as the value
|
|
// undefined, and are equal.
|
|
__ Set(rax, EQUAL);
|
|
__ bind(&return_unequal);
|
|
// Return non-equal by returning the non-zero object pointer in rax,
|
|
// or return equal if we fell through to here.
|
|
__ ret(0);
|
|
__ bind(¬_both_objects);
|
|
}
|
|
|
|
// Push arguments below the return address to prepare jump to builtin.
|
|
__ PopReturnAddressTo(rcx);
|
|
__ Push(rdx);
|
|
__ Push(rax);
|
|
|
|
// Figure out which native to call and setup the arguments.
|
|
Builtins::JavaScript builtin;
|
|
if (cc == equal) {
|
|
builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
|
} else {
|
|
builtin = Builtins::COMPARE;
|
|
__ Push(Smi::FromInt(NegativeComparisonResult(cc)));
|
|
}
|
|
|
|
__ PushReturnAddressFrom(rcx);
|
|
|
|
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
|
// tagged as a small integer.
|
|
__ InvokeBuiltin(builtin, JUMP_FUNCTION);
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
static void GenerateRecordCallTarget(MacroAssembler* masm) {
|
|
// Cache the called function in a feedback vector slot. Cache states
|
|
// are uninitialized, monomorphic (indicated by a JSFunction), and
|
|
// megamorphic.
|
|
// rax : number of arguments to the construct function
|
|
// rbx : Feedback vector
|
|
// rdx : slot in feedback vector (Smi)
|
|
// rdi : the function to call
|
|
Isolate* isolate = masm->isolate();
|
|
Label initialize, done, miss, megamorphic, not_array_function,
|
|
done_no_smi_convert;
|
|
|
|
// Load the cache state into rcx.
|
|
__ SmiToInteger32(rdx, rdx);
|
|
__ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
|
|
FixedArray::kHeaderSize));
|
|
|
|
// A monomorphic cache hit or an already megamorphic state: invoke the
|
|
// function without changing the state.
|
|
__ cmpp(rcx, rdi);
|
|
__ j(equal, &done);
|
|
__ Cmp(rcx, TypeFeedbackInfo::MegamorphicSentinel(isolate));
|
|
__ j(equal, &done);
|
|
|
|
if (!FLAG_pretenuring_call_new) {
|
|
// If we came here, we need to see if we are the array function.
|
|
// If we didn't have a matching function, and we didn't find the megamorph
|
|
// sentinel, then we have in the slot either some other function or an
|
|
// AllocationSite. Do a map check on the object in rcx.
|
|
Handle<Map> allocation_site_map =
|
|
masm->isolate()->factory()->allocation_site_map();
|
|
__ Cmp(FieldOperand(rcx, 0), allocation_site_map);
|
|
__ j(not_equal, &miss);
|
|
|
|
// Make sure the function is the Array() function
|
|
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
|
|
__ cmpp(rdi, rcx);
|
|
__ j(not_equal, &megamorphic);
|
|
__ jmp(&done);
|
|
}
|
|
|
|
__ bind(&miss);
|
|
|
|
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
|
|
// megamorphic.
|
|
__ Cmp(rcx, TypeFeedbackInfo::UninitializedSentinel(isolate));
|
|
__ j(equal, &initialize);
|
|
// MegamorphicSentinel is an immortal immovable object (undefined) so no
|
|
// write-barrier is needed.
|
|
__ bind(&megamorphic);
|
|
__ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
|
|
TypeFeedbackInfo::MegamorphicSentinel(isolate));
|
|
__ jmp(&done);
|
|
|
|
// An uninitialized cache is patched with the function or sentinel to
|
|
// indicate the ElementsKind if function is the Array constructor.
|
|
__ bind(&initialize);
|
|
|
|
if (!FLAG_pretenuring_call_new) {
|
|
// Make sure the function is the Array() function
|
|
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
|
|
__ cmpp(rdi, rcx);
|
|
__ j(not_equal, ¬_array_function);
|
|
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
// Arguments register must be smi-tagged to call out.
|
|
__ Integer32ToSmi(rax, rax);
|
|
__ Push(rax);
|
|
__ Push(rdi);
|
|
__ Integer32ToSmi(rdx, rdx);
|
|
__ Push(rdx);
|
|
__ Push(rbx);
|
|
|
|
CreateAllocationSiteStub create_stub;
|
|
__ CallStub(&create_stub);
|
|
|
|
__ Pop(rbx);
|
|
__ Pop(rdx);
|
|
__ Pop(rdi);
|
|
__ Pop(rax);
|
|
__ SmiToInteger32(rax, rax);
|
|
}
|
|
__ jmp(&done_no_smi_convert);
|
|
|
|
__ bind(¬_array_function);
|
|
}
|
|
|
|
__ movp(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
|
|
rdi);
|
|
|
|
// We won't need rdx or rbx anymore, just save rdi
|
|
__ Push(rdi);
|
|
__ Push(rbx);
|
|
__ Push(rdx);
|
|
__ RecordWriteArray(rbx, rdi, rdx, kDontSaveFPRegs,
|
|
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
|
|
__ Pop(rdx);
|
|
__ Pop(rbx);
|
|
__ Pop(rdi);
|
|
|
|
__ bind(&done);
|
|
__ Integer32ToSmi(rdx, rdx);
|
|
|
|
__ bind(&done_no_smi_convert);
|
|
}
|
|
|
|
|
|
void CallFunctionStub::Generate(MacroAssembler* masm) {
|
|
// rbx : feedback vector
|
|
// rdx : (only if rbx is not the megamorphic symbol) slot in feedback
|
|
// vector (Smi)
|
|
// rdi : the function to call
|
|
Isolate* isolate = masm->isolate();
|
|
Label slow, non_function, wrap, cont;
|
|
StackArgumentsAccessor args(rsp, argc_);
|
|
|
|
if (NeedsChecks()) {
|
|
// Check that the function really is a JavaScript function.
|
|
__ JumpIfSmi(rdi, &non_function);
|
|
|
|
// Goto slow case if we do not have a function.
|
|
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
|
|
__ j(not_equal, &slow);
|
|
|
|
if (RecordCallTarget()) {
|
|
GenerateRecordCallTarget(masm);
|
|
// Type information was updated. Because we may call Array, which
|
|
// expects either undefined or an AllocationSite in rbx we need
|
|
// to set rbx to undefined.
|
|
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
|
|
}
|
|
}
|
|
|
|
// Fast-case: Just invoke the function.
|
|
ParameterCount actual(argc_);
|
|
|
|
if (CallAsMethod()) {
|
|
if (NeedsChecks()) {
|
|
// Do not transform the receiver for strict mode functions.
|
|
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ testb(FieldOperand(rcx, SharedFunctionInfo::kStrictModeByteOffset),
|
|
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
|
|
__ j(not_equal, &cont);
|
|
|
|
// Do not transform the receiver for natives.
|
|
// SharedFunctionInfo is already loaded into rcx.
|
|
__ testb(FieldOperand(rcx, SharedFunctionInfo::kNativeByteOffset),
|
|
Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
|
|
__ j(not_equal, &cont);
|
|
}
|
|
|
|
|
|
// Load the receiver from the stack.
|
|
__ movp(rax, args.GetReceiverOperand());
|
|
|
|
if (NeedsChecks()) {
|
|
__ JumpIfSmi(rax, &wrap);
|
|
|
|
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
|
|
__ j(below, &wrap);
|
|
} else {
|
|
__ jmp(&wrap);
|
|
}
|
|
|
|
__ bind(&cont);
|
|
}
|
|
__ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper());
|
|
|
|
if (NeedsChecks()) {
|
|
// Slow-case: Non-function called.
|
|
__ bind(&slow);
|
|
if (RecordCallTarget()) {
|
|
// If there is a call target cache, mark it megamorphic in the
|
|
// non-function case. MegamorphicSentinel is an immortal immovable
|
|
// object (megamorphic symbol) so no write barrier is needed.
|
|
__ SmiToInteger32(rdx, rdx);
|
|
__ Move(FieldOperand(rbx, rdx, times_pointer_size,
|
|
FixedArray::kHeaderSize),
|
|
TypeFeedbackInfo::MegamorphicSentinel(isolate));
|
|
__ Integer32ToSmi(rdx, rdx);
|
|
}
|
|
// Check for function proxy.
|
|
__ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
|
|
__ j(not_equal, &non_function);
|
|
__ PopReturnAddressTo(rcx);
|
|
__ Push(rdi); // put proxy as additional argument under return address
|
|
__ PushReturnAddressFrom(rcx);
|
|
__ Set(rax, argc_ + 1);
|
|
__ Set(rbx, 0);
|
|
__ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
|
|
{
|
|
Handle<Code> adaptor =
|
|
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
|
__ jmp(adaptor, RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
|
|
// of the original receiver from the call site).
|
|
__ bind(&non_function);
|
|
__ movp(args.GetReceiverOperand(), rdi);
|
|
__ Set(rax, argc_);
|
|
__ Set(rbx, 0);
|
|
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
|
|
Handle<Code> adaptor =
|
|
isolate->builtins()->ArgumentsAdaptorTrampoline();
|
|
__ Jump(adaptor, RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
if (CallAsMethod()) {
|
|
__ bind(&wrap);
|
|
// Wrap the receiver and patch it back onto the stack.
|
|
{ FrameScope frame_scope(masm, StackFrame::INTERNAL);
|
|
__ Push(rdi);
|
|
__ Push(rax);
|
|
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
|
__ Pop(rdi);
|
|
}
|
|
__ movp(args.GetReceiverOperand(), rax);
|
|
__ jmp(&cont);
|
|
}
|
|
}
|
|
|
|
|
|
void CallConstructStub::Generate(MacroAssembler* masm) {
|
|
// rax : number of arguments
|
|
// rbx : feedback vector
|
|
// rdx : (only if rbx is not the megamorphic symbol) slot in feedback
|
|
// vector (Smi)
|
|
// rdi : constructor function
|
|
Label slow, non_function_call;
|
|
|
|
// Check that function is not a smi.
|
|
__ JumpIfSmi(rdi, &non_function_call);
|
|
// Check that function is a JSFunction.
|
|
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
|
|
__ j(not_equal, &slow);
|
|
|
|
if (RecordCallTarget()) {
|
|
GenerateRecordCallTarget(masm);
|
|
|
|
__ SmiToInteger32(rdx, rdx);
|
|
if (FLAG_pretenuring_call_new) {
|
|
// Put the AllocationSite from the feedback vector into ebx.
|
|
// By adding kPointerSize we encode that we know the AllocationSite
|
|
// entry is at the feedback vector slot given by rdx + 1.
|
|
__ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size,
|
|
FixedArray::kHeaderSize + kPointerSize));
|
|
} else {
|
|
Label feedback_register_initialized;
|
|
// Put the AllocationSite from the feedback vector into rbx, or undefined.
|
|
__ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size,
|
|
FixedArray::kHeaderSize));
|
|
__ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex);
|
|
__ j(equal, &feedback_register_initialized);
|
|
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
|
|
__ bind(&feedback_register_initialized);
|
|
}
|
|
|
|
__ AssertUndefinedOrAllocationSite(rbx);
|
|
}
|
|
|
|
// Jump to the function-specific construct stub.
|
|
Register jmp_reg = rcx;
|
|
__ movp(jmp_reg, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ movp(jmp_reg, FieldOperand(jmp_reg,
|
|
SharedFunctionInfo::kConstructStubOffset));
|
|
__ leap(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
|
|
__ jmp(jmp_reg);
|
|
|
|
// rdi: called object
|
|
// rax: number of arguments
|
|
// rcx: object map
|
|
Label do_call;
|
|
__ bind(&slow);
|
|
__ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
|
|
__ j(not_equal, &non_function_call);
|
|
__ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
|
|
__ jmp(&do_call);
|
|
|
|
__ bind(&non_function_call);
|
|
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
|
|
__ bind(&do_call);
|
|
// Set expected number of arguments to zero (not changing rax).
|
|
__ Set(rbx, 0);
|
|
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
bool CEntryStub::NeedsImmovableCode() {
|
|
return false;
|
|
}
|
|
|
|
|
|
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
|
|
CEntryStub::GenerateAheadOfTime(isolate);
|
|
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
|
|
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
|
|
// It is important that the store buffer overflow stubs are generated first.
|
|
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
|
|
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
|
|
BinaryOpICStub::GenerateAheadOfTime(isolate);
|
|
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
|
|
}
|
|
|
|
|
|
void CodeStub::GenerateFPStubs(Isolate* isolate) {
|
|
}
|
|
|
|
|
|
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
|
|
CEntryStub stub(1, kDontSaveFPRegs);
|
|
stub.GetCode(isolate);
|
|
CEntryStub save_doubles(1, kSaveFPRegs);
|
|
save_doubles.GetCode(isolate);
|
|
}
|
|
|
|
|
|
void CEntryStub::GenerateCore(MacroAssembler* masm,
|
|
Label* throw_normal_exception,
|
|
Label* throw_termination_exception,
|
|
bool do_gc,
|
|
bool always_allocate_scope) {
|
|
// rax: result parameter for PerformGC, if any.
|
|
// rbx: pointer to C function (C callee-saved).
|
|
// rbp: frame pointer (restored after C call).
|
|
// rsp: stack pointer (restored after C call).
|
|
// r14: number of arguments including receiver (C callee-saved).
|
|
// r15: pointer to the first argument (C callee-saved).
|
|
// This pointer is reused in LeaveExitFrame(), so it is stored in a
|
|
// callee-saved register.
|
|
|
|
// Simple results returned in rax (both AMD64 and Win64 calling conventions).
|
|
// Complex results must be written to address passed as first argument.
|
|
// AMD64 calling convention: a struct of two pointers in rax+rdx
|
|
|
|
// Check stack alignment.
|
|
if (FLAG_debug_code) {
|
|
__ CheckStackAlignment();
|
|
}
|
|
|
|
if (do_gc) {
|
|
// Pass failure code returned from last attempt as first argument to
|
|
// PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
|
|
// stack is known to be aligned. This function takes one argument which is
|
|
// passed in register.
|
|
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
|
|
__ movp(arg_reg_1, rax);
|
|
__ Move(kScratchRegister,
|
|
ExternalReference::perform_gc_function(masm->isolate()));
|
|
__ call(kScratchRegister);
|
|
}
|
|
|
|
ExternalReference scope_depth =
|
|
ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
|
|
if (always_allocate_scope) {
|
|
Operand scope_depth_operand = masm->ExternalOperand(scope_depth);
|
|
__ incl(scope_depth_operand);
|
|
}
|
|
|
|
// Call C function.
