2c9e38e09e
It was never being set to false in production (though it was in test-parsing.cc, due to that test having its own flag-setting logic). Review URL: https://codereview.chromium.org/1815033002 Cr-Commit-Position: refs/heads/master@{#34878}
6809 lines
249 KiB
C++
6809 lines
249 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/parsing/parser.h"
|
|
|
|
#include "src/api.h"
|
|
#include "src/ast/ast.h"
|
|
#include "src/ast/ast-expression-rewriter.h"
|
|
#include "src/ast/ast-expression-visitor.h"
|
|
#include "src/ast/ast-literal-reindexer.h"
|
|
#include "src/ast/scopeinfo.h"
|
|
#include "src/bailout-reason.h"
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/bootstrapper.h"
|
|
#include "src/char-predicates-inl.h"
|
|
#include "src/codegen.h"
|
|
#include "src/compiler.h"
|
|
#include "src/messages.h"
|
|
#include "src/parsing/parameter-initializer-rewriter.h"
|
|
#include "src/parsing/parser-base.h"
|
|
#include "src/parsing/rewriter.h"
|
|
#include "src/parsing/scanner-character-streams.h"
|
|
#include "src/runtime/runtime.h"
|
|
#include "src/string-stream.h"
|
|
#include "src/tracing/trace-event.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
ScriptData::ScriptData(const byte* data, int length)
|
|
: owns_data_(false), rejected_(false), data_(data), length_(length) {
|
|
if (!IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment)) {
|
|
byte* copy = NewArray<byte>(length);
|
|
DCHECK(IsAligned(reinterpret_cast<intptr_t>(copy), kPointerAlignment));
|
|
CopyBytes(copy, data, length);
|
|
data_ = copy;
|
|
AcquireDataOwnership();
|
|
}
|
|
}
|
|
|
|
|
|
ParseInfo::ParseInfo(Zone* zone)
|
|
: zone_(zone),
|
|
flags_(0),
|
|
source_stream_(nullptr),
|
|
source_stream_encoding_(ScriptCompiler::StreamedSource::ONE_BYTE),
|
|
extension_(nullptr),
|
|
compile_options_(ScriptCompiler::kNoCompileOptions),
|
|
script_scope_(nullptr),
|
|
unicode_cache_(nullptr),
|
|
stack_limit_(0),
|
|
hash_seed_(0),
|
|
cached_data_(nullptr),
|
|
ast_value_factory_(nullptr),
|
|
literal_(nullptr),
|
|
scope_(nullptr) {}
|
|
|
|
|
|
ParseInfo::ParseInfo(Zone* zone, Handle<JSFunction> function)
|
|
: ParseInfo(zone, Handle<SharedFunctionInfo>(function->shared())) {
|
|
set_closure(function);
|
|
set_context(Handle<Context>(function->context()));
|
|
}
|
|
|
|
|
|
ParseInfo::ParseInfo(Zone* zone, Handle<SharedFunctionInfo> shared)
|
|
: ParseInfo(zone) {
|
|
isolate_ = shared->GetIsolate();
|
|
|
|
set_lazy();
|
|
set_hash_seed(isolate_->heap()->HashSeed());
|
|
set_stack_limit(isolate_->stack_guard()->real_climit());
|
|
set_unicode_cache(isolate_->unicode_cache());
|
|
set_language_mode(shared->language_mode());
|
|
set_shared_info(shared);
|
|
|
|
Handle<Script> script(Script::cast(shared->script()));
|
|
set_script(script);
|
|
if (!script.is_null() && script->type() == Script::TYPE_NATIVE) {
|
|
set_native();
|
|
}
|
|
}
|
|
|
|
|
|
ParseInfo::ParseInfo(Zone* zone, Handle<Script> script) : ParseInfo(zone) {
|
|
isolate_ = script->GetIsolate();
|
|
|
|
set_hash_seed(isolate_->heap()->HashSeed());
|
|
set_stack_limit(isolate_->stack_guard()->real_climit());
|
|
set_unicode_cache(isolate_->unicode_cache());
|
|
set_script(script);
|
|
|
|
if (script->type() == Script::TYPE_NATIVE) {
|
|
set_native();
|
|
}
|
|
}
|
|
|
|
|
|
FunctionEntry ParseData::GetFunctionEntry(int start) {
|
|
// The current pre-data entry must be a FunctionEntry with the given
|
|
// start position.
|
|
if ((function_index_ + FunctionEntry::kSize <= Length()) &&
|
|
(static_cast<int>(Data()[function_index_]) == start)) {
|
|
int index = function_index_;
|
|
function_index_ += FunctionEntry::kSize;
|
|
Vector<unsigned> subvector(&(Data()[index]), FunctionEntry::kSize);
|
|
return FunctionEntry(subvector);
|
|
}
|
|
return FunctionEntry();
|
|
}
|
|
|
|
|
|
int ParseData::FunctionCount() {
|
|
int functions_size = FunctionsSize();
|
|
if (functions_size < 0) return 0;
|
|
if (functions_size % FunctionEntry::kSize != 0) return 0;
|
|
return functions_size / FunctionEntry::kSize;
|
|
}
|
|
|
|
|
|
bool ParseData::IsSane() {
|
|
if (!IsAligned(script_data_->length(), sizeof(unsigned))) return false;
|
|
// Check that the header data is valid and doesn't specify
|
|
// point to positions outside the store.
|
|
int data_length = Length();
|
|
if (data_length < PreparseDataConstants::kHeaderSize) return false;
|
|
if (Magic() != PreparseDataConstants::kMagicNumber) return false;
|
|
if (Version() != PreparseDataConstants::kCurrentVersion) return false;
|
|
if (HasError()) return false;
|
|
// Check that the space allocated for function entries is sane.
|
|
int functions_size = FunctionsSize();
|
|
if (functions_size < 0) return false;
|
|
if (functions_size % FunctionEntry::kSize != 0) return false;
|
|
// Check that the total size has room for header and function entries.
|
|
int minimum_size =
|
|
PreparseDataConstants::kHeaderSize + functions_size;
|
|
if (data_length < minimum_size) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
void ParseData::Initialize() {
|
|
// Prepares state for use.
|
|
int data_length = Length();
|
|
if (data_length >= PreparseDataConstants::kHeaderSize) {
|
|
function_index_ = PreparseDataConstants::kHeaderSize;
|
|
}
|
|
}
|
|
|
|
|
|
bool ParseData::HasError() {
|
|
return Data()[PreparseDataConstants::kHasErrorOffset];
|
|
}
|
|
|
|
|
|
unsigned ParseData::Magic() {
|
|
return Data()[PreparseDataConstants::kMagicOffset];
|
|
}
|
|
|
|
|
|
unsigned ParseData::Version() {
|
|
return Data()[PreparseDataConstants::kVersionOffset];
|
|
}
|
|
|
|
|
|
int ParseData::FunctionsSize() {
|
|
return static_cast<int>(Data()[PreparseDataConstants::kFunctionsSizeOffset]);
|
|
}
|
|
|
|
|
|
void Parser::SetCachedData(ParseInfo* info) {
|
|
if (compile_options_ == ScriptCompiler::kNoCompileOptions) {
|
|
cached_parse_data_ = NULL;
|
|
} else {
|
|
DCHECK(info->cached_data() != NULL);
|
|
if (compile_options_ == ScriptCompiler::kConsumeParserCache) {
|
|
cached_parse_data_ = ParseData::FromCachedData(*info->cached_data());
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name,
|
|
bool call_super, Scope* scope,
|
|
int pos, int end_pos,
|
|
LanguageMode language_mode) {
|
|
int materialized_literal_count = -1;
|
|
int expected_property_count = -1;
|
|
int parameter_count = 0;
|
|
if (name == nullptr) name = ast_value_factory()->empty_string();
|
|
|
|
FunctionKind kind = call_super ? FunctionKind::kDefaultSubclassConstructor
|
|
: FunctionKind::kDefaultBaseConstructor;
|
|
Scope* function_scope = NewScope(scope, FUNCTION_SCOPE, kind);
|
|
SetLanguageMode(function_scope,
|
|
static_cast<LanguageMode>(language_mode | STRICT));
|
|
// Set start and end position to the same value
|
|
function_scope->set_start_position(pos);
|
|
function_scope->set_end_position(pos);
|
|
ZoneList<Statement*>* body = NULL;
|
|
|
|
{
|
|
AstNodeFactory function_factory(ast_value_factory());
|
|
FunctionState function_state(&function_state_, &scope_, function_scope,
|
|
kind, &function_factory);
|
|
|
|
body = new (zone()) ZoneList<Statement*>(call_super ? 2 : 1, zone());
|
|
if (call_super) {
|
|
// $super_constructor = %_GetSuperConstructor(<this-function>)
|
|
// %reflect_construct($super_constructor, arguments, new.target)
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(2, zone());
|
|
VariableProxy* this_function_proxy = scope_->NewUnresolved(
|
|
factory(), ast_value_factory()->this_function_string(),
|
|
Variable::NORMAL, pos);
|
|
ZoneList<Expression*>* tmp =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
tmp->Add(this_function_proxy, zone());
|
|
Expression* super_constructor = factory()->NewCallRuntime(
|
|
Runtime::kInlineGetSuperConstructor, tmp, pos);
|
|
args->Add(super_constructor, zone());
|
|
VariableProxy* arguments_proxy = scope_->NewUnresolved(
|
|
factory(), ast_value_factory()->arguments_string(), Variable::NORMAL,
|
|
pos);
|
|
args->Add(arguments_proxy, zone());
|
|
VariableProxy* new_target_proxy = scope_->NewUnresolved(
|
|
factory(), ast_value_factory()->new_target_string(), Variable::NORMAL,
|
|
pos);
|
|
args->Add(new_target_proxy, zone());
|
|
CallRuntime* call = factory()->NewCallRuntime(
|
|
Context::REFLECT_CONSTRUCT_INDEX, args, pos);
|
|
body->Add(factory()->NewReturnStatement(call, pos), zone());
|
|
}
|
|
|
|
materialized_literal_count = function_state.materialized_literal_count();
|
|
expected_property_count = function_state.expected_property_count();
|
|
}
|
|
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
name, function_scope, body, materialized_literal_count,
|
|
expected_property_count, parameter_count,
|
|
FunctionLiteral::kNoDuplicateParameters,
|
|
FunctionLiteral::kAnonymousExpression,
|
|
FunctionLiteral::kShouldLazyCompile, kind, pos);
|
|
|
|
return function_literal;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Target is a support class to facilitate manipulation of the
|
|
// Parser's target_stack_ (the stack of potential 'break' and
|
|
// 'continue' statement targets). Upon construction, a new target is
|
|
// added; it is removed upon destruction.
|
|
|
|
class Target BASE_EMBEDDED {
|
|
public:
|
|
Target(Target** variable, BreakableStatement* statement)
|
|
: variable_(variable), statement_(statement), previous_(*variable) {
|
|
*variable = this;
|
|
}
|
|
|
|
~Target() {
|
|
*variable_ = previous_;
|
|
}
|
|
|
|
Target* previous() { return previous_; }
|
|
BreakableStatement* statement() { return statement_; }
|
|
|
|
private:
|
|
Target** variable_;
|
|
BreakableStatement* statement_;
|
|
Target* previous_;
|
|
};
|
|
|
|
|
|
class TargetScope BASE_EMBEDDED {
|
|
public:
|
|
explicit TargetScope(Target** variable)
|
|
: variable_(variable), previous_(*variable) {
|
|
*variable = NULL;
|
|
}
|
|
|
|
~TargetScope() {
|
|
*variable_ = previous_;
|
|
}
|
|
|
|
private:
|
|
Target** variable_;
|
|
Target* previous_;
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The CHECK_OK macro is a convenient macro to enforce error
|
|
// handling for functions that may fail (by returning !*ok).
|
|
//
|
|
// CAUTION: This macro appends extra statements after a call,
|
|
// thus it must never be used where only a single statement
|
|
// is correct (e.g. an if statement branch w/o braces)!
|
|
|
|
#define CHECK_OK ok); \
|
|
if (!*ok) return NULL; \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
#define CHECK_FAILED /**/); \
|
|
if (failed_) return NULL; \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of Parser
|
|
|
|
bool ParserTraits::IsEval(const AstRawString* identifier) const {
|
|
return identifier == parser_->ast_value_factory()->eval_string();
|
|
}
|
|
|
|
|
|
bool ParserTraits::IsArguments(const AstRawString* identifier) const {
|
|
return identifier == parser_->ast_value_factory()->arguments_string();
|
|
}
|
|
|
|
|
|
bool ParserTraits::IsEvalOrArguments(const AstRawString* identifier) const {
|
|
return IsEval(identifier) || IsArguments(identifier);
|
|
}
|
|
|
|
bool ParserTraits::IsUndefined(const AstRawString* identifier) const {
|
|
return identifier == parser_->ast_value_factory()->undefined_string();
|
|
}
|
|
|
|
bool ParserTraits::IsPrototype(const AstRawString* identifier) const {
|
|
return identifier == parser_->ast_value_factory()->prototype_string();
|
|
}
|
|
|
|
|
|
bool ParserTraits::IsConstructor(const AstRawString* identifier) const {
|
|
return identifier == parser_->ast_value_factory()->constructor_string();
|
|
}
|
|
|
|
|
|
bool ParserTraits::IsThisProperty(Expression* expression) {
|
|
DCHECK(expression != NULL);
|
|
Property* property = expression->AsProperty();
|
|
return property != NULL && property->obj()->IsVariableProxy() &&
|
|
property->obj()->AsVariableProxy()->is_this();
|
|
}
|
|
|
|
|
|
bool ParserTraits::IsIdentifier(Expression* expression) {
|
|
VariableProxy* operand = expression->AsVariableProxy();
|
|
return operand != NULL && !operand->is_this();
|
|
}
|
|
|
|
|
|
void ParserTraits::PushPropertyName(FuncNameInferrer* fni,
|
|
Expression* expression) {
|
|
if (expression->IsPropertyName()) {
|
|
fni->PushLiteralName(expression->AsLiteral()->AsRawPropertyName());
|
|
} else {
|
|
fni->PushLiteralName(
|
|
parser_->ast_value_factory()->anonymous_function_string());
|
|
}
|
|
}
|
|
|
|
|
|
void ParserTraits::CheckAssigningFunctionLiteralToProperty(Expression* left,
|
|
Expression* right) {
|
|
DCHECK(left != NULL);
|
|
if (left->IsProperty() && right->IsFunctionLiteral()) {
|
|
right->AsFunctionLiteral()->set_pretenure();
|
|
}
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::MarkExpressionAsAssigned(Expression* expression) {
|
|
VariableProxy* proxy =
|
|
expression != NULL ? expression->AsVariableProxy() : NULL;
|
|
if (proxy != NULL) proxy->set_is_assigned();
|
|
return expression;
|
|
}
|
|
|
|
|
|
bool ParserTraits::ShortcutNumericLiteralBinaryExpression(
|
|
Expression** x, Expression* y, Token::Value op, int pos,
|
|
AstNodeFactory* factory) {
|
|
if ((*x)->AsLiteral() && (*x)->AsLiteral()->raw_value()->IsNumber() &&
|
|
y->AsLiteral() && y->AsLiteral()->raw_value()->IsNumber()) {
|
|
double x_val = (*x)->AsLiteral()->raw_value()->AsNumber();
|
|
double y_val = y->AsLiteral()->raw_value()->AsNumber();
|
|
bool x_has_dot = (*x)->AsLiteral()->raw_value()->ContainsDot();
|
|
bool y_has_dot = y->AsLiteral()->raw_value()->ContainsDot();
|
|
bool has_dot = x_has_dot || y_has_dot;
|
|
switch (op) {
|
|
case Token::ADD:
|
|
*x = factory->NewNumberLiteral(x_val + y_val, pos, has_dot);
|
|
return true;
|
|
case Token::SUB:
|
|
*x = factory->NewNumberLiteral(x_val - y_val, pos, has_dot);
|
|
return true;
|
|
case Token::MUL:
|
|
*x = factory->NewNumberLiteral(x_val * y_val, pos, has_dot);
|
|
return true;
|
|
case Token::DIV:
|
|
*x = factory->NewNumberLiteral(x_val / y_val, pos, has_dot);
|
|
return true;
|
|
case Token::BIT_OR: {
|
|
int value = DoubleToInt32(x_val) | DoubleToInt32(y_val);
|
|
*x = factory->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::BIT_AND: {
|
|
int value = DoubleToInt32(x_val) & DoubleToInt32(y_val);
|
|
*x = factory->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::BIT_XOR: {
|
|
int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val);
|
|
*x = factory->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SHL: {
|
|
int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1f);
|
|
*x = factory->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SHR: {
|
|
uint32_t shift = DoubleToInt32(y_val) & 0x1f;
|
|
uint32_t value = DoubleToUint32(x_val) >> shift;
|
|
*x = factory->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SAR: {
|
|
uint32_t shift = DoubleToInt32(y_val) & 0x1f;
|
|
int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift);
|
|
*x = factory->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::BuildUnaryExpression(Expression* expression,
|
|
Token::Value op, int pos,
|
|
AstNodeFactory* factory) {
|
|
DCHECK(expression != NULL);
|
|
if (expression->IsLiteral()) {
|
|
const AstValue* literal = expression->AsLiteral()->raw_value();
|
|
if (op == Token::NOT) {
|
|
// Convert the literal to a boolean condition and negate it.
|
|
bool condition = literal->BooleanValue();
|
|
return factory->NewBooleanLiteral(!condition, pos);
|
|
} else if (literal->IsNumber()) {
|
|
// Compute some expressions involving only number literals.
|
|
double value = literal->AsNumber();
|
|
bool has_dot = literal->ContainsDot();
|
|
switch (op) {
|
|
case Token::ADD:
|
|
return expression;
|
|
case Token::SUB:
|
|
return factory->NewNumberLiteral(-value, pos, has_dot);
|
|
case Token::BIT_NOT:
|
|
return factory->NewNumberLiteral(~DoubleToInt32(value), pos, has_dot);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Desugar '+foo' => 'foo*1'
|
|
if (op == Token::ADD) {
|
|
return factory->NewBinaryOperation(
|
|
Token::MUL, expression, factory->NewNumberLiteral(1, pos, true), pos);
|
|
}
|
|
// The same idea for '-foo' => 'foo*(-1)'.
|
|
if (op == Token::SUB) {
|
|
return factory->NewBinaryOperation(
|
|
Token::MUL, expression, factory->NewNumberLiteral(-1, pos), pos);
|
|
}
|
|
// ...and one more time for '~foo' => 'foo^(~0)'.
|
|
if (op == Token::BIT_NOT) {
|
|
return factory->NewBinaryOperation(
|
|
Token::BIT_XOR, expression, factory->NewNumberLiteral(~0, pos), pos);
|
|
}
|
|
return factory->NewUnaryOperation(op, expression, pos);
|
|
}
|
|
|
|
Expression* ParserTraits::BuildIteratorResult(Expression* value, bool done) {
|
|
int pos = RelocInfo::kNoPosition;
|
|
AstNodeFactory* factory = parser_->factory();
|
|
Zone* zone = parser_->zone();
|
|
|
|
if (value == nullptr) value = factory->NewUndefinedLiteral(pos);
|
|
|
|
auto args = new (zone) ZoneList<Expression*>(2, zone);
|
|
args->Add(value, zone);
|
|
args->Add(factory->NewBooleanLiteral(done, pos), zone);
|
|
|
|
return factory->NewCallRuntime(Runtime::kInlineCreateIterResultObject, args,
|
|
pos);
|
|
}
|
|
|
|
Expression* ParserTraits::NewThrowReferenceError(
|
|
MessageTemplate::Template message, int pos) {
|
|
return NewThrowError(Runtime::kNewReferenceError, message,
|
|
parser_->ast_value_factory()->empty_string(), pos);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::NewThrowSyntaxError(MessageTemplate::Template message,
|
|
const AstRawString* arg,
|
|
int pos) {
|
|
return NewThrowError(Runtime::kNewSyntaxError, message, arg, pos);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::NewThrowTypeError(MessageTemplate::Template message,
|
|
const AstRawString* arg, int pos) {
|
|
return NewThrowError(Runtime::kNewTypeError, message, arg, pos);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::NewThrowError(Runtime::FunctionId id,
|
|
MessageTemplate::Template message,
|
|
const AstRawString* arg, int pos) {
|
|
Zone* zone = parser_->zone();
|
|
ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(2, zone);
|
|
args->Add(parser_->factory()->NewSmiLiteral(message, pos), zone);
|
|
args->Add(parser_->factory()->NewStringLiteral(arg, pos), zone);
|
|
CallRuntime* call_constructor =
|
|
parser_->factory()->NewCallRuntime(id, args, pos);
|
|
return parser_->factory()->NewThrow(call_constructor, pos);
|
|
}
|
|
|
|
|
|
void ParserTraits::ReportMessageAt(Scanner::Location source_location,
|
|
MessageTemplate::Template message,
|
|
const char* arg, ParseErrorType error_type) {
|
|
if (parser_->stack_overflow()) {
|
|
// Suppress the error message (syntax error or such) in the presence of a
|
|
// stack overflow. The isolate allows only one pending exception at at time
|
|
// and we want to report the stack overflow later.
|
|
return;
|
|
}
|
|
parser_->pending_error_handler_.ReportMessageAt(source_location.beg_pos,
|
|
source_location.end_pos,
|
|
message, arg, error_type);
|
|
}
|
|
|
|
|
|
void ParserTraits::ReportMessage(MessageTemplate::Template message,
|
|
const char* arg, ParseErrorType error_type) {
|
|
Scanner::Location source_location = parser_->scanner()->location();
|
|
ReportMessageAt(source_location, message, arg, error_type);
|
|
}
|
|
|
|
|
|
void ParserTraits::ReportMessage(MessageTemplate::Template message,
|
|
const AstRawString* arg,
|
|
ParseErrorType error_type) {
|
|
Scanner::Location source_location = parser_->scanner()->location();
|
|
ReportMessageAt(source_location, message, arg, error_type);
|
|
}
|
|
|
|
|
|
void ParserTraits::ReportMessageAt(Scanner::Location source_location,
|
|
MessageTemplate::Template message,
|
|
const AstRawString* arg,
|
|
ParseErrorType error_type) {
|
|
if (parser_->stack_overflow()) {
|
|
// Suppress the error message (syntax error or such) in the presence of a
|
|
// stack overflow. The isolate allows only one pending exception at at time
|
|
// and we want to report the stack overflow later.
|
|
return;
|
|
}
|
|
parser_->pending_error_handler_.ReportMessageAt(source_location.beg_pos,
|
|
source_location.end_pos,
|
|
message, arg, error_type);
|
|
}
|
|
|
|
|
|
const AstRawString* ParserTraits::GetSymbol(Scanner* scanner) {
|
|
const AstRawString* result =
|
|
parser_->scanner()->CurrentSymbol(parser_->ast_value_factory());
|
|
DCHECK(result != NULL);
|
|
return result;
|
|
}
|
|
|
|
|
|
const AstRawString* ParserTraits::GetNumberAsSymbol(Scanner* scanner) {
|
|
double double_value = parser_->scanner()->DoubleValue();
|
|
char array[100];
|
|
const char* string =
|
|
DoubleToCString(double_value, Vector<char>(array, arraysize(array)));
|
|
return parser_->ast_value_factory()->GetOneByteString(string);
|
|
}
|
|
|
|
|
|
const AstRawString* ParserTraits::GetNextSymbol(Scanner* scanner) {
|
|
return parser_->scanner()->NextSymbol(parser_->ast_value_factory());
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::ThisExpression(Scope* scope, AstNodeFactory* factory,
|
|
int pos) {
|
|
return scope->NewUnresolved(factory,
|
|
parser_->ast_value_factory()->this_string(),
|
|
Variable::THIS, pos, pos + 4);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::SuperPropertyReference(Scope* scope,
|
|
AstNodeFactory* factory,
|
|
int pos) {
|
|
// this_function[home_object_symbol]
|
|
VariableProxy* this_function_proxy = scope->NewUnresolved(
|
|
factory, parser_->ast_value_factory()->this_function_string(),
|
|
Variable::NORMAL, pos);
|
|
Expression* home_object_symbol_literal =
|
|
factory->NewSymbolLiteral("home_object_symbol", RelocInfo::kNoPosition);
|
|
Expression* home_object = factory->NewProperty(
|
|
this_function_proxy, home_object_symbol_literal, pos);
|
|
return factory->NewSuperPropertyReference(
|
|
ThisExpression(scope, factory, pos)->AsVariableProxy(), home_object, pos);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::SuperCallReference(Scope* scope,
|
|
AstNodeFactory* factory, int pos) {
|
|
VariableProxy* new_target_proxy = scope->NewUnresolved(
|
|
factory, parser_->ast_value_factory()->new_target_string(),
|
|
Variable::NORMAL, pos);
|
|
VariableProxy* this_function_proxy = scope->NewUnresolved(
|
|
factory, parser_->ast_value_factory()->this_function_string(),
|
|
Variable::NORMAL, pos);
|
|
return factory->NewSuperCallReference(
|
|
ThisExpression(scope, factory, pos)->AsVariableProxy(), new_target_proxy,
|
|
this_function_proxy, pos);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::NewTargetExpression(Scope* scope,
|
|
AstNodeFactory* factory,
|
|
int pos) {
|
|
static const int kNewTargetStringLength = 10;
|
|
auto proxy = scope->NewUnresolved(
|
|
factory, parser_->ast_value_factory()->new_target_string(),
|
|
Variable::NORMAL, pos, pos + kNewTargetStringLength);
|
|
proxy->set_is_new_target();
|
|
return proxy;
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::FunctionSentExpression(Scope* scope,
|
|
AstNodeFactory* factory,
|
|
int pos) {
|
|
// We desugar function.sent into %GeneratorGetInput(generator).