|
|
#ifdef _WIN64
|
|
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9.
|
|
// Pass argv and argc as two parameters. The arguments object will
|
|
// be created by stubs declared by DECLARE_RUNTIME_FUNCTION().
|
|
if (result_size_ < 2) {
|
|
// Pass a pointer to the Arguments object as the first argument.
|
|
// Return result in single register (rax).
|
|
__ movp(rcx, r14); // argc.
|
|
__ movp(rdx, r15); // argv.
|
|
__ Move(r8, ExternalReference::isolate_address(masm->isolate()));
|
|
} else {
|
|
ASSERT_EQ(2, result_size_);
|
|
// Pass a pointer to the result location as the first argument.
|
|
__ leap(rcx, StackSpaceOperand(2));
|
|
// Pass a pointer to the Arguments object as the second argument.
|
|
__ movp(rdx, r14); // argc.
|
|
__ movp(r8, r15); // argv.
|
|
__ Move(r9, ExternalReference::isolate_address(masm->isolate()));
|
|
}
|
|
|
|
#else // _WIN64
|
|
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
|
|
__ movp(rdi, r14); // argc.
|
|
__ movp(rsi, r15); // argv.
|
|
__ Move(rdx, ExternalReference::isolate_address(masm->isolate()));
|
|
#endif
|
|
__ call(rbx);
|
|
// Result is in rax - do not destroy this register!
|
|
|
|
if (always_allocate_scope) {
|
|
Operand scope_depth_operand = masm->ExternalOperand(scope_depth);
|
|
__ decl(scope_depth_operand);
|
|
}
|
|
|
|
// Check for failure result.
|
|
Label failure_returned;
|
|
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
|
#ifdef _WIN64
|
|
// If return value is on the stack, pop it to registers.
|
|
if (result_size_ > 1) {
|
|
ASSERT_EQ(2, result_size_);
|
|
// Read result values stored on stack. Result is stored
|
|
// above the four argument mirror slots and the two
|
|
// Arguments object slots.
|
|
__ movq(rax, Operand(rsp, 6 * kRegisterSize));
|
|
__ movq(rdx, Operand(rsp, 7 * kRegisterSize));
|
|
}
|
|
#endif
|
|
__ leap(rcx, Operand(rax, 1));
|
|
// Lower 2 bits of rcx are 0 iff rax has failure tag.
|
|
__ testl(rcx, Immediate(kFailureTagMask));
|
|
__ j(zero, &failure_returned);
|
|
|
|
// Exit the JavaScript to C++ exit frame.
|
|
__ LeaveExitFrame(save_doubles_);
|
|
__ ret(0);
|
|
|
|
// Handling of failure.
|
|
__ bind(&failure_returned);
|
|
|
|
Label retry;
|
|
// If the returned exception is RETRY_AFTER_GC continue at retry label
|
|
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
|
__ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
|
__ j(zero, &retry, Label::kNear);
|
|
|
|
// Retrieve the pending exception.
|
|
ExternalReference pending_exception_address(
|
|
Isolate::kPendingExceptionAddress, masm->isolate());
|
|
Operand pending_exception_operand =
|
|
masm->ExternalOperand(pending_exception_address);
|
|
__ movp(rax, pending_exception_operand);
|
|
|
|
// Clear the pending exception.
|
|
pending_exception_operand =
|
|
masm->ExternalOperand(pending_exception_address);
|
|
__ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
|
|
__ movp(pending_exception_operand, rdx);
|
|
|
|
// Special handling of termination exceptions which are uncatchable
|
|
// by javascript code.
|
|
__ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
|
|
__ j(equal, throw_termination_exception);
|
|
|
|
// Handle normal exception.
|
|
__ jmp(throw_normal_exception);
|
|
|
|
// Retry.
|
|
__ bind(&retry);
|
|
}
|
|
|
|
|
|
void CEntryStub::Generate(MacroAssembler* masm) {
|
|
// rax: number of arguments including receiver
|
|
// rbx: pointer to C function (C callee-saved)
|
|
// rbp: frame pointer of calling JS frame (restored after C call)
|
|
// rsp: stack pointer (restored after C call)
|
|
// rsi: current context (restored)
|
|
|
|
// NOTE: Invocations of builtins may return failure objects
|
|
// instead of a proper result. The builtin entry handles
|
|
// this by performing a garbage collection and retrying the
|
|
// builtin once.
|
|
|
|
ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
|
|
|
// Enter the exit frame that transitions from JavaScript to C++.
|
|
#ifdef _WIN64
|
|
int arg_stack_space = (result_size_ < 2 ? 2 : 4);
|
|
#else
|
|
int arg_stack_space = 0;
|
|
#endif
|
|
__ EnterExitFrame(arg_stack_space, save_doubles_);
|
|
|
|
// rax: Holds the context at this point, but should not be used.
|
|
// On entry to code generated by GenerateCore, it must hold
|
|
// a failure result if the collect_garbage argument to GenerateCore
|
|
// is true. This failure result can be the result of code
|
|
// generated by a previous call to GenerateCore. The value
|
|
// of rax is then passed to Runtime::PerformGC.
|
|
// rbx: pointer to builtin function (C callee-saved).
|
|
// rbp: frame pointer of exit frame (restored after C call).
|
|
// rsp: stack pointer (restored after C call).
|
|
// r14: number of arguments including receiver (C callee-saved).
|
|
// r15: argv pointer (C callee-saved).
|
|
|
|
Label throw_normal_exception;
|
|
Label throw_termination_exception;
|
|
|
|
// Call into the runtime system.
|
|
GenerateCore(masm,
|
|
&throw_normal_exception,
|
|
&throw_termination_exception,
|
|
false,
|
|
false);
|
|
|
|
// Do space-specific GC and retry runtime call.
|
|
GenerateCore(masm,
|
|
&throw_normal_exception,
|
|
&throw_termination_exception,
|
|
true,
|
|
false);
|
|
|
|
// Do full GC and retry runtime call one final time.
|
|
Failure* failure = Failure::InternalError();
|
|
__ Move(rax, failure, Assembler::RelocInfoNone());
|
|
GenerateCore(masm,
|
|
&throw_normal_exception,
|
|
&throw_termination_exception,
|
|
true,
|
|
true);
|
|
|
|
{ FrameScope scope(masm, StackFrame::MANUAL);
|
|
__ PrepareCallCFunction(0);
|
|
__ CallCFunction(
|
|
ExternalReference::out_of_memory_function(masm->isolate()), 0);
|
|
}
|
|
|
|
__ bind(&throw_termination_exception);
|
|
__ ThrowUncatchable(rax);
|
|
|
|
__ bind(&throw_normal_exception);
|
|
__ Throw(rax);
|
|
}
|
|
|
|
|
|
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
|
Label invoke, handler_entry, exit;
|
|
Label not_outermost_js, not_outermost_js_2;
|
|
|
|
ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
|
|
|
{ // NOLINT. Scope block confuses linter.
|
|
MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
|
|
// Set up frame.
|
|
__ pushq(rbp);
|
|
__ movp(rbp, rsp);
|
|
|
|
// Push the stack frame type marker twice.
|
|
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
|
// Scratch register is neither callee-save, nor an argument register on any
|
|
// platform. It's free to use at this point.
|
|
// Cannot use smi-register for loading yet.
|
|
__ Move(kScratchRegister, Smi::FromInt(marker), Assembler::RelocInfoNone());
|
|
__ Push(kScratchRegister); // context slot
|
|
__ Push(kScratchRegister); // function slot
|
|
// Save callee-saved registers (X64/X32/Win64 calling conventions).
|
|
__ pushq(r12);
|
|
__ pushq(r13);
|
|
__ pushq(r14);
|
|
__ pushq(r15);
|
|
#ifdef _WIN64
|
|
__ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
|
|
__ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
|
|
#endif
|
|
__ pushq(rbx);
|
|
|
|
#ifdef _WIN64
|
|
// On Win64 XMM6-XMM15 are callee-save
|
|
__ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
|
|
#endif
|
|
|
|
// Set up the roots and smi constant registers.
|
|
// Needs to be done before any further smi loads.
|
|
__ InitializeSmiConstantRegister();
|
|
__ InitializeRootRegister();
|
|
}
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
// Save copies of the top frame descriptor on the stack.
|
|
ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
|
|
{
|
|
Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
|
|
__ Push(c_entry_fp_operand);
|
|
}
|
|
|
|
// If this is the outermost JS call, set js_entry_sp value.
|
|
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
|
|
__ Load(rax, js_entry_sp);
|
|
__ testp(rax, rax);
|
|
__ j(not_zero, ¬_outermost_js);
|
|
__ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
|
|
__ movp(rax, rbp);
|
|
__ Store(js_entry_sp, rax);
|
|
Label cont;
|
|
__ jmp(&cont);
|
|
__ bind(¬_outermost_js);
|
|
__ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
|
|
__ bind(&cont);
|
|
|
|
// Jump to a faked try block that does the invoke, with a faked catch
|
|
// block that sets the pending exception.
|
|
__ jmp(&invoke);
|
|
__ bind(&handler_entry);
|
|
handler_offset_ = handler_entry.pos();
|
|
// Caught exception: Store result (exception) in the pending exception
|
|
// field in the JSEnv and return a failure sentinel.
|
|
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
|
|
isolate);
|
|
__ Store(pending_exception, rax);
|
|
__ Move(rax, Failure::Exception(), Assembler::RelocInfoNone());
|
|
__ jmp(&exit);
|
|
|
|
// Invoke: Link this frame into the handler chain. There's only one
|
|
// handler block in this code object, so its index is 0.
|
|
__ bind(&invoke);
|
|
__ PushTryHandler(StackHandler::JS_ENTRY, 0);
|
|
|
|
// Clear any pending exceptions.
|
|
__ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
|
|
__ Store(pending_exception, rax);
|
|
|
|
// Fake a receiver (NULL).
|
|
__ Push(Immediate(0)); // receiver
|
|
|
|
// Invoke the function by calling through JS entry trampoline builtin and
|
|
// pop the faked function when we return. We load the address from an
|
|
// external reference instead of inlining the call target address directly
|
|
// in the code, because the builtin stubs may not have been generated yet
|
|
// at the time this code is generated.
|
|
if (is_construct) {
|
|
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
|
|
isolate);
|
|
__ Load(rax, construct_entry);
|
|
} else {
|
|
ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
|
|
__ Load(rax, entry);
|
|
}
|
|
__ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
|
|
__ call(kScratchRegister);
|
|
|
|
// Unlink this frame from the handler chain.
|
|
__ PopTryHandler();
|
|
|
|
__ bind(&exit);
|
|
// Check if the current stack frame is marked as the outermost JS frame.
|
|
__ Pop(rbx);
|
|
__ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
|
|
__ j(not_equal, ¬_outermost_js_2);
|
|
__ Move(kScratchRegister, js_entry_sp);
|
|
__ movp(Operand(kScratchRegister, 0), Immediate(0));
|
|
__ bind(¬_outermost_js_2);
|
|
|
|
// Restore the top frame descriptor from the stack.
|
|
{ Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
|
|
__ Pop(c_entry_fp_operand);
|
|
}
|
|
|
|
// Restore callee-saved registers (X64 conventions).
|
|
#ifdef _WIN64
|
|
// On Win64 XMM6-XMM15 are callee-save
|
|
__ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
|
|
__ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
|
|
__ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
|
|
__ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
|
|
__ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
|
|
__ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
|
|
__ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
|
|
__ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
|
|
__ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
|
|
__ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
|
|
__ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
|
|
#endif
|
|
|
|
__ popq(rbx);
|
|
#ifdef _WIN64
|
|
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
|
|
__ popq(rsi);
|
|
__ popq(rdi);
|
|
#endif
|
|
__ popq(r15);
|
|
__ popq(r14);
|
|
__ popq(r13);
|
|
__ popq(r12);
|
|
__ addp(rsp, Immediate(2 * kPointerSize)); // remove markers
|
|
|
|
// Restore frame pointer and return.
|
|
__ popq(rbp);
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void InstanceofStub::Generate(MacroAssembler* masm) {
|
|
// Implements "value instanceof function" operator.
|
|
// Expected input state with no inline cache:
|
|
// rsp[0] : return address
|
|
// rsp[8] : function pointer
|
|
// rsp[16] : value
|
|
// Expected input state with an inline one-element cache:
|
|
// rsp[0] : return address
|
|
// rsp[8] : offset from return address to location of inline cache
|
|
// rsp[16] : function pointer
|
|
// rsp[24] : value
|
|
// Returns a bitwise zero to indicate that the value
|
|
// is and instance of the function and anything else to
|
|
// indicate that the value is not an instance.
|
|
|
|
static const int kOffsetToMapCheckValue = 2;
|
|
static const int kOffsetToResultValue = kPointerSize == kInt64Size ? 18 : 14;
|
|
// The last 4 bytes of the instruction sequence
|
|
// movp(rdi, FieldOperand(rax, HeapObject::kMapOffset))
|
|
// Move(kScratchRegister, Factory::the_hole_value())
|
|
// in front of the hole value address.
|
|
static const unsigned int kWordBeforeMapCheckValue =
|
|
kPointerSize == kInt64Size ? 0xBA49FF78 : 0xBA41FF78;
|
|
// The last 4 bytes of the instruction sequence
|
|
// __ j(not_equal, &cache_miss);
|
|
// __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
|
|
// before the offset of the hole value in the root array.
|
|
static const unsigned int kWordBeforeResultValue =
|
|
kPointerSize == kInt64Size ? 0x458B4906 : 0x458B4106;
|
|
// Only the inline check flag is supported on X64.
|
|
ASSERT(flags_ == kNoFlags || HasCallSiteInlineCheck());
|
|
int extra_argument_offset = HasCallSiteInlineCheck() ? 1 : 0;
|
|
|
|
// Get the object - go slow case if it's a smi.
|
|
Label slow;
|
|
StackArgumentsAccessor args(rsp, 2 + extra_argument_offset,
|
|
ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rax, args.GetArgumentOperand(0));
|
|
__ JumpIfSmi(rax, &slow);
|
|
|
|
// Check that the left hand is a JS object. Leave its map in rax.
|
|
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax);
|
|
__ j(below, &slow);
|
|
__ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE);
|
|
__ j(above, &slow);
|
|
|
|
// Get the prototype of the function.
|
|
__ movp(rdx, args.GetArgumentOperand(1));
|
|
// rdx is function, rax is map.
|
|
|
|
// If there is a call site cache don't look in the global cache, but do the
|
|
// real lookup and update the call site cache.