|
|
Zone* zone = parser_->zone();
|
|
ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(1, zone);
|
|
VariableProxy* generator = factory->NewVariableProxy(
|
|
parser_->function_state_->generator_object_variable());
|
|
args->Add(generator, zone);
|
|
return factory->NewCallRuntime(Runtime::kGeneratorGetInput, args, pos);
|
|
}
|
|
|
|
|
|
Literal* ParserTraits::ExpressionFromLiteral(Token::Value token, int pos,
|
|
Scanner* scanner,
|
|
AstNodeFactory* factory) {
|
|
switch (token) {
|
|
case Token::NULL_LITERAL:
|
|
return factory->NewNullLiteral(pos);
|
|
case Token::TRUE_LITERAL:
|
|
return factory->NewBooleanLiteral(true, pos);
|
|
case Token::FALSE_LITERAL:
|
|
return factory->NewBooleanLiteral(false, pos);
|
|
case Token::SMI: {
|
|
int value = scanner->smi_value();
|
|
return factory->NewSmiLiteral(value, pos);
|
|
}
|
|
case Token::NUMBER: {
|
|
bool has_dot = scanner->ContainsDot();
|
|
double value = scanner->DoubleValue();
|
|
return factory->NewNumberLiteral(value, pos, has_dot);
|
|
}
|
|
default:
|
|
DCHECK(false);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::ExpressionFromIdentifier(const AstRawString* name,
|
|
int start_position,
|
|
int end_position,
|
|
Scope* scope,
|
|
AstNodeFactory* factory) {
|
|
if (parser_->fni_ != NULL) parser_->fni_->PushVariableName(name);
|
|
return scope->NewUnresolved(factory, name, Variable::NORMAL, start_position,
|
|
end_position);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::ExpressionFromString(int pos, Scanner* scanner,
|
|
AstNodeFactory* factory) {
|
|
const AstRawString* symbol = GetSymbol(scanner);
|
|
if (parser_->fni_ != NULL) parser_->fni_->PushLiteralName(symbol);
|
|
return factory->NewStringLiteral(symbol, pos);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::GetIterator(Expression* iterable,
|
|
AstNodeFactory* factory, int pos) {
|
|
Expression* iterator_symbol_literal =
|
|
factory->NewSymbolLiteral("iterator_symbol", RelocInfo::kNoPosition);
|
|
Expression* prop =
|
|
factory->NewProperty(iterable, iterator_symbol_literal, pos);
|
|
Zone* zone = parser_->zone();
|
|
ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(0, zone);
|
|
return factory->NewCall(prop, args, pos);
|
|
}
|
|
|
|
|
|
Literal* ParserTraits::GetLiteralTheHole(int position,
|
|
AstNodeFactory* factory) {
|
|
return factory->NewTheHoleLiteral(RelocInfo::kNoPosition);
|
|
}
|
|
|
|
|
|
Expression* ParserTraits::ParseV8Intrinsic(bool* ok) {
|
|
return parser_->ParseV8Intrinsic(ok);
|
|
}
|
|
|
|
|
|
FunctionLiteral* ParserTraits::ParseFunctionLiteral(
|
|
const AstRawString* name, Scanner::Location function_name_location,
|
|
FunctionNameValidity function_name_validity, FunctionKind kind,
|
|
int function_token_position, FunctionLiteral::FunctionType type,
|
|
LanguageMode language_mode, bool* ok) {
|
|
return parser_->ParseFunctionLiteral(
|
|
name, function_name_location, function_name_validity, kind,
|
|
function_token_position, type, language_mode, ok);
|
|
}
|
|
|
|
|
|
ClassLiteral* ParserTraits::ParseClassLiteral(
|
|
const AstRawString* name, Scanner::Location class_name_location,
|
|
bool name_is_strict_reserved, int pos, bool* ok) {
|
|
return parser_->ParseClassLiteral(name, class_name_location,
|
|
name_is_strict_reserved, pos, ok);
|
|
}
|
|
|
|
|
|
Parser::Parser(ParseInfo* info)
|
|
: ParserBase<ParserTraits>(info->zone(), &scanner_, info->stack_limit(),
|
|
info->extension(), info->ast_value_factory(),
|
|
NULL, this),
|
|
scanner_(info->unicode_cache()),
|
|
reusable_preparser_(NULL),
|
|
original_scope_(NULL),
|
|
target_stack_(NULL),
|
|
compile_options_(info->compile_options()),
|
|
cached_parse_data_(NULL),
|
|
total_preparse_skipped_(0),
|
|
pre_parse_timer_(NULL),
|
|
parsing_on_main_thread_(true) {
|
|
// Even though we were passed ParseInfo, we should not store it in
|
|
// Parser - this makes sure that Isolate is not accidentally accessed via
|
|
// ParseInfo during background parsing.
|
|
DCHECK(!info->script().is_null() || info->source_stream() != NULL);
|
|
set_allow_lazy(info->allow_lazy_parsing());
|
|
set_allow_natives(FLAG_allow_natives_syntax || info->is_native());
|
|
set_allow_harmony_sloppy(FLAG_harmony_sloppy);
|
|
set_allow_harmony_sloppy_function(FLAG_harmony_sloppy_function);
|
|
set_allow_harmony_sloppy_let(FLAG_harmony_sloppy_let);
|
|
set_allow_legacy_const(FLAG_legacy_const);
|
|
set_allow_harmony_do_expressions(FLAG_harmony_do_expressions);
|
|
set_allow_harmony_function_name(FLAG_harmony_function_name);
|
|
set_allow_harmony_function_sent(FLAG_harmony_function_sent);
|
|
set_allow_harmony_restrictive_declarations(
|
|
FLAG_harmony_restrictive_declarations);
|
|
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
|
|
++feature) {
|
|
use_counts_[feature] = 0;
|
|
}
|
|
if (info->ast_value_factory() == NULL) {
|
|
// info takes ownership of AstValueFactory.
|
|
info->set_ast_value_factory(new AstValueFactory(zone(), info->hash_seed()));
|
|
info->set_ast_value_factory_owned();
|
|
ast_value_factory_ = info->ast_value_factory();
|
|
}
|
|
}
|
|
|
|
|
|
FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) {
|
|
// TODO(bmeurer): We temporarily need to pass allow_nesting = true here,
|
|
// see comment for HistogramTimerScope class.
|
|
|
|
// It's OK to use the Isolate & counters here, since this function is only
|
|
// called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
|
|
HistogramTimerScope timer_scope(isolate->counters()->parse(), true);
|
|
TRACE_EVENT0("v8", "V8.Parse");
|
|
Handle<String> source(String::cast(info->script()->source()));
|
|
isolate->counters()->total_parse_size()->Increment(source->length());
|
|
base::ElapsedTimer timer;
|
|
if (FLAG_trace_parse) {
|
|
timer.Start();
|
|
}
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
|
|
// Initialize parser state.
|
|
CompleteParserRecorder recorder;
|
|
|
|
if (produce_cached_parse_data()) {
|
|
log_ = &recorder;
|
|
} else if (consume_cached_parse_data()) {
|
|
cached_parse_data_->Initialize();
|
|
}
|
|
|
|
source = String::Flatten(source);
|
|
FunctionLiteral* result;
|
|
|
|
if (source->IsExternalTwoByteString()) {
|
|
// Notice that the stream is destroyed at the end of the branch block.
|
|
// The last line of the blocks can't be moved outside, even though they're
|
|
// identical calls.
|
|
ExternalTwoByteStringUtf16CharacterStream stream(
|
|
Handle<ExternalTwoByteString>::cast(source), 0, source->length());
|
|
scanner_.Initialize(&stream);
|
|
result = DoParseProgram(info);
|
|
} else {
|
|
GenericStringUtf16CharacterStream stream(source, 0, source->length());
|
|
scanner_.Initialize(&stream);
|
|
result = DoParseProgram(info);
|
|
}
|
|
if (result != NULL) {
|
|
DCHECK_EQ(scanner_.peek_location().beg_pos, source->length());
|
|
}
|
|
HandleSourceURLComments(isolate, info->script());
|
|
|
|
if (FLAG_trace_parse && result != NULL) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
if (info->is_eval()) {
|
|
PrintF("[parsing eval");
|
|
} else if (info->script()->name()->IsString()) {
|
|
String* name = String::cast(info->script()->name());
|
|
base::SmartArrayPointer<char> name_chars = name->ToCString();
|
|
PrintF("[parsing script: %s", name_chars.get());
|
|
} else {
|
|
PrintF("[parsing script");
|
|
}
|
|
PrintF(" - took %0.3f ms]\n", ms);
|
|
}
|
|
if (produce_cached_parse_data()) {
|
|
if (result != NULL) *info->cached_data() = recorder.GetScriptData();
|
|
log_ = NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
FunctionLiteral* Parser::DoParseProgram(ParseInfo* info) {
|
|
// Note that this function can be called from the main thread or from a
|
|
// background thread. We should not access anything Isolate / heap dependent
|
|
// via ParseInfo, and also not pass it forward.
|
|
DCHECK(scope_ == NULL);
|
|
DCHECK(target_stack_ == NULL);
|
|
|
|
Mode parsing_mode = FLAG_lazy && allow_lazy() ? PARSE_LAZILY : PARSE_EAGERLY;
|
|
if (allow_natives() || extension_ != NULL) parsing_mode = PARSE_EAGERLY;
|
|
|
|
FunctionLiteral* result = NULL;
|
|
{
|
|
// TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native
|
|
// context, which will have the "this" binding for script scopes.
|
|
Scope* scope = NewScope(scope_, SCRIPT_SCOPE);
|
|
info->set_script_scope(scope);
|
|
if (!info->context().is_null() && !info->context()->IsNativeContext()) {
|
|
scope = Scope::DeserializeScopeChain(info->isolate(), zone(),
|
|
*info->context(), scope);
|
|
// The Scope is backed up by ScopeInfo (which is in the V8 heap); this
|
|
// means the Parser cannot operate independent of the V8 heap. Tell the
|
|
// string table to internalize strings and values right after they're
|
|
// created. This kind of parsing can only be done in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
ast_value_factory()->Internalize(info->isolate());
|
|
}
|
|
original_scope_ = scope;
|
|
if (info->is_eval()) {
|
|
if (!scope->is_script_scope() || is_strict(info->language_mode())) {
|
|
parsing_mode = PARSE_EAGERLY;
|
|
}
|
|
scope = NewScope(scope, EVAL_SCOPE);
|
|
} else if (info->is_module()) {
|
|
scope = NewScope(scope, MODULE_SCOPE);
|
|
}
|
|
|
|
scope->set_start_position(0);
|
|
|
|
// Enter 'scope' with the given parsing mode.
|
|
ParsingModeScope parsing_mode_scope(this, parsing_mode);
|
|
AstNodeFactory function_factory(ast_value_factory());
|
|
FunctionState function_state(&function_state_, &scope_, scope,
|
|
kNormalFunction, &function_factory);
|
|
|
|
// Don't count the mode in the use counters--give the program a chance
|
|
// to enable script/module-wide strict mode below.
|
|
scope_->SetLanguageMode(info->language_mode());
|
|
ZoneList<Statement*>* body = new(zone()) ZoneList<Statement*>(16, zone());
|
|
bool ok = true;
|
|
int beg_pos = scanner()->location().beg_pos;
|
|
if (info->is_module()) {
|
|
ParseModuleItemList(body, &ok);
|
|
} else {
|
|
ParseStatementList(body, Token::EOS, &ok);
|
|
}
|
|
|
|
// The parser will peek but not consume EOS. Our scope logically goes all
|
|
// the way to the EOS, though.
|
|
scope->set_end_position(scanner()->peek_location().beg_pos);
|
|
|
|
if (ok && is_strict(language_mode())) {
|
|
CheckStrictOctalLiteral(beg_pos, scanner()->location().end_pos, &ok);
|
|
}
|
|
if (ok && is_sloppy(language_mode()) && allow_harmony_sloppy_function()) {
|
|
// TODO(littledan): Function bindings on the global object that modify
|
|
// pre-existing bindings should be made writable, enumerable and
|
|
// nonconfigurable if possible, whereas this code will leave attributes
|
|
// unchanged if the property already exists.
|
|
InsertSloppyBlockFunctionVarBindings(scope, &ok);
|
|
}
|
|
if (ok) {
|
|
CheckConflictingVarDeclarations(scope_, &ok);
|
|
}
|
|
|
|
if (ok && info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) {
|
|
if (body->length() != 1 ||
|
|
!body->at(0)->IsExpressionStatement() ||
|
|
!body->at(0)->AsExpressionStatement()->
|
|
expression()->IsFunctionLiteral()) {
|
|
ReportMessage(MessageTemplate::kSingleFunctionLiteral);
|
|
ok = false;
|
|
}
|
|
}
|
|
|
|
if (ok) {
|
|
ParserTraits::RewriteDestructuringAssignments();
|
|
result = factory()->NewScriptOrEvalFunctionLiteral(
|
|
scope_, body, function_state.materialized_literal_count(),
|
|
function_state.expected_property_count());
|
|
}
|
|
}
|
|
|
|
// Make sure the target stack is empty.
|
|
DCHECK(target_stack_ == NULL);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
FunctionLiteral* Parser::ParseLazy(Isolate* isolate, ParseInfo* info) {
|
|
// It's OK to use the Isolate & counters here, since this function is only
|
|
// called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
HistogramTimerScope timer_scope(isolate->counters()->parse_lazy());
|
|
TRACE_EVENT0("v8", "V8.ParseLazy");
|
|
Handle<String> source(String::cast(info->script()->source()));
|
|
isolate->counters()->total_parse_size()->Increment(source->length());
|
|
base::ElapsedTimer timer;
|
|
if (FLAG_trace_parse) {
|
|
timer.Start();
|
|
}
|
|
Handle<SharedFunctionInfo> shared_info = info->shared_info();
|
|
|
|
// Initialize parser state.
|
|
source = String::Flatten(source);
|
|
FunctionLiteral* result;
|
|
if (source->IsExternalTwoByteString()) {
|
|
ExternalTwoByteStringUtf16CharacterStream stream(
|
|
Handle<ExternalTwoByteString>::cast(source),
|
|
shared_info->start_position(),
|
|
shared_info->end_position());
|
|
result = ParseLazy(isolate, info, &stream);
|
|
} else {
|
|
GenericStringUtf16CharacterStream stream(source,
|
|
shared_info->start_position(),
|
|
shared_info->end_position());
|
|
result = ParseLazy(isolate, info, &stream);
|
|
}
|
|
|
|
if (FLAG_trace_parse && result != NULL) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
base::SmartArrayPointer<char> name_chars =
|
|
result->debug_name()->ToCString();
|
|
PrintF("[parsing function: %s - took %0.3f ms]\n", name_chars.get(), ms);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static FunctionLiteral::FunctionType ComputeFunctionType(
|
|
Handle<SharedFunctionInfo> shared_info) {
|
|
if (shared_info->is_declaration()) {
|
|
return FunctionLiteral::kDeclaration;
|
|
} else if (shared_info->is_named_expression()) {
|
|
return FunctionLiteral::kNamedExpression;
|
|
} else if (IsConciseMethod(shared_info->kind()) ||
|
|
IsAccessorFunction(shared_info->kind())) {
|
|
return FunctionLiteral::kAccessorOrMethod;
|
|
}
|
|
return FunctionLiteral::kAnonymousExpression;
|
|
}
|
|
|
|
FunctionLiteral* Parser::ParseLazy(Isolate* isolate, ParseInfo* info,
|
|
Utf16CharacterStream* source) {
|
|
Handle<SharedFunctionInfo> shared_info = info->shared_info();
|
|
scanner_.Initialize(source);
|
|
DCHECK(scope_ == NULL);
|
|
DCHECK(target_stack_ == NULL);
|
|
|
|
Handle<String> name(String::cast(shared_info->name()));
|
|
DCHECK(ast_value_factory());
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
const AstRawString* raw_name = ast_value_factory()->GetString(name);
|
|
fni_->PushEnclosingName(raw_name);
|
|
|
|
ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
|
|
|
|
// Place holder for the result.
|
|
FunctionLiteral* result = NULL;
|
|
|
|
{
|
|
// Parse the function literal.
|
|
Scope* scope = NewScope(scope_, SCRIPT_SCOPE);
|
|
info->set_script_scope(scope);
|
|
if (!info->closure().is_null()) {
|
|
// Ok to use Isolate here, since lazy function parsing is only done in the
|
|
// main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
scope = Scope::DeserializeScopeChain(isolate, zone(),
|
|
info->closure()->context(), scope);
|
|
}
|
|
original_scope_ = scope;
|
|
AstNodeFactory function_factory(ast_value_factory());
|
|
FunctionState function_state(&function_state_, &scope_, scope,
|
|
shared_info->kind(), &function_factory);
|
|
DCHECK(is_sloppy(scope->language_mode()) ||
|
|
is_strict(info->language_mode()));
|
|
DCHECK(info->language_mode() == shared_info->language_mode());
|
|
FunctionLiteral::FunctionType function_type =
|
|
ComputeFunctionType(shared_info);
|
|
bool ok = true;
|
|
|
|
if (shared_info->is_arrow()) {
|
|
// TODO(adamk): We should construct this scope from the ScopeInfo.
|
|
Scope* scope =
|
|
NewScope(scope_, FUNCTION_SCOPE, FunctionKind::kArrowFunction);
|
|
|
|
// These two bits only need to be explicitly set because we're
|
|
// not passing the ScopeInfo to the Scope constructor.
|
|
// TODO(adamk): Remove these calls once the above NewScope call
|
|
// passes the ScopeInfo.
|
|
if (shared_info->scope_info()->CallsEval()) {
|
|
scope->RecordEvalCall();
|
|
}
|
|
SetLanguageMode(scope, shared_info->language_mode());
|
|
|
|
scope->set_start_position(shared_info->start_position());
|
|
ExpressionClassifier formals_classifier(this);
|
|
ParserFormalParameters formals(scope);
|
|
Checkpoint checkpoint(this);
|
|
{
|
|
// Parsing patterns as variable reference expression creates
|
|
// NewUnresolved references in current scope. Entrer arrow function
|
|
// scope for formal parameter parsing.
|
|
BlockState block_state(&scope_, scope);
|
|
if (Check(Token::LPAREN)) {
|
|
// '(' StrictFormalParameters ')'
|
|
ParseFormalParameterList(&formals, &formals_classifier, &ok);
|
|
if (ok) ok = Check(Token::RPAREN);
|
|
} else {
|
|
// BindingIdentifier
|
|
ParseFormalParameter(&formals, &formals_classifier, &ok);
|
|
if (ok) {
|
|
DeclareFormalParameter(formals.scope, formals.at(0),
|
|
&formals_classifier);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ok) {
|
|
checkpoint.Restore(&formals.materialized_literals_count);
|
|
// Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should
|
|
// not be observable, or else the preparser would have failed.
|
|
Expression* expression =
|
|
ParseArrowFunctionLiteral(true, formals, formals_classifier, &ok);
|
|
if (ok) {
|
|
// Scanning must end at the same position that was recorded
|
|
// previously. If not, parsing has been interrupted due to a stack
|
|
// overflow, at which point the partially parsed arrow function
|
|
// concise body happens to be a valid expression. This is a problem
|
|
// only for arrow functions with single expression bodies, since there
|
|
// is no end token such as "}" for normal functions.
|
|
if (scanner()->location().end_pos == shared_info->end_position()) {
|
|
// The pre-parser saw an arrow function here, so the full parser
|
|
// must produce a FunctionLiteral.
|
|
DCHECK(expression->IsFunctionLiteral());
|
|
result = expression->AsFunctionLiteral();
|
|
} else {
|
|
ok = false;
|
|
}
|
|
}
|
|
}
|
|
} else if (shared_info->is_default_constructor()) {
|
|
result = DefaultConstructor(
|
|
raw_name, IsSubclassConstructor(shared_info->kind()), scope,
|
|
shared_info->start_position(), shared_info->end_position(),
|
|
shared_info->language_mode());
|
|
} else {
|
|
result = ParseFunctionLiteral(raw_name, Scanner::Location::invalid(),
|
|
kSkipFunctionNameCheck, shared_info->kind(),
|
|
RelocInfo::kNoPosition, function_type,
|
|
shared_info->language_mode(), &ok);
|
|
}
|
|
// Make sure the results agree.
|
|
DCHECK(ok == (result != NULL));
|
|
}
|
|
|
|
// Make sure the target stack is empty.
|
|
DCHECK(target_stack_ == NULL);
|
|
|
|
if (result != NULL) {
|
|
Handle<String> inferred_name(shared_info->inferred_name());
|
|
result->set_inferred_name(inferred_name);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
void* Parser::ParseStatementList(ZoneList<Statement*>* body, int end_token,
|
|
bool* ok) {
|
|
// StatementList ::
|
|
// (StatementListItem)* <end_token>
|
|
|
|
// Allocate a target stack to use for this set of source
|
|
// elements. This way, all scripts and functions get their own
|
|
// target stack thus avoiding illegal breaks and continues across
|
|
// functions.
|
|
TargetScope scope(&this->target_stack_);
|
|
|
|
DCHECK(body != NULL);
|
|
bool directive_prologue = true; // Parsing directive prologue.
|
|
|
|
while (peek() != end_token) {
|
|
if (directive_prologue && peek() != Token::STRING) {
|
|
directive_prologue = false;
|
|
}
|
|
|
|
Scanner::Location token_loc = scanner()->peek_location();
|
|
Statement* stat = ParseStatementListItem(CHECK_OK);
|
|
if (stat == NULL || stat->IsEmpty()) {
|
|
directive_prologue = false; // End of directive prologue.
|
|
continue;
|
|
}
|
|
|
|
if (directive_prologue) {
|
|
// A shot at a directive.
|
|
ExpressionStatement* e_stat;
|
|
Literal* literal;
|
|
// Still processing directive prologue?
|
|
if ((e_stat = stat->AsExpressionStatement()) != NULL &&
|
|
(literal = e_stat->expression()->AsLiteral()) != NULL &&
|
|
literal->raw_value()->IsString()) {
|
|
// Check "use strict" directive (ES5 14.1), "use asm" directive.
|
|
bool use_strict_found =
|
|
literal->raw_value()->AsString() ==
|
|
ast_value_factory()->use_strict_string() &&
|
|
token_loc.end_pos - token_loc.beg_pos ==
|
|
ast_value_factory()->use_strict_string()->length() + 2;
|
|
if (use_strict_found) {
|
|
if (is_sloppy(scope_->language_mode())) {
|
|
RaiseLanguageMode(STRICT);
|
|
}
|
|
|
|
if (!scope_->HasSimpleParameters()) {
|
|
// TC39 deemed "use strict" directives to be an error when occurring
|
|
// in the body of a function with non-simple parameter list, on
|
|
// 29/7/2015. https://goo.gl/ueA7Ln
|
|
const AstRawString* string = literal->raw_value()->AsString();
|
|
ParserTraits::ReportMessageAt(
|
|
token_loc, MessageTemplate::kIllegalLanguageModeDirective,
|
|
string);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
// Because declarations in strict eval code don't leak into the scope
|
|
// of the eval call, it is likely that functions declared in strict
|
|
// eval code will be used within the eval code, so lazy parsing is
|
|
// probably not a win.
|
|
if (scope_->is_eval_scope()) mode_ = PARSE_EAGERLY;
|
|
} else if (literal->raw_value()->AsString() ==
|
|
ast_value_factory()->use_asm_string() &&
|
|
token_loc.end_pos - token_loc.beg_pos ==
|
|
ast_value_factory()->use_asm_string()->length() + 2) {
|
|
// Store the usage count; The actual use counter on the isolate is
|
|
// incremented after parsing is done.
|
|
++use_counts_[v8::Isolate::kUseAsm];
|
|
scope_->SetAsmModule();
|
|
} else {
|
|
// Should not change mode, but will increment UseCounter
|
|
// if appropriate. Ditto usages below.
|
|
RaiseLanguageMode(SLOPPY);
|
|
}
|
|
} else {
|
|
// End of the directive prologue.
|
|
directive_prologue = false;
|
|
RaiseLanguageMode(SLOPPY);
|
|
}
|
|
} else {
|
|
RaiseLanguageMode(SLOPPY);
|
|
}
|
|
|
|
body->Add(stat, zone());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseStatementListItem(bool* ok) {
|
|
// (Ecma 262 6th Edition, 13.1):
|
|
// StatementListItem:
|
|
// Statement
|
|
// Declaration
|
|
|
|
switch (peek()) {
|
|
case Token::FUNCTION:
|
|
return ParseFunctionDeclaration(NULL, ok);
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
return ParseClassDeclaration(NULL, ok);
|
|
case Token::CONST:
|
|
if (allow_const()) {
|
|
return ParseVariableStatement(kStatementListItem, NULL, ok);
|
|
}
|
|
break;
|
|
case Token::VAR:
|
|
return ParseVariableStatement(kStatementListItem, NULL, ok);
|
|
case Token::LET:
|
|
if (IsNextLetKeyword()) {
|
|
return ParseVariableStatement(kStatementListItem, NULL, ok);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ParseStatement(NULL, ok);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseModuleItem(bool* ok) {
|
|
// (Ecma 262 6th Edition, 15.2):
|
|
// ModuleItem :
|
|
// ImportDeclaration
|
|
// ExportDeclaration
|
|
// StatementListItem
|
|
|
|
switch (peek()) {
|
|
case Token::IMPORT:
|
|
return ParseImportDeclaration(ok);
|
|
case Token::EXPORT:
|
|
return ParseExportDeclaration(ok);
|
|
default:
|
|
return ParseStatementListItem(ok);
|
|
}
|
|
}
|
|
|
|
|
|
void* Parser::ParseModuleItemList(ZoneList<Statement*>* body, bool* ok) {
|
|
// (Ecma 262 6th Edition, 15.2):
|
|
// Module :
|
|
// ModuleBody?
|
|
//
|
|
// ModuleBody :
|
|
// ModuleItem*
|
|
|
|
DCHECK(scope_->is_module_scope());
|
|
RaiseLanguageMode(STRICT);
|
|
|
|
while (peek() != Token::EOS) {
|
|
Statement* stat = ParseModuleItem(CHECK_OK);
|
|
if (stat && !stat->IsEmpty()) {
|
|
body->Add(stat, zone());
|
|
}
|
|
}
|
|
|
|
// Check that all exports are bound.
|
|
ModuleDescriptor* descriptor = scope_->module();
|
|
for (ModuleDescriptor::Iterator it = descriptor->iterator(); !it.done();
|
|
it.Advance()) {
|
|
if (scope_->LookupLocal(it.local_name()) == NULL) {
|
|
// TODO(adamk): Pass both local_name and export_name once ParserTraits
|
|
// supports multiple arg error messages.
|
|
// Also try to report this at a better location.
|
|
ParserTraits::ReportMessage(MessageTemplate::kModuleExportUndefined,
|
|
it.local_name());
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
const AstRawString* Parser::ParseModuleSpecifier(bool* ok) {
|
|
// ModuleSpecifier :
|
|
// StringLiteral
|
|
|
|
Expect(Token::STRING, CHECK_OK);
|
|
return GetSymbol(scanner());
|
|
}
|
|
|
|
|
|
void* Parser::ParseExportClause(ZoneList<const AstRawString*>* export_names,
|
|
ZoneList<Scanner::Location>* export_locations,
|
|
ZoneList<const AstRawString*>* local_names,
|
|
Scanner::Location* reserved_loc, bool* ok) {
|
|
// ExportClause :
|
|
// '{' '}'
|
|
// '{' ExportsList '}'
|
|
// '{' ExportsList ',' '}'
|
|
//
|
|
// ExportsList :
|
|
// ExportSpecifier
|
|
// ExportsList ',' ExportSpecifier
|
|
//
|
|
// ExportSpecifier :
|
|
// IdentifierName
|
|
// IdentifierName 'as' IdentifierName
|
|
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
|
|
Token::Value name_tok;
|
|
while ((name_tok = peek()) != Token::RBRACE) {
|
|
// Keep track of the first reserved word encountered in case our
|
|
// caller needs to report an error.
|
|
if (!reserved_loc->IsValid() &&
|
|
!Token::IsIdentifier(name_tok, STRICT, false)) {
|
|
*reserved_loc = scanner()->location();
|
|
}
|
|
const AstRawString* local_name = ParseIdentifierName(CHECK_OK);
|
|
const AstRawString* export_name = NULL;
|
|
if (CheckContextualKeyword(CStrVector("as"))) {
|
|
export_name = ParseIdentifierName(CHECK_OK);
|
|
}
|
|
if (export_name == NULL) {
|
|
export_name = local_name;
|
|
}
|
|
export_names->Add(export_name, zone());
|
|
local_names->Add(local_name, zone());
|
|
export_locations->Add(scanner()->location(), zone());
|
|
if (peek() == Token::RBRACE) break;
|
|
Expect(Token::COMMA, CHECK_OK);
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
ZoneList<ImportDeclaration*>* Parser::ParseNamedImports(int pos, bool* ok) {
|
|
// NamedImports :
|
|
// '{' '}'
|
|
// '{' ImportsList '}'
|
|
// '{' ImportsList ',' '}'
|
|
//
|
|
// ImportsList :
|
|
// ImportSpecifier
|
|
// ImportsList ',' ImportSpecifier
|
|
//
|
|
// ImportSpecifier :
|
|
// BindingIdentifier
|
|
// IdentifierName 'as' BindingIdentifier
|
|
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
|
|
ZoneList<ImportDeclaration*>* result =
|
|
new (zone()) ZoneList<ImportDeclaration*>(1, zone());
|
|
while (peek() != Token::RBRACE) {
|
|
const AstRawString* import_name = ParseIdentifierName(CHECK_OK);
|
|
const AstRawString* local_name = import_name;
|
|
// In the presence of 'as', the left-side of the 'as' can
|
|
// be any IdentifierName. But without 'as', it must be a valid
|
|
// BindingIdentifier.
|
|
if (CheckContextualKeyword(CStrVector("as"))) {
|
|
local_name = ParseIdentifierName(CHECK_OK);
|
|
}
|
|
if (!Token::IsIdentifier(scanner()->current_token(), STRICT, false)) {
|
|
*ok = false;
|
|
ReportMessage(MessageTemplate::kUnexpectedReserved);
|
|
return NULL;
|
|
} else if (IsEvalOrArguments(local_name)) {
|
|
*ok = false;
|
|
ReportMessage(MessageTemplate::kStrictEvalArguments);
|
|
return NULL;
|
|
}
|
|
VariableProxy* proxy = NewUnresolved(local_name, IMPORT);
|
|
ImportDeclaration* declaration =
|
|
factory()->NewImportDeclaration(proxy, import_name, NULL, scope_, pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK);
|
|
result->Add(declaration, zone());
|
|
if (peek() == Token::RBRACE) break;
|
|
Expect(Token::COMMA, CHECK_OK);
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseImportDeclaration(bool* ok) {
|
|
// ImportDeclaration :
|
|
// 'import' ImportClause 'from' ModuleSpecifier ';'
|
|
// 'import' ModuleSpecifier ';'
|
|
//
|
|
// ImportClause :
|
|
// NameSpaceImport
|
|
// NamedImports
|
|
// ImportedDefaultBinding
|
|
// ImportedDefaultBinding ',' NameSpaceImport
|
|
// ImportedDefaultBinding ',' NamedImports
|
|
//
|
|
// NameSpaceImport :
|
|
// '*' 'as' ImportedBinding
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::IMPORT, CHECK_OK);
|
|
|
|
Token::Value tok = peek();
|
|
|
|
// 'import' ModuleSpecifier ';'
|
|
if (tok == Token::STRING) {
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK);
|
|
scope_->module()->AddModuleRequest(module_specifier, zone());
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
|
|
// Parse ImportedDefaultBinding if present.
|
|
ImportDeclaration* import_default_declaration = NULL;
|
|
if (tok != Token::MUL && tok != Token::LBRACE) {
|
|
const AstRawString* local_name =
|
|
ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK);
|
|
VariableProxy* proxy = NewUnresolved(local_name, IMPORT);
|
|
import_default_declaration = factory()->NewImportDeclaration(
|
|
proxy, ast_value_factory()->default_string(), NULL, scope_, pos);
|
|
Declare(import_default_declaration, DeclarationDescriptor::NORMAL, true,
|
|
CHECK_OK);
|
|
}
|
|
|
|
const AstRawString* module_instance_binding = NULL;
|
|
ZoneList<ImportDeclaration*>* named_declarations = NULL;
|
|
if (import_default_declaration == NULL || Check(Token::COMMA)) {
|
|
switch (peek()) {
|
|
case Token::MUL: {
|
|
Consume(Token::MUL);
|
|
ExpectContextualKeyword(CStrVector("as"), CHECK_OK);
|
|
module_instance_binding =
|
|
ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK);
|
|
// TODO(ES6): Add an appropriate declaration.
|
|
break;
|
|
}
|
|
|
|
case Token::LBRACE:
|
|
named_declarations = ParseNamedImports(pos, CHECK_OK);
|
|
break;
|
|
|
|
default:
|
|
*ok = false;
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ExpectContextualKeyword(CStrVector("from"), CHECK_OK);
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK);
|
|
scope_->module()->AddModuleRequest(module_specifier, zone());
|
|
|
|
if (module_instance_binding != NULL) {
|
|
// TODO(ES6): Set the module specifier for the module namespace binding.
|
|
}
|
|
|
|
if (import_default_declaration != NULL) {
|
|
import_default_declaration->set_module_specifier(module_specifier);
|
|
}
|
|
|
|
if (named_declarations != NULL) {
|
|
for (int i = 0; i < named_declarations->length(); ++i) {
|
|
named_declarations->at(i)->set_module_specifier(module_specifier);
|
|
}
|
|
}
|
|
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseExportDefault(bool* ok) {
|
|
// Supports the following productions, starting after the 'default' token:
|
|
// 'export' 'default' FunctionDeclaration
|
|
// 'export' 'default' ClassDeclaration
|
|
// 'export' 'default' AssignmentExpression[In] ';'
|
|
|
|
Expect(Token::DEFAULT, CHECK_OK);
|
|
Scanner::Location default_loc = scanner()->location();
|
|
|
|
const AstRawString* default_string = ast_value_factory()->default_string();
|
|
ZoneList<const AstRawString*> names(1, zone());
|
|
Statement* result = nullptr;
|
|
Expression* default_export = nullptr;
|
|
switch (peek()) {
|
|
case Token::FUNCTION: {
|
|
Consume(Token::FUNCTION);
|
|
int pos = position();
|
|
bool is_generator = Check(Token::MUL);
|
|
if (peek() == Token::LPAREN) {
|
|
// FunctionDeclaration[+Default] ::
|
|
// 'function' '(' FormalParameters ')' '{' FunctionBody '}'
|
|
//
|
|
// GeneratorDeclaration[+Default] ::
|
|
// 'function' '*' '(' FormalParameters ')' '{' FunctionBody '}'
|
|
default_export = ParseFunctionLiteral(
|
|
default_string, Scanner::Location::invalid(),
|
|
kSkipFunctionNameCheck,
|
|
is_generator ? FunctionKind::kGeneratorFunction
|
|
: FunctionKind::kNormalFunction,
|
|
pos, FunctionLiteral::kDeclaration, language_mode(), CHECK_OK);
|
|
result = factory()->NewEmptyStatement(RelocInfo::kNoPosition);
|
|
} else {
|
|
result = ParseFunctionDeclaration(pos, is_generator, &names, CHECK_OK);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
if (peek() == Token::EXTENDS || peek() == Token::LBRACE) {
|
|
// ClassDeclaration[+Default] ::
|
|
// 'class' ('extends' LeftHandExpression)? '{' ClassBody '}'
|
|
default_export =
|
|
ParseClassLiteral(default_string, Scanner::Location::invalid(),
|
|
false, position(), CHECK_OK);
|
|
result = factory()->NewEmptyStatement(RelocInfo::kNoPosition);
|
|
} else {
|
|
result = ParseClassDeclaration(&names, CHECK_OK);
|
|
}
|
|
break;
|
|
|
|
default: {
|
|
int pos = peek_position();
|
|
ExpressionClassifier classifier(this);
|
|
Expression* expr = ParseAssignmentExpression(true, &classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
|
|
ExpectSemicolon(CHECK_OK);
|
|
result = factory()->NewExpressionStatement(expr, pos);
|
|
break;
|
|
}
|
|
}
|
|
|
|
DCHECK_LE(names.length(), 1);
|
|
if (names.length() == 1) {
|
|
scope_->module()->AddLocalExport(default_string, names.first(), zone(), ok);
|
|
if (!*ok) {
|
|
ParserTraits::ReportMessageAt(
|
|
default_loc, MessageTemplate::kDuplicateExport, default_string);
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// TODO(ES6): Assign result to a const binding with the name "*default*"
|
|
// and add an export entry with "*default*" as the local name.
|
|
USE(default_export);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseExportDeclaration(bool* ok) {
|
|
// ExportDeclaration:
|
|
// 'export' '*' 'from' ModuleSpecifier ';'
|
|
// 'export' ExportClause ('from' ModuleSpecifier)? ';'
|
|
// 'export' VariableStatement
|
|
// 'export' Declaration
|
|
// 'export' 'default' ... (handled in ParseExportDefault)
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::EXPORT, CHECK_OK);
|
|
|
|
Statement* result = NULL;
|
|
ZoneList<const AstRawString*> names(1, zone());
|
|
switch (peek()) {
|
|
case Token::DEFAULT:
|
|
return ParseExportDefault(ok);
|
|
|
|
case Token::MUL: {
|
|
Consume(Token::MUL);
|
|
ExpectContextualKeyword(CStrVector("from"), CHECK_OK);
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK);
|
|
scope_->module()->AddModuleRequest(module_specifier, zone());
|
|
// TODO(ES6): scope_->module()->AddStarExport(...)
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
|
|
case Token::LBRACE: {
|
|
// There are two cases here:
|
|
//
|
|
// 'export' ExportClause ';'
|
|
// and
|
|
// 'export' ExportClause FromClause ';'
|
|
//
|
|
// In the first case, the exported identifiers in ExportClause must
|
|
// not be reserved words, while in the latter they may be. We
|
|
// pass in a location that gets filled with the first reserved word
|
|
// encountered, and then throw a SyntaxError if we are in the
|
|
// non-FromClause case.
|
|
Scanner::Location reserved_loc = Scanner::Location::invalid();
|
|
ZoneList<const AstRawString*> export_names(1, zone());
|
|
ZoneList<Scanner::Location> export_locations(1, zone());
|
|
ZoneList<const AstRawString*> local_names(1, zone());
|
|
ParseExportClause(&export_names, &export_locations, &local_names,
|
|
&reserved_loc, CHECK_OK);
|
|
const AstRawString* indirect_export_module_specifier = NULL;
|
|
if (CheckContextualKeyword(CStrVector("from"))) {
|
|
indirect_export_module_specifier = ParseModuleSpecifier(CHECK_OK);
|
|
} else if (reserved_loc.IsValid()) {
|
|
// No FromClause, so reserved words are invalid in ExportClause.
|
|
*ok = false;
|
|
ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved);
|
|
return NULL;
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
const int length = export_names.length();
|
|
DCHECK_EQ(length, local_names.length());
|
|
DCHECK_EQ(length, export_locations.length());
|
|
if (indirect_export_module_specifier == NULL) {
|
|
for (int i = 0; i < length; ++i) {
|
|
scope_->module()->AddLocalExport(export_names[i], local_names[i],
|
|
zone(), ok);
|
|
if (!*ok) {
|
|
ParserTraits::ReportMessageAt(export_locations[i],
|
|
MessageTemplate::kDuplicateExport,
|
|
export_names[i]);
|
|
return NULL;
|
|
}
|
|
}
|
|
} else {
|
|
scope_->module()->AddModuleRequest(indirect_export_module_specifier,
|
|
zone());
|
|
for (int i = 0; i < length; ++i) {
|
|
// TODO(ES6): scope_->module()->AddIndirectExport(...);(
|
|
}
|
|
}
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
|
|
case Token::FUNCTION:
|
|
result = ParseFunctionDeclaration(&names, CHECK_OK);
|
|
break;
|
|
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
result = ParseClassDeclaration(&names, CHECK_OK);
|
|
break;
|
|
|
|
case Token::VAR:
|
|
case Token::LET:
|
|
case Token::CONST:
|
|
result = ParseVariableStatement(kStatementListItem, &names, CHECK_OK);
|
|
break;
|
|
|
|
default:
|
|
*ok = false;
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return NULL;
|
|
}
|
|
|
|
// Extract declared names into export declarations.
|
|
ModuleDescriptor* descriptor = scope_->module();
|
|
for (int i = 0; i < names.length(); ++i) {
|
|
descriptor->AddLocalExport(names[i], names[i], zone(), ok);
|
|
if (!*ok) {
|
|
// TODO(adamk): Possibly report this error at the right place.
|
|
ParserTraits::ReportMessage(MessageTemplate::kDuplicateExport, names[i]);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
DCHECK_NOT_NULL(result);
|
|
return result;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// Statement ::
|
|
// EmptyStatement
|
|
// ...
|
|
|
|
if (peek() == Token::SEMICOLON) {
|
|
Next();
|
|
return factory()->NewEmptyStatement(RelocInfo::kNoPosition);
|
|
}
|
|
return ParseSubStatement(labels, ok);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseSubStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// Statement ::
|
|
// Block
|
|
// VariableStatement
|
|
// EmptyStatement
|
|
// ExpressionStatement
|
|
// IfStatement
|
|
// IterationStatement
|
|
// ContinueStatement
|
|
// BreakStatement
|
|
// ReturnStatement
|
|
// WithStatement
|
|
// LabelledStatement
|
|
// SwitchStatement
|
|
// ThrowStatement
|
|
// TryStatement
|
|
// DebuggerStatement
|
|
|
|
// Note: Since labels can only be used by 'break' and 'continue'
|
|
// statements, which themselves are only valid within blocks,
|
|
// iterations or 'switch' statements (i.e., BreakableStatements),
|
|
// labels can be simply ignored in all other cases; except for
|
|
// trivial labeled break statements 'label: break label' which is
|
|
// parsed into an empty statement.
|
|
switch (peek()) {
|
|
case Token::LBRACE:
|
|
return ParseBlock(labels, ok);
|
|
|
|
case Token::SEMICOLON:
|
|
Next();
|
|
return factory()->NewEmptyStatement(RelocInfo::kNoPosition);
|
|
|
|
case Token::IF:
|
|
return ParseIfStatement(labels, ok);
|
|
|
|
case Token::DO:
|
|
return ParseDoWhileStatement(labels, ok);
|
|
|
|
case Token::WHILE:
|
|
return ParseWhileStatement(labels, ok);
|
|
|
|
case Token::FOR:
|
|
return ParseForStatement(labels, ok);
|
|
|
|
case Token::CONTINUE:
|
|
case Token::BREAK:
|
|
case Token::RETURN:
|
|
case Token::THROW:
|
|
case Token::TRY: {
|
|
// These statements must have their labels preserved in an enclosing
|
|
// block
|
|
if (labels == NULL) {
|
|
return ParseStatementAsUnlabelled(labels, ok);
|
|
} else {
|
|
Block* result =
|
|
factory()->NewBlock(labels, 1, false, RelocInfo::kNoPosition);
|
|
Target target(&this->target_stack_, result);
|
|
Statement* statement = ParseStatementAsUnlabelled(labels, CHECK_OK);
|
|
if (result) result->statements()->Add(statement, zone());
|
|
return result;
|
|
}
|
|
}
|
|
|
|
case Token::WITH:
|
|
return ParseWithStatement(labels, ok);
|
|
|
|
case Token::SWITCH:
|
|
return ParseSwitchStatement(labels, ok);
|
|
|
|
case Token::FUNCTION:
|
|
// FunctionDeclaration only allowed as a StatementListItem, not in
|
|
// an arbitrary Statement position. Exceptions such as
|
|
// ES#sec-functiondeclarations-in-ifstatement-statement-clauses
|
|
// are handled by calling ParseScopedStatement rather than
|
|
// ParseSubStatement directly.
|
|
ReportMessageAt(scanner()->peek_location(),
|
|
is_strict(language_mode())
|
|
? MessageTemplate::kStrictFunction
|
|
: MessageTemplate::kSloppyFunction);
|
|
*ok = false;
|
|
return nullptr;
|
|
|
|
case Token::DEBUGGER:
|
|
return ParseDebuggerStatement(ok);
|
|
|
|
case Token::VAR:
|
|
return ParseVariableStatement(kStatement, NULL, ok);
|
|
|
|
case Token::CONST:
|
|
// In ES6 CONST is not allowed as a Statement, only as a
|
|
// LexicalDeclaration, however we continue to allow it in sloppy mode for
|
|
// backwards compatibility.
|
|
if (is_sloppy(language_mode()) && allow_legacy_const()) {
|
|
return ParseVariableStatement(kStatement, NULL, ok);
|
|
}
|
|
|
|
// Fall through.
|
|
default:
|
|
return ParseExpressionOrLabelledStatement(labels, ok);
|
|
}
|
|
}
|
|
|
|
Statement* Parser::ParseStatementAsUnlabelled(
|
|
ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
switch (peek()) {
|
|
case Token::CONTINUE:
|
|
return ParseContinueStatement(ok);
|
|
|
|
case Token::BREAK:
|
|
return ParseBreakStatement(labels, ok);
|
|
|
|
case Token::RETURN:
|
|
return ParseReturnStatement(ok);
|
|
|
|
case Token::THROW:
|
|
return ParseThrowStatement(ok);
|
|
|
|
case Token::TRY:
|
|
return ParseTryStatement(ok);
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
VariableProxy* Parser::NewUnresolved(const AstRawString* name,
|
|
VariableMode mode) {
|
|
// If we are inside a function, a declaration of a var/const variable is a
|
|
// truly local variable, and the scope of the variable is always the function
|
|
// scope.
|
|
// Let/const variables in harmony mode are always added to the immediately
|
|
// enclosing scope.
|
|
Scope* scope =
|
|
IsLexicalVariableMode(mode) ? scope_ : scope_->DeclarationScope();
|
|
return scope->NewUnresolved(factory(), name, Variable::NORMAL,
|
|
scanner()->location().beg_pos,
|
|
scanner()->location().end_pos);
|
|
}
|
|
|
|
|
|
Variable* Parser::Declare(Declaration* declaration,
|
|
DeclarationDescriptor::Kind declaration_kind,
|
|
bool resolve, bool* ok, Scope* scope) {
|
|
VariableProxy* proxy = declaration->proxy();
|
|
DCHECK(proxy->raw_name() != NULL);
|
|
const AstRawString* name = proxy->raw_name();
|
|
VariableMode mode = declaration->mode();
|
|
bool is_function_declaration = declaration->IsFunctionDeclaration();
|
|
if (scope == nullptr) scope = scope_;
|
|
Scope* declaration_scope =
|
|
IsLexicalVariableMode(mode) ? scope : scope->DeclarationScope();
|
|
Variable* var = NULL;
|
|
|
|
// If a suitable scope exists, then we can statically declare this
|
|
// variable and also set its mode. In any case, a Declaration node
|
|
// will be added to the scope so that the declaration can be added
|
|
// to the corresponding activation frame at runtime if necessary.
|
|
// For instance, var declarations inside a sloppy eval scope need
|
|
// to be added to the calling function context. Similarly, strict
|
|
// mode eval scope and lexical eval bindings do not leak variable
|
|
// declarations to the caller's scope so we declare all locals, too.
|
|
if (declaration_scope->is_function_scope() ||
|
|
declaration_scope->is_block_scope() ||
|
|
declaration_scope->is_module_scope() ||
|
|
declaration_scope->is_script_scope() ||
|
|
(declaration_scope->is_eval_scope() &&
|
|
(is_strict(declaration_scope->language_mode()) ||
|
|
IsLexicalVariableMode(mode)))) {
|
|
// Declare the variable in the declaration scope.
|
|
var = declaration_scope->LookupLocal(name);
|
|
if (var == NULL) {
|
|
// Declare the name.
|
|
Variable::Kind kind = Variable::NORMAL;
|
|
if (is_function_declaration) {
|
|
kind = Variable::FUNCTION;
|
|
}
|
|
var = declaration_scope->DeclareLocal(
|
|
name, mode, declaration->initialization(), kind, kNotAssigned);
|
|
} else if ((mode == CONST_LEGACY || var->mode() == CONST_LEGACY) &&
|
|
!declaration_scope->is_script_scope()) {
|
|
// Duplicate legacy const definitions throw at runtime.
|
|
DCHECK(is_sloppy(language_mode()));
|
|
Expression* expression = NewThrowSyntaxError(
|
|
MessageTemplate::kVarRedeclaration, name, declaration->position());
|
|
declaration_scope->SetIllegalRedeclaration(expression);
|
|
} else if ((IsLexicalVariableMode(mode) ||
|
|
IsLexicalVariableMode(var->mode())) &&
|
|
// Lexical bindings may appear for some parameters in sloppy
|
|
// mode even with --harmony-sloppy off.
|
|
(is_strict(language_mode()) || allow_harmony_sloppy())) {
|
|
// Allow duplicate function decls for web compat, see bug 4693.
|
|
if (is_sloppy(language_mode()) && is_function_declaration &&
|
|
var->is_function()) {
|
|
DCHECK(IsLexicalVariableMode(mode) &&
|
|
IsLexicalVariableMode(var->mode()));
|
|
++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition];
|
|
} else {
|
|
// The name was declared in this scope before; check for conflicting
|
|
// re-declarations. We have a conflict if either of the declarations
|
|
// is not a var (in script scope, we also have to ignore legacy const
|
|
// for compatibility). There is similar code in runtime.cc in the
|
|
// Declare functions. The function CheckConflictingVarDeclarations
|
|
// checks for var and let bindings from different scopes whereas this
|
|
// is a check for conflicting declarations within the same scope. This
|
|
// check also covers the special case
|
|
//
|
|
// function () { let x; { var x; } }
|
|
//
|
|
// because the var declaration is hoisted to the function scope where
|
|
// 'x' is already bound.
|
|
DCHECK(IsDeclaredVariableMode(var->mode()));
|
|
// In harmony we treat re-declarations as early errors. See
|
|
// ES5 16 for a definition of early errors.