|
|
if (!HasCallSiteInlineCheck()) {
|
|
// Look up the function and the map in the instanceof cache.
|
|
Label miss;
|
|
__ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
|
|
__ j(not_equal, &miss, Label::kNear);
|
|
__ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
|
|
__ j(not_equal, &miss, Label::kNear);
|
|
__ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
|
|
__ ret(2 * kPointerSize);
|
|
__ bind(&miss);
|
|
}
|
|
|
|
__ TryGetFunctionPrototype(rdx, rbx, &slow, true);
|
|
|
|
// Check that the function prototype is a JS object.
|
|
__ JumpIfSmi(rbx, &slow);
|
|
__ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, kScratchRegister);
|
|
__ j(below, &slow);
|
|
__ CmpInstanceType(kScratchRegister, LAST_SPEC_OBJECT_TYPE);
|
|
__ j(above, &slow);
|
|
|
|
// Register mapping:
|
|
// rax is object map.
|
|
// rdx is function.
|
|
// rbx is function prototype.
|
|
if (!HasCallSiteInlineCheck()) {
|
|
__ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
|
|
__ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
|
|
} else {
|
|
// Get return address and delta to inlined map check.
|
|
__ movq(kScratchRegister, StackOperandForReturnAddress(0));
|
|
__ subp(kScratchRegister, args.GetArgumentOperand(2));
|
|
if (FLAG_debug_code) {
|
|
__ movl(rdi, Immediate(kWordBeforeMapCheckValue));
|
|
__ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), rdi);
|
|
__ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCheck);
|
|
}
|
|
__ movp(kScratchRegister,
|
|
Operand(kScratchRegister, kOffsetToMapCheckValue));
|
|
__ movp(Operand(kScratchRegister, 0), rax);
|
|
}
|
|
|
|
__ movp(rcx, FieldOperand(rax, Map::kPrototypeOffset));
|
|
|
|
// Loop through the prototype chain looking for the function prototype.
|
|
Label loop, is_instance, is_not_instance;
|
|
__ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
|
|
__ bind(&loop);
|
|
__ cmpp(rcx, rbx);
|
|
__ j(equal, &is_instance, Label::kNear);
|
|
__ cmpp(rcx, kScratchRegister);
|
|
// The code at is_not_instance assumes that kScratchRegister contains a
|
|
// non-zero GCable value (the null object in this case).
|
|
__ j(equal, &is_not_instance, Label::kNear);
|
|
__ movp(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
|
|
__ movp(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
|
|
__ jmp(&loop);
|
|
|
|
__ bind(&is_instance);
|
|
if (!HasCallSiteInlineCheck()) {
|
|
__ xorl(rax, rax);
|
|
// Store bitwise zero in the cache. This is a Smi in GC terms.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
|
|
} else {
|
|
// Store offset of true in the root array at the inline check site.
|
|
int true_offset = 0x100 +
|
|
(Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
|
|
// Assert it is a 1-byte signed value.
|
|
ASSERT(true_offset >= 0 && true_offset < 0x100);
|
|
__ movl(rax, Immediate(true_offset));
|
|
__ movq(kScratchRegister, StackOperandForReturnAddress(0));
|
|
__ subp(kScratchRegister, args.GetArgumentOperand(2));
|
|
__ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
|
|
if (FLAG_debug_code) {
|
|
__ movl(rax, Immediate(kWordBeforeResultValue));
|
|
__ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
|
|
__ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
|
|
}
|
|
__ Set(rax, 0);
|
|
}
|
|
__ ret((2 + extra_argument_offset) * kPointerSize);
|
|
|
|
__ bind(&is_not_instance);
|
|
if (!HasCallSiteInlineCheck()) {
|
|
// We have to store a non-zero value in the cache.
|
|
__ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
|
|
} else {
|
|
// Store offset of false in the root array at the inline check site.
|
|
int false_offset = 0x100 +
|
|
(Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
|
|
// Assert it is a 1-byte signed value.
|
|
ASSERT(false_offset >= 0 && false_offset < 0x100);
|
|
__ movl(rax, Immediate(false_offset));
|
|
__ movq(kScratchRegister, StackOperandForReturnAddress(0));
|
|
__ subp(kScratchRegister, args.GetArgumentOperand(2));
|
|
__ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
|
|
if (FLAG_debug_code) {
|
|
__ movl(rax, Immediate(kWordBeforeResultValue));
|
|
__ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
|
|
__ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
|
|
}
|
|
}
|
|
__ ret((2 + extra_argument_offset) * kPointerSize);
|
|
|
|
// Slow-case: Go through the JavaScript implementation.
|
|
__ bind(&slow);
|
|
if (HasCallSiteInlineCheck()) {
|
|
// Remove extra value from the stack.
|
|
__ PopReturnAddressTo(rcx);
|
|
__ Pop(rax);
|
|
__ PushReturnAddressFrom(rcx);
|
|
}
|
|
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
|
|
}
|
|
|
|
|
|
// Passing arguments in registers is not supported.
|
|
Register InstanceofStub::left() { return no_reg; }
|
|
|
|
|
|
Register InstanceofStub::right() { return no_reg; }
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// StringCharCodeAtGenerator
|
|
|
|
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
|
Label flat_string;
|
|
Label ascii_string;
|
|
Label got_char_code;
|
|
Label sliced_string;
|
|
|
|
// If the receiver is a smi trigger the non-string case.
|
|
__ JumpIfSmi(object_, receiver_not_string_);
|
|
|
|
// Fetch the instance type of the receiver into result register.
|
|
__ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
|
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
|
// If the receiver is not a string trigger the non-string case.
|
|
__ testb(result_, Immediate(kIsNotStringMask));
|
|
__ j(not_zero, receiver_not_string_);
|
|
|
|
// If the index is non-smi trigger the non-smi case.
|
|
__ JumpIfNotSmi(index_, &index_not_smi_);
|
|
__ bind(&got_smi_index_);
|
|
|
|
// Check for index out of range.
|
|
__ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
|
|
__ j(above_equal, index_out_of_range_);
|
|
|
|
__ SmiToInteger32(index_, index_);
|
|
|
|
StringCharLoadGenerator::Generate(
|
|
masm, object_, index_, result_, &call_runtime_);
|
|
|
|
__ Integer32ToSmi(result_, result_);
|
|
__ bind(&exit_);
|
|
}
|
|
|
|
|
|
void StringCharCodeAtGenerator::GenerateSlow(
|
|
MacroAssembler* masm,
|
|
const RuntimeCallHelper& call_helper) {
|
|
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
|
|
|
|
Factory* factory = masm->isolate()->factory();
|
|
// Index is not a smi.
|
|
__ bind(&index_not_smi_);
|
|
// If index is a heap number, try converting it to an integer.
|
|
__ CheckMap(index_,
|
|
factory->heap_number_map(),
|
|
index_not_number_,
|
|
DONT_DO_SMI_CHECK);
|
|
call_helper.BeforeCall(masm);
|
|
__ Push(object_);
|
|
__ Push(index_); // Consumed by runtime conversion function.
|
|
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
|
|
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
|
|
} else {
|
|
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
|
|
// NumberToSmi discards numbers that are not exact integers.
|
|
__ CallRuntime(Runtime::kHiddenNumberToSmi, 1);
|
|
}
|
|
if (!index_.is(rax)) {
|
|
// Save the conversion result before the pop instructions below
|
|
// have a chance to overwrite it.
|
|
__ movp(index_, rax);
|
|
}
|
|
__ Pop(object_);
|
|
// Reload the instance type.
|
|
__ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
|
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
|
call_helper.AfterCall(masm);
|
|
// If index is still not a smi, it must be out of range.
|
|
__ JumpIfNotSmi(index_, index_out_of_range_);
|
|
// Otherwise, return to the fast path.
|
|
__ jmp(&got_smi_index_);
|
|
|
|
// Call runtime. We get here when the receiver is a string and the
|
|
// index is a number, but the code of getting the actual character
|
|
// is too complex (e.g., when the string needs to be flattened).
|
|
__ bind(&call_runtime_);
|
|
call_helper.BeforeCall(masm);
|
|
__ Push(object_);
|
|
__ Integer32ToSmi(index_, index_);
|
|
__ Push(index_);
|
|
__ CallRuntime(Runtime::kHiddenStringCharCodeAt, 2);
|
|
if (!result_.is(rax)) {
|
|
__ movp(result_, rax);
|
|
}
|
|
call_helper.AfterCall(masm);
|
|
__ jmp(&exit_);
|
|
|
|
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// StringCharFromCodeGenerator
|
|
|
|
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
|
// Fast case of Heap::LookupSingleCharacterStringFromCode.
|
|
__ JumpIfNotSmi(code_, &slow_case_);
|
|
__ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode));
|
|
__ j(above, &slow_case_);
|
|
|
|
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
|
|
SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
|
|
__ movp(result_, FieldOperand(result_, index.reg, index.scale,
|
|
FixedArray::kHeaderSize));
|
|
__ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
|
|
__ j(equal, &slow_case_);
|
|
__ bind(&exit_);
|
|
}
|
|
|
|
|
|
void StringCharFromCodeGenerator::GenerateSlow(
|
|
MacroAssembler* masm,
|
|
const RuntimeCallHelper& call_helper) {
|
|
__ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
|
|
|
|
__ bind(&slow_case_);
|
|
call_helper.BeforeCall(masm);
|
|
__ Push(code_);
|
|
__ CallRuntime(Runtime::kCharFromCode, 1);
|
|
if (!result_.is(rax)) {
|
|
__ movp(result_, rax);
|
|
}
|
|
call_helper.AfterCall(masm);
|
|
__ jmp(&exit_);
|
|
|
|
__ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
|
|
}
|
|
|
|
|
|
void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
|
|
Register dest,
|
|
Register src,
|
|
Register count,
|
|
bool ascii) {
|
|
// Copy characters using rep movs of doublewords. Align destination on 4 byte
|
|
// boundary before starting rep movs. Copy remaining characters after running
|
|
// rep movs.
|
|
// Count is positive int32, dest and src are character pointers.
|
|
ASSERT(dest.is(rdi)); // rep movs destination
|
|
ASSERT(src.is(rsi)); // rep movs source
|
|
ASSERT(count.is(rcx)); // rep movs count
|
|
|
|
// Nothing to do for zero characters.
|
|
Label done;
|
|
__ testl(count, count);
|
|
__ j(zero, &done, Label::kNear);
|
|
|
|
// Make count the number of bytes to copy.
|
|
if (!ascii) {
|
|
STATIC_ASSERT(2 == sizeof(uc16));
|
|
__ addl(count, count);
|
|
}
|
|
|
|
// Don't enter the rep movs if there are less than 4 bytes to copy.
|
|
Label last_bytes;
|
|
__ testl(count, Immediate(~(kPointerSize - 1)));
|
|
__ j(zero, &last_bytes, Label::kNear);
|
|
|
|
// Copy from edi to esi using rep movs instruction.
|
|
__ movl(kScratchRegister, count);
|
|
// Number of doublewords to copy.
|
|
__ shrl(count, Immediate(kPointerSizeLog2));
|
|
__ repmovsp();
|
|
|
|
// Find number of bytes left.
|
|
__ movl(count, kScratchRegister);
|
|
__ andp(count, Immediate(kPointerSize - 1));
|
|
|
|
// Check if there are more bytes to copy.
|
|
__ bind(&last_bytes);
|
|
__ testl(count, count);
|
|
__ j(zero, &done, Label::kNear);
|
|
|
|
// Copy remaining characters.
|
|
Label loop;
|
|
__ bind(&loop);
|
|
__ movb(kScratchRegister, Operand(src, 0));
|
|
__ movb(Operand(dest, 0), kScratchRegister);
|
|
__ incp(src);
|
|
__ incp(dest);
|
|
__ decl(count);
|
|
__ j(not_zero, &loop);
|
|
|
|
__ bind(&done);
|
|
}
|
|
|
|
|
|
void StringHelper::GenerateHashInit(MacroAssembler* masm,
|
|
Register hash,
|
|
Register character,
|
|
Register scratch) {
|
|
// hash = (seed + character) + ((seed + character) << 10);
|
|
__ LoadRoot(scratch, Heap::kHashSeedRootIndex);
|
|
__ SmiToInteger32(scratch, scratch);
|
|
__ addl(scratch, character);
|
|
__ movl(hash, scratch);
|
|
__ shll(scratch, Immediate(10));
|
|
__ addl(hash, scratch);
|
|
// hash ^= hash >> 6;
|
|
__ movl(scratch, hash);
|
|
__ shrl(scratch, Immediate(6));
|
|
__ xorl(hash, scratch);
|
|
}
|
|
|
|
|
|
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
|
|
Register hash,
|
|
Register character,
|
|
Register scratch) {
|
|
// hash += character;
|
|
__ addl(hash, character);
|
|
// hash += hash << 10;
|
|
__ movl(scratch, hash);
|
|
__ shll(scratch, Immediate(10));
|
|
__ addl(hash, scratch);
|
|
// hash ^= hash >> 6;
|
|
__ movl(scratch, hash);
|
|
__ shrl(scratch, Immediate(6));
|
|
__ xorl(hash, scratch);
|
|
}
|
|
|
|
|
|
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
|
|
Register hash,
|
|
Register scratch) {
|
|
// hash += hash << 3;
|
|
__ leal(hash, Operand(hash, hash, times_8, 0));
|
|
// hash ^= hash >> 11;
|
|
__ movl(scratch, hash);
|
|
__ shrl(scratch, Immediate(11));
|
|
__ xorl(hash, scratch);
|
|
// hash += hash << 15;
|
|
__ movl(scratch, hash);
|
|
__ shll(scratch, Immediate(15));
|
|
__ addl(hash, scratch);
|
|
|
|
__ andl(hash, Immediate(String::kHashBitMask));
|
|
|
|
// if (hash == 0) hash = 27;
|
|
Label hash_not_zero;
|
|
__ j(not_zero, &hash_not_zero);
|
|
__ Set(hash, StringHasher::kZeroHash);
|
|
__ bind(&hash_not_zero);
|
|
}
|
|
|
|
|
|
void SubStringStub::Generate(MacroAssembler* masm) {
|
|
Label runtime;
|
|
|
|
// Stack frame on entry.
|
|
// rsp[0] : return address
|
|
// rsp[8] : to
|
|
// rsp[16] : from
|
|
// rsp[24] : string
|
|
|
|
enum SubStringStubArgumentIndices {
|
|
STRING_ARGUMENT_INDEX,
|
|
FROM_ARGUMENT_INDEX,
|
|
TO_ARGUMENT_INDEX,
|
|
SUB_STRING_ARGUMENT_COUNT
|
|
};
|
|
|
|
StackArgumentsAccessor args(rsp, SUB_STRING_ARGUMENT_COUNT,
|
|
ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
|
|
// Make sure first argument is a string.