|
|
if (declaration_kind == DeclarationDescriptor::NORMAL) {
|
|
ParserTraits::ReportMessage(MessageTemplate::kVarRedeclaration, name);
|
|
} else {
|
|
ParserTraits::ReportMessage(MessageTemplate::kParamDupe);
|
|
}
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
} else if (mode == VAR) {
|
|
var->set_maybe_assigned();
|
|
}
|
|
} else if (declaration_scope->is_eval_scope() &&
|
|
is_sloppy(declaration_scope->language_mode()) &&
|
|
!IsLexicalVariableMode(mode)) {
|
|
// In a var binding in a sloppy direct eval, pollute the enclosing scope
|
|
// with this new binding by doing the following:
|
|
// The proxy is bound to a lookup variable to force a dynamic declaration
|
|
// using the DeclareLookupSlot runtime function.
|
|
Variable::Kind kind = Variable::NORMAL;
|
|
// TODO(sigurds) figure out if kNotAssigned is OK here
|
|
var = new (zone()) Variable(declaration_scope, name, mode, kind,
|
|
declaration->initialization(), kNotAssigned);
|
|
var->AllocateTo(VariableLocation::LOOKUP, -1);
|
|
var->SetFromEval();
|
|
resolve = true;
|
|
}
|
|
|
|
|
|
// We add a declaration node for every declaration. The compiler
|
|
// will only generate code if necessary. In particular, declarations
|
|
// for inner local variables that do not represent functions won't
|
|
// result in any generated code.
|
|
//
|
|
// Note that we always add an unresolved proxy even if it's not
|
|
// used, simply because we don't know in this method (w/o extra
|
|
// parameters) if the proxy is needed or not. The proxy will be
|
|
// bound during variable resolution time unless it was pre-bound
|
|
// below.
|
|
//
|
|
// WARNING: This will lead to multiple declaration nodes for the
|
|
// same variable if it is declared several times. This is not a
|
|
// semantic issue as long as we keep the source order, but it may be
|
|
// a performance issue since it may lead to repeated
|
|
// RuntimeHidden_DeclareLookupSlot calls.
|
|
declaration_scope->AddDeclaration(declaration);
|
|
|
|
if (mode == CONST_LEGACY && declaration_scope->is_script_scope()) {
|
|
// For global const variables we bind the proxy to a variable.
|
|
DCHECK(resolve); // should be set by all callers
|
|
Variable::Kind kind = Variable::NORMAL;
|
|
var = new (zone()) Variable(declaration_scope, name, mode, kind,
|
|
kNeedsInitialization, kNotAssigned);
|
|
}
|
|
|
|
// If requested and we have a local variable, bind the proxy to the variable
|
|
// at parse-time. This is used for functions (and consts) declared inside
|
|
// statements: the corresponding function (or const) variable must be in the
|
|
// function scope and not a statement-local scope, e.g. as provided with a
|
|
// 'with' statement:
|
|
//
|
|
// with (obj) {
|
|
// function f() {}
|
|
// }
|
|
//
|
|
// which is translated into:
|
|
//
|
|
// with (obj) {
|
|
// // in this case this is not: 'var f; f = function () {};'
|
|
// var f = function () {};
|
|
// }
|
|
//
|
|
// Note that if 'f' is accessed from inside the 'with' statement, it
|
|
// will be allocated in the context (because we must be able to look
|
|
// it up dynamically) but it will also be accessed statically, i.e.,
|
|
// with a context slot index and a context chain length for this
|
|
// initialization code. Thus, inside the 'with' statement, we need
|
|
// both access to the static and the dynamic context chain; the
|
|
// runtime needs to provide both.
|
|
if (resolve && var != NULL) {
|
|
proxy->BindTo(var);
|
|
}
|
|
return var;
|
|
}
|
|
|
|
|
|
// Language extension which is only enabled for source files loaded
|
|
// through the API's extension mechanism. A native function
|
|
// declaration is resolved by looking up the function through a
|
|
// callback provided by the extension.
|
|
Statement* Parser::ParseNativeDeclaration(bool* ok) {
|
|
int pos = peek_position();
|
|
Expect(Token::FUNCTION, CHECK_OK);
|
|
// Allow "eval" or "arguments" for backward compatibility.
|
|
const AstRawString* name =
|
|
ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
bool done = (peek() == Token::RPAREN);
|
|
while (!done) {
|
|
ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK);
|
|
done = (peek() == Token::RPAREN);
|
|
if (!done) {
|
|
Expect(Token::COMMA, CHECK_OK);
|
|
}
|
|
}
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
Expect(Token::SEMICOLON, CHECK_OK);
|
|
|
|
// Make sure that the function containing the native declaration
|
|
// isn't lazily compiled. The extension structures are only
|
|
// accessible while parsing the first time not when reparsing
|
|
// because of lazy compilation.
|
|
// TODO(adamk): Should this be ClosureScope()?
|
|
scope_->DeclarationScope()->ForceEagerCompilation();
|
|
|
|
// TODO(1240846): It's weird that native function declarations are
|
|
// introduced dynamically when we meet their declarations, whereas
|
|
// other functions are set up when entering the surrounding scope.
|
|
VariableProxy* proxy = NewUnresolved(name, VAR);
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, VAR, scope_, pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK);
|
|
NativeFunctionLiteral* lit = factory()->NewNativeFunctionLiteral(
|
|
name, extension_, RelocInfo::kNoPosition);
|
|
return factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::INIT, proxy, lit, RelocInfo::kNoPosition),
|
|
pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseFunctionDeclaration(
|
|
ZoneList<const AstRawString*>* names, bool* ok) {
|
|
Expect(Token::FUNCTION, CHECK_OK);
|
|
int pos = position();
|
|
bool is_generator = Check(Token::MUL);
|
|
return ParseFunctionDeclaration(pos, is_generator, names, ok);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseFunctionDeclaration(
|
|
int pos, bool is_generator, ZoneList<const AstRawString*>* names,
|
|
bool* ok) {
|
|
// FunctionDeclaration ::
|
|
// 'function' Identifier '(' FormalParameters ')' '{' FunctionBody '}'
|
|
// GeneratorDeclaration ::
|
|
// 'function' '*' Identifier '(' FormalParameters ')' '{' FunctionBody '}'
|
|
//
|
|
// 'function' and '*' (if present) have been consumed by the caller.
|
|
bool is_strict_reserved = false;
|
|
const AstRawString* name = ParseIdentifierOrStrictReservedWord(
|
|
&is_strict_reserved, CHECK_OK);
|
|
|
|
FuncNameInferrer::State fni_state(fni_);
|
|
if (fni_ != NULL) fni_->PushEnclosingName(name);
|
|
FunctionLiteral* fun = ParseFunctionLiteral(
|
|
name, scanner()->location(),
|
|
is_strict_reserved ? kFunctionNameIsStrictReserved
|
|
: kFunctionNameValidityUnknown,
|
|
is_generator ? FunctionKind::kGeneratorFunction
|
|
: FunctionKind::kNormalFunction,
|
|
pos, FunctionLiteral::kDeclaration, language_mode(), CHECK_OK);
|
|
|
|
// Even if we're not at the top-level of the global or a function
|
|
// scope, we treat it as such and introduce the function with its
|
|
// initial value upon entering the corresponding scope.
|
|
// In ES6, a function behaves as a lexical binding, except in
|
|
// a script scope, or the initial scope of eval or another function.
|
|
VariableMode mode =
|
|
(is_strict(language_mode()) || allow_harmony_sloppy_function()) &&
|
|
!scope_->is_declaration_scope()
|
|
? LET
|
|
: VAR;
|
|
VariableProxy* proxy = NewUnresolved(name, mode);
|
|
Declaration* declaration =
|
|
factory()->NewFunctionDeclaration(proxy, mode, fun, scope_, pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK);
|
|
if (names) names->Add(name, zone());
|
|
EmptyStatement* empty = factory()->NewEmptyStatement(RelocInfo::kNoPosition);
|
|
if (is_sloppy(language_mode()) && allow_harmony_sloppy_function() &&
|
|
!scope_->is_declaration_scope()) {
|
|
SloppyBlockFunctionStatement* delegate =
|
|
factory()->NewSloppyBlockFunctionStatement(empty, scope_);
|
|
scope_->DeclarationScope()->sloppy_block_function_map()->Declare(name,
|
|
delegate);
|
|
return delegate;
|
|
}
|
|
return empty;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseClassDeclaration(ZoneList<const AstRawString*>* names,
|
|
bool* ok) {
|
|
// ClassDeclaration ::
|
|
// 'class' Identifier ('extends' LeftHandExpression)? '{' ClassBody '}'
|
|
//
|
|
// 'class' is expected to be consumed by the caller.
|
|
//
|
|
// A ClassDeclaration
|
|
//
|
|
// class C { ... }
|
|
//
|
|
// has the same semantics as:
|
|
//
|
|
// let C = class C { ... };
|
|
//
|
|
// so rewrite it as such.
|
|
|
|
if (!allow_harmony_sloppy() && is_sloppy(language_mode())) {
|
|
ReportMessage(MessageTemplate::kSloppyLexical);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
int pos = position();
|
|
bool is_strict_reserved = false;
|
|
const AstRawString* name =
|
|
ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK);
|
|
ClassLiteral* value = ParseClassLiteral(name, scanner()->location(),
|
|
is_strict_reserved, pos, CHECK_OK);
|
|
|
|
VariableProxy* proxy = NewUnresolved(name, LET);
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, LET, scope_, pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK);
|
|
proxy->var()->set_initializer_position(position());
|
|
Assignment* assignment =
|
|
factory()->NewAssignment(Token::INIT, proxy, value, pos);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition);
|
|
if (names) names->Add(name, zone());
|
|
return assignment_statement;
|
|
}
|
|
|
|
|
|
Block* Parser::ParseBlock(ZoneList<const AstRawString*>* labels,
|
|
bool finalize_block_scope, bool* ok) {
|
|
// The harmony mode uses block elements instead of statements.
|
|
//
|
|
// Block ::
|
|
// '{' StatementList '}'
|
|
|
|
// Construct block expecting 16 statements.
|
|
Block* body =
|
|
factory()->NewBlock(labels, 16, false, RelocInfo::kNoPosition);
|
|
Scope* block_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
|
|
// Parse the statements and collect escaping labels.
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
block_scope->set_start_position(scanner()->location().beg_pos);
|
|
{ BlockState block_state(&scope_, block_scope);
|
|
Target target(&this->target_stack_, body);
|
|
|
|
while (peek() != Token::RBRACE) {
|
|
Statement* stat = ParseStatementListItem(CHECK_OK);
|
|
if (stat && !stat->IsEmpty()) {
|
|
body->statements()->Add(stat, zone());
|
|
}
|
|
}
|
|
}
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
block_scope->set_end_position(scanner()->location().end_pos);
|
|
if (finalize_block_scope) {
|
|
block_scope = block_scope->FinalizeBlockScope();
|
|
}
|
|
body->set_scope(block_scope);
|
|
return body;
|
|
}
|
|
|
|
|
|
Block* Parser::ParseBlock(ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
return ParseBlock(labels, true, ok);
|
|
}
|
|
|
|
|
|
Block* Parser::DeclarationParsingResult::BuildInitializationBlock(
|
|
ZoneList<const AstRawString*>* names, bool* ok) {
|
|
Block* result = descriptor.parser->factory()->NewBlock(
|
|
NULL, 1, true, descriptor.declaration_pos);
|
|
for (auto declaration : declarations) {
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
result, &descriptor, &declaration, names, CHECK_OK);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
Block* Parser::ParseVariableStatement(VariableDeclarationContext var_context,
|
|
ZoneList<const AstRawString*>* names,
|
|
bool* ok) {
|
|
// VariableStatement ::
|
|
// VariableDeclarations ';'
|
|
|
|
// The scope of a var/const declared variable anywhere inside a function
|
|
// is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). Thus we can
|
|
// transform a source-level var/const declaration into a (Function)
|
|
// Scope declaration, and rewrite the source-level initialization into an
|
|
// assignment statement. We use a block to collect multiple assignments.
|
|
//
|
|
// We mark the block as initializer block because we don't want the
|
|
// rewriter to add a '.result' assignment to such a block (to get compliant
|
|
// behavior for code such as print(eval('var x = 7')), and for cosmetic
|
|
// reasons when pretty-printing. Also, unless an assignment (initialization)
|
|
// is inside an initializer block, it is ignored.
|
|
|
|
DeclarationParsingResult parsing_result;
|
|
Block* result =
|
|
ParseVariableDeclarations(var_context, &parsing_result, names, CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
return result;
|
|
}
|
|
|
|
Block* Parser::ParseVariableDeclarations(
|
|
VariableDeclarationContext var_context,
|
|
DeclarationParsingResult* parsing_result,
|
|
ZoneList<const AstRawString*>* names, bool* ok) {
|
|
// VariableDeclarations ::
|
|
// ('var' | 'const' | 'let') (Identifier ('=' AssignmentExpression)?)+[',']
|
|
//
|
|
// The ES6 Draft Rev3 specifies the following grammar for const declarations
|
|
//
|
|
// ConstDeclaration ::
|
|
// const ConstBinding (',' ConstBinding)* ';'
|
|
// ConstBinding ::
|
|
// Identifier '=' AssignmentExpression
|
|
//
|
|
// TODO(ES6):
|
|
// ConstBinding ::
|
|
// BindingPattern '=' AssignmentExpression
|
|
|
|
parsing_result->descriptor.parser = this;
|
|
parsing_result->descriptor.declaration_kind = DeclarationDescriptor::NORMAL;
|
|
parsing_result->descriptor.declaration_pos = peek_position();
|
|
parsing_result->descriptor.initialization_pos = peek_position();
|
|
parsing_result->descriptor.mode = VAR;
|
|
|
|
Block* init_block = nullptr;
|
|
if (var_context != kForStatement) {
|
|
init_block = factory()->NewBlock(
|
|
NULL, 1, true, parsing_result->descriptor.declaration_pos);
|
|
}
|
|
|
|
if (peek() == Token::VAR) {
|
|
Consume(Token::VAR);
|
|
} else if (peek() == Token::CONST && allow_const()) {
|
|
Consume(Token::CONST);
|
|
if (is_sloppy(language_mode()) && allow_legacy_const()) {
|
|
parsing_result->descriptor.mode = CONST_LEGACY;
|
|
++use_counts_[v8::Isolate::kLegacyConst];
|
|
} else {
|
|
DCHECK(is_strict(language_mode()) || allow_harmony_sloppy());
|
|
DCHECK(var_context != kStatement);
|
|
parsing_result->descriptor.mode = CONST;
|
|
}
|
|
} else if (peek() == Token::LET && allow_let()) {
|
|
Consume(Token::LET);
|
|
DCHECK(var_context != kStatement);
|
|
parsing_result->descriptor.mode = LET;
|
|
} else {
|
|
UNREACHABLE(); // by current callers
|
|
}
|
|
|
|
parsing_result->descriptor.scope = scope_;
|
|
parsing_result->descriptor.hoist_scope = nullptr;
|
|
|
|
|
|
bool first_declaration = true;
|
|
int bindings_start = peek_position();
|
|
do {
|
|
FuncNameInferrer::State fni_state(fni_);
|
|
|
|
// Parse name.
|
|
if (!first_declaration) Consume(Token::COMMA);
|
|
|
|
Expression* pattern;
|
|
int decl_pos = peek_position();
|
|
{
|
|
ExpressionClassifier pattern_classifier(this);
|
|
pattern = ParsePrimaryExpression(&pattern_classifier, CHECK_OK);
|
|
ValidateBindingPattern(&pattern_classifier, CHECK_OK);
|
|
if (IsLexicalVariableMode(parsing_result->descriptor.mode)) {
|
|
ValidateLetPattern(&pattern_classifier, CHECK_OK);
|
|
}
|
|
}
|
|
|
|
Scanner::Location variable_loc = scanner()->location();
|
|
const AstRawString* single_name =
|
|
pattern->IsVariableProxy() ? pattern->AsVariableProxy()->raw_name()
|
|
: nullptr;
|
|
if (single_name != nullptr) {
|
|
if (fni_ != NULL) fni_->PushVariableName(single_name);
|
|
}
|
|
|
|
Expression* value = NULL;
|
|
int initializer_position = RelocInfo::kNoPosition;
|
|
if (Check(Token::ASSIGN)) {
|
|
ExpressionClassifier classifier(this);
|
|
value = ParseAssignmentExpression(var_context != kForStatement,
|
|
&classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
variable_loc.end_pos = scanner()->location().end_pos;
|
|
|
|
if (!parsing_result->first_initializer_loc.IsValid()) {
|
|
parsing_result->first_initializer_loc = variable_loc;
|
|
}
|
|
|
|
// Don't infer if it is "a = function(){...}();"-like expression.
|
|
if (single_name) {
|
|
if (fni_ != NULL && value->AsCall() == NULL &&
|
|
value->AsCallNew() == NULL) {
|
|
fni_->Infer();
|
|
} else {
|
|
fni_->RemoveLastFunction();
|
|
}
|
|
}
|
|
|
|
if (allow_harmony_function_name()) {
|
|
ParserTraits::SetFunctionNameFromIdentifierRef(value, pattern);
|
|
}
|
|
|
|
// End position of the initializer is after the assignment expression.
|
|
initializer_position = scanner()->location().end_pos;
|
|
} else {
|
|
// Initializers may be either required or implied unless this is a
|
|
// for-in/of iteration variable.
|
|
if (var_context != kForStatement || !PeekInOrOf()) {
|
|
// ES6 'const' and binding patterns require initializers.
|
|
if (parsing_result->descriptor.mode == CONST ||
|
|
!pattern->IsVariableProxy()) {
|
|
ParserTraits::ReportMessageAt(
|
|
Scanner::Location(decl_pos, scanner()->location().end_pos),
|
|
MessageTemplate::kDeclarationMissingInitializer,
|
|
!pattern->IsVariableProxy() ? "destructuring" : "const");
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
|
|
// 'let x' and (legacy) 'const x' initialize 'x' to undefined.
|
|
if (parsing_result->descriptor.mode == LET ||
|
|
parsing_result->descriptor.mode == CONST_LEGACY) {
|
|
value = GetLiteralUndefined(position());
|
|
}
|
|
}
|
|
|
|
// End position of the initializer is after the variable.
|
|
initializer_position = position();
|
|
}
|
|
|
|
DeclarationParsingResult::Declaration decl(pattern, initializer_position,
|
|
value);
|
|
if (var_context == kForStatement) {
|
|
// Save the declaration for further handling in ParseForStatement.
|
|
parsing_result->declarations.Add(decl);
|
|
} else {
|
|
// Immediately declare the variable otherwise. This avoids O(N^2)
|
|
// behavior (where N is the number of variables in a single
|
|
// declaration) in the PatternRewriter having to do with removing
|
|
// and adding VariableProxies to the Scope (see bug 4699).
|
|
DCHECK_NOT_NULL(init_block);
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
init_block, &parsing_result->descriptor, &decl, names, CHECK_OK);
|
|
}
|
|
first_declaration = false;
|
|
} while (peek() == Token::COMMA);
|
|
|
|
parsing_result->bindings_loc =
|
|
Scanner::Location(bindings_start, scanner()->location().end_pos);
|
|
|
|
DCHECK(*ok);
|
|
return init_block;
|
|
}
|
|
|
|
|
|
static bool ContainsLabel(ZoneList<const AstRawString*>* labels,
|
|
const AstRawString* label) {
|
|
DCHECK(label != NULL);
|
|
if (labels != NULL) {
|
|
for (int i = labels->length(); i-- > 0; ) {
|
|
if (labels->at(i) == label) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseExpressionOrLabelledStatement(
|
|
ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
// ExpressionStatement | LabelledStatement ::
|
|
// Expression ';'
|
|
// Identifier ':' Statement
|
|
//
|
|
// ExpressionStatement[Yield] :
|
|
// [lookahead ∉ {{, function, class, let [}] Expression[In, ?Yield] ;
|
|
|
|
int pos = peek_position();
|
|
|
|
switch (peek()) {
|
|
case Token::FUNCTION:
|
|
case Token::LBRACE:
|
|
UNREACHABLE(); // Always handled by the callers.
|
|
case Token::CLASS:
|
|
ReportUnexpectedToken(Next());
|
|
*ok = false;
|
|
return nullptr;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
bool starts_with_idenfifier = peek_any_identifier();
|
|
Expression* expr = ParseExpression(true, CHECK_OK);
|
|
if (peek() == Token::COLON && starts_with_idenfifier && expr != NULL &&
|
|
expr->AsVariableProxy() != NULL &&
|
|
!expr->AsVariableProxy()->is_this()) {
|
|
// Expression is a single identifier, and not, e.g., a parenthesized
|
|
// identifier.
|
|
VariableProxy* var = expr->AsVariableProxy();
|
|
const AstRawString* label = var->raw_name();
|
|
// TODO(1240780): We don't check for redeclaration of labels
|
|
// during preparsing since keeping track of the set of active
|
|
// labels requires nontrivial changes to the way scopes are
|
|
// structured. However, these are probably changes we want to
|
|
// make later anyway so we should go back and fix this then.
|
|
if (ContainsLabel(labels, label) || TargetStackContainsLabel(label)) {
|
|
ParserTraits::ReportMessage(MessageTemplate::kLabelRedeclaration, label);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
if (labels == NULL) {
|
|
labels = new(zone()) ZoneList<const AstRawString*>(4, zone());
|
|
}
|
|
labels->Add(label, zone());
|
|
// Remove the "ghost" variable that turned out to be a label
|
|
// from the top scope. This way, we don't try to resolve it
|
|
// during the scope processing.
|
|
scope_->RemoveUnresolved(var);
|
|
Expect(Token::COLON, CHECK_OK);
|
|
// ES#sec-labelled-function-declarations Labelled Function Declarations
|
|
if (peek() == Token::FUNCTION && is_sloppy(language_mode())) {
|
|
return ParseFunctionDeclaration(labels, ok);
|
|
}
|
|
return ParseStatement(labels, ok);
|
|
}
|
|
|
|
// If we have an extension, we allow a native function declaration.
|
|
// A native function declaration starts with "native function" with
|
|
// no line-terminator between the two words.
|
|
if (extension_ != NULL && peek() == Token::FUNCTION &&
|
|
!scanner()->HasAnyLineTerminatorBeforeNext() && expr != NULL &&
|
|
expr->AsVariableProxy() != NULL &&
|
|
expr->AsVariableProxy()->raw_name() ==
|
|
ast_value_factory()->native_string() &&
|
|
!scanner()->literal_contains_escapes()) {
|
|
return ParseNativeDeclaration(ok);
|
|
}
|
|
|
|
// Parsed expression statement, followed by semicolon.
|
|
// Detect attempts at 'let' declarations in sloppy mode.
|
|
if (!allow_harmony_sloppy_let() && peek() == Token::IDENTIFIER &&
|
|
expr->AsVariableProxy() != NULL &&
|
|
expr->AsVariableProxy()->raw_name() ==
|
|
ast_value_factory()->let_string()) {
|
|
ReportMessage(MessageTemplate::kSloppyLexical, NULL);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewExpressionStatement(expr, pos);
|
|
}
|
|
|
|
|
|
IfStatement* Parser::ParseIfStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// IfStatement ::
|
|
// 'if' '(' Expression ')' Statement ('else' Statement)?