|
|
__ movp(rax, args.GetArgumentOperand(STRING_ARGUMENT_INDEX));
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ testl(rax, Immediate(kSmiTagMask));
|
|
__ j(zero, &runtime);
|
|
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
|
|
__ j(NegateCondition(is_string), &runtime);
|
|
|
|
// rax: string
|
|
// rbx: instance type
|
|
// Calculate length of sub string using the smi values.
|
|
__ movp(rcx, args.GetArgumentOperand(TO_ARGUMENT_INDEX));
|
|
__ movp(rdx, args.GetArgumentOperand(FROM_ARGUMENT_INDEX));
|
|
__ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
|
|
|
|
__ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen.
|
|
__ cmpp(rcx, FieldOperand(rax, String::kLengthOffset));
|
|
Label not_original_string;
|
|
// Shorter than original string's length: an actual substring.
|
|
__ j(below, ¬_original_string, Label::kNear);
|
|
// Longer than original string's length or negative: unsafe arguments.
|
|
__ j(above, &runtime);
|
|
// Return original string.
|
|
Counters* counters = masm->isolate()->counters();
|
|
__ IncrementCounter(counters->sub_string_native(), 1);
|
|
__ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
|
|
__ bind(¬_original_string);
|
|
|
|
Label single_char;
|
|
__ SmiCompare(rcx, Smi::FromInt(1));
|
|
__ j(equal, &single_char);
|
|
|
|
__ SmiToInteger32(rcx, rcx);
|
|
|
|
// rax: string
|
|
// rbx: instance type
|
|
// rcx: sub string length
|
|
// rdx: from index (smi)
|
|
// Deal with different string types: update the index if necessary
|
|
// and put the underlying string into edi.
|
|
Label underlying_unpacked, sliced_string, seq_or_external_string;
|
|
// If the string is not indirect, it can only be sequential or external.
|
|
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
|
|
STATIC_ASSERT(kIsIndirectStringMask != 0);
|
|
__ testb(rbx, Immediate(kIsIndirectStringMask));
|
|
__ j(zero, &seq_or_external_string, Label::kNear);
|
|
|
|
__ testb(rbx, Immediate(kSlicedNotConsMask));
|
|
__ j(not_zero, &sliced_string, Label::kNear);
|
|
// Cons string. Check whether it is flat, then fetch first part.
|
|
// Flat cons strings have an empty second part.
|
|
__ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset),
|
|
Heap::kempty_stringRootIndex);
|
|
__ j(not_equal, &runtime);
|
|
__ movp(rdi, FieldOperand(rax, ConsString::kFirstOffset));
|
|
// Update instance type.
|
|
__ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
|
|
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
|
__ jmp(&underlying_unpacked, Label::kNear);
|
|
|
|
__ bind(&sliced_string);
|
|
// Sliced string. Fetch parent and correct start index by offset.
|
|
__ addp(rdx, FieldOperand(rax, SlicedString::kOffsetOffset));
|
|
__ movp(rdi, FieldOperand(rax, SlicedString::kParentOffset));
|
|
// Update instance type.
|
|
__ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
|
|
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
|
__ jmp(&underlying_unpacked, Label::kNear);
|
|
|
|
__ bind(&seq_or_external_string);
|
|
// Sequential or external string. Just move string to the correct register.
|
|
__ movp(rdi, rax);
|
|
|
|
__ bind(&underlying_unpacked);
|
|
|
|
if (FLAG_string_slices) {
|
|
Label copy_routine;
|
|
// rdi: underlying subject string
|
|
// rbx: instance type of underlying subject string
|
|
// rdx: adjusted start index (smi)
|
|
// rcx: length
|
|
// If coming from the make_two_character_string path, the string
|
|
// is too short to be sliced anyways.
|
|
__ cmpp(rcx, Immediate(SlicedString::kMinLength));
|
|
// Short slice. Copy instead of slicing.
|
|
__ j(less, ©_routine);
|
|
// Allocate new sliced string. At this point we do not reload the instance
|
|
// type including the string encoding because we simply rely on the info
|
|
// provided by the original string. It does not matter if the original
|
|
// string's encoding is wrong because we always have to recheck encoding of
|
|
// the newly created string's parent anyways due to externalized strings.
|
|
Label two_byte_slice, set_slice_header;
|
|
STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
|
|
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
|
|
__ testb(rbx, Immediate(kStringEncodingMask));
|
|
__ j(zero, &two_byte_slice, Label::kNear);
|
|
__ AllocateAsciiSlicedString(rax, rbx, r14, &runtime);
|
|
__ jmp(&set_slice_header, Label::kNear);
|
|
__ bind(&two_byte_slice);
|
|
__ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime);
|
|
__ bind(&set_slice_header);
|
|
__ Integer32ToSmi(rcx, rcx);
|
|
__ movp(FieldOperand(rax, SlicedString::kLengthOffset), rcx);
|
|
__ movp(FieldOperand(rax, SlicedString::kHashFieldOffset),
|
|
Immediate(String::kEmptyHashField));
|
|
__ movp(FieldOperand(rax, SlicedString::kParentOffset), rdi);
|
|
__ movp(FieldOperand(rax, SlicedString::kOffsetOffset), rdx);
|
|
__ IncrementCounter(counters->sub_string_native(), 1);
|
|
__ ret(3 * kPointerSize);
|
|
|
|
__ bind(©_routine);
|
|
}
|
|
|
|
// rdi: underlying subject string
|
|
// rbx: instance type of underlying subject string
|
|
// rdx: adjusted start index (smi)
|
|
// rcx: length
|
|
// The subject string can only be external or sequential string of either
|
|
// encoding at this point.
|
|
Label two_byte_sequential, sequential_string;
|
|
STATIC_ASSERT(kExternalStringTag != 0);
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
__ testb(rbx, Immediate(kExternalStringTag));
|
|
__ j(zero, &sequential_string);
|
|
|
|
// Handle external string.
|
|
// Rule out short external strings.
|
|
STATIC_CHECK(kShortExternalStringTag != 0);
|
|
__ testb(rbx, Immediate(kShortExternalStringMask));
|
|
__ j(not_zero, &runtime);
|
|
__ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
|
|
// Move the pointer so that offset-wise, it looks like a sequential string.
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
|
__ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ bind(&sequential_string);
|
|
STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
|
|
__ testb(rbx, Immediate(kStringEncodingMask));
|
|
__ j(zero, &two_byte_sequential);
|
|
|
|
// Allocate the result.
|
|
__ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime);
|
|
|
|
// rax: result string
|
|
// rcx: result string length
|
|
__ movp(r14, rsi); // esi used by following code.
|
|
{ // Locate character of sub string start.
|
|
SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1);
|
|
__ leap(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
|
|
SeqOneByteString::kHeaderSize - kHeapObjectTag));
|
|
}
|
|
// Locate first character of result.
|
|
__ leap(rdi, FieldOperand(rax, SeqOneByteString::kHeaderSize));
|
|
|
|
// rax: result string
|
|
// rcx: result length
|
|
// rdi: first character of result
|
|
// rsi: character of sub string start
|
|
// r14: original value of rsi
|
|
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
|
|
__ movp(rsi, r14); // Restore rsi.
|
|
__ IncrementCounter(counters->sub_string_native(), 1);
|
|
__ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
|
|
|
|
__ bind(&two_byte_sequential);
|
|
// Allocate the result.
|
|
__ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime);
|
|
|
|
// rax: result string
|
|
// rcx: result string length
|
|
__ movp(r14, rsi); // esi used by following code.
|
|
{ // Locate character of sub string start.
|
|
SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2);
|
|
__ leap(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
|
|
SeqOneByteString::kHeaderSize - kHeapObjectTag));
|
|
}
|
|
// Locate first character of result.
|
|
__ leap(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
|
|
|
|
// rax: result string
|
|
// rcx: result length
|
|
// rdi: first character of result
|
|
// rsi: character of sub string start
|
|
// r14: original value of rsi
|
|
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
|
|
__ movp(rsi, r14); // Restore esi.
|
|
__ IncrementCounter(counters->sub_string_native(), 1);
|
|
__ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
|
|
|
|
// Just jump to runtime to create the sub string.
|
|
__ bind(&runtime);
|
|
__ TailCallRuntime(Runtime::kHiddenSubString, 3, 1);
|
|
|
|
__ bind(&single_char);
|
|
// rax: string
|
|
// rbx: instance type
|
|
// rcx: sub string length (smi)
|
|
// rdx: from index (smi)
|
|
StringCharAtGenerator generator(
|
|
rax, rdx, rcx, rax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
|
|
generator.GenerateFast(masm);
|
|
__ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
|
|
generator.SkipSlow(masm, &runtime);
|
|
}
|
|
|
|
|
|
void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register scratch1,
|
|
Register scratch2) {
|
|
Register length = scratch1;
|
|
|
|
// Compare lengths.
|
|
Label check_zero_length;
|
|
__ movp(length, FieldOperand(left, String::kLengthOffset));
|
|
__ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
|
|
__ j(equal, &check_zero_length, Label::kNear);
|
|
__ Move(rax, Smi::FromInt(NOT_EQUAL));
|
|
__ ret(0);
|
|
|
|
// Check if the length is zero.
|
|
Label compare_chars;
|
|
__ bind(&check_zero_length);
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ SmiTest(length);
|
|
__ j(not_zero, &compare_chars, Label::kNear);
|
|
__ Move(rax, Smi::FromInt(EQUAL));
|
|
__ ret(0);
|
|
|
|
// Compare characters.
|
|
__ bind(&compare_chars);
|
|
Label strings_not_equal;
|
|
GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
|
|
&strings_not_equal, Label::kNear);
|
|
|
|
// Characters are equal.
|
|
__ Move(rax, Smi::FromInt(EQUAL));
|
|
__ ret(0);
|
|
|
|
// Characters are not equal.
|
|
__ bind(&strings_not_equal);
|
|
__ Move(rax, Smi::FromInt(NOT_EQUAL));
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Register scratch4) {
|
|
// Ensure that you can always subtract a string length from a non-negative
|
|
// number (e.g. another length).
|
|
STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
|
|
|
|
// Find minimum length and length difference.
|
|
__ movp(scratch1, FieldOperand(left, String::kLengthOffset));
|
|
__ movp(scratch4, scratch1);
|
|
__ SmiSub(scratch4,
|
|
scratch4,
|
|
FieldOperand(right, String::kLengthOffset));
|
|
// Register scratch4 now holds left.length - right.length.
|
|
const Register length_difference = scratch4;
|
|
Label left_shorter;
|
|
__ j(less, &left_shorter, Label::kNear);
|
|
// The right string isn't longer that the left one.
|
|
// Get the right string's length by subtracting the (non-negative) difference
|
|
// from the left string's length.
|
|
__ SmiSub(scratch1, scratch1, length_difference);
|
|
__ bind(&left_shorter);
|
|
// Register scratch1 now holds Min(left.length, right.length).
|
|
const Register min_length = scratch1;
|
|
|
|
Label compare_lengths;
|
|
// If min-length is zero, go directly to comparing lengths.
|
|
__ SmiTest(min_length);
|
|
__ j(zero, &compare_lengths, Label::kNear);
|
|
|
|
// Compare loop.
|
|
Label result_not_equal;
|
|
GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
|
|
&result_not_equal,
|
|
// In debug-code mode, SmiTest below might push
|
|
// the target label outside the near range.
|
|
Label::kFar);
|
|
|
|
// Completed loop without finding different characters.
|
|
// Compare lengths (precomputed).
|
|
__ bind(&compare_lengths);
|
|
__ SmiTest(length_difference);
|
|
Label length_not_equal;
|
|
__ j(not_zero, &length_not_equal, Label::kNear);
|
|
|
|
// Result is EQUAL.
|
|
__ Move(rax, Smi::FromInt(EQUAL));
|
|
__ ret(0);
|
|
|
|
Label result_greater;
|
|
Label result_less;
|
|
__ bind(&length_not_equal);
|
|
__ j(greater, &result_greater, Label::kNear);
|
|
__ jmp(&result_less, Label::kNear);
|
|
__ bind(&result_not_equal);
|
|
// Unequal comparison of left to right, either character or length.
|
|
__ j(above, &result_greater, Label::kNear);
|
|
__ bind(&result_less);
|
|
|
|
// Result is LESS.
|
|
__ Move(rax, Smi::FromInt(LESS));
|
|
__ ret(0);
|
|
|
|
// Result is GREATER.
|
|
__ bind(&result_greater);
|
|
__ Move(rax, Smi::FromInt(GREATER));
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void StringCompareStub::GenerateAsciiCharsCompareLoop(
|
|
MacroAssembler* masm,
|
|
Register left,
|
|
Register right,
|
|
Register length,
|
|
Register scratch,
|
|
Label* chars_not_equal,
|
|
Label::Distance near_jump) {
|
|
// Change index to run from -length to -1 by adding length to string
|
|
// start. This means that loop ends when index reaches zero, which
|
|
// doesn't need an additional compare.
|
|
__ SmiToInteger32(length, length);
|
|
__ leap(left,
|
|
FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
|
|
__ leap(right,
|
|
FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
|
|
__ negq(length);
|
|
Register index = length; // index = -length;
|
|
|
|
// Compare loop.
|
|
Label loop;
|
|
__ bind(&loop);
|
|
__ movb(scratch, Operand(left, index, times_1, 0));
|
|
__ cmpb(scratch, Operand(right, index, times_1, 0));
|
|
__ j(not_equal, chars_not_equal, near_jump);
|
|
__ incq(index);
|
|
__ j(not_zero, &loop);
|
|
}
|
|
|
|
|
|
void StringCompareStub::Generate(MacroAssembler* masm) {
|
|
Label runtime;
|
|
|
|
// Stack frame on entry.
|
|
// rsp[0] : return address
|
|
// rsp[8] : right string
|
|
// rsp[16] : left string
|
|
|
|
StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rdx, args.GetArgumentOperand(0)); // left
|
|
__ movp(rax, args.GetArgumentOperand(1)); // right
|
|
|
|
// Check for identity.
|
|
Label not_same;
|
|
__ cmpp(rdx, rax);
|
|
__ j(not_equal, ¬_same, Label::kNear);
|
|
__ Move(rax, Smi::FromInt(EQUAL));
|
|
Counters* counters = masm->isolate()->counters();
|
|
__ IncrementCounter(counters->string_compare_native(), 1);
|
|
__ ret(2 * kPointerSize);
|
|
|
|
__ bind(¬_same);
|
|
|
|
// Check that both are sequential ASCII strings.