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::IF, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
Expression* condition = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
Statement* then_statement = ParseScopedStatement(labels, false, CHECK_OK);
|
|
Statement* else_statement = NULL;
|
|
if (peek() == Token::ELSE) {
|
|
Next();
|
|
else_statement = ParseScopedStatement(labels, false, CHECK_OK);
|
|
} else {
|
|
else_statement = factory()->NewEmptyStatement(RelocInfo::kNoPosition);
|
|
}
|
|
return factory()->NewIfStatement(
|
|
condition, then_statement, else_statement, pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseContinueStatement(bool* ok) {
|
|
// ContinueStatement ::
|
|
// 'continue' Identifier? ';'
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::CONTINUE, CHECK_OK);
|
|
const AstRawString* label = NULL;
|
|
Token::Value tok = peek();
|
|
if (!scanner()->HasAnyLineTerminatorBeforeNext() &&
|
|
tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) {
|
|
// ECMA allows "eval" or "arguments" as labels even in strict mode.
|
|
label = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK);
|
|
}
|
|
IterationStatement* target = LookupContinueTarget(label, CHECK_OK);
|
|
if (target == NULL) {
|
|
// Illegal continue statement.
|
|
MessageTemplate::Template message = MessageTemplate::kIllegalContinue;
|
|
if (label != NULL) {
|
|
message = MessageTemplate::kUnknownLabel;
|
|
}
|
|
ParserTraits::ReportMessage(message, label);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewContinueStatement(target, pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseBreakStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// BreakStatement ::
|
|
// 'break' Identifier? ';'
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::BREAK, CHECK_OK);
|
|
const AstRawString* label = NULL;
|
|
Token::Value tok = peek();
|
|
if (!scanner()->HasAnyLineTerminatorBeforeNext() &&
|
|
tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) {
|
|
// ECMA allows "eval" or "arguments" as labels even in strict mode.
|
|
label = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK);
|
|
}
|
|
// Parse labeled break statements that target themselves into
|
|
// empty statements, e.g. 'l1: l2: l3: break l2;'
|
|
if (label != NULL && ContainsLabel(labels, label)) {
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
BreakableStatement* target = NULL;
|
|
target = LookupBreakTarget(label, CHECK_OK);
|
|
if (target == NULL) {
|
|
// Illegal break statement.
|
|
MessageTemplate::Template message = MessageTemplate::kIllegalBreak;
|
|
if (label != NULL) {
|
|
message = MessageTemplate::kUnknownLabel;
|
|
}
|
|
ParserTraits::ReportMessage(message, label);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewBreakStatement(target, pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseReturnStatement(bool* ok) {
|
|
// ReturnStatement ::
|
|
// 'return' Expression? ';'
|
|
|
|
// Consume the return token. It is necessary to do that before
|
|
// reporting any errors on it, because of the way errors are
|
|
// reported (underlining).
|
|
Expect(Token::RETURN, CHECK_OK);
|
|
Scanner::Location loc = scanner()->location();
|
|
function_state_->set_return_location(loc);
|
|
|
|
Token::Value tok = peek();
|
|
Statement* result;
|
|
Expression* return_value;
|
|
if (scanner()->HasAnyLineTerminatorBeforeNext() ||
|
|
tok == Token::SEMICOLON ||
|
|
tok == Token::RBRACE ||
|
|
tok == Token::EOS) {
|
|
if (IsSubclassConstructor(function_state_->kind())) {
|
|
return_value = ThisExpression(scope_, factory(), loc.beg_pos);
|
|
} else {
|
|
return_value = GetLiteralUndefined(position());
|
|
}
|
|
} else {
|
|
int pos = peek_position();
|
|
return_value = ParseExpression(true, CHECK_OK);
|
|
|
|
if (IsSubclassConstructor(function_state_->kind())) {
|
|
// For subclass constructors we need to return this in case of undefined
|
|
// return a Smi (transformed into an exception in the ConstructStub)
|
|
// for a non object.
|
|
//
|
|
// return expr;
|
|
//
|
|
// Is rewritten as:
|
|
//
|
|
// return (temp = expr) === undefined ? this :
|
|
// %_IsJSReceiver(temp) ? temp : 1;
|
|
|
|
// temp = expr
|
|
Variable* temp = scope_->NewTemporary(
|
|
ast_value_factory()->empty_string());
|
|
Assignment* assign = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos);
|
|
|
|
// %_IsJSReceiver(temp)
|
|
ZoneList<Expression*>* is_spec_object_args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
is_spec_object_args->Add(factory()->NewVariableProxy(temp), zone());
|
|
Expression* is_spec_object_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
|
|
|
|
// %_IsJSReceiver(temp) ? temp : throw_expression
|
|
Expression* is_object_conditional = factory()->NewConditional(
|
|
is_spec_object_call, factory()->NewVariableProxy(temp),
|
|
factory()->NewSmiLiteral(1, pos), pos);
|
|
|
|
// temp === undefined
|
|
Expression* is_undefined = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, assign,
|
|
factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), pos);
|
|
|
|
// is_undefined ? this : is_object_conditional
|
|
return_value = factory()->NewConditional(
|
|
is_undefined, ThisExpression(scope_, factory(), pos),
|
|
is_object_conditional, pos);
|
|
}
|
|
|
|
// ES6 14.6.1 Static Semantics: IsInTailPosition
|
|
if (FLAG_harmony_tailcalls && !is_sloppy(language_mode())) {
|
|
function_state_->AddExpressionInTailPosition(return_value);
|
|
}
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
|
|
if (is_generator()) {
|
|
return_value = BuildIteratorResult(return_value, true);
|
|
}
|
|
|
|
result = factory()->NewReturnStatement(return_value, loc.beg_pos);
|
|
|
|
Scope* decl_scope = scope_->DeclarationScope();
|
|
if (decl_scope->is_script_scope() || decl_scope->is_eval_scope()) {
|
|
ReportMessageAt(loc, MessageTemplate::kIllegalReturn);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseWithStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// WithStatement ::
|
|
// 'with' '(' Expression ')' Statement
|
|
|
|
Expect(Token::WITH, CHECK_OK);
|
|
int pos = position();
|
|
|
|
if (is_strict(language_mode())) {
|
|
ReportMessage(MessageTemplate::kStrictWith);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
Expression* expr = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
Scope* with_scope = NewScope(scope_, WITH_SCOPE);
|
|
Statement* body;
|
|
{ BlockState block_state(&scope_, with_scope);
|
|
with_scope->set_start_position(scanner()->peek_location().beg_pos);
|
|
body = ParseScopedStatement(labels, true, CHECK_OK);
|
|
with_scope->set_end_position(scanner()->location().end_pos);
|
|
}
|
|
return factory()->NewWithStatement(with_scope, expr, body, pos);
|
|
}
|
|
|
|
|
|
CaseClause* Parser::ParseCaseClause(bool* default_seen_ptr, bool* ok) {
|
|
// CaseClause ::
|
|
// 'case' Expression ':' StatementList
|
|
// 'default' ':' StatementList
|
|
|
|
Expression* label = NULL; // NULL expression indicates default case
|
|
if (peek() == Token::CASE) {
|
|
Expect(Token::CASE, CHECK_OK);
|
|
label = ParseExpression(true, CHECK_OK);
|
|
} else {
|
|
Expect(Token::DEFAULT, CHECK_OK);
|
|
if (*default_seen_ptr) {
|
|
ReportMessage(MessageTemplate::kMultipleDefaultsInSwitch);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
*default_seen_ptr = true;
|
|
}
|
|
Expect(Token::COLON, CHECK_OK);
|
|
int pos = position();
|
|
ZoneList<Statement*>* statements =
|
|
new(zone()) ZoneList<Statement*>(5, zone());
|
|
Statement* stat = NULL;
|
|
while (peek() != Token::CASE &&
|
|
peek() != Token::DEFAULT &&
|
|
peek() != Token::RBRACE) {
|
|
stat = ParseStatementListItem(CHECK_OK);
|
|
statements->Add(stat, zone());
|
|
}
|
|
return factory()->NewCaseClause(label, statements, pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseSwitchStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// SwitchStatement ::
|
|
// 'switch' '(' Expression ')' '{' CaseClause* '}'
|
|
// In order to get the CaseClauses to execute in their own lexical scope,
|
|
// but without requiring downstream code to have special scope handling
|
|
// code for switch statements, desugar into blocks as follows:
|
|
// { // To group the statements--harmless to evaluate Expression in scope
|
|
// .tag_variable = Expression;
|
|
// { // To give CaseClauses a scope
|
|
// switch (.tag_variable) { CaseClause* }
|
|
// }
|
|
// }
|
|
|
|
Block* switch_block =
|
|
factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition);
|
|
int switch_pos = peek_position();
|
|
|
|
Expect(Token::SWITCH, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
Expression* tag = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
Variable* tag_variable =
|
|
scope_->NewTemporary(ast_value_factory()->dot_switch_tag_string());
|
|
Assignment* tag_assign = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag,
|
|
tag->position());
|
|
Statement* tag_statement =
|
|
factory()->NewExpressionStatement(tag_assign, RelocInfo::kNoPosition);
|
|
switch_block->statements()->Add(tag_statement, zone());
|
|
|
|
// make statement: undefined;
|
|
// This is needed so the tag isn't returned as the value, in case the switch
|
|
// statements don't have a value.
|
|
switch_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewUndefinedLiteral(RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition),
|
|
zone());
|
|
|
|
Block* cases_block =
|
|
factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition);
|
|
Scope* cases_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
cases_scope->SetNonlinear();
|
|
|
|
SwitchStatement* switch_statement =
|
|
factory()->NewSwitchStatement(labels, switch_pos);
|
|
|
|
cases_scope->set_start_position(scanner()->location().beg_pos);
|
|
{
|
|
BlockState cases_block_state(&scope_, cases_scope);
|
|
Target target(&this->target_stack_, switch_statement);
|
|
|
|
Expression* tag_read = factory()->NewVariableProxy(tag_variable);
|
|
|
|
bool default_seen = false;
|
|
ZoneList<CaseClause*>* cases =
|
|
new (zone()) ZoneList<CaseClause*>(4, zone());
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
while (peek() != Token::RBRACE) {
|
|
CaseClause* clause = ParseCaseClause(&default_seen, CHECK_OK);
|
|
cases->Add(clause, zone());
|
|
}
|
|
switch_statement->Initialize(tag_read, cases);
|
|
cases_block->statements()->Add(switch_statement, zone());
|
|
}
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
|
|
cases_scope->set_end_position(scanner()->location().end_pos);
|
|
cases_scope = cases_scope->FinalizeBlockScope();
|
|
cases_block->set_scope(cases_scope);
|
|
|
|
switch_block->statements()->Add(cases_block, zone());
|
|
|
|
return switch_block;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseThrowStatement(bool* ok) {
|
|
// ThrowStatement ::
|
|
// 'throw' Expression ';'
|
|
|
|
Expect(Token::THROW, CHECK_OK);
|
|
int pos = position();
|
|
if (scanner()->HasAnyLineTerminatorBeforeNext()) {
|
|
ReportMessage(MessageTemplate::kNewlineAfterThrow);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
Expression* exception = ParseExpression(true, CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
|
|
return factory()->NewExpressionStatement(
|
|
factory()->NewThrow(exception, pos), pos);
|
|
}
|
|
|
|
class Parser::DontCollectExpressionsInTailPositionScope {
|
|
public:
|
|
DontCollectExpressionsInTailPositionScope(
|
|
Parser::FunctionState* function_state)
|
|
: function_state_(function_state),
|
|
old_value_(function_state->collect_expressions_in_tail_position()) {
|
|
function_state->set_collect_expressions_in_tail_position(false);
|
|
}
|
|
~DontCollectExpressionsInTailPositionScope() {
|
|
function_state_->set_collect_expressions_in_tail_position(old_value_);
|
|
}
|
|
|
|
private:
|
|
Parser::FunctionState* function_state_;
|
|
bool old_value_;
|
|
};
|
|
|
|
// Collects all return expressions at tail call position in this scope
|
|
// to a separate list.
|
|
class Parser::CollectExpressionsInTailPositionToListScope {
|
|
public:
|
|
CollectExpressionsInTailPositionToListScope(
|
|
Parser::FunctionState* function_state, List<Expression*>* list)
|
|
: function_state_(function_state), list_(list) {
|
|
function_state->expressions_in_tail_position().Swap(list_);
|
|
}
|
|
~CollectExpressionsInTailPositionToListScope() {
|
|
function_state_->expressions_in_tail_position().Swap(list_);
|
|
}
|
|
|
|
private:
|
|
Parser::FunctionState* function_state_;
|
|
List<Expression*>* list_;
|
|
};
|
|
|
|
TryStatement* Parser::ParseTryStatement(bool* ok) {
|
|
// TryStatement ::
|
|
// 'try' Block Catch
|
|
// 'try' Block Finally
|
|
// 'try' Block Catch Finally
|
|
//
|
|
// Catch ::
|
|
// 'catch' '(' Identifier ')' Block
|
|
//
|
|
// Finally ::
|
|
// 'finally' Block
|
|
|
|
Expect(Token::TRY, CHECK_OK);
|
|
int pos = position();
|
|
|
|
Block* try_block;
|
|
{
|
|
DontCollectExpressionsInTailPositionScope no_tail_calls(function_state_);
|
|
try_block = ParseBlock(NULL, CHECK_OK);
|
|
}
|
|
|
|
Token::Value tok = peek();
|
|
if (tok != Token::CATCH && tok != Token::FINALLY) {
|
|
ReportMessage(MessageTemplate::kNoCatchOrFinally);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
Scope* catch_scope = NULL;
|
|
Variable* catch_variable = NULL;
|
|
Block* catch_block = NULL;
|
|
List<Expression*> expressions_in_tail_position_in_catch_block;
|
|
if (tok == Token::CATCH) {
|
|
Consume(Token::CATCH);
|
|
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
catch_scope = NewScope(scope_, CATCH_SCOPE);
|
|
catch_scope->set_start_position(scanner()->location().beg_pos);
|
|
|
|
ExpressionClassifier pattern_classifier(this);
|
|
Expression* pattern = ParsePrimaryExpression(&pattern_classifier, CHECK_OK);
|
|
ValidateBindingPattern(&pattern_classifier, CHECK_OK);
|
|
|
|
const AstRawString* name = ast_value_factory()->dot_catch_string();
|
|
bool is_simple = pattern->IsVariableProxy();
|
|
if (is_simple) {
|
|
auto proxy = pattern->AsVariableProxy();
|
|
scope_->RemoveUnresolved(proxy);
|
|
name = proxy->raw_name();
|
|
}
|
|
|
|
catch_variable = catch_scope->DeclareLocal(name, VAR, kCreatedInitialized,
|
|
Variable::NORMAL);
|
|
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
{
|
|
CollectExpressionsInTailPositionToListScope
|
|
collect_expressions_in_tail_position_scope(
|
|
function_state_, &expressions_in_tail_position_in_catch_block);
|
|
BlockState block_state(&scope_, catch_scope);
|
|
|
|
// TODO(adamk): Make a version of ParseBlock that takes a scope and
|
|
// a block.
|
|
catch_block =
|
|
factory()->NewBlock(nullptr, 16, false, RelocInfo::kNoPosition);
|
|
Scope* block_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
|
|
block_scope->set_start_position(scanner()->location().beg_pos);
|
|
{
|
|
BlockState block_state(&scope_, block_scope);
|
|
Target target(&this->target_stack_, catch_block);
|
|
|
|
if (!is_simple) {
|
|
DeclarationDescriptor descriptor;
|
|
descriptor.declaration_kind = DeclarationDescriptor::NORMAL;
|
|
descriptor.parser = this;
|
|
descriptor.scope = scope_;
|
|
descriptor.hoist_scope = nullptr;
|
|
descriptor.mode = LET;
|
|
descriptor.declaration_pos = pattern->position();
|
|
descriptor.initialization_pos = pattern->position();
|
|
|
|
DeclarationParsingResult::Declaration decl(
|
|
pattern, pattern->position(),
|
|
factory()->NewVariableProxy(catch_variable));
|
|
|
|
Block* init_block =
|
|
factory()->NewBlock(nullptr, 8, true, RelocInfo::kNoPosition);
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
init_block, &descriptor, &decl, nullptr, CHECK_OK);
|
|
catch_block->statements()->Add(init_block, zone());
|
|
}
|
|
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
while (peek() != Token::RBRACE) {
|
|
Statement* stat = ParseStatementListItem(CHECK_OK);
|
|
if (stat && !stat->IsEmpty()) {
|
|
catch_block->statements()->Add(stat, zone());
|
|
}
|
|
}
|
|
Consume(Token::RBRACE);
|
|
}
|
|
block_scope->set_end_position(scanner()->location().end_pos);
|
|
block_scope = block_scope->FinalizeBlockScope();
|
|
catch_block->set_scope(block_scope);
|
|
}
|
|
|
|
catch_scope->set_end_position(scanner()->location().end_pos);
|
|
tok = peek();
|
|
}
|
|
|
|
Block* finally_block = NULL;
|
|
DCHECK(tok == Token::FINALLY || catch_block != NULL);
|
|
if (tok == Token::FINALLY) {
|
|
Consume(Token::FINALLY);
|
|
finally_block = ParseBlock(NULL, CHECK_OK);
|
|
}
|
|
|
|
// Simplify the AST nodes by converting:
|
|
// 'try B0 catch B1 finally B2'
|
|
// to:
|
|
// 'try { try B0 catch B1 } finally B2'
|
|
|
|
if (catch_block != NULL && finally_block != NULL) {
|
|
// If we have both, create an inner try/catch.
|
|
DCHECK(catch_scope != NULL && catch_variable != NULL);
|
|
TryCatchStatement* statement =
|
|
factory()->NewTryCatchStatement(try_block, catch_scope, catch_variable,
|
|
catch_block, RelocInfo::kNoPosition);
|
|
try_block = factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition);
|
|
try_block->statements()->Add(statement, zone());
|
|
catch_block = NULL; // Clear to indicate it's been handled.
|
|
}
|
|
|
|
TryStatement* result = NULL;
|
|
if (catch_block != NULL) {
|
|
// For a try-catch construct append return expressions from the catch block
|
|
// to the list of return expressions.
|
|
function_state_->expressions_in_tail_position().AddAll(
|
|
expressions_in_tail_position_in_catch_block);
|
|
|
|
DCHECK(finally_block == NULL);
|
|
DCHECK(catch_scope != NULL && catch_variable != NULL);
|
|
result = factory()->NewTryCatchStatement(try_block, catch_scope,
|
|
catch_variable, catch_block, pos);
|
|
} else {
|
|
DCHECK(finally_block != NULL);
|
|
result = factory()->NewTryFinallyStatement(try_block, finally_block, pos);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
DoWhileStatement* Parser::ParseDoWhileStatement(
|
|
ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
// DoStatement ::
|
|
// 'do' Statement 'while' '(' Expression ')' ';'
|
|
|
|
DoWhileStatement* loop =
|
|
factory()->NewDoWhileStatement(labels, peek_position());
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
Expect(Token::DO, CHECK_OK);
|
|
Statement* body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
Expect(Token::WHILE, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
|
|
Expression* cond = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
// Allow do-statements to be terminated with and without
|
|
// semi-colons. This allows code such as 'do;while(0)return' to
|
|
// parse, which would not be the case if we had used the
|
|
// ExpectSemicolon() functionality here.
|
|
if (peek() == Token::SEMICOLON) Consume(Token::SEMICOLON);
|
|
|
|
if (loop != NULL) loop->Initialize(cond, body);
|
|
return loop;
|
|
}
|
|
|
|
|
|
WhileStatement* Parser::ParseWhileStatement(
|
|
ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
// WhileStatement ::
|
|
// 'while' '(' Expression ')' Statement
|
|
|
|
WhileStatement* loop = factory()->NewWhileStatement(labels, peek_position());
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
Expect(Token::WHILE, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
Expression* cond = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
Statement* body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
|
|
if (loop != NULL) loop->Initialize(cond, body);
|
|
return loop;
|
|
}
|
|
|
|
|
|
// !%_IsJSReceiver(result = iterator.next()) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* Parser::BuildIteratorNextResult(Expression* iterator,
|
|
Variable* result, int pos) {
|
|
Expression* next_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->next_string(), RelocInfo::kNoPosition);
|
|
Expression* next_property =
|
|
factory()->NewProperty(iterator, next_literal, RelocInfo::kNoPosition);
|
|
ZoneList<Expression*>* next_arguments =
|
|
new (zone()) ZoneList<Expression*>(0, zone());
|
|
Expression* next_call =
|
|
factory()->NewCall(next_property, next_arguments, pos);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
Expression* left =
|
|
factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos);
|
|
|
|
// %_IsJSReceiver(...)
|
|
ZoneList<Expression*>* is_spec_object_args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
is_spec_object_args->Add(left, zone());
|
|
Expression* is_spec_object_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
|
|
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* result_proxy_again = factory()->NewVariableProxy(result);
|
|
ZoneList<Expression*>* throw_arguments =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
throw_arguments->Add(result_proxy_again, zone());
|
|
Expression* throw_call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos);
|
|
|
|
return factory()->NewBinaryOperation(
|
|
Token::AND,
|
|
factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos),
|
|
throw_call, pos);
|
|
}
|
|
|
|
void Parser::InitializeForEachStatement(ForEachStatement* stmt,
|
|
Expression* each, Expression* subject,
|
|
Statement* body) {
|
|
ForOfStatement* for_of = stmt->AsForOfStatement();
|
|
if (for_of != NULL) {
|
|
InitializeForOfStatement(for_of, each, subject, body,
|
|
RelocInfo::kNoPosition);
|
|
} else {
|
|
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
|
|
Variable* temp =
|
|
scope_->NewTemporary(ast_value_factory()->empty_string());
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
|
|
Expression* assign_each = PatternRewriter::RewriteDestructuringAssignment(
|
|
this, factory()->NewAssignment(Token::ASSIGN, each, temp_proxy,
|
|
RelocInfo::kNoPosition),
|
|
scope_);
|
|
auto block =
|
|
factory()->NewBlock(nullptr, 2, false, RelocInfo::kNoPosition);
|
|
block->statements()->Add(factory()->NewExpressionStatement(
|
|
assign_each, RelocInfo::kNoPosition),
|
|
zone());
|
|
block->statements()->Add(body, zone());
|
|
body = block;
|
|
each = factory()->NewVariableProxy(temp);
|
|
}
|
|
stmt->Initialize(each, subject, body);
|
|
}
|
|
}
|
|
|
|
void Parser::InitializeForOfStatement(ForOfStatement* for_of, Expression* each,
|
|
Expression* iterable, Statement* body,
|
|
int iterable_pos) {
|
|
Variable* iterator =
|
|
scope_->NewTemporary(ast_value_factory()->dot_iterator_string());
|
|
Variable* result =
|
|
scope_->NewTemporary(ast_value_factory()->dot_result_string());
|
|
|
|
Expression* assign_iterator;
|
|
Expression* next_result;
|
|
Expression* result_done;
|
|
Expression* assign_each;
|
|
|
|
// Hackily disambiguate o from o.next and o [Symbol.iterator]().
|
|
// TODO(verwaest): Come up with a better solution.
|
|
int get_iterator_pos = iterable_pos != RelocInfo::kNoPosition
|
|
? iterable_pos
|
|
: iterable->position() - 2;
|
|
int next_result_pos = iterable_pos != RelocInfo::kNoPosition
|
|
? iterable_pos
|
|
: iterable->position() - 1;
|
|
|
|
// iterator = iterable[Symbol.iterator]()
|
|
assign_iterator = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(iterator),
|
|
GetIterator(iterable, factory(), get_iterator_pos), iterable->position());
|
|
|
|
// !%_IsJSReceiver(result = iterator.next()) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
{
|
|
// result = iterator.next()
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
next_result =
|
|
BuildIteratorNextResult(iterator_proxy, result, next_result_pos);
|
|
}
|
|
|
|
// result.done
|
|
{
|
|
Expression* done_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->done_string(), RelocInfo::kNoPosition);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
result_done = factory()->NewProperty(result_proxy, done_literal,
|
|
RelocInfo::kNoPosition);
|
|
}
|
|
|
|
// each = result.value
|
|
{
|
|
Expression* value_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->value_string(), RelocInfo::kNoPosition);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
Expression* result_value = factory()->NewProperty(
|
|
result_proxy, value_literal, RelocInfo::kNoPosition);
|
|
assign_each = factory()->NewAssignment(Token::ASSIGN, each, result_value,
|
|
RelocInfo::kNoPosition);
|
|
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
|
|
assign_each = PatternRewriter::RewriteDestructuringAssignment(
|
|
this, assign_each->AsAssignment(), scope_);
|
|
}
|
|
}
|
|
|
|
for_of->Initialize(each, iterable, body, iterator, assign_iterator,
|
|
next_result, result_done, assign_each);
|
|
}
|
|
|
|
Statement* Parser::DesugarLexicalBindingsInForStatement(
|
|
Scope* inner_scope, VariableMode mode, ZoneList<const AstRawString*>* names,
|
|
ForStatement* loop, Statement* init, Expression* cond, Statement* next,
|
|
Statement* body, bool* ok) {
|
|
// ES6 13.7.4.8 specifies that on each loop iteration the let variables are
|
|
// copied into a new environment. Moreover, the "next" statement must be
|
|
// evaluated not in the environment of the just completed iteration but in
|
|
// that of the upcoming one. We achieve this with the following desugaring.
|
|
// Extra care is needed to preserve the completion value of the original loop.
|
|
//
|
|
// We are given a for statement of the form
|
|
//
|
|
// labels: for (let/const x = i; cond; next) body
|
|
//
|
|
// and rewrite it as follows. Here we write {{ ... }} for init-blocks, ie.,
|
|
// blocks whose ignore_completion_value_ flag is set.
|
|
//
|
|
// {
|
|
// let/const x = i;
|
|
// temp_x = x;
|
|
// first = 1;
|
|
// undefined;
|
|
// outer: for (;;) {
|
|
// let/const x = temp_x;
|
|
// {{ if (first == 1) {
|
|
// first = 0;
|
|
// } else {
|
|
// next;
|
|
// }
|
|
// flag = 1;
|
|
// if (!cond) break;
|
|
// }}
|
|
// labels: for (; flag == 1; flag = 0, temp_x = x) {
|
|
// body
|
|
// }
|
|
// {{ if (flag == 1) // Body used break.
|
|
// break;
|
|
// }}
|
|
// }
|
|
// }
|
|
|
|
DCHECK(names->length() > 0);
|
|
ZoneList<Variable*> temps(names->length(), zone());
|
|
|
|
Block* outer_block = factory()->NewBlock(NULL, names->length() + 4, false,
|
|
RelocInfo::kNoPosition);
|
|
|
|
// Add statement: let/const x = i.
|
|
outer_block->statements()->Add(init, zone());
|
|
|
|
const AstRawString* temp_name = ast_value_factory()->dot_for_string();
|
|
|
|
// For each lexical variable x:
|
|
// make statement: temp_x = x.
|
|
for (int i = 0; i < names->length(); i++) {
|
|
VariableProxy* proxy = NewUnresolved(names->at(i), LET);
|
|
Variable* temp = scope_->NewTemporary(temp_name);
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, temp_proxy, proxy, RelocInfo::kNoPosition);
|
|
Statement* assignment_statement = factory()->NewExpressionStatement(
|
|
assignment, RelocInfo::kNoPosition);
|
|
outer_block->statements()->Add(assignment_statement, zone());
|
|
temps.Add(temp, zone());
|
|
}
|
|
|
|
Variable* first = NULL;
|
|
// Make statement: first = 1.