|
|
__ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
|
|
|
|
// Inline comparison of ASCII strings.
|
|
__ IncrementCounter(counters->string_compare_native(), 1);
|
|
// Drop arguments from the stack
|
|
__ PopReturnAddressTo(rcx);
|
|
__ addp(rsp, Immediate(2 * kPointerSize));
|
|
__ PushReturnAddressFrom(rcx);
|
|
GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
|
|
|
|
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
|
|
// tagged as a small integer.
|
|
__ bind(&runtime);
|
|
__ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
|
|
}
|
|
|
|
|
|
void ArrayPushStub::Generate(MacroAssembler* masm) {
|
|
int argc = arguments_count();
|
|
|
|
StackArgumentsAccessor args(rsp, argc);
|
|
if (argc == 0) {
|
|
// Noop, return the length.
|
|
__ movp(rax, FieldOperand(rdx, JSArray::kLengthOffset));
|
|
__ ret((argc + 1) * kPointerSize);
|
|
return;
|
|
}
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
if (argc != 1) {
|
|
__ TailCallExternalReference(
|
|
ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1);
|
|
return;
|
|
}
|
|
|
|
Label call_builtin, attempt_to_grow_elements, with_write_barrier;
|
|
|
|
// Get the elements array of the object.
|
|
__ movp(rdi, FieldOperand(rdx, JSArray::kElementsOffset));
|
|
|
|
if (IsFastSmiOrObjectElementsKind(elements_kind())) {
|
|
// Check that the elements are in fast mode and writable.
|
|
__ Cmp(FieldOperand(rdi, HeapObject::kMapOffset),
|
|
isolate->factory()->fixed_array_map());
|
|
__ j(not_equal, &call_builtin);
|
|
}
|
|
|
|
// Get the array's length into rax and calculate new length.
|
|
__ SmiToInteger32(rax, FieldOperand(rdx, JSArray::kLengthOffset));
|
|
STATIC_ASSERT(FixedArray::kMaxLength < Smi::kMaxValue);
|
|
__ addl(rax, Immediate(argc));
|
|
|
|
// Get the elements' length into rcx.
|
|
__ SmiToInteger32(rcx, FieldOperand(rdi, FixedArray::kLengthOffset));
|
|
|
|
// Check if we could survive without allocation.
|
|
__ cmpl(rax, rcx);
|
|
|
|
if (IsFastSmiOrObjectElementsKind(elements_kind())) {
|
|
__ j(greater, &attempt_to_grow_elements);
|
|
|
|
// Check if value is a smi.
|
|
__ movp(rcx, args.GetArgumentOperand(1));
|
|
__ JumpIfNotSmi(rcx, &with_write_barrier);
|
|
|
|
// Store the value.
|
|
__ movp(FieldOperand(rdi,
|
|
rax,
|
|
times_pointer_size,
|
|
FixedArray::kHeaderSize - argc * kPointerSize),
|
|
rcx);
|
|
} else {
|
|
__ j(greater, &call_builtin);
|
|
|
|
__ movp(rcx, args.GetArgumentOperand(1));
|
|
__ StoreNumberToDoubleElements(
|
|
rcx, rdi, rax, xmm0, &call_builtin, argc * kDoubleSize);
|
|
}
|
|
|
|
// Save new length.
|
|
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax);
|
|
|
|
__ Integer32ToSmi(rax, rax); // Return new length as smi.
|
|
__ ret((argc + 1) * kPointerSize);
|
|
|
|
if (IsFastDoubleElementsKind(elements_kind())) {
|
|
__ bind(&call_builtin);
|
|
__ TailCallExternalReference(
|
|
ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1);
|
|
return;
|
|
}
|
|
|
|
__ bind(&with_write_barrier);
|
|
|
|
if (IsFastSmiElementsKind(elements_kind())) {
|
|
if (FLAG_trace_elements_transitions) __ jmp(&call_builtin);
|
|
|
|
__ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
|
|
isolate->factory()->heap_number_map());
|
|
__ j(equal, &call_builtin);
|
|
|
|
ElementsKind target_kind = IsHoleyElementsKind(elements_kind())
|
|
? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
|
|
__ movp(rbx, ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX));
|
|
__ movp(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset));
|
|
__ movp(rbx, ContextOperand(rbx, Context::JS_ARRAY_MAPS_INDEX));
|
|
const int header_size = FixedArrayBase::kHeaderSize;
|
|
// Verify that the object can be transitioned in place.
|
|
const int origin_offset = header_size + elements_kind() * kPointerSize;
|
|
__ movp(rdi, FieldOperand(rbx, origin_offset));
|
|
__ cmpp(rdi, FieldOperand(rdx, HeapObject::kMapOffset));
|
|
__ j(not_equal, &call_builtin);
|
|
|
|
const int target_offset = header_size + target_kind * kPointerSize;
|
|
__ movp(rbx, FieldOperand(rbx, target_offset));
|
|
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
|
|
masm, DONT_TRACK_ALLOCATION_SITE, NULL);
|
|
__ movp(rdi, FieldOperand(rdx, JSArray::kElementsOffset));
|
|
}
|
|
|
|
// Save new length.
|
|
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax);
|
|
|
|
// Store the value.
|
|
__ leap(rdx, FieldOperand(rdi,
|
|
rax, times_pointer_size,
|
|
FixedArray::kHeaderSize - argc * kPointerSize));
|
|
__ movp(Operand(rdx, 0), rcx);
|
|
|
|
__ RecordWrite(rdi, rdx, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
|
|
OMIT_SMI_CHECK);
|
|
|
|
__ Integer32ToSmi(rax, rax); // Return new length as smi.
|
|
__ ret((argc + 1) * kPointerSize);
|
|
|
|
__ bind(&attempt_to_grow_elements);
|
|
if (!FLAG_inline_new) {
|
|
__ bind(&call_builtin);
|
|
__ TailCallExternalReference(
|
|
ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1);
|
|
return;
|
|
}
|
|
|
|
__ movp(rbx, args.GetArgumentOperand(1));
|
|
// Growing elements that are SMI-only requires special handling in case the
|
|
// new element is non-Smi. For now, delegate to the builtin.
|
|
Label no_fast_elements_check;
|
|
__ JumpIfSmi(rbx, &no_fast_elements_check);
|
|
__ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
|
|
__ CheckFastObjectElements(rcx, &call_builtin, Label::kFar);
|
|
__ bind(&no_fast_elements_check);
|
|
|
|
ExternalReference new_space_allocation_top =
|
|
ExternalReference::new_space_allocation_top_address(isolate);
|
|
ExternalReference new_space_allocation_limit =
|
|
ExternalReference::new_space_allocation_limit_address(isolate);
|
|
|
|
const int kAllocationDelta = 4;
|
|
ASSERT(kAllocationDelta >= argc);
|
|
// Load top.
|
|
__ Load(rcx, new_space_allocation_top);
|
|
|
|
// Check if it's the end of elements.
|
|
__ leap(rdx, FieldOperand(rdi,
|
|
rax, times_pointer_size,
|
|
FixedArray::kHeaderSize - argc * kPointerSize));
|
|
__ cmpp(rdx, rcx);
|
|
__ j(not_equal, &call_builtin);
|
|
__ addp(rcx, Immediate(kAllocationDelta * kPointerSize));
|
|
Operand limit_operand = masm->ExternalOperand(new_space_allocation_limit);
|
|
__ cmpp(rcx, limit_operand);
|
|
__ j(above, &call_builtin);
|
|
|
|
// We fit and could grow elements.
|
|
__ Store(new_space_allocation_top, rcx);
|
|
|
|
// Push the argument...
|
|
__ movp(Operand(rdx, 0), rbx);
|
|
// ... and fill the rest with holes.
|
|
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
|
|
for (int i = 1; i < kAllocationDelta; i++) {
|
|
__ movp(Operand(rdx, i * kPointerSize), kScratchRegister);
|
|
}
|
|
|
|
if (IsFastObjectElementsKind(elements_kind())) {
|
|
// We know the elements array is in new space so we don't need the
|
|
// remembered set, but we just pushed a value onto it so we may have to tell
|
|
// the incremental marker to rescan the object that we just grew. We don't
|
|
// need to worry about the holes because they are in old space and already
|
|
// marked black.
|
|
__ RecordWrite(rdi, rdx, rbx, kDontSaveFPRegs, OMIT_REMEMBERED_SET);
|
|
}
|
|
|
|
// Restore receiver to rdx as finish sequence assumes it's here.
|
|
__ movp(rdx, args.GetReceiverOperand());
|
|
|
|
// Increment element's and array's sizes.
|
|
__ SmiAddConstant(FieldOperand(rdi, FixedArray::kLengthOffset),
|
|
Smi::FromInt(kAllocationDelta));
|
|
|
|
// Make new length a smi before returning it.
|
|
__ Integer32ToSmi(rax, rax);
|
|
__ movp(FieldOperand(rdx, JSArray::kLengthOffset), rax);
|
|
|
|
__ ret((argc + 1) * kPointerSize);
|
|
|
|
__ bind(&call_builtin);
|
|
__ TailCallExternalReference(
|
|
ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1);
|
|
}
|
|
|
|
|
|
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rdx : left
|
|
// -- rax : right
|
|
// -- rsp[0] : return address
|
|
// -----------------------------------
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
// Load rcx with the allocation site. We stick an undefined dummy value here
|
|
// and replace it with the real allocation site later when we instantiate this
|
|
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
|
|
__ Move(rcx, handle(isolate->heap()->undefined_value()));
|
|
|
|
// Make sure that we actually patched the allocation site.
|
|
if (FLAG_debug_code) {
|
|
__ testb(rcx, Immediate(kSmiTagMask));
|
|
__ Assert(not_equal, kExpectedAllocationSite);
|
|
__ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
|
|
isolate->factory()->allocation_site_map());
|
|
__ Assert(equal, kExpectedAllocationSite);
|
|
}
|
|
|
|
// Tail call into the stub that handles binary operations with allocation
|
|
// sites.
|
|
BinaryOpWithAllocationSiteStub stub(state_);
|
|
__ TailCallStub(&stub);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::SMI);
|
|
Label miss;
|
|
__ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
|
|
|
|
if (GetCondition() == equal) {
|
|
// For equality we do not care about the sign of the result.
|
|
__ subp(rax, rdx);
|
|
} else {
|
|
Label done;
|
|
__ subp(rdx, rax);
|
|
__ j(no_overflow, &done, Label::kNear);
|
|
// Correct sign of result in case of overflow.
|
|
__ notp(rdx);
|
|
__ bind(&done);
|
|
__ movp(rax, rdx);
|
|
}
|
|
__ ret(0);
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::NUMBER);
|
|
|
|
Label generic_stub;
|
|
Label unordered, maybe_undefined1, maybe_undefined2;
|
|
Label miss;
|
|
|
|
if (left_ == CompareIC::SMI) {
|
|
__ JumpIfNotSmi(rdx, &miss);
|
|
}
|
|
if (right_ == CompareIC::SMI) {
|
|
__ JumpIfNotSmi(rax, &miss);
|
|
}
|
|
|
|
// Load left and right operand.
|
|
Label done, left, left_smi, right_smi;
|
|
__ JumpIfSmi(rax, &right_smi, Label::kNear);
|
|
__ CompareMap(rax, masm->isolate()->factory()->heap_number_map());
|
|
__ j(not_equal, &maybe_undefined1, Label::kNear);
|
|
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
|
|
__ jmp(&left, Label::kNear);
|
|
__ bind(&right_smi);
|
|
__ SmiToInteger32(rcx, rax); // Can't clobber rax yet.
|
|
__ Cvtlsi2sd(xmm1, rcx);
|
|
|
|
__ bind(&left);
|
|
__ JumpIfSmi(rdx, &left_smi, Label::kNear);
|
|
__ CompareMap(rdx, masm->isolate()->factory()->heap_number_map());
|
|
__ j(not_equal, &maybe_undefined2, Label::kNear);
|
|
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
|
|
__ jmp(&done);
|
|
__ bind(&left_smi);
|
|
__ SmiToInteger32(rcx, rdx); // Can't clobber rdx yet.
|
|
__ Cvtlsi2sd(xmm0, rcx);
|
|
|
|
__ bind(&done);
|
|
// Compare operands
|
|
__ ucomisd(xmm0, xmm1);
|
|
|
|
// Don't base result on EFLAGS when a NaN is involved.
|
|
__ j(parity_even, &unordered, Label::kNear);
|
|
|
|
// Return a result of -1, 0, or 1, based on EFLAGS.
|
|
// Performing mov, because xor would destroy the flag register.
|
|
__ movl(rax, Immediate(0));
|
|
__ movl(rcx, Immediate(0));
|
|
__ setcc(above, rax); // Add one to zero if carry clear and not equal.
|
|
__ sbbp(rax, rcx); // Subtract one if below (aka. carry set).
|
|
__ ret(0);
|
|
|
|
__ bind(&unordered);
|
|
__ bind(&generic_stub);
|
|
ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC,
|
|
CompareIC::GENERIC);
|
|
__ jmp(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
|
|
|
|
__ bind(&maybe_undefined1);
|
|
if (Token::IsOrderedRelationalCompareOp(op_)) {
|
|
__ Cmp(rax, masm->isolate()->factory()->undefined_value());
|
|
__ j(not_equal, &miss);
|
|
__ JumpIfSmi(rdx, &unordered);
|
|
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
|
|
__ j(not_equal, &maybe_undefined2, Label::kNear);
|
|
__ jmp(&unordered);
|
|
}
|
|
|
|
__ bind(&maybe_undefined2);
|
|
if (Token::IsOrderedRelationalCompareOp(op_)) {
|
|
__ Cmp(rdx, masm->isolate()->factory()->undefined_value());
|
|
__ j(equal, &unordered);
|
|
}
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
|
|
ASSERT(GetCondition() == equal);
|
|
|
|
// Registers containing left and right operands respectively.
|
|
Register left = rdx;
|
|
Register right = rax;
|
|
Register tmp1 = rcx;
|
|
Register tmp2 = rbx;
|
|
|
|
// Check that both operands are heap objects.
|
|
Label miss;
|
|
Condition cond = masm->CheckEitherSmi(left, right, tmp1);
|
|
__ j(cond, &miss, Label::kNear);
|
|
|
|
// Check that both operands are internalized strings.