|
|
if (next) {
|
|
first = scope_->NewTemporary(temp_name);
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, first_proxy, const1, RelocInfo::kNoPosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition);
|
|
outer_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// make statement: undefined;
|
|
outer_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewUndefinedLiteral(RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition),
|
|
zone());
|
|
|
|
// Make statement: outer: for (;;)
|
|
// Note that we don't actually create the label, or set this loop up as an
|
|
// explicit break target, instead handing it directly to those nodes that
|
|
// need to know about it. This should be safe because we don't run any code
|
|
// in this function that looks up break targets.
|
|
ForStatement* outer_loop =
|
|
factory()->NewForStatement(NULL, RelocInfo::kNoPosition);
|
|
outer_block->statements()->Add(outer_loop, zone());
|
|
outer_block->set_scope(scope_);
|
|
|
|
Block* inner_block =
|
|
factory()->NewBlock(NULL, 3, false, RelocInfo::kNoPosition);
|
|
{
|
|
BlockState block_state(&scope_, inner_scope);
|
|
|
|
Block* ignore_completion_block = factory()->NewBlock(
|
|
NULL, names->length() + 3, true, RelocInfo::kNoPosition);
|
|
ZoneList<Variable*> inner_vars(names->length(), zone());
|
|
// For each let variable x:
|
|
// make statement: let/const x = temp_x.
|
|
for (int i = 0; i < names->length(); i++) {
|
|
VariableProxy* proxy = NewUnresolved(names->at(i), mode);
|
|
Declaration* declaration = factory()->NewVariableDeclaration(
|
|
proxy, mode, scope_, RelocInfo::kNoPosition);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK);
|
|
inner_vars.Add(declaration->proxy()->var(), zone());
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, proxy, temp_proxy, RelocInfo::kNoPosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition);
|
|
DCHECK(init->position() != RelocInfo::kNoPosition);
|
|
proxy->var()->set_initializer_position(init->position());
|
|
ignore_completion_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// Make statement: if (first == 1) { first = 0; } else { next; }
|
|
if (next) {
|
|
DCHECK(first);
|
|
Expression* compare = NULL;
|
|
// Make compare expression: first == 1.
|
|
{
|
|
Expression* const1 =
|
|
factory()->NewSmiLiteral(1, RelocInfo::kNoPosition);
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1,
|
|
RelocInfo::kNoPosition);
|
|
}
|
|
Statement* clear_first = NULL;
|
|
// Make statement: first = 0.
|
|
{
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
Expression* const0 =
|
|
factory()->NewSmiLiteral(0, RelocInfo::kNoPosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, first_proxy, const0, RelocInfo::kNoPosition);
|
|
clear_first = factory()->NewExpressionStatement(assignment,
|
|
RelocInfo::kNoPosition);
|
|
}
|
|
Statement* clear_first_or_next = factory()->NewIfStatement(
|
|
compare, clear_first, next, RelocInfo::kNoPosition);
|
|
ignore_completion_block->statements()->Add(clear_first_or_next, zone());
|
|
}
|
|
|
|
Variable* flag = scope_->NewTemporary(temp_name);
|
|
// Make statement: flag = 1.
|
|
{
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, flag_proxy, const1, RelocInfo::kNoPosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition);
|
|
ignore_completion_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// Make statement: if (!cond) break.
|
|
if (cond) {
|
|
Statement* stop =
|
|
factory()->NewBreakStatement(outer_loop, RelocInfo::kNoPosition);
|
|
Statement* noop = factory()->NewEmptyStatement(RelocInfo::kNoPosition);
|
|
ignore_completion_block->statements()->Add(
|
|
factory()->NewIfStatement(cond, noop, stop, cond->position()),
|
|
zone());
|
|
}
|
|
|
|
inner_block->statements()->Add(ignore_completion_block, zone());
|
|
// Make cond expression for main loop: flag == 1.
|
|
Expression* flag_cond = NULL;
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition);
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
|
|
RelocInfo::kNoPosition);
|
|
}
|
|
|
|
// Create chain of expressions "flag = 0, temp_x = x, ..."
|
|
Statement* compound_next_statement = NULL;
|
|
{
|
|
Expression* compound_next = NULL;
|
|
// Make expression: flag = 0.
|
|
{
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
Expression* const0 =
|
|
factory()->NewSmiLiteral(0, RelocInfo::kNoPosition);
|
|
compound_next = factory()->NewAssignment(
|
|
Token::ASSIGN, flag_proxy, const0, RelocInfo::kNoPosition);
|
|
}
|
|
|
|
// Make the comma-separated list of temp_x = x assignments.
|
|
int inner_var_proxy_pos = scanner()->location().beg_pos;
|
|
for (int i = 0; i < names->length(); i++) {
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
|
|
VariableProxy* proxy =
|
|
factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, temp_proxy, proxy, RelocInfo::kNoPosition);
|
|
compound_next = factory()->NewBinaryOperation(
|
|
Token::COMMA, compound_next, assignment, RelocInfo::kNoPosition);
|
|
}
|
|
|
|
compound_next_statement = factory()->NewExpressionStatement(
|
|
compound_next, RelocInfo::kNoPosition);
|
|
}
|
|
|
|
// Make statement: labels: for (; flag == 1; flag = 0, temp_x = x)
|
|
// Note that we re-use the original loop node, which retains its labels
|
|
// and ensures that any break or continue statements in body point to
|
|
// the right place.
|
|
loop->Initialize(NULL, flag_cond, compound_next_statement, body);
|
|
inner_block->statements()->Add(loop, zone());
|
|
|
|
// Make statement: {{if (flag == 1) break;}}
|
|
{
|
|
Expression* compare = NULL;
|
|
// Make compare expresion: flag == 1.
|
|
{
|
|
Expression* const1 =
|
|
factory()->NewSmiLiteral(1, RelocInfo::kNoPosition);
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
|
|
RelocInfo::kNoPosition);
|
|
}
|
|
Statement* stop =
|
|
factory()->NewBreakStatement(outer_loop, RelocInfo::kNoPosition);
|
|
Statement* empty = factory()->NewEmptyStatement(RelocInfo::kNoPosition);
|
|
Statement* if_flag_break = factory()->NewIfStatement(
|
|
compare, stop, empty, RelocInfo::kNoPosition);
|
|
Block* ignore_completion_block =
|
|
factory()->NewBlock(NULL, 1, true, RelocInfo::kNoPosition);
|
|
ignore_completion_block->statements()->Add(if_flag_break, zone());
|
|
inner_block->statements()->Add(ignore_completion_block, zone());
|
|
}
|
|
|
|
inner_scope->set_end_position(scanner()->location().end_pos);
|
|
inner_block->set_scope(inner_scope);
|
|
}
|
|
|
|
outer_loop->Initialize(NULL, NULL, NULL, inner_block);
|
|
return outer_block;
|
|
}
|
|
|
|
Statement* Parser::ParseScopedStatement(ZoneList<const AstRawString*>* labels,
|
|
bool legacy, bool* ok) {
|
|
if (is_strict(language_mode()) || peek() != Token::FUNCTION ||
|
|
(legacy && allow_harmony_restrictive_declarations())) {
|
|
return ParseSubStatement(labels, ok);
|
|
} else {
|
|
if (legacy) {
|
|
++use_counts_[v8::Isolate::kLegacyFunctionDeclaration];
|
|
}
|
|
// Make a block around the statement for a lexical binding
|
|
// is introduced by a FunctionDeclaration.
|
|
Scope* body_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
BlockState block_state(&scope_, body_scope);
|
|
Block* block = factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition);
|
|
Statement* body = ParseFunctionDeclaration(NULL, CHECK_OK);
|
|
block->statements()->Add(body, zone());
|
|
body_scope->set_end_position(scanner()->location().end_pos);
|
|
body_scope = body_scope->FinalizeBlockScope();
|
|
block->set_scope(body_scope);
|
|
return block;
|
|
}
|
|
}
|
|
|
|
Statement* Parser::ParseForStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
int stmt_pos = peek_position();
|
|
Statement* init = NULL;
|
|
ZoneList<const AstRawString*> lexical_bindings(1, zone());
|
|
|
|
// Create an in-between scope for let-bound iteration variables.
|
|
Scope* for_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
|
|
BlockState block_state(&scope_, for_scope);
|
|
Expect(Token::FOR, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
for_scope->set_start_position(scanner()->location().beg_pos);
|
|
bool is_let_identifier_expression = false;
|
|
DeclarationParsingResult parsing_result;
|
|
if (peek() != Token::SEMICOLON) {
|
|
if (peek() == Token::VAR || (peek() == Token::CONST && allow_const()) ||
|
|
(peek() == Token::LET && IsNextLetKeyword())) {
|
|
ParseVariableDeclarations(kForStatement, &parsing_result, nullptr,
|
|
CHECK_OK);
|
|
|
|
ForEachStatement::VisitMode mode = ForEachStatement::ENUMERATE;
|
|
int each_beg_pos = scanner()->location().beg_pos;
|
|
int each_end_pos = scanner()->location().end_pos;
|
|
|
|
if (CheckInOrOf(&mode, ok)) {
|
|
if (!*ok) return nullptr;
|
|
if (parsing_result.declarations.length() != 1) {
|
|
ParserTraits::ReportMessageAt(
|
|
parsing_result.bindings_loc,
|
|
MessageTemplate::kForInOfLoopMultiBindings,
|
|
ForEachStatement::VisitModeString(mode));
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
DeclarationParsingResult::Declaration& decl =
|
|
parsing_result.declarations[0];
|
|
if (parsing_result.first_initializer_loc.IsValid() &&
|
|
(is_strict(language_mode()) || mode == ForEachStatement::ITERATE ||
|
|
IsLexicalVariableMode(parsing_result.descriptor.mode) ||
|
|
!decl.pattern->IsVariableProxy())) {
|
|
ParserTraits::ReportMessageAt(
|
|
parsing_result.first_initializer_loc,
|
|
MessageTemplate::kForInOfLoopInitializer,
|
|
ForEachStatement::VisitModeString(mode));
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
|
|
Block* init_block = nullptr;
|
|
|
|
// special case for legacy for (var/const x =.... in)
|
|
if (!IsLexicalVariableMode(parsing_result.descriptor.mode) &&
|
|
decl.pattern->IsVariableProxy() && decl.initializer != nullptr) {
|
|
++use_counts_[v8::Isolate::kForInInitializer];
|
|
const AstRawString* name =
|
|
decl.pattern->AsVariableProxy()->raw_name();
|
|
VariableProxy* single_var = scope_->NewUnresolved(
|
|
factory(), name, Variable::NORMAL, each_beg_pos, each_end_pos);
|
|
init_block = factory()->NewBlock(
|
|
nullptr, 2, true, parsing_result.descriptor.declaration_pos);
|
|
init_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::ASSIGN, single_var,
|
|
decl.initializer,
|
|
RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition),
|
|
zone());
|
|
}
|
|
|
|
// Rewrite a for-in/of statement of the form
|
|
//
|
|
// for (let/const/var x in/of e) b
|
|
//
|
|
// into
|
|
//
|
|
// {
|
|
// <let x' be a temporary variable>
|
|
// for (x' in/of e) {
|
|
// let/const/var x;
|
|
// x = x';
|
|
// b;
|
|
// }
|
|
// let x; // for TDZ
|
|
// }
|
|
|
|
Variable* temp =
|
|
scope_->NewTemporary(ast_value_factory()->dot_for_string());
|
|
ForEachStatement* loop =
|
|
factory()->NewForEachStatement(mode, labels, stmt_pos);
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
Expression* enumerable;
|
|
if (mode == ForEachStatement::ITERATE) {
|
|
ExpressionClassifier classifier(this);
|
|
enumerable = ParseAssignmentExpression(true, &classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
} else {
|
|
enumerable = ParseExpression(true, CHECK_OK);
|
|
}
|
|
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
Scope* body_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
body_scope->set_start_position(scanner()->location().beg_pos);
|
|
|
|
Block* body_block =
|
|
factory()->NewBlock(NULL, 3, false, RelocInfo::kNoPosition);
|
|
|
|
{
|
|
BlockState block_state(&scope_, body_scope);
|
|
|
|
Statement* body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
|
|
auto each_initialization_block =
|
|
factory()->NewBlock(nullptr, 1, true, RelocInfo::kNoPosition);
|
|
{
|
|
auto descriptor = parsing_result.descriptor;
|
|
descriptor.declaration_pos = RelocInfo::kNoPosition;
|
|
descriptor.initialization_pos = RelocInfo::kNoPosition;
|
|
decl.initializer = factory()->NewVariableProxy(temp);
|
|
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
each_initialization_block, &descriptor, &decl,
|
|
IsLexicalVariableMode(descriptor.mode) ? &lexical_bindings
|
|
: nullptr,
|
|
CHECK_OK);
|
|
}
|
|
|
|
body_block->statements()->Add(each_initialization_block, zone());
|
|
body_block->statements()->Add(body, zone());
|
|
VariableProxy* temp_proxy =
|
|
factory()->NewVariableProxy(temp, each_beg_pos, each_end_pos);
|
|
InitializeForEachStatement(loop, temp_proxy, enumerable, body_block);
|
|
}
|
|
body_scope->set_end_position(scanner()->location().end_pos);
|
|
body_scope = body_scope->FinalizeBlockScope();
|
|
body_block->set_scope(body_scope);
|
|
|
|
// Create a TDZ for any lexically-bound names.
|
|
if (IsLexicalVariableMode(parsing_result.descriptor.mode)) {
|
|
DCHECK_NULL(init_block);
|
|
|
|
init_block =
|
|
factory()->NewBlock(nullptr, 1, false, RelocInfo::kNoPosition);
|
|
|
|
for (int i = 0; i < lexical_bindings.length(); ++i) {
|
|
// TODO(adamk): This needs to be some sort of special
|
|
// INTERNAL variable that's invisible to the debugger
|
|
// but visible to everything else.
|
|
VariableProxy* tdz_proxy =
|
|
NewUnresolved(lexical_bindings[i], LET);
|
|
Declaration* tdz_decl = factory()->NewVariableDeclaration(
|
|
tdz_proxy, LET, scope_, RelocInfo::kNoPosition);
|
|
Variable* tdz_var = Declare(
|
|
tdz_decl, DeclarationDescriptor::NORMAL, true, CHECK_OK);
|
|
tdz_var->set_initializer_position(position());
|
|
}
|
|
}
|
|
|
|
Statement* final_loop = loop->IsForOfStatement()
|
|
? FinalizeForOfStatement(
|
|
loop->AsForOfStatement(), RelocInfo::kNoPosition)
|
|
: loop;
|
|
|
|
for_scope->set_end_position(scanner()->location().end_pos);
|
|
for_scope = for_scope->FinalizeBlockScope();
|
|
// Parsed for-in loop w/ variable declarations.
|
|
if (init_block != nullptr) {
|
|
init_block->statements()->Add(final_loop, zone());
|
|
init_block->set_scope(for_scope);
|
|
return init_block;
|
|
} else {
|
|
DCHECK_NULL(for_scope);
|
|
return final_loop;
|
|
}
|
|
} else {
|
|
init = parsing_result.BuildInitializationBlock(
|
|
IsLexicalVariableMode(parsing_result.descriptor.mode)
|
|
? &lexical_bindings
|
|
: nullptr,
|
|
CHECK_OK);
|
|
}
|
|
} else {
|
|
int lhs_beg_pos = peek_position();
|
|
ExpressionClassifier classifier(this);
|
|
Expression* expression = ParseExpression(false, &classifier, CHECK_OK);
|
|
int lhs_end_pos = scanner()->location().end_pos;
|
|
ForEachStatement::VisitMode mode = ForEachStatement::ENUMERATE;
|
|
is_let_identifier_expression =
|
|
expression->IsVariableProxy() &&
|
|
expression->AsVariableProxy()->raw_name() ==
|
|
ast_value_factory()->let_string();
|
|
|
|
bool is_for_each = CheckInOrOf(&mode, ok);
|
|
if (!*ok) return nullptr;
|
|
bool is_destructuring = is_for_each && (expression->IsArrayLiteral() ||
|
|
expression->IsObjectLiteral());
|
|
|
|
if (is_destructuring) {
|
|
ValidateAssignmentPattern(&classifier, CHECK_OK);
|
|
} else {
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
}
|
|
|
|
if (is_for_each) {
|
|
if (!is_destructuring) {
|
|
expression = this->CheckAndRewriteReferenceExpression(
|
|
expression, lhs_beg_pos, lhs_end_pos,
|
|
MessageTemplate::kInvalidLhsInFor, kSyntaxError, CHECK_OK);
|
|
}
|
|
|
|
ForEachStatement* loop =
|
|
factory()->NewForEachStatement(mode, labels, stmt_pos);
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
Expression* enumerable;
|
|
if (mode == ForEachStatement::ITERATE) {
|
|
ExpressionClassifier classifier(this);
|
|
enumerable = ParseAssignmentExpression(true, &classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
} else {
|
|
enumerable = ParseExpression(true, CHECK_OK);
|
|
}
|
|
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
// For legacy compat reasons, give for loops similar treatment to
|
|
// if statements in allowing a function declaration for a body
|
|
Statement* body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
InitializeForEachStatement(loop, expression, enumerable, body);
|
|
|
|
Statement* final_loop = loop->IsForOfStatement()
|
|
? FinalizeForOfStatement(
|
|
loop->AsForOfStatement(), RelocInfo::kNoPosition)
|
|
: loop;
|
|
|
|
for_scope->set_end_position(scanner()->location().end_pos);
|
|
for_scope = for_scope->FinalizeBlockScope();
|
|
DCHECK(for_scope == nullptr);
|
|
return final_loop;
|
|
|
|
} else {
|
|
init = factory()->NewExpressionStatement(expression, lhs_beg_pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Standard 'for' loop
|
|
ForStatement* loop = factory()->NewForStatement(labels, stmt_pos);
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
// Parsed initializer at this point.
|
|
// Detect attempts at 'let' declarations in sloppy mode.
|
|
if (!allow_harmony_sloppy_let() && peek() == Token::IDENTIFIER &&
|
|
is_sloppy(language_mode()) && is_let_identifier_expression) {
|
|
ReportMessage(MessageTemplate::kSloppyLexical, NULL);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
Expect(Token::SEMICOLON, CHECK_OK);
|
|
|
|
Expression* cond = NULL;
|
|
Statement* next = NULL;
|
|
Statement* body = NULL;
|
|
|
|
// If there are let bindings, then condition and the next statement of the
|
|
// for loop must be parsed in a new scope.
|
|
Scope* inner_scope = scope_;
|
|
if (lexical_bindings.length() > 0) {
|
|
inner_scope = NewScope(for_scope, BLOCK_SCOPE);
|
|
inner_scope->set_start_position(scanner()->location().beg_pos);
|
|
}
|
|
{
|
|
BlockState block_state(&scope_, inner_scope);
|
|
|
|
if (peek() != Token::SEMICOLON) {
|
|
cond = ParseExpression(true, CHECK_OK);
|
|
}
|
|
Expect(Token::SEMICOLON, CHECK_OK);
|
|
|
|
if (peek() != Token::RPAREN) {
|
|
Expression* exp = ParseExpression(true, CHECK_OK);
|
|
next = factory()->NewExpressionStatement(exp, exp->position());
|
|
}
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
}
|
|
|
|
Statement* result = NULL;
|
|
if (lexical_bindings.length() > 0) {
|
|
BlockState block_state(&scope_, for_scope);
|
|
result = DesugarLexicalBindingsInForStatement(
|
|
inner_scope, parsing_result.descriptor.mode, &lexical_bindings, loop,
|
|
init, cond, next, body, CHECK_OK);
|
|
for_scope->set_end_position(scanner()->location().end_pos);
|
|
} else {
|
|
for_scope->set_end_position(scanner()->location().end_pos);
|
|
for_scope = for_scope->FinalizeBlockScope();
|
|
if (for_scope) {
|
|
// Rewrite a for statement of the form
|
|
// for (const x = i; c; n) b
|
|
//
|
|
// into
|
|
//
|
|
// {
|
|
// const x = i;
|
|
// for (; c; n) b
|
|
// }
|
|
//
|
|
// or, desugar
|
|
// for (; c; n) b
|
|
// into
|
|
// {
|
|
// for (; c; n) b
|
|
// }
|
|
// just in case b introduces a lexical binding some other way, e.g., if b
|
|
// is a FunctionDeclaration.
|
|
Block* block =
|
|
factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition);
|
|
if (init != nullptr) {
|
|
block->statements()->Add(init, zone());
|
|
}
|
|
block->statements()->Add(loop, zone());
|
|
block->set_scope(for_scope);
|
|
loop->Initialize(NULL, cond, next, body);
|
|
result = block;
|
|
} else {
|
|
loop->Initialize(init, cond, next, body);
|
|
result = loop;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
DebuggerStatement* Parser::ParseDebuggerStatement(bool* ok) {
|
|
// In ECMA-262 'debugger' is defined as a reserved keyword. In some browser
|
|
// contexts this is used as a statement which invokes the debugger as i a
|
|
// break point is present.
|
|
// DebuggerStatement ::
|
|
// 'debugger' ';'
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::DEBUGGER, CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewDebuggerStatement(pos);
|
|
}
|
|
|
|
|
|
bool CompileTimeValue::IsCompileTimeValue(Expression* expression) {
|
|
if (expression->IsLiteral()) return true;
|
|
MaterializedLiteral* lit = expression->AsMaterializedLiteral();
|
|
return lit != NULL && lit->is_simple();
|
|
}
|
|
|
|
|
|
Handle<FixedArray> CompileTimeValue::GetValue(Isolate* isolate,
|
|
Expression* expression) {
|
|
Factory* factory = isolate->factory();
|
|
DCHECK(IsCompileTimeValue(expression));
|
|
Handle<FixedArray> result = factory->NewFixedArray(2, TENURED);
|
|
ObjectLiteral* object_literal = expression->AsObjectLiteral();
|
|
if (object_literal != NULL) {
|
|
DCHECK(object_literal->is_simple());
|
|
if (object_literal->fast_elements()) {
|
|
result->set(kLiteralTypeSlot, Smi::FromInt(OBJECT_LITERAL_FAST_ELEMENTS));
|
|
} else {
|
|
result->set(kLiteralTypeSlot, Smi::FromInt(OBJECT_LITERAL_SLOW_ELEMENTS));
|
|
}
|
|
result->set(kElementsSlot, *object_literal->constant_properties());
|
|
} else {
|
|
ArrayLiteral* array_literal = expression->AsArrayLiteral();
|
|
DCHECK(array_literal != NULL && array_literal->is_simple());
|
|
result->set(kLiteralTypeSlot, Smi::FromInt(ARRAY_LITERAL));
|
|
result->set(kElementsSlot, *array_literal->constant_elements());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
CompileTimeValue::LiteralType CompileTimeValue::GetLiteralType(
|
|
Handle<FixedArray> value) {
|
|
Smi* literal_type = Smi::cast(value->get(kLiteralTypeSlot));
|
|
return static_cast<LiteralType>(literal_type->value());
|
|
}
|
|
|
|
|
|
Handle<FixedArray> CompileTimeValue::GetElements(Handle<FixedArray> value) {
|
|
return Handle<FixedArray>(FixedArray::cast(value->get(kElementsSlot)));
|
|
}
|
|
|
|
|
|
void ParserTraits::ParseArrowFunctionFormalParameters(
|
|
ParserFormalParameters* parameters, Expression* expr,
|
|
const Scanner::Location& params_loc, bool* ok) {
|
|
if (parameters->Arity() >= Code::kMaxArguments) {
|
|
ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList);
|
|
*ok = false;
|
|
return;
|
|
}
|
|
|
|
// ArrowFunctionFormals ::
|
|
// Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail)
|
|
// Tail
|
|
// NonTailArrowFunctionFormals ::
|
|
// Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy)
|
|
// VariableProxy
|
|
// Tail ::
|
|
// VariableProxy
|
|
// Spread(VariableProxy)
|
|
//
|
|
// As we need to visit the parameters in left-to-right order, we recurse on
|
|
// the left-hand side of comma expressions.
|
|
//
|
|
if (expr->IsBinaryOperation()) {
|
|
BinaryOperation* binop = expr->AsBinaryOperation();
|
|
// The classifier has already run, so we know that the expression is a valid
|
|
// arrow function formals production.
|
|
DCHECK_EQ(binop->op(), Token::COMMA);
|
|
Expression* left = binop->left();
|
|
Expression* right = binop->right();
|
|
ParseArrowFunctionFormalParameters(parameters, left, params_loc, ok);
|
|
if (!*ok) return;
|
|
// LHS of comma expression should be unparenthesized.
|
|
expr = right;
|
|
}
|
|
|
|
// Only the right-most expression may be a rest parameter.
|
|
DCHECK(!parameters->has_rest);
|
|
|
|
bool is_rest = expr->IsSpread();
|
|
if (is_rest) {
|
|
expr = expr->AsSpread()->expression();
|
|
parameters->has_rest = true;
|
|
}
|
|
if (parameters->is_simple) {
|
|
parameters->is_simple = !is_rest && expr->IsVariableProxy();
|
|
}
|
|
|
|
Expression* initializer = nullptr;
|
|
if (expr->IsVariableProxy()) {
|
|
// When the formal parameter was originally seen, it was parsed as a
|
|
// VariableProxy and recorded as unresolved in the scope. Here we undo that
|
|
// parse-time side-effect for parameters that are single-names (not
|
|
// patterns; for patterns that happens uniformly in
|
|
// PatternRewriter::VisitVariableProxy).