|
|
__ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
|
|
__ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
|
|
__ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
|
|
__ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
|
|
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
|
|
__ orp(tmp1, tmp2);
|
|
__ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
|
|
__ j(not_zero, &miss, Label::kNear);
|
|
|
|
// Internalized strings are compared by identity.
|
|
Label done;
|
|
__ cmpp(left, right);
|
|
// Make sure rax is non-zero. At this point input operands are
|
|
// guaranteed to be non-zero.
|
|
ASSERT(right.is(rax));
|
|
__ j(not_equal, &done, Label::kNear);
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ Move(rax, Smi::FromInt(EQUAL));
|
|
__ bind(&done);
|
|
__ ret(0);
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::UNIQUE_NAME);
|
|
ASSERT(GetCondition() == equal);
|
|
|
|
// Registers containing left and right operands respectively.
|
|
Register left = rdx;
|
|
Register right = rax;
|
|
Register tmp1 = rcx;
|
|
Register tmp2 = rbx;
|
|
|
|
// Check that both operands are heap objects.
|
|
Label miss;
|
|
Condition cond = masm->CheckEitherSmi(left, right, tmp1);
|
|
__ j(cond, &miss, Label::kNear);
|
|
|
|
// Check that both operands are unique names. This leaves the instance
|
|
// types loaded in tmp1 and tmp2.
|
|
__ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
|
|
__ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
|
|
__ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
|
|
__ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
|
|
|
|
__ JumpIfNotUniqueName(tmp1, &miss, Label::kNear);
|
|
__ JumpIfNotUniqueName(tmp2, &miss, Label::kNear);
|
|
|
|
// Unique names are compared by identity.
|
|
Label done;
|
|
__ cmpp(left, right);
|
|
// Make sure rax is non-zero. At this point input operands are
|
|
// guaranteed to be non-zero.
|
|
ASSERT(right.is(rax));
|
|
__ j(not_equal, &done, Label::kNear);
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ Move(rax, Smi::FromInt(EQUAL));
|
|
__ bind(&done);
|
|
__ ret(0);
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::STRING);
|
|
Label miss;
|
|
|
|
bool equality = Token::IsEqualityOp(op_);
|
|
|
|
// Registers containing left and right operands respectively.
|
|
Register left = rdx;
|
|
Register right = rax;
|
|
Register tmp1 = rcx;
|
|
Register tmp2 = rbx;
|
|
Register tmp3 = rdi;
|
|
|
|
// Check that both operands are heap objects.
|
|
Condition cond = masm->CheckEitherSmi(left, right, tmp1);
|
|
__ j(cond, &miss);
|
|
|
|
// Check that both operands are strings. This leaves the instance
|
|
// types loaded in tmp1 and tmp2.
|
|
__ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
|
|
__ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
|
|
__ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
|
|
__ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
|
|
__ movp(tmp3, tmp1);
|
|
STATIC_ASSERT(kNotStringTag != 0);
|
|
__ orp(tmp3, tmp2);
|
|
__ testb(tmp3, Immediate(kIsNotStringMask));
|
|
__ j(not_zero, &miss);
|
|
|
|
// Fast check for identical strings.
|
|
Label not_same;
|
|
__ cmpp(left, right);
|
|
__ j(not_equal, ¬_same, Label::kNear);
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ Move(rax, Smi::FromInt(EQUAL));
|
|
__ ret(0);
|
|
|
|
// Handle not identical strings.
|
|
__ bind(¬_same);
|
|
|
|
// Check that both strings are internalized strings. If they are, we're done
|
|
// because we already know they are not identical. We also know they are both
|
|
// strings.
|
|
if (equality) {
|
|
Label do_compare;
|
|
STATIC_ASSERT(kInternalizedTag == 0);
|
|
__ orp(tmp1, tmp2);
|
|
__ testb(tmp1, Immediate(kIsNotInternalizedMask));
|
|
__ j(not_zero, &do_compare, Label::kNear);
|
|
// Make sure rax is non-zero. At this point input operands are
|
|
// guaranteed to be non-zero.
|
|
ASSERT(right.is(rax));
|
|
__ ret(0);
|
|
__ bind(&do_compare);
|
|
}
|
|
|
|
// Check that both strings are sequential ASCII.
|
|
Label runtime;
|
|
__ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime);
|
|
|
|
// Compare flat ASCII strings. Returns when done.
|
|
if (equality) {
|
|
StringCompareStub::GenerateFlatAsciiStringEquals(
|
|
masm, left, right, tmp1, tmp2);
|
|
} else {
|
|
StringCompareStub::GenerateCompareFlatAsciiStrings(
|
|
masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
|
|
}
|
|
|
|
// Handle more complex cases in runtime.
|
|
__ bind(&runtime);
|
|
__ PopReturnAddressTo(tmp1);
|
|
__ Push(left);
|
|
__ Push(right);
|
|
__ PushReturnAddressFrom(tmp1);
|
|
if (equality) {
|
|
__ TailCallRuntime(Runtime::kStringEquals, 2, 1);
|
|
} else {
|
|
__ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
|
|
}
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
|
|
ASSERT(state_ == CompareIC::OBJECT);
|
|
Label miss;
|
|
Condition either_smi = masm->CheckEitherSmi(rdx, rax);
|
|
__ j(either_smi, &miss, Label::kNear);
|
|
|
|
__ CmpObjectType(rax, JS_OBJECT_TYPE, rcx);
|
|
__ j(not_equal, &miss, Label::kNear);
|
|
__ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
|
|
__ j(not_equal, &miss, Label::kNear);
|
|
|
|
ASSERT(GetCondition() == equal);
|
|
__ subp(rax, rdx);
|
|
__ ret(0);
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
|
|
Label miss;
|
|
Condition either_smi = masm->CheckEitherSmi(rdx, rax);
|
|
__ j(either_smi, &miss, Label::kNear);
|
|
|
|
__ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
|
|
__ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
|
|
__ Cmp(rcx, known_map_);
|
|
__ j(not_equal, &miss, Label::kNear);
|
|
__ Cmp(rbx, known_map_);
|
|
__ j(not_equal, &miss, Label::kNear);
|
|
|
|
__ subp(rax, rdx);
|
|
__ ret(0);
|
|
|
|
__ bind(&miss);
|
|
GenerateMiss(masm);
|
|
}
|
|
|
|
|
|
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
|
|
{
|
|
// Call the runtime system in a fresh internal frame.
|
|
ExternalReference miss =
|
|
ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
|
|
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ Push(rdx);
|
|
__ Push(rax);
|
|
__ Push(rdx);
|
|
__ Push(rax);
|
|
__ Push(Smi::FromInt(op_));
|
|
__ CallExternalReference(miss, 3);
|
|
|
|
// Compute the entry point of the rewritten stub.
|
|
__ leap(rdi, FieldOperand(rax, Code::kHeaderSize));
|
|
__ Pop(rax);
|
|
__ Pop(rdx);
|
|
}
|
|
|
|
// Do a tail call to the rewritten stub.
|
|
__ jmp(rdi);
|
|
}
|
|
|
|
|
|
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
|
|
Label* miss,
|
|
Label* done,
|
|
Register properties,
|
|
Handle<Name> name,
|
|
Register r0) {
|
|
ASSERT(name->IsUniqueName());
|
|
// If names of slots in range from 1 to kProbes - 1 for the hash value are
|
|
// not equal to the name and kProbes-th slot is not used (its name is the
|
|
// undefined value), it guarantees the hash table doesn't contain the
|
|
// property. It's true even if some slots represent deleted properties
|
|
// (their names are the hole value).
|
|
for (int i = 0; i < kInlinedProbes; i++) {
|
|
// r0 points to properties hash.
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
Register index = r0;
|
|
// Capacity is smi 2^n.
|
|
__ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
|
|
__ decl(index);
|
|
__ andp(index,
|
|
Immediate(name->Hash() + NameDictionary::GetProbeOffset(i)));
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
ASSERT(NameDictionary::kEntrySize == 3);
|
|
__ leap(index, Operand(index, index, times_2, 0)); // index *= 3.
|
|
|
|
Register entity_name = r0;
|
|
// Having undefined at this place means the name is not contained.
|
|
ASSERT_EQ(kSmiTagSize, 1);
|
|
__ movp(entity_name, Operand(properties,
|
|
index,
|
|
times_pointer_size,
|
|
kElementsStartOffset - kHeapObjectTag));
|
|
__ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
|
|
__ j(equal, done);
|
|
|
|
// Stop if found the property.
|
|
__ Cmp(entity_name, Handle<Name>(name));
|
|
__ j(equal, miss);
|
|
|
|
Label good;
|
|
// Check for the hole and skip.
|
|
__ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
|
|
__ j(equal, &good, Label::kNear);
|
|
|
|
// Check if the entry name is not a unique name.
|
|
__ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
|
|
__ JumpIfNotUniqueName(FieldOperand(entity_name, Map::kInstanceTypeOffset),
|
|
miss);
|
|
__ bind(&good);
|
|
}
|
|
|
|
NameDictionaryLookupStub stub(properties, r0, r0, NEGATIVE_LOOKUP);
|
|
__ Push(Handle<Object>(name));
|
|
__ Push(Immediate(name->Hash()));
|
|
__ CallStub(&stub);
|
|
__ testp(r0, r0);
|
|
__ j(not_zero, miss);
|
|
__ jmp(done);
|
|
}
|
|
|
|
|
|
// Probe the name dictionary in the |elements| register. Jump to the
|
|
// |done| label if a property with the given name is found leaving the
|
|
// index into the dictionary in |r1|. Jump to the |miss| label
|
|
// otherwise.
|
|
void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
|
|
Label* miss,
|
|
Label* done,
|
|
Register elements,
|
|
Register name,
|
|
Register r0,
|
|
Register r1) {
|
|
ASSERT(!elements.is(r0));
|
|
ASSERT(!elements.is(r1));
|
|
ASSERT(!name.is(r0));
|
|
ASSERT(!name.is(r1));
|
|
|
|
__ AssertName(name);
|
|
|
|
__ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset));
|
|
__ decl(r0);
|
|
|
|
for (int i = 0; i < kInlinedProbes; i++) {
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
__ movl(r1, FieldOperand(name, Name::kHashFieldOffset));
|
|
__ shrl(r1, Immediate(Name::kHashShift));
|
|
if (i > 0) {
|
|
__ addl(r1, Immediate(NameDictionary::GetProbeOffset(i)));
|
|
}
|
|
__ andp(r1, r0);
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
ASSERT(NameDictionary::kEntrySize == 3);
|
|
__ leap(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3
|
|
|
|
// Check if the key is identical to the name.
|
|
__ cmpp(name, Operand(elements, r1, times_pointer_size,
|
|
kElementsStartOffset - kHeapObjectTag));
|
|
__ j(equal, done);
|
|
}
|
|
|
|
NameDictionaryLookupStub stub(elements, r0, r1, POSITIVE_LOOKUP);
|
|
__ Push(name);
|
|
__ movl(r0, FieldOperand(name, Name::kHashFieldOffset));
|
|
__ shrl(r0, Immediate(Name::kHashShift));
|
|
__ Push(r0);
|
|
__ CallStub(&stub);
|
|
|
|
__ testp(r0, r0);
|
|
__ j(zero, miss);
|
|
__ jmp(done);
|
|
}
|
|
|
|
|
|
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
|
|
// This stub overrides SometimesSetsUpAFrame() to return false. That means
|
|
// we cannot call anything that could cause a GC from this stub.
|
|
// Stack frame on entry:
|
|
// rsp[0 * kPointerSize] : return address.
|
|
// rsp[1 * kPointerSize] : key's hash.
|
|
// rsp[2 * kPointerSize] : key.
|
|
// Registers:
|
|
// dictionary_: NameDictionary to probe.
|
|
// result_: used as scratch.
|
|
// index_: will hold an index of entry if lookup is successful.
|
|
// might alias with result_.
|
|
// Returns:
|
|
// result_ is zero if lookup failed, non zero otherwise.
|
|
|
|
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
|
|
|
|
Register scratch = result_;
|
|
|
|
__ SmiToInteger32(scratch, FieldOperand(dictionary_, kCapacityOffset));
|
|
__ decl(scratch);
|
|
__ Push(scratch);
|
|
|
|
// If names of slots in range from 1 to kProbes - 1 for the hash value are
|
|
// not equal to the name and kProbes-th slot is not used (its name is the
|
|
// undefined value), it guarantees the hash table doesn't contain the
|
|
// property. It's true even if some slots represent deleted properties
|
|
// (their names are the null value).
|
|
StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER,
|
|
kPointerSize);
|
|
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
__ movp(scratch, args.GetArgumentOperand(1));
|
|
if (i > 0) {
|
|
__ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
|
|
}
|
|
__ andp(scratch, Operand(rsp, 0));
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
ASSERT(NameDictionary::kEntrySize == 3);
|
|
__ leap(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3.
|
|
|
|
// Having undefined at this place means the name is not contained.
|
|
__ movp(scratch, Operand(dictionary_,
|
|
index_,
|
|
times_pointer_size,
|
|
kElementsStartOffset - kHeapObjectTag));
|
|
|
|
__ Cmp(scratch, masm->isolate()->factory()->undefined_value());
|
|
__ j(equal, ¬_in_dictionary);
|
|
|
|
// Stop if found the property.
|
|
__ cmpp(scratch, args.GetArgumentOperand(0));
|
|
__ j(equal, &in_dictionary);
|
|
|
|
if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
|
|
// If we hit a key that is not a unique name during negative
|
|
// lookup we have to bailout as this key might be equal to the
|
|
// key we are looking for.
|
|
|
|
// Check if the entry name is not a unique name.
|
|
__ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
|
|
__ JumpIfNotUniqueName(FieldOperand(scratch, Map::kInstanceTypeOffset),
|
|
&maybe_in_dictionary);
|
|
}
|
|
}
|
|
|
|
__ bind(&maybe_in_dictionary);
|
|
// If we are doing negative lookup then probing failure should be
|
|
// treated as a lookup success. For positive lookup probing failure
|
|
// should be treated as lookup failure.
|
|
if (mode_ == POSITIVE_LOOKUP) {
|
|
__ movp(scratch, Immediate(0));
|
|
__ Drop(1);
|
|
__ ret(2 * kPointerSize);
|
|
}
|
|
|
|
__ bind(&in_dictionary);
|
|
__ movp(scratch, Immediate(1));
|
|
__ Drop(1);
|
|
__ ret(2 * kPointerSize);
|
|
|
|
__ bind(¬_in_dictionary);
|
|
__ movp(scratch, Immediate(0));
|
|
__ Drop(1);
|
|
__ ret(2 * kPointerSize);
|
|
}
|
|
|
|
|
|
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
|
|
Isolate* isolate) {
|
|
StoreBufferOverflowStub stub1(kDontSaveFPRegs);
|
|
stub1.GetCode(isolate);
|
|
StoreBufferOverflowStub stub2(kSaveFPRegs);
|
|
stub2.GetCode(isolate);
|
|
}
|
|
|
|
|
|
bool CodeStub::CanUseFPRegisters() {
|
|
return true; // Always have SSE2 on x64.