|
|
parser_->scope_->RemoveUnresolved(expr->AsVariableProxy());
|
|
} else if (expr->IsAssignment()) {
|
|
Assignment* assignment = expr->AsAssignment();
|
|
DCHECK(!assignment->is_compound());
|
|
initializer = assignment->value();
|
|
expr = assignment->target();
|
|
|
|
// TODO(adamk): Only call this if necessary.
|
|
RewriteParameterInitializerScope(parser_->stack_limit(), initializer,
|
|
parser_->scope_, parameters->scope);
|
|
}
|
|
|
|
// TODO(adamk): params_loc.end_pos is not the correct initializer position,
|
|
// but it should be conservative enough to trigger hole checks for variables
|
|
// referenced in the initializer (if any).
|
|
AddFormalParameter(parameters, expr, initializer, params_loc.end_pos,
|
|
is_rest);
|
|
}
|
|
|
|
|
|
DoExpression* Parser::ParseDoExpression(bool* ok) {
|
|
// AssignmentExpression ::
|
|
// do '{' StatementList '}'
|
|
int pos = peek_position();
|
|
|
|
Expect(Token::DO, CHECK_OK);
|
|
Variable* result =
|
|
scope_->NewTemporary(ast_value_factory()->dot_result_string());
|
|
Block* block = ParseBlock(nullptr, false, CHECK_OK);
|
|
DoExpression* expr = factory()->NewDoExpression(block, result, pos);
|
|
if (!Rewriter::Rewrite(this, expr, ast_value_factory())) {
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
block->set_scope(block->scope()->FinalizeBlockScope());
|
|
return expr;
|
|
}
|
|
|
|
|
|
void ParserTraits::ParseArrowFunctionFormalParameterList(
|
|
ParserFormalParameters* parameters, Expression* expr,
|
|
const Scanner::Location& params_loc,
|
|
Scanner::Location* duplicate_loc, bool* ok) {
|
|
if (expr->IsEmptyParentheses()) return;
|
|
|
|
ParseArrowFunctionFormalParameters(parameters, expr, params_loc, ok);
|
|
if (!*ok) return;
|
|
|
|
Type::ExpressionClassifier classifier(parser_);
|
|
if (!parameters->is_simple) {
|
|
classifier.RecordNonSimpleParameter();
|
|
}
|
|
for (int i = 0; i < parameters->Arity(); ++i) {
|
|
auto parameter = parameters->at(i);
|
|
DeclareFormalParameter(parameters->scope, parameter, &classifier);
|
|
if (!duplicate_loc->IsValid()) {
|
|
*duplicate_loc = classifier.duplicate_formal_parameter_error().location;
|
|
}
|
|
}
|
|
DCHECK_EQ(parameters->is_simple, parameters->scope->has_simple_parameters());
|
|
}
|
|
|
|
|
|
void ParserTraits::ReindexLiterals(const ParserFormalParameters& parameters) {
|
|
if (parser_->function_state_->materialized_literal_count() > 0) {
|
|
AstLiteralReindexer reindexer;
|
|
|
|
for (const auto p : parameters.params) {
|
|
if (p.pattern != nullptr) reindexer.Reindex(p.pattern);
|
|
if (p.initializer != nullptr) reindexer.Reindex(p.initializer);
|
|
}
|
|
|
|
DCHECK(reindexer.count() <=
|
|
parser_->function_state_->materialized_literal_count());
|
|
}
|
|
}
|
|
|
|
|
|
FunctionLiteral* Parser::ParseFunctionLiteral(
|
|
const AstRawString* function_name, Scanner::Location function_name_location,
|
|
FunctionNameValidity function_name_validity, FunctionKind kind,
|
|
int function_token_pos, FunctionLiteral::FunctionType function_type,
|
|
LanguageMode language_mode, bool* ok) {
|
|
// Function ::
|
|
// '(' FormalParameterList? ')' '{' FunctionBody '}'
|
|
//
|
|
// Getter ::
|
|
// '(' ')' '{' FunctionBody '}'
|
|
//
|
|
// Setter ::
|
|
// '(' PropertySetParameterList ')' '{' FunctionBody '}'
|
|
|
|
int pos = function_token_pos == RelocInfo::kNoPosition
|
|
? peek_position() : function_token_pos;
|
|
|
|
bool is_generator = IsGeneratorFunction(kind);
|
|
|
|
// Anonymous functions were passed either the empty symbol or a null
|
|
// handle as the function name. Remember if we were passed a non-empty
|
|
// handle to decide whether to invoke function name inference.
|
|
bool should_infer_name = function_name == NULL;
|
|
|
|
// We want a non-null handle as the function name.
|
|
if (should_infer_name) {
|
|
function_name = ast_value_factory()->empty_string();
|
|
}
|
|
|
|
// Function declarations are function scoped in normal mode, so they are
|
|
// hoisted. In harmony block scoping mode they are block scoped, so they
|
|
// are not hoisted.
|
|
//
|
|
// One tricky case are function declarations in a local sloppy-mode eval:
|
|
// their declaration is hoisted, but they still see the local scope. E.g.,
|
|
//
|
|
// function() {
|
|
// var x = 0
|
|
// try { throw 1 } catch (x) { eval("function g() { return x }") }
|
|
// return g()
|
|
// }
|
|
//
|
|
// needs to return 1. To distinguish such cases, we need to detect
|
|
// (1) whether a function stems from a sloppy eval, and
|
|
// (2) whether it actually hoists across the eval.
|
|
// Unfortunately, we do not represent sloppy eval scopes, so we do not have
|
|
// either information available directly, especially not when lazily compiling
|
|
// a function like 'g'. We hence rely on the following invariants:
|
|
// - (1) is the case iff the innermost scope of the deserialized scope chain
|
|
// under which we compile is _not_ a declaration scope. This holds because
|
|
// in all normal cases, function declarations are fully hoisted to a
|
|
// declaration scope and compiled relative to that.
|
|
// - (2) is the case iff the current declaration scope is still the original
|
|
// one relative to the deserialized scope chain. Otherwise we must be
|
|
// compiling a function in an inner declaration scope in the eval, e.g. a
|
|
// nested function, and hoisting works normally relative to that.
|
|
Scope* declaration_scope = scope_->DeclarationScope();
|
|
Scope* original_declaration_scope = original_scope_->DeclarationScope();
|
|
Scope* scope = function_type == FunctionLiteral::kDeclaration &&
|
|
is_sloppy(language_mode) &&
|
|
!allow_harmony_sloppy_function() &&
|
|
(original_scope_ == original_declaration_scope ||
|
|
declaration_scope != original_declaration_scope)
|
|
? NewScope(declaration_scope, FUNCTION_SCOPE, kind)
|
|
: NewScope(scope_, FUNCTION_SCOPE, kind);
|
|
SetLanguageMode(scope, language_mode);
|
|
ZoneList<Statement*>* body = NULL;
|
|
int arity = -1;
|
|
int materialized_literal_count = -1;
|
|
int expected_property_count = -1;
|
|
DuplicateFinder duplicate_finder(scanner()->unicode_cache());
|
|
FunctionLiteral::EagerCompileHint eager_compile_hint =
|
|
parenthesized_function_ ? FunctionLiteral::kShouldEagerCompile
|
|
: FunctionLiteral::kShouldLazyCompile;
|
|
bool should_be_used_once_hint = false;
|
|
bool has_duplicate_parameters;
|
|
// Parse function.
|
|
{
|
|
AstNodeFactory function_factory(ast_value_factory());
|
|
FunctionState function_state(&function_state_, &scope_, scope, kind,
|
|
&function_factory);
|
|
scope_->SetScopeName(function_name);
|
|
ExpressionClassifier formals_classifier(this, &duplicate_finder);
|
|
|
|
if (is_generator) {
|
|
// For generators, allocating variables in contexts is currently a win
|
|
// because it minimizes the work needed to suspend and resume an
|
|
// activation. The machine code produced for generators (by full-codegen)
|
|
// relies on this forced context allocation, but not in an essential way.
|
|
scope_->ForceContextAllocation();
|
|
|
|
// Calling a generator returns a generator object. That object is stored
|
|
// in a temporary variable, a definition that is used by "yield"
|
|
// expressions. This also marks the FunctionState as a generator.
|
|
Variable* temp = scope_->NewTemporary(
|
|
ast_value_factory()->dot_generator_object_string());
|
|
function_state.set_generator_object_variable(temp);
|
|
}
|
|
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
int start_position = scanner()->location().beg_pos;
|
|
scope_->set_start_position(start_position);
|
|
ParserFormalParameters formals(scope);
|
|
ParseFormalParameterList(&formals, &formals_classifier, CHECK_OK);
|
|
arity = formals.Arity();
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
int formals_end_position = scanner()->location().end_pos;
|
|
|
|
CheckArityRestrictions(arity, kind, formals.has_rest, start_position,
|
|
formals_end_position, CHECK_OK);
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
|
|
// Don't include the rest parameter into the function's formal parameter
|
|
// count (esp. the SharedFunctionInfo::internal_formal_parameter_count,
|
|
// which says whether we need to create an arguments adaptor frame).
|
|
if (formals.has_rest) arity--;
|
|
|
|
// Determine if the function can be parsed lazily. Lazy parsing is different
|
|
// from lazy compilation; we need to parse more eagerly than we compile.
|
|
|
|
// We can only parse lazily if we also compile lazily. The heuristics for
|
|
// lazy compilation are:
|
|
// - It must not have been prohibited by the caller to Parse (some callers
|
|
// need a full AST).
|
|
// - The outer scope must allow lazy compilation of inner functions.
|
|
// - The function mustn't be a function expression with an open parenthesis
|
|
// before; we consider that a hint that the function will be called
|
|
// immediately, and it would be a waste of time to make it lazily
|
|
// compiled.
|
|
// These are all things we can know at this point, without looking at the
|
|
// function itself.
|
|
|
|
// In addition, we need to distinguish between these cases:
|
|
// (function foo() {
|
|
// bar = function() { return 1; }
|
|
// })();
|
|
// and
|
|
// (function foo() {
|
|
// var a = 1;
|
|
// bar = function() { return a; }
|
|
// })();
|
|
|
|
// Now foo will be parsed eagerly and compiled eagerly (optimization: assume
|
|
// parenthesis before the function means that it will be called
|
|
// immediately). The inner function *must* be parsed eagerly to resolve the
|
|
// possible reference to the variable in foo's scope. However, it's possible
|
|
// that it will be compiled lazily.
|
|
|
|
// To make this additional case work, both Parser and PreParser implement a
|
|
// logic where only top-level functions will be parsed lazily.
|
|
bool is_lazily_parsed = mode() == PARSE_LAZILY &&
|
|
scope_->AllowsLazyParsing() &&
|
|
!parenthesized_function_;
|
|
parenthesized_function_ = false; // The bit was set for this function only.
|
|
|
|
// Eager or lazy parse?
|
|
// If is_lazily_parsed, we'll parse lazy. If we can set a bookmark, we'll
|
|
// pass it to SkipLazyFunctionBody, which may use it to abort lazy
|
|
// parsing if it suspect that wasn't a good idea. If so, or if we didn't
|
|
// try to lazy parse in the first place, we'll have to parse eagerly.
|
|
Scanner::BookmarkScope bookmark(scanner());
|
|
if (is_lazily_parsed) {
|
|
Scanner::BookmarkScope* maybe_bookmark =
|
|
bookmark.Set() ? &bookmark : nullptr;
|
|
SkipLazyFunctionBody(&materialized_literal_count,
|
|
&expected_property_count, /*CHECK_OK*/ ok,
|
|
maybe_bookmark);
|
|
|
|
materialized_literal_count += formals.materialized_literals_count +
|
|
function_state.materialized_literal_count();
|
|
|
|
if (bookmark.HasBeenReset()) {
|
|
// Trigger eager (re-)parsing, just below this block.
|
|
is_lazily_parsed = false;
|
|
|
|
// This is probably an initialization function. Inform the compiler it
|
|
// should also eager-compile this function, and that we expect it to be
|
|
// used once.
|
|
eager_compile_hint = FunctionLiteral::kShouldEagerCompile;
|
|
should_be_used_once_hint = true;
|
|
}
|
|
}
|
|
if (!is_lazily_parsed) {
|
|
// Determine whether the function body can be discarded after parsing.
|
|
// The preconditions are:
|
|
// - Lazy compilation has to be enabled.
|
|
// - Neither V8 natives nor native function declarations can be allowed,
|
|
// since parsing one would retroactively force the function to be
|
|
// eagerly compiled.
|
|
// - The invoker of this parser can't depend on the AST being eagerly
|
|
// built (either because the function is about to be compiled, or
|
|
// because the AST is going to be inspected for some reason).
|
|
// - Because of the above, we can't be attempting to parse a
|
|
// FunctionExpression; even without enclosing parentheses it might be
|
|
// immediately invoked.
|
|
// - The function literal shouldn't be hinted to eagerly compile.
|
|
bool use_temp_zone =
|
|
FLAG_lazy && !allow_natives() && extension_ == NULL && allow_lazy() &&
|
|
function_type == FunctionLiteral::kDeclaration &&
|
|
eager_compile_hint != FunctionLiteral::kShouldEagerCompile;
|
|
// Open a new BodyScope, which sets our AstNodeFactory to allocate in the
|
|
// new temporary zone if the preconditions are satisfied, and ensures that
|
|
// the previous zone is always restored after parsing the body.
|
|
// For the purpose of scope analysis, some ZoneObjects allocated by the
|
|
// factory must persist after the function body is thrown away and
|
|
// temp_zone is deallocated. These objects are instead allocated in a
|
|
// parser-persistent zone (see parser_zone_ in AstNodeFactory).
|
|
{
|
|
Zone temp_zone;
|
|
AstNodeFactory::BodyScope inner(factory(), &temp_zone, use_temp_zone);
|
|
|
|
body = ParseEagerFunctionBody(function_name, pos, formals, kind,
|
|
function_type, CHECK_OK);
|
|
}
|
|
materialized_literal_count = function_state.materialized_literal_count();
|
|
expected_property_count = function_state.expected_property_count();
|
|
if (use_temp_zone) {
|
|
// If the preconditions are correct the function body should never be
|
|
// accessed, but do this anyway for better behaviour if they're wrong.
|
|
body = NULL;
|
|
}
|
|
}
|
|
|
|
// Parsing the body may change the language mode in our scope.
|
|
language_mode = scope->language_mode();
|
|
|
|
// Validate name and parameter names. We can do this only after parsing the
|
|
// function, since the function can declare itself strict.
|
|
CheckFunctionName(language_mode, function_name, function_name_validity,
|
|
function_name_location, CHECK_OK);
|
|
const bool allow_duplicate_parameters =
|
|
is_sloppy(language_mode) && formals.is_simple && !IsConciseMethod(kind);
|
|
ValidateFormalParameters(&formals_classifier, language_mode,
|
|
allow_duplicate_parameters, CHECK_OK);
|
|
|
|
if (is_strict(language_mode)) {
|
|
CheckStrictOctalLiteral(scope->start_position(), scope->end_position(),
|
|
CHECK_OK);
|
|
}
|
|
if (is_sloppy(language_mode) && allow_harmony_sloppy_function()) {
|
|
InsertSloppyBlockFunctionVarBindings(scope, CHECK_OK);
|
|
}
|
|
CheckConflictingVarDeclarations(scope, CHECK_OK);
|
|
|
|
if (body) {
|
|
// If body can be inspected, rewrite queued destructuring assignments
|
|
ParserTraits::RewriteDestructuringAssignments();
|
|
}
|
|
has_duplicate_parameters =
|
|
!formals_classifier.is_valid_formal_parameter_list_without_duplicates();
|
|
}
|
|
|
|
FunctionLiteral::ParameterFlag duplicate_parameters =
|
|
has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters
|
|
: FunctionLiteral::kNoDuplicateParameters;
|
|
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
function_name, scope, body, materialized_literal_count,
|
|
expected_property_count, arity, duplicate_parameters, function_type,
|
|
eager_compile_hint, kind, pos);
|
|
function_literal->set_function_token_position(function_token_pos);
|
|
if (should_be_used_once_hint)
|
|
function_literal->set_should_be_used_once_hint();
|
|
|
|
if (fni_ != NULL && should_infer_name) fni_->AddFunction(function_literal);
|
|
return function_literal;
|
|
}
|
|
|
|
|
|
void Parser::SkipLazyFunctionBody(int* materialized_literal_count,
|
|
int* expected_property_count, bool* ok,
|
|
Scanner::BookmarkScope* bookmark) {
|
|
DCHECK_IMPLIES(bookmark, bookmark->HasBeenSet());
|
|
if (produce_cached_parse_data()) CHECK(log_);
|
|
|
|
int function_block_pos = position();
|
|
if (consume_cached_parse_data() && !cached_parse_data_->rejected()) {
|
|
// If we have cached data, we use it to skip parsing the function body. The
|
|
// data contains the information we need to construct the lazy function.
|
|
FunctionEntry entry =
|
|
cached_parse_data_->GetFunctionEntry(function_block_pos);
|
|
// Check that cached data is valid. If not, mark it as invalid (the embedder
|
|
// handles it). Note that end position greater than end of stream is safe,
|
|
// and hard to check.
|
|
if (entry.is_valid() && entry.end_pos() > function_block_pos) {
|
|
scanner()->SeekForward(entry.end_pos() - 1);
|
|
|
|
scope_->set_end_position(entry.end_pos());
|
|
Expect(Token::RBRACE, ok);
|
|
if (!*ok) {
|
|
return;
|
|
}
|
|
total_preparse_skipped_ += scope_->end_position() - function_block_pos;
|
|
*materialized_literal_count = entry.literal_count();
|
|
*expected_property_count = entry.property_count();
|
|
SetLanguageMode(scope_, entry.language_mode());
|
|
if (entry.uses_super_property()) scope_->RecordSuperPropertyUsage();
|
|
if (entry.calls_eval()) scope_->RecordEvalCall();
|
|
return;
|
|
}
|
|
cached_parse_data_->Reject();
|
|
}
|
|
// With no cached data, we partially parse the function, without building an
|
|
// AST. This gathers the data needed to build a lazy function.
|
|
SingletonLogger logger;
|
|
PreParser::PreParseResult result =
|
|
ParseLazyFunctionBodyWithPreParser(&logger, bookmark);
|
|
if (bookmark && bookmark->HasBeenReset()) {
|
|
return; // Return immediately if pre-parser devided to abort parsing.
|
|
}
|
|
if (result == PreParser::kPreParseStackOverflow) {
|
|
// Propagate stack overflow.
|
|
set_stack_overflow();
|
|
*ok = false;
|
|
return;
|
|
}
|
|
if (logger.has_error()) {
|
|
ParserTraits::ReportMessageAt(
|
|
Scanner::Location(logger.start(), logger.end()), logger.message(),
|
|
logger.argument_opt(), logger.error_type());
|
|
*ok = false;
|
|
return;
|
|
}
|
|
scope_->set_end_position(logger.end());
|
|
Expect(Token::RBRACE, ok);
|
|
if (!*ok) {
|
|
return;
|
|
}
|
|
total_preparse_skipped_ += scope_->end_position() - function_block_pos;
|
|
*materialized_literal_count = logger.literals();
|
|
*expected_property_count = logger.properties();
|
|
SetLanguageMode(scope_, logger.language_mode());
|
|
if (logger.uses_super_property()) {
|
|
scope_->RecordSuperPropertyUsage();
|
|
}
|
|
if (logger.calls_eval()) {
|
|
scope_->RecordEvalCall();
|
|
}
|
|
if (produce_cached_parse_data()) {
|
|
DCHECK(log_);
|
|
// Position right after terminal '}'.
|
|
int body_end = scanner()->location().end_pos;
|
|
log_->LogFunction(function_block_pos, body_end, *materialized_literal_count,
|
|
*expected_property_count, scope_->language_mode(),
|
|
scope_->uses_super_property(), scope_->calls_eval());
|
|
}
|
|
}
|
|
|
|
|
|
Statement* Parser::BuildAssertIsCoercible(Variable* var) {
|
|
// if (var === null || var === undefined)
|
|
// throw /* type error kNonCoercible) */;
|
|
|
|
Expression* condition = factory()->NewBinaryOperation(
|
|
Token::OR, factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var),
|
|
factory()->NewUndefinedLiteral(RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition),
|
|
factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var),
|
|
factory()->NewNullLiteral(RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition);
|
|
Expression* throw_type_error = this->NewThrowTypeError(
|
|
MessageTemplate::kNonCoercible, ast_value_factory()->empty_string(),
|
|
RelocInfo::kNoPosition);
|
|
IfStatement* if_statement = factory()->NewIfStatement(
|
|
condition, factory()->NewExpressionStatement(throw_type_error,
|
|
RelocInfo::kNoPosition),
|
|
factory()->NewEmptyStatement(RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition);
|
|
return if_statement;
|
|
}
|
|
|
|
|
|
class InitializerRewriter : public AstExpressionVisitor {
|
|
public:
|
|
InitializerRewriter(uintptr_t stack_limit, Expression* root, Parser* parser,
|
|
Scope* scope)
|
|
: AstExpressionVisitor(stack_limit, root),
|
|
parser_(parser),
|
|
scope_(scope) {}
|
|
|
|
private:
|
|
void VisitExpression(Expression* expr) {
|
|
RewritableExpression* to_rewrite = expr->AsRewritableExpression();
|
|
if (to_rewrite == nullptr || to_rewrite->is_rewritten()) return;
|
|
|
|
Parser::PatternRewriter::RewriteDestructuringAssignment(parser_, to_rewrite,
|
|
scope_);
|
|
}
|
|
|
|
private:
|
|
Parser* parser_;
|
|
Scope* scope_;
|
|
};
|
|
|
|
|
|
void Parser::RewriteParameterInitializer(Expression* expr, Scope* scope) {
|
|
InitializerRewriter rewriter(stack_limit_, expr, this, scope);
|
|
rewriter.Run();
|
|
}
|
|
|
|
|
|
Block* Parser::BuildParameterInitializationBlock(
|
|
const ParserFormalParameters& parameters, bool* ok) {
|
|
DCHECK(!parameters.is_simple);
|
|
DCHECK(scope_->is_function_scope());
|
|
Block* init_block =
|
|
factory()->NewBlock(NULL, 1, true, RelocInfo::kNoPosition);
|
|
for (int i = 0; i < parameters.params.length(); ++i) {
|
|
auto parameter = parameters.params[i];
|
|
if (parameter.is_rest && parameter.pattern->IsVariableProxy()) break;
|
|
DeclarationDescriptor descriptor;
|
|
descriptor.declaration_kind = DeclarationDescriptor::PARAMETER;
|
|
descriptor.parser = this;
|
|
descriptor.scope = scope_;
|
|
descriptor.hoist_scope = nullptr;
|
|
descriptor.mode = LET;
|
|
descriptor.declaration_pos = parameter.pattern->position();
|
|
// The position that will be used by the AssignmentExpression
|
|
// which copies from the temp parameter to the pattern.
|
|
//
|
|
// TODO(adamk): Should this be RelocInfo::kNoPosition, since
|
|
// it's just copying from a temp var to the real param var?
|
|
descriptor.initialization_pos = parameter.pattern->position();
|
|
// The initializer position which will end up in,
|
|
// Variable::initializer_position(), used for hole check elimination.
|
|
int initializer_position = parameter.pattern->position();
|
|
Expression* initial_value =
|
|
factory()->NewVariableProxy(parameters.scope->parameter(i));
|
|
if (parameter.initializer != nullptr) {
|
|
// IS_UNDEFINED($param) ? initializer : $param
|
|
|
|
// Ensure initializer is rewritten
|
|
RewriteParameterInitializer(parameter.initializer, scope_);
|
|
|
|
auto condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT,
|
|
factory()->NewVariableProxy(parameters.scope->parameter(i)),
|
|
factory()->NewUndefinedLiteral(RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition);
|
|
initial_value = factory()->NewConditional(
|
|
condition, parameter.initializer, initial_value,
|
|
RelocInfo::kNoPosition);
|
|
descriptor.initialization_pos = parameter.initializer->position();
|
|
initializer_position = parameter.initializer_end_position;
|
|
}
|
|
|
|
Scope* param_scope = scope_;
|
|
Block* param_block = init_block;
|
|
if (!parameter.is_simple() && scope_->calls_sloppy_eval()) {
|
|
param_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
param_scope->set_is_declaration_scope();
|
|
param_scope->set_start_position(parameter.pattern->position());
|
|
param_scope->set_end_position(RelocInfo::kNoPosition);
|
|
param_scope->RecordEvalCall();
|
|
param_block = factory()->NewBlock(NULL, 8, true, RelocInfo::kNoPosition);
|
|
param_block->set_scope(param_scope);
|
|
descriptor.hoist_scope = scope_;
|
|
}
|
|
|
|
{
|
|
BlockState block_state(&scope_, param_scope);
|
|
DeclarationParsingResult::Declaration decl(
|
|
parameter.pattern, initializer_position, initial_value);
|
|
PatternRewriter::DeclareAndInitializeVariables(param_block, &descriptor,
|
|
&decl, nullptr, CHECK_OK);
|
|
}
|
|
|
|
if (!parameter.is_simple() && scope_->calls_sloppy_eval()) {
|
|
param_scope = param_scope->FinalizeBlockScope();
|
|
if (param_scope != nullptr) {
|
|
CheckConflictingVarDeclarations(param_scope, CHECK_OK);
|
|
}
|
|
init_block->statements()->Add(param_block, zone());
|
|
}
|
|
}
|
|
return init_block;
|
|
}
|
|
|
|
|
|
ZoneList<Statement*>* Parser::ParseEagerFunctionBody(
|
|
const AstRawString* function_name, int pos,
|
|
const ParserFormalParameters& parameters, FunctionKind kind,
|
|
FunctionLiteral::FunctionType function_type, bool* ok) {
|
|
// Everything inside an eagerly parsed function will be parsed eagerly
|
|
// (see comment above).