|
|
}
|
|
|
|
|
|
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
|
|
// the value has just been written into the object, now this stub makes sure
|
|
// we keep the GC informed. The word in the object where the value has been
|
|
// written is in the address register.
|
|
void RecordWriteStub::Generate(MacroAssembler* masm) {
|
|
Label skip_to_incremental_noncompacting;
|
|
Label skip_to_incremental_compacting;
|
|
|
|
// The first two instructions are generated with labels so as to get the
|
|
// offset fixed up correctly by the bind(Label*) call. We patch it back and
|
|
// forth between a compare instructions (a nop in this position) and the
|
|
// real branch when we start and stop incremental heap marking.
|
|
// See RecordWriteStub::Patch for details.
|
|
__ jmp(&skip_to_incremental_noncompacting, Label::kNear);
|
|
__ jmp(&skip_to_incremental_compacting, Label::kFar);
|
|
|
|
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
|
__ RememberedSetHelper(object_,
|
|
address_,
|
|
value_,
|
|
save_fp_regs_mode_,
|
|
MacroAssembler::kReturnAtEnd);
|
|
} else {
|
|
__ ret(0);
|
|
}
|
|
|
|
__ bind(&skip_to_incremental_noncompacting);
|
|
GenerateIncremental(masm, INCREMENTAL);
|
|
|
|
__ bind(&skip_to_incremental_compacting);
|
|
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
|
|
|
|
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
|
|
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
|
|
masm->set_byte_at(0, kTwoByteNopInstruction);
|
|
masm->set_byte_at(2, kFiveByteNopInstruction);
|
|
}
|
|
|
|
|
|
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
|
|
regs_.Save(masm);
|
|
|
|
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
|
Label dont_need_remembered_set;
|
|
|
|
__ movp(regs_.scratch0(), Operand(regs_.address(), 0));
|
|
__ JumpIfNotInNewSpace(regs_.scratch0(),
|
|
regs_.scratch0(),
|
|
&dont_need_remembered_set);
|
|
|
|
__ CheckPageFlag(regs_.object(),
|
|
regs_.scratch0(),
|
|
1 << MemoryChunk::SCAN_ON_SCAVENGE,
|
|
not_zero,
|
|
&dont_need_remembered_set);
|
|
|
|
// First notify the incremental marker if necessary, then update the
|
|
// remembered set.
|
|
CheckNeedsToInformIncrementalMarker(
|
|
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
|
|
InformIncrementalMarker(masm);
|
|
regs_.Restore(masm);
|
|
__ RememberedSetHelper(object_,
|
|
address_,
|
|
value_,
|
|
save_fp_regs_mode_,
|
|
MacroAssembler::kReturnAtEnd);
|
|
|
|
__ bind(&dont_need_remembered_set);
|
|
}
|
|
|
|
CheckNeedsToInformIncrementalMarker(
|
|
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
|
|
InformIncrementalMarker(masm);
|
|
regs_.Restore(masm);
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
|
|
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
|
|
Register address =
|
|
arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address();
|
|
ASSERT(!address.is(regs_.object()));
|
|
ASSERT(!address.is(arg_reg_1));
|
|
__ Move(address, regs_.address());
|
|
__ Move(arg_reg_1, regs_.object());
|
|
// TODO(gc) Can we just set address arg2 in the beginning?
|
|
__ Move(arg_reg_2, address);
|
|
__ LoadAddress(arg_reg_3,
|
|
ExternalReference::isolate_address(masm->isolate()));
|
|
int argument_count = 3;
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
__ PrepareCallCFunction(argument_count);
|
|
__ CallCFunction(
|
|
ExternalReference::incremental_marking_record_write_function(
|
|
masm->isolate()),
|
|
argument_count);
|
|
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
|
|
}
|
|
|
|
|
|
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
|
|
MacroAssembler* masm,
|
|
OnNoNeedToInformIncrementalMarker on_no_need,
|
|
Mode mode) {
|
|
Label on_black;
|
|
Label need_incremental;
|
|
Label need_incremental_pop_object;
|
|
|
|
__ movp(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
|
|
__ andp(regs_.scratch0(), regs_.object());
|
|
__ movp(regs_.scratch1(),
|
|
Operand(regs_.scratch0(),
|
|
MemoryChunk::kWriteBarrierCounterOffset));
|
|
__ subp(regs_.scratch1(), Immediate(1));
|
|
__ movp(Operand(regs_.scratch0(),
|
|
MemoryChunk::kWriteBarrierCounterOffset),
|
|
regs_.scratch1());
|
|
__ j(negative, &need_incremental);
|
|
|
|
// Let's look at the color of the object: If it is not black we don't have
|
|
// to inform the incremental marker.
|
|
__ JumpIfBlack(regs_.object(),
|
|
regs_.scratch0(),
|
|
regs_.scratch1(),
|
|
&on_black,
|
|
Label::kNear);
|
|
|
|
regs_.Restore(masm);
|
|
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
|
__ RememberedSetHelper(object_,
|
|
address_,
|
|
value_,
|
|
save_fp_regs_mode_,
|
|
MacroAssembler::kReturnAtEnd);
|
|
} else {
|
|
__ ret(0);
|
|
}
|
|
|
|
__ bind(&on_black);
|
|
|
|
// Get the value from the slot.
|
|
__ movp(regs_.scratch0(), Operand(regs_.address(), 0));
|
|
|
|
if (mode == INCREMENTAL_COMPACTION) {
|
|
Label ensure_not_white;
|
|
|
|
__ CheckPageFlag(regs_.scratch0(), // Contains value.
|
|
regs_.scratch1(), // Scratch.
|
|
MemoryChunk::kEvacuationCandidateMask,
|
|
zero,
|
|
&ensure_not_white,
|
|
Label::kNear);
|
|
|
|
__ CheckPageFlag(regs_.object(),
|
|
regs_.scratch1(), // Scratch.
|
|
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
|
|
zero,
|
|
&need_incremental);
|
|
|
|
__ bind(&ensure_not_white);
|
|
}
|
|
|
|
// We need an extra register for this, so we push the object register
|
|
// temporarily.
|
|
__ Push(regs_.object());
|
|
__ EnsureNotWhite(regs_.scratch0(), // The value.
|
|
regs_.scratch1(), // Scratch.
|
|
regs_.object(), // Scratch.
|
|
&need_incremental_pop_object,
|
|
Label::kNear);
|
|
__ Pop(regs_.object());
|
|
|
|
regs_.Restore(masm);
|
|
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
|
__ RememberedSetHelper(object_,
|
|
address_,
|
|
value_,
|
|
save_fp_regs_mode_,
|
|
MacroAssembler::kReturnAtEnd);
|
|
} else {
|
|
__ ret(0);
|
|
}
|
|
|
|
__ bind(&need_incremental_pop_object);
|
|
__ Pop(regs_.object());
|
|
|
|
__ bind(&need_incremental);
|
|
|
|
// Fall through when we need to inform the incremental marker.
|
|
}
|
|
|
|
|
|
void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rax : element value to store
|
|
// -- rcx : element index as smi
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : array literal index in function
|
|
// -- rsp[16] : array literal
|
|
// clobbers rbx, rdx, rdi
|
|
// -----------------------------------
|
|
|
|
Label element_done;
|
|
Label double_elements;
|
|
Label smi_element;
|
|
Label slow_elements;
|
|
Label fast_elements;
|
|
|
|
// Get array literal index, array literal and its map.
|
|
StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rdx, args.GetArgumentOperand(1));
|
|
__ movp(rbx, args.GetArgumentOperand(0));
|
|
__ movp(rdi, FieldOperand(rbx, JSObject::kMapOffset));
|
|
|
|
__ CheckFastElements(rdi, &double_elements);
|
|
|
|
// FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
|
|
__ JumpIfSmi(rax, &smi_element);
|
|
__ CheckFastSmiElements(rdi, &fast_elements);
|
|
|
|
// Store into the array literal requires a elements transition. Call into
|
|
// the runtime.
|
|
|
|
__ bind(&slow_elements);
|
|
__ PopReturnAddressTo(rdi);
|
|
__ Push(rbx);
|
|
__ Push(rcx);
|
|
__ Push(rax);
|
|
__ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
|
|
__ Push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
|
|
__ Push(rdx);
|
|
__ PushReturnAddressFrom(rdi);
|
|
__ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
|
|
|
|
// Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
|
|
__ bind(&fast_elements);
|
|
__ SmiToInteger32(kScratchRegister, rcx);
|
|
__ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
|
|
__ leap(rcx, FieldOperand(rbx, kScratchRegister, times_pointer_size,
|
|
FixedArrayBase::kHeaderSize));
|
|
__ movp(Operand(rcx, 0), rax);
|
|
// Update the write barrier for the array store.
|
|
__ RecordWrite(rbx, rcx, rax,
|
|
kDontSaveFPRegs,
|
|
EMIT_REMEMBERED_SET,
|
|
OMIT_SMI_CHECK);
|
|
__ ret(0);
|
|
|
|
// Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or
|
|
// FAST_*_ELEMENTS, and value is Smi.
|
|
__ bind(&smi_element);
|
|
__ SmiToInteger32(kScratchRegister, rcx);
|
|
__ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
|
|
__ movp(FieldOperand(rbx, kScratchRegister, times_pointer_size,
|
|
FixedArrayBase::kHeaderSize), rax);
|
|
__ ret(0);
|
|
|
|
// Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
|
|
__ bind(&double_elements);
|
|
|
|
__ movp(r9, FieldOperand(rbx, JSObject::kElementsOffset));
|
|
__ SmiToInteger32(r11, rcx);
|
|
__ StoreNumberToDoubleElements(rax,
|
|
r9,
|
|
r11,
|
|
xmm0,
|
|
&slow_elements);
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
|
|
CEntryStub ces(1, fp_registers_ ? kSaveFPRegs : kDontSaveFPRegs);
|
|
__ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
|
|
int parameter_count_offset =
|
|
StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
|
|
__ movp(rbx, MemOperand(rbp, parameter_count_offset));
|
|
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
|
|
__ PopReturnAddressTo(rcx);
|
|
int additional_offset = function_mode_ == JS_FUNCTION_STUB_MODE
|
|
? kPointerSize
|
|
: 0;
|
|
__ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset));
|
|
__ jmp(rcx); // Return to IC Miss stub, continuation still on stack.
|
|
}
|
|
|
|
|
|
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
|
|
if (masm->isolate()->function_entry_hook() != NULL) {
|
|
ProfileEntryHookStub stub;
|
|
masm->CallStub(&stub);
|
|
}
|
|
}
|
|
|
|
|
|
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
|
|
// This stub can be called from essentially anywhere, so it needs to save
|
|
// all volatile and callee-save registers.
|
|
const size_t kNumSavedRegisters = 2;
|
|
__ pushq(arg_reg_1);
|
|
__ pushq(arg_reg_2);
|
|
|
|
// Calculate the original stack pointer and store it in the second arg.
|
|
__ leap(arg_reg_2,
|
|
Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
|
|
|
|
// Calculate the function address to the first arg.
|
|
__ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
|
|
__ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
|
|
|
|
// Save the remainder of the volatile registers.
|
|
masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
|
|
|
|
// Call the entry hook function.
|
|
__ Move(rax, FUNCTION_ADDR(masm->isolate()->function_entry_hook()),
|
|
Assembler::RelocInfoNone());
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
const int kArgumentCount = 2;
|
|
__ PrepareCallCFunction(kArgumentCount);
|
|
__ CallCFunction(rax, kArgumentCount);
|
|
|
|
// Restore volatile regs.
|
|
masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
|
|
__ popq(arg_reg_2);
|
|
__ popq(arg_reg_1);
|
|
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void CreateArrayDispatch(MacroAssembler* masm,
|
|
AllocationSiteOverrideMode mode) {
|
|
if (mode == DISABLE_ALLOCATION_SITES) {
|
|
T stub(GetInitialFastElementsKind(), mode);
|
|
__ TailCallStub(&stub);
|
|
} else if (mode == DONT_OVERRIDE) {
|
|
int last_index = GetSequenceIndexFromFastElementsKind(
|
|
TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= last_index; ++i) {
|
|
Label next;
|
|
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
|
|
__ cmpl(rdx, Immediate(kind));
|
|
__ j(not_equal, &next);
|
|
T stub(kind);
|
|
__ TailCallStub(&stub);
|
|
__ bind(&next);
|
|
}
|
|
|
|
// If we reached this point there is a problem.
|
|
__ Abort(kUnexpectedElementsKindInArrayConstructor);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
|
|
AllocationSiteOverrideMode mode) {
|
|
// rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
|
|
// rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
|
|
// rax - number of arguments
|
|
// rdi - constructor?
|
|
// rsp[0] - return address
|
|
// rsp[8] - last argument
|
|
Handle<Object> undefined_sentinel(
|
|
masm->isolate()->heap()->undefined_value(),
|
|
masm->isolate());
|
|
|
|
Label normal_sequence;
|
|
if (mode == DONT_OVERRIDE) {
|
|
ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
ASSERT(FAST_ELEMENTS == 2);
|
|
ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
|
ASSERT(FAST_DOUBLE_ELEMENTS == 4);
|
|
ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
|
|
|
|
// is the low bit set? If so, we are holey and that is good.
|
|
__ testb(rdx, Immediate(1));
|
|
__ j(not_zero, &normal_sequence);
|
|
}
|
|
|
|
// look at the first argument
|
|
StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rcx, args.GetArgumentOperand(0));
|
|
__ testp(rcx, rcx);
|
|
__ j(zero, &normal_sequence);
|
|
|
|
if (mode == DISABLE_ALLOCATION_SITES) {
|
|
ElementsKind initial = GetInitialFastElementsKind();
|
|
ElementsKind holey_initial = GetHoleyElementsKind(initial);
|
|
|
|
ArraySingleArgumentConstructorStub stub_holey(holey_initial,
|
|
DISABLE_ALLOCATION_SITES);
|
|
__ TailCallStub(&stub_holey);
|
|
|
|
__ bind(&normal_sequence);
|
|
ArraySingleArgumentConstructorStub stub(initial,
|
|
DISABLE_ALLOCATION_SITES);
|
|
__ TailCallStub(&stub);
|
|
} else if (mode == DONT_OVERRIDE) {
|
|
// We are going to create a holey array, but our kind is non-holey.
|
|
// Fix kind and retry (only if we have an allocation site in the slot).
|
|
__ incl(rdx);
|
|
|
|
if (FLAG_debug_code) {
|
|
Handle<Map> allocation_site_map =
|
|
masm->isolate()->factory()->allocation_site_map();
|
|
__ Cmp(FieldOperand(rbx, 0), allocation_site_map);
|
|
__ Assert(equal, kExpectedAllocationSite);
|
|
}
|
|
|
|
// Save the resulting elements kind in type info. We can't just store r3
|
|
// in the AllocationSite::transition_info field because elements kind is
|
|
// restricted to a portion of the field...upper bits need to be left alone.
|
|
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
|
|
__ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset),
|
|
Smi::FromInt(kFastElementsKindPackedToHoley));
|
|
|
|
__ bind(&normal_sequence);
|
|
int last_index = GetSequenceIndexFromFastElementsKind(
|
|
TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= last_index; ++i) {
|
|
Label next;
|
|
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
|
|
__ cmpl(rdx, Immediate(kind));
|
|
__ j(not_equal, &next);
|
|
ArraySingleArgumentConstructorStub stub(kind);
|
|
__ TailCallStub(&stub);
|
|
__ bind(&next);
|
|
}
|
|
|
|
// If we reached this point there is a problem.
|
|
__ Abort(kUnexpectedElementsKindInArrayConstructor);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
|
|
int to_index = GetSequenceIndexFromFastElementsKind(
|
|
TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= to_index; ++i) {
|
|
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
|
|
T stub(kind);
|
|
stub.GetCode(isolate);
|
|
if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
|
|
T stub1(kind, DISABLE_ALLOCATION_SITES);
|
|
stub1.GetCode(isolate);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
|
|
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
|
|
isolate);
|
|
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
|
|
isolate);
|
|
ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
|
|
isolate);
|
|
}
|
|
|
|
|
|
void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
|
|
Isolate* isolate) {
|
|
ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
|
|
for (int i = 0; i < 2; i++) {
|
|
// For internal arrays we only need a few things
|
|
InternalArrayNoArgumentConstructorStub stubh1(kinds[i]);
|
|
stubh1.GetCode(isolate);
|
|
InternalArraySingleArgumentConstructorStub stubh2(kinds[i]);
|
|
stubh2.GetCode(isolate);
|
|
InternalArrayNArgumentsConstructorStub stubh3(kinds[i]);
|
|
stubh3.GetCode(isolate);
|
|
}
|
|
}
|
|
|
|
|
|
void ArrayConstructorStub::GenerateDispatchToArrayStub(
|
|
MacroAssembler* masm,
|
|
AllocationSiteOverrideMode mode) {
|
|
if (argument_count_ == ANY) {
|
|
Label not_zero_case, not_one_case;
|
|
__ testp(rax, rax);
|
|
__ j(not_zero, ¬_zero_case);
|
|
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
|
|
|
|
__ bind(¬_zero_case);
|
|
__ cmpl(rax, Immediate(1));
|
|
__ j(greater, ¬_one_case);
|
|
CreateArrayDispatchOneArgument(masm, mode);
|
|
|
|
__ bind(¬_one_case);
|
|
CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
|
|
} else if (argument_count_ == NONE) {
|
|
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
|
|
} else if (argument_count_ == ONE) {
|
|
CreateArrayDispatchOneArgument(masm, mode);
|
|
} else if (argument_count_ == MORE_THAN_ONE) {
|
|
CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rax : argc
|
|
// -- rbx : AllocationSite or undefined
|
|
// -- rdi : constructor
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : last argument
|
|
// -----------------------------------
|
|
if (FLAG_debug_code) {
|
|
// The array construct code is only set for the global and natives
|
|
// builtin Array functions which always have maps.
|
|
|
|
// Initial map for the builtin Array function should be a map.
|
|
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
|
|
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
|
|
__ CmpObjectType(rcx, MAP_TYPE, rcx);
|
|
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
|
|
|
|
// We should either have undefined in rbx or a valid AllocationSite
|
|
__ AssertUndefinedOrAllocationSite(rbx);
|
|
}
|
|
|
|
Label no_info;
|
|
// If the feedback vector is the undefined value call an array constructor
|
|
// that doesn't use AllocationSites.
|
|
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
|
|
__ j(equal, &no_info);
|
|
|
|
// Only look at the lower 16 bits of the transition info.
|
|
__ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset));
|
|
__ SmiToInteger32(rdx, rdx);
|
|
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
|
|
__ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
|
|
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
|
|
|
|
__ bind(&no_info);
|
|
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
|
|
}
|
|
|
|
|
|
void InternalArrayConstructorStub::GenerateCase(
|
|
MacroAssembler* masm, ElementsKind kind) {
|
|
Label not_zero_case, not_one_case;
|
|
Label normal_sequence;
|
|
|
|
__ testp(rax, rax);
|
|
__ j(not_zero, ¬_zero_case);
|
|
InternalArrayNoArgumentConstructorStub stub0(kind);
|
|
__ TailCallStub(&stub0);
|
|
|
|
__ bind(¬_zero_case);
|
|
__ cmpl(rax, Immediate(1));
|
|
__ j(greater, ¬_one_case);
|
|
|
|
if (IsFastPackedElementsKind(kind)) {
|
|
// We might need to create a holey array
|
|
// look at the first argument
|
|
StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rcx, args.GetArgumentOperand(0));
|
|
__ testp(rcx, rcx);
|
|
__ j(zero, &normal_sequence);
|
|
|
|
InternalArraySingleArgumentConstructorStub
|
|
stub1_holey(GetHoleyElementsKind(kind));
|
|
__ TailCallStub(&stub1_holey);
|
|
}
|
|
|
|
__ bind(&normal_sequence);
|
|
InternalArraySingleArgumentConstructorStub stub1(kind);
|
|
__ TailCallStub(&stub1);
|
|
|
|
__ bind(¬_one_case);
|
|
InternalArrayNArgumentsConstructorStub stubN(kind);
|
|
__ TailCallStub(&stubN);
|
|
}
|
|
|
|
|
|
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rax : argc
|
|
// -- rdi : constructor
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : last argument
|
|
// -----------------------------------
|
|
|
|
if (FLAG_debug_code) {
|
|
// The array construct code is only set for the global and natives
|
|
// builtin Array functions which always have maps.
|
|
|
|
// Initial map for the builtin Array function should be a map.
|
|
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
|
|
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
|
|
__ CmpObjectType(rcx, MAP_TYPE, rcx);
|
|
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
|
|
}
|
|
|
|
// Figure out the right elements kind
|
|
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
|
|
// Load the map's "bit field 2" into |result|. We only need the first byte,
|
|
// but the following masking takes care of that anyway.
|
|
__ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
|
|
// Retrieve elements_kind from bit field 2.
|
|
__ andp(rcx, Immediate(Map::kElementsKindMask));
|
|
__ shrp(rcx, Immediate(Map::kElementsKindShift));
|
|
|
|
if (FLAG_debug_code) {
|
|
Label done;
|
|
__ cmpl(rcx, Immediate(FAST_ELEMENTS));
|
|
__ j(equal, &done);
|
|
__ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS));
|
|
__ Assert(equal,
|
|
kInvalidElementsKindForInternalArrayOrInternalPackedArray);
|
|
__ bind(&done);
|
|
}
|
|
|
|
Label fast_elements_case;
|
|
__ cmpl(rcx, Immediate(FAST_ELEMENTS));
|
|
__ j(equal, &fast_elements_case);
|
|
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
|
|
|
|
__ bind(&fast_elements_case);
|
|
GenerateCase(masm, FAST_ELEMENTS);
|
|
}
|
|
|
|
|
|
void CallApiFunctionStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rax : callee
|
|
// -- rbx : call_data
|
|
// -- rcx : holder
|
|
// -- rdx : api_function_address
|
|
// -- rsi : context
|
|
// --
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : last argument
|
|
// -- ...
|
|
// -- rsp[argc * 8] : first argument
|
|
// -- rsp[(argc + 1) * 8] : receiver
|
|
// -----------------------------------
|
|
|
|
Register callee = rax;
|
|
Register call_data = rbx;
|
|
Register holder = rcx;
|
|
Register api_function_address = rdx;
|
|
Register return_address = rdi;
|
|
Register context = rsi;
|
|
|
|
int argc = ArgumentBits::decode(bit_field_);
|
|
bool is_store = IsStoreBits::decode(bit_field_);
|
|
bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_);
|
|
|
|
typedef FunctionCallbackArguments FCA;
|
|
|
|
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
|
|
STATIC_ASSERT(FCA::kCalleeIndex == 5);
|
|
STATIC_ASSERT(FCA::kDataIndex == 4);
|
|
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
|
|
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
|
|
STATIC_ASSERT(FCA::kIsolateIndex == 1);
|
|
STATIC_ASSERT(FCA::kHolderIndex == 0);
|
|
STATIC_ASSERT(FCA::kArgsLength == 7);
|
|
|
|
__ PopReturnAddressTo(return_address);
|
|
|
|
// context save
|
|
__ Push(context);
|
|
// load context from callee
|
|
__ movp(context, FieldOperand(callee, JSFunction::kContextOffset));
|
|
|
|
// callee
|
|
__ Push(callee);
|
|
|
|
// call data
|
|
__ Push(call_data);
|
|
Register scratch = call_data;
|
|
if (!call_data_undefined) {
|
|
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
|
|
}
|
|
// return value
|
|
__ Push(scratch);
|
|
// return value default
|
|
__ Push(scratch);
|
|
// isolate
|
|
__ Move(scratch,
|
|
ExternalReference::isolate_address(masm->isolate()));
|
|
__ Push(scratch);
|
|
// holder
|
|
__ Push(holder);
|
|
|
|
__ movp(scratch, rsp);
|
|
// Push return address back on stack.
|
|
__ PushReturnAddressFrom(return_address);
|
|
|
|
// Allocate the v8::Arguments structure in the arguments' space since
|
|
// it's not controlled by GC.
|
|
const int kApiStackSpace = 4;
|
|
|
|
__ PrepareCallApiFunction(kApiStackSpace);
|
|
|
|
// FunctionCallbackInfo::implicit_args_.
|
|
__ movp(StackSpaceOperand(0), scratch);
|
|
__ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
|
|
__ movp(StackSpaceOperand(1), scratch); // FunctionCallbackInfo::values_.
|
|
__ Set(StackSpaceOperand(2), argc); // FunctionCallbackInfo::length_.
|
|
// FunctionCallbackInfo::is_construct_call_.
|
|
__ Set(StackSpaceOperand(3), 0);
|
|
|
|
#if defined(__MINGW64__) || defined(_WIN64)
|
|
Register arguments_arg = rcx;
|
|
Register callback_arg = rdx;
|
|
#else
|
|
Register arguments_arg = rdi;
|
|
Register callback_arg = rsi;
|
|
#endif
|
|
|
|
// It's okay if api_function_address == callback_arg
|
|
// but not arguments_arg
|
|
ASSERT(!api_function_address.is(arguments_arg));
|
|
|
|
// v8::InvocationCallback's argument.
|
|
__ leap(arguments_arg, StackSpaceOperand(0));
|
|
|
|
Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
|
|
|
|
// Accessor for FunctionCallbackInfo and first js arg.
|
|
StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
|
|
ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
Operand context_restore_operand = args_from_rbp.GetArgumentOperand(
|
|
FCA::kArgsLength - FCA::kContextSaveIndex);
|
|
// Stores return the first js argument
|
|
Operand return_value_operand = args_from_rbp.GetArgumentOperand(
|
|
is_store ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset);
|
|
__ CallApiFunctionAndReturn(
|
|
api_function_address,
|
|
thunk_address,
|
|
callback_arg,
|
|
argc + FCA::kArgsLength + 1,
|
|
return_value_operand,
|
|
&context_restore_operand);
|
|
}
|
|
|
|
|
|
void CallApiGetterStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : name
|
|
// -- rsp[16 - kArgsLength*8] : PropertyCallbackArguments object
|
|
// -- ...
|
|
// -- r8 : api_function_address
|
|
// -----------------------------------
|
|
|
|
#if defined(__MINGW64__) || defined(_WIN64)
|
|
Register getter_arg = r8;
|
|
Register accessor_info_arg = rdx;
|
|
Register name_arg = rcx;
|
|
#else
|
|
Register getter_arg = rdx;
|
|
Register accessor_info_arg = rsi;
|
|
Register name_arg = rdi;
|
|
#endif
|
|
Register api_function_address = r8;
|
|
Register scratch = rax;
|
|
|
|
// v8::Arguments::values_ and handler for name.
|
|
const int kStackSpace = PropertyCallbackArguments::kArgsLength + 1;
|
|
|
|
// Allocate v8::AccessorInfo in non-GCed stack space.
|
|
const int kArgStackSpace = 1;
|
|
|
|
__ leap(name_arg, Operand(rsp, kPCOnStackSize));
|
|
|
|
__ PrepareCallApiFunction(kArgStackSpace);
|
|
__ leap(scratch, Operand(name_arg, 1 * kPointerSize));
|
|
|
|
// v8::PropertyAccessorInfo::args_.
|
|
__ movp(StackSpaceOperand(0), scratch);
|
|
|
|
// The context register (rsi) has been saved in PrepareCallApiFunction and
|
|
// could be used to pass arguments.
|
|
__ leap(accessor_info_arg, StackSpaceOperand(0));
|
|
|
|
Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
|
|
|
|
// It's okay if api_function_address == getter_arg
|
|
// but not accessor_info_arg or name_arg
|
|
ASSERT(!api_function_address.is(accessor_info_arg) &&
|
|
!api_function_address.is(name_arg));
|
|
|
|
// The name handler is counted as an argument.
|
|
StackArgumentsAccessor args(rbp, PropertyCallbackArguments::kArgsLength);
|
|
Operand return_value_operand = args.GetArgumentOperand(
|
|
PropertyCallbackArguments::kArgsLength - 1 -
|
|
PropertyCallbackArguments::kReturnValueOffset);
|
|
__ CallApiFunctionAndReturn(api_function_address,
|
|
thunk_address,
|
|
getter_arg,
|
|
kStackSpace,
|
|
return_value_operand,
|
|
NULL);
|
|
}
|
|
|
|
|
|
#undef __
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_X64
|