|
|
ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
|
|
ZoneList<Statement*>* result = new(zone()) ZoneList<Statement*>(8, zone());
|
|
|
|
static const int kFunctionNameAssignmentIndex = 0;
|
|
if (function_type == FunctionLiteral::kNamedExpression) {
|
|
DCHECK(function_name != NULL);
|
|
// If we have a named function expression, we add a local variable
|
|
// declaration to the body of the function with the name of the
|
|
// function and let it refer to the function itself (closure).
|
|
// Not having parsed the function body, the language mode may still change,
|
|
// so we reserve a spot and create the actual const assignment later.
|
|
DCHECK_EQ(kFunctionNameAssignmentIndex, result->length());
|
|
result->Add(NULL, zone());
|
|
}
|
|
|
|
ZoneList<Statement*>* body = result;
|
|
Scope* inner_scope = scope_;
|
|
Block* inner_block = nullptr;
|
|
if (!parameters.is_simple) {
|
|
inner_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
inner_scope->set_is_declaration_scope();
|
|
inner_scope->set_start_position(scanner()->location().beg_pos);
|
|
inner_block = factory()->NewBlock(NULL, 8, true, RelocInfo::kNoPosition);
|
|
inner_block->set_scope(inner_scope);
|
|
body = inner_block->statements();
|
|
}
|
|
|
|
{
|
|
BlockState block_state(&scope_, inner_scope);
|
|
|
|
if (IsGeneratorFunction(kind)) {
|
|
// We produce:
|
|
//
|
|
// try { InitialYield; ...body...; return {value: undefined, done: true} }
|
|
// finally { %GeneratorClose(generator) }
|
|
//
|
|
// - InitialYield yields the actual generator object.
|
|
// - Any return statement inside the body will have its argument wrapped
|
|
// in a "done" iterator result object.
|
|
// - If the generator terminates for whatever reason, we must close it.
|
|
// Hence the finally clause.
|
|
|
|
Block* try_block =
|
|
factory()->NewBlock(nullptr, 3, false, RelocInfo::kNoPosition);
|
|
|
|
{
|
|
ZoneList<Expression*>* arguments =
|
|
new (zone()) ZoneList<Expression*>(0, zone());
|
|
CallRuntime* allocation = factory()->NewCallRuntime(
|
|
Runtime::kCreateJSGeneratorObject, arguments, pos);
|
|
VariableProxy* init_proxy = factory()->NewVariableProxy(
|
|
function_state_->generator_object_variable());
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, init_proxy, allocation, RelocInfo::kNoPosition);
|
|
VariableProxy* get_proxy = factory()->NewVariableProxy(
|
|
function_state_->generator_object_variable());
|
|
Yield* yield =
|
|
factory()->NewYield(get_proxy, assignment, RelocInfo::kNoPosition);
|
|
try_block->statements()->Add(
|
|
factory()->NewExpressionStatement(yield, RelocInfo::kNoPosition),
|
|
zone());
|
|
}
|
|
|
|
ParseStatementList(try_block->statements(), Token::RBRACE, CHECK_OK);
|
|
|
|
Statement* final_return = factory()->NewReturnStatement(
|
|
BuildIteratorResult(nullptr, true), RelocInfo::kNoPosition);
|
|
try_block->statements()->Add(final_return, zone());
|
|
|
|
Block* finally_block =
|
|
factory()->NewBlock(nullptr, 1, false, RelocInfo::kNoPosition);
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
VariableProxy* call_proxy = factory()->NewVariableProxy(
|
|
function_state_->generator_object_variable());
|
|
args->Add(call_proxy, zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kGeneratorClose, args, RelocInfo::kNoPosition);
|
|
finally_block->statements()->Add(
|
|
factory()->NewExpressionStatement(call, RelocInfo::kNoPosition),
|
|
zone());
|
|
|
|
body->Add(factory()->NewTryFinallyStatement(try_block, finally_block,
|
|
RelocInfo::kNoPosition),
|
|
zone());
|
|
} else {
|
|
ParseStatementList(body, Token::RBRACE, CHECK_OK);
|
|
}
|
|
|
|
if (IsSubclassConstructor(kind)) {
|
|
body->Add(
|
|
factory()->NewReturnStatement(
|
|
this->ThisExpression(scope_, factory(), RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition),
|
|
zone());
|
|
}
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
scope_->set_end_position(scanner()->location().end_pos);
|
|
|
|
if (!parameters.is_simple) {
|
|
DCHECK_NOT_NULL(inner_scope);
|
|
DCHECK_EQ(body, inner_block->statements());
|
|
SetLanguageMode(scope_, inner_scope->language_mode());
|
|
Block* init_block = BuildParameterInitializationBlock(parameters, CHECK_OK);
|
|
DCHECK_NOT_NULL(init_block);
|
|
|
|
inner_scope->set_end_position(scanner()->location().end_pos);
|
|
inner_scope = inner_scope->FinalizeBlockScope();
|
|
if (inner_scope != nullptr) {
|
|
CheckConflictingVarDeclarations(inner_scope, CHECK_OK);
|
|
InsertShadowingVarBindingInitializers(inner_block);
|
|
}
|
|
|
|
result->Add(init_block, zone());
|
|
result->Add(inner_block, zone());
|
|
}
|
|
|
|
if (function_type == FunctionLiteral::kNamedExpression) {
|
|
// Now that we know the language mode, we can create the const assignment
|
|
// in the previously reserved spot.
|
|
// NOTE: We create a proxy and resolve it here so that in the
|
|
// future we can change the AST to only refer to VariableProxies
|
|
// instead of Variables and Proxies as is the case now.
|
|
VariableMode fvar_mode = is_strict(language_mode()) ? CONST : CONST_LEGACY;
|
|
Variable* fvar = new (zone())
|
|
Variable(scope_, function_name, fvar_mode, Variable::NORMAL,
|
|
kCreatedInitialized, kNotAssigned);
|
|
VariableProxy* proxy = factory()->NewVariableProxy(fvar);
|
|
VariableDeclaration* fvar_declaration = factory()->NewVariableDeclaration(
|
|
proxy, fvar_mode, scope_, RelocInfo::kNoPosition);
|
|
scope_->DeclareFunctionVar(fvar_declaration);
|
|
|
|
VariableProxy* fproxy = factory()->NewVariableProxy(fvar);
|
|
result->Set(kFunctionNameAssignmentIndex,
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::INIT, fproxy,
|
|
factory()->NewThisFunction(pos),
|
|
RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition));
|
|
}
|
|
|
|
// ES6 14.6.1 Static Semantics: IsInTailPosition
|
|
// Mark collected return expressions that are in tail call position.
|
|
const List<Expression*>& expressions_in_tail_position =
|
|
function_state_->expressions_in_tail_position();
|
|
for (int i = 0; i < expressions_in_tail_position.length(); ++i) {
|
|
expressions_in_tail_position[i]->MarkTail();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
PreParser::PreParseResult Parser::ParseLazyFunctionBodyWithPreParser(
|
|
SingletonLogger* logger, Scanner::BookmarkScope* bookmark) {
|
|
// This function may be called on a background thread too; record only the
|
|
// main thread preparse times.
|
|
if (pre_parse_timer_ != NULL) {
|
|
pre_parse_timer_->Start();
|
|
}
|
|
TRACE_EVENT0("v8", "V8.PreParse");
|
|
|
|
DCHECK_EQ(Token::LBRACE, scanner()->current_token());
|
|
|
|
if (reusable_preparser_ == NULL) {
|
|
reusable_preparser_ = new PreParser(zone(), &scanner_, ast_value_factory(),
|
|
NULL, stack_limit_);
|
|
reusable_preparser_->set_allow_lazy(true);
|
|
#define SET_ALLOW(name) reusable_preparser_->set_allow_##name(allow_##name());
|
|
SET_ALLOW(natives);
|
|
SET_ALLOW(legacy_const);
|
|
SET_ALLOW(harmony_sloppy);
|
|
SET_ALLOW(harmony_sloppy_let);
|
|
SET_ALLOW(harmony_do_expressions);
|
|
SET_ALLOW(harmony_function_name);
|
|
SET_ALLOW(harmony_function_sent);
|
|
#undef SET_ALLOW
|
|
}
|
|
PreParser::PreParseResult result = reusable_preparser_->PreParseLazyFunction(
|
|
language_mode(), function_state_->kind(), scope_->has_simple_parameters(),
|
|
logger, bookmark);
|
|
if (pre_parse_timer_ != NULL) {
|
|
pre_parse_timer_->Stop();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
ClassLiteral* Parser::ParseClassLiteral(const AstRawString* name,
|
|
Scanner::Location class_name_location,
|
|
bool name_is_strict_reserved, int pos,
|
|
bool* ok) {
|
|
// All parts of a ClassDeclaration and ClassExpression are strict code.
|
|
if (name_is_strict_reserved) {
|
|
ReportMessageAt(class_name_location,
|
|
MessageTemplate::kUnexpectedStrictReserved);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
if (IsEvalOrArguments(name)) {
|
|
ReportMessageAt(class_name_location, MessageTemplate::kStrictEvalArguments);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
Scope* block_scope = NewScope(scope_, BLOCK_SCOPE);
|
|
BlockState block_state(&scope_, block_scope);
|
|
RaiseLanguageMode(STRICT);
|
|
scope_->SetScopeName(name);
|
|
|
|
VariableProxy* proxy = NULL;
|
|
if (name != NULL) {
|
|
proxy = NewUnresolved(name, CONST);
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, CONST, block_scope, pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK);
|
|
}
|
|
|
|
Expression* extends = NULL;
|
|
if (Check(Token::EXTENDS)) {
|
|
block_scope->set_start_position(scanner()->location().end_pos);
|
|
ExpressionClassifier classifier(this);
|
|
extends = ParseLeftHandSideExpression(&classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
} else {
|
|
block_scope->set_start_position(scanner()->location().end_pos);
|
|
}
|
|
|
|
|
|
ClassLiteralChecker checker(this);
|
|
ZoneList<ObjectLiteral::Property*>* properties = NewPropertyList(4, zone());
|
|
FunctionLiteral* constructor = NULL;
|
|
bool has_seen_constructor = false;
|
|
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
|
|
const bool has_extends = extends != nullptr;
|
|
while (peek() != Token::RBRACE) {
|
|
if (Check(Token::SEMICOLON)) continue;
|
|
FuncNameInferrer::State fni_state(fni_);
|
|
const bool in_class = true;
|
|
const bool is_static = false;
|
|
bool is_computed_name = false; // Classes do not care about computed
|
|
// property names here.
|
|
ExpressionClassifier classifier(this);
|
|
const AstRawString* property_name = nullptr;
|
|
ObjectLiteral::Property* property = ParsePropertyDefinition(
|
|
&checker, in_class, has_extends, is_static, &is_computed_name,
|
|
&has_seen_constructor, &classifier, &property_name, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
|
|
if (has_seen_constructor && constructor == NULL) {
|
|
constructor = GetPropertyValue(property)->AsFunctionLiteral();
|
|
DCHECK_NOT_NULL(constructor);
|
|
constructor->set_raw_name(
|
|
name != nullptr ? name : ast_value_factory()->empty_string());
|
|
} else {
|
|
properties->Add(property, zone());
|
|
}
|
|
|
|
if (fni_ != NULL) fni_->Infer();
|
|
|
|
if (allow_harmony_function_name() &&
|
|
property_name != ast_value_factory()->constructor_string()) {
|
|
SetFunctionNameFromPropertyName(property, property_name);
|
|
}
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
int end_pos = scanner()->location().end_pos;
|
|
|
|
if (constructor == NULL) {
|
|
constructor = DefaultConstructor(name, extends != NULL, block_scope, pos,
|
|
end_pos, block_scope->language_mode());
|
|
}
|
|
|
|
// Note that we do not finalize this block scope because it is
|
|
// used as a sentinel value indicating an anonymous class.
|
|
block_scope->set_end_position(end_pos);
|
|
|
|
if (name != NULL) {
|
|
DCHECK_NOT_NULL(proxy);
|
|
proxy->var()->set_initializer_position(end_pos);
|
|
}
|
|
|
|
return factory()->NewClassLiteral(block_scope, proxy, extends, constructor,
|
|
properties, pos, end_pos);
|
|
}
|
|
|
|
|
|
Expression* Parser::ParseV8Intrinsic(bool* ok) {
|
|
// CallRuntime ::
|
|
// '%' Identifier Arguments
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::MOD, CHECK_OK);
|
|
// Allow "eval" or "arguments" for backward compatibility.
|
|
const AstRawString* name = ParseIdentifier(kAllowRestrictedIdentifiers,
|
|
CHECK_OK);
|
|
Scanner::Location spread_pos;
|
|
ExpressionClassifier classifier(this);
|
|
ZoneList<Expression*>* args =
|
|
ParseArguments(&spread_pos, &classifier, CHECK_OK);
|
|
|
|
DCHECK(!spread_pos.IsValid());
|
|
|
|
if (extension_ != NULL) {
|
|
// The extension structures are only accessible while parsing the
|
|
// very first time not when reparsing because of lazy compilation.
|
|
scope_->DeclarationScope()->ForceEagerCompilation();
|
|
}
|
|
|
|
const Runtime::Function* function = Runtime::FunctionForName(name->string());
|
|
|
|
if (function != NULL) {
|
|
// Check for possible name clash.
|
|
DCHECK_EQ(Context::kNotFound,
|
|
Context::IntrinsicIndexForName(name->string()));
|
|
// Check for built-in IS_VAR macro.
|
|
if (function->function_id == Runtime::kIS_VAR) {
|
|
DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type);
|
|
// %IS_VAR(x) evaluates to x if x is a variable,
|
|
// leads to a parse error otherwise. Could be implemented as an
|
|
// inline function %_IS_VAR(x) to eliminate this special case.
|
|
if (args->length() == 1 && args->at(0)->AsVariableProxy() != NULL) {
|
|
return args->at(0);
|
|
} else {
|
|
ReportMessage(MessageTemplate::kNotIsvar);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Check that the expected number of arguments are being passed.
|
|
if (function->nargs != -1 && function->nargs != args->length()) {
|
|
ReportMessage(MessageTemplate::kRuntimeWrongNumArgs);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
return factory()->NewCallRuntime(function, args, pos);
|
|
}
|
|
|
|
int context_index = Context::IntrinsicIndexForName(name->string());
|
|
|
|
// Check that the function is defined.
|
|
if (context_index == Context::kNotFound) {
|
|
ParserTraits::ReportMessage(MessageTemplate::kNotDefined, name);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
return factory()->NewCallRuntime(context_index, args, pos);
|
|
}
|
|
|
|
|
|
Literal* Parser::GetLiteralUndefined(int position) {
|
|
return factory()->NewUndefinedLiteral(position);
|
|
}
|
|
|
|
|
|
void Parser::CheckConflictingVarDeclarations(Scope* scope, bool* ok) {
|
|
Declaration* decl = scope->CheckConflictingVarDeclarations();
|
|
if (decl != NULL) {
|
|
// In ES6, conflicting variable bindings are early errors.
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
int position = decl->proxy()->position();
|
|
Scanner::Location location = position == RelocInfo::kNoPosition
|
|
? Scanner::Location::invalid()
|
|
: Scanner::Location(position, position + 1);
|
|
ParserTraits::ReportMessageAt(location, MessageTemplate::kVarRedeclaration,
|
|
name);
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) {
|
|
// For each var-binding that shadows a parameter, insert an assignment
|
|
// initializing the variable with the parameter.
|
|
Scope* inner_scope = inner_block->scope();
|
|
DCHECK(inner_scope->is_declaration_scope());
|
|
Scope* function_scope = inner_scope->outer_scope();
|
|
DCHECK(function_scope->is_function_scope());
|
|
ZoneList<Declaration*>* decls = inner_scope->declarations();
|
|
for (int i = 0; i < decls->length(); ++i) {
|
|
Declaration* decl = decls->at(i);
|
|
if (decl->mode() != VAR || !decl->IsVariableDeclaration()) continue;
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
Variable* parameter = function_scope->LookupLocal(name);
|
|
if (parameter == nullptr) continue;
|
|
VariableProxy* to = inner_scope->NewUnresolved(factory(), name);
|
|
VariableProxy* from = factory()->NewVariableProxy(parameter);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, to, from, RelocInfo::kNoPosition);
|
|
Statement* statement = factory()->NewExpressionStatement(
|
|
assignment, RelocInfo::kNoPosition);
|
|
inner_block->statements()->InsertAt(0, statement, zone());
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::InsertSloppyBlockFunctionVarBindings(Scope* scope, bool* ok) {
|
|
// For each variable which is used as a function declaration in a sloppy
|
|
// block,
|
|
DCHECK(scope->is_declaration_scope());
|
|
SloppyBlockFunctionMap* map = scope->sloppy_block_function_map();
|
|
for (ZoneHashMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
|
|
AstRawString* name = static_cast<AstRawString*>(p->key);
|
|
// If the variable wouldn't conflict with a lexical declaration,
|
|
Variable* var = scope->LookupLocal(name);
|
|
if (var == nullptr || !IsLexicalVariableMode(var->mode())) {
|
|
// Declare a var-style binding for the function in the outer scope
|
|
VariableProxy* proxy = scope->NewUnresolved(factory(), name);
|
|
Declaration* declaration = factory()->NewVariableDeclaration(
|
|
proxy, VAR, scope, RelocInfo::kNoPosition);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, true, ok, scope);
|
|
DCHECK(ok); // Based on the preceding check, this should not fail
|
|
if (!ok) return;
|
|
|
|
// Write in assignments to var for each block-scoped function declaration
|
|
auto delegates = static_cast<SloppyBlockFunctionMap::Vector*>(p->value);
|
|
for (SloppyBlockFunctionStatement* delegate : *delegates) {
|
|
// Read from the local lexical scope and write to the function scope
|
|
VariableProxy* to = scope->NewUnresolved(factory(), name);
|
|
VariableProxy* from = delegate->scope()->NewUnresolved(factory(), name);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, to, from, RelocInfo::kNoPosition);
|
|
Statement* statement = factory()->NewExpressionStatement(
|
|
assignment, RelocInfo::kNoPosition);
|
|
delegate->set_statement(statement);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Parser support
|
|
|
|
bool Parser::TargetStackContainsLabel(const AstRawString* label) {
|
|
for (Target* t = target_stack_; t != NULL; t = t->previous()) {
|
|
if (ContainsLabel(t->statement()->labels(), label)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
BreakableStatement* Parser::LookupBreakTarget(const AstRawString* label,
|
|
bool* ok) {
|
|
bool anonymous = label == NULL;
|
|
for (Target* t = target_stack_; t != NULL; t = t->previous()) {
|
|
BreakableStatement* stat = t->statement();
|
|
if ((anonymous && stat->is_target_for_anonymous()) ||
|
|
(!anonymous && ContainsLabel(stat->labels(), label))) {
|
|
return stat;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
IterationStatement* Parser::LookupContinueTarget(const AstRawString* label,
|
|
bool* ok) {
|
|
bool anonymous = label == NULL;
|
|
for (Target* t = target_stack_; t != NULL; t = t->previous()) {
|
|
IterationStatement* stat = t->statement()->AsIterationStatement();
|
|
if (stat == NULL) continue;
|
|
|
|
DCHECK(stat->is_target_for_anonymous());
|
|
if (anonymous || ContainsLabel(stat->labels(), label)) {
|
|
return stat;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Parser::HandleSourceURLComments(Isolate* isolate, Handle<Script> script) {
|
|
if (scanner_.source_url()->length() > 0) {
|
|
Handle<String> source_url = scanner_.source_url()->Internalize(isolate);
|
|
script->set_source_url(*source_url);
|
|
}
|
|
if (scanner_.source_mapping_url()->length() > 0) {
|
|
Handle<String> source_mapping_url =
|
|
scanner_.source_mapping_url()->Internalize(isolate);
|
|
script->set_source_mapping_url(*source_mapping_url);
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::Internalize(Isolate* isolate, Handle<Script> script, bool error) {
|
|
// Internalize strings.
|
|
ast_value_factory()->Internalize(isolate);
|
|
|
|
// Error processing.
|
|
if (error) {
|
|
if (stack_overflow()) {
|
|
isolate->StackOverflow();
|
|
} else {
|
|
DCHECK(pending_error_handler_.has_pending_error());
|
|
pending_error_handler_.ThrowPendingError(isolate, script);
|
|
}
|
|
}
|
|
|
|
// Move statistics to Isolate.
|
|
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
|
|
++feature) {
|
|
for (int i = 0; i < use_counts_[feature]; ++i) {
|
|
isolate->CountUsage(v8::Isolate::UseCounterFeature(feature));
|
|
}
|
|
}
|
|
if (scanner_.FoundHtmlComment()) {
|
|
isolate->CountUsage(v8::Isolate::kHtmlComment);
|
|
if (script->line_offset() == 0 && script->column_offset() == 0) {
|
|
isolate->CountUsage(v8::Isolate::kHtmlCommentInExternalScript);
|
|
}
|
|
}
|
|
isolate->counters()->total_preparse_skipped()->Increment(
|
|
total_preparse_skipped_);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The Parser interface.
|
|
|
|
|
|
bool Parser::ParseStatic(ParseInfo* info) {
|
|
Parser parser(info);
|
|
if (parser.Parse(info)) {
|
|
info->set_language_mode(info->literal()->language_mode());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Parser::Parse(ParseInfo* info) {
|
|
DCHECK(info->literal() == NULL);
|
|
FunctionLiteral* result = NULL;
|
|
// Ok to use Isolate here; this function is only called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
Isolate* isolate = info->isolate();
|
|
pre_parse_timer_ = isolate->counters()->pre_parse();
|
|
if (FLAG_trace_parse || allow_natives() || extension_ != NULL) {
|
|
// If intrinsics are allowed, the Parser cannot operate independent of the
|
|
// V8 heap because of Runtime. Tell the string table to internalize strings
|
|
// and values right after they're created.
|
|
ast_value_factory()->Internalize(isolate);
|
|
}
|
|
|
|
if (info->is_lazy()) {
|
|
DCHECK(!info->is_eval());
|
|
if (info->shared_info()->is_function()) {
|
|
result = ParseLazy(isolate, info);
|
|
} else {
|
|
result = ParseProgram(isolate, info);
|
|
}
|
|
} else {
|
|
SetCachedData(info);
|
|
result = ParseProgram(isolate, info);
|
|
}
|
|
info->set_literal(result);
|
|
|
|
Internalize(isolate, info->script(), result == NULL);
|
|
DCHECK(ast_value_factory()->IsInternalized());
|
|
return (result != NULL);
|
|
}
|
|
|
|
|
|
void Parser::ParseOnBackground(ParseInfo* info) {
|
|
parsing_on_main_thread_ = false;
|
|
|
|
DCHECK(info->literal() == NULL);
|
|
FunctionLiteral* result = NULL;
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
|
|
CompleteParserRecorder recorder;
|
|
if (produce_cached_parse_data()) log_ = &recorder;
|
|
|
|
DCHECK(info->source_stream() != NULL);
|
|
ExternalStreamingStream stream(info->source_stream(),
|
|
info->source_stream_encoding());
|
|
scanner_.Initialize(&stream);
|
|
DCHECK(info->context().is_null() || info->context()->IsNativeContext());
|
|
|
|
// When streaming, we don't know the length of the source until we have parsed
|
|
// it. The raw data can be UTF-8, so we wouldn't know the source length until
|
|
// we have decoded it anyway even if we knew the raw data length (which we
|
|
// don't). We work around this by storing all the scopes which need their end
|
|
// position set at the end of the script (the top scope and possible eval
|
|
// scopes) and set their end position after we know the script length.
|
|
result = DoParseProgram(info);
|
|
|
|
info->set_literal(result);
|
|
|
|
// We cannot internalize on a background thread; a foreground task will take
|
|
// care of calling Parser::Internalize just before compilation.
|
|
|
|
if (produce_cached_parse_data()) {
|
|
if (result != NULL) *info->cached_data() = recorder.GetScriptData();
|
|
log_ = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
ParserTraits::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) {
|
|
return new (zone()) ParserTraits::TemplateLiteral(zone(), pos);
|
|
}
|
|
|
|
|
|
void Parser::AddTemplateSpan(TemplateLiteralState* state, bool tail) {
|
|
int pos = scanner()->location().beg_pos;
|
|
int end = scanner()->location().end_pos - (tail ? 1 : 2);
|
|
const AstRawString* tv = scanner()->CurrentSymbol(ast_value_factory());
|
|
const AstRawString* trv = scanner()->CurrentRawSymbol(ast_value_factory());
|
|
Literal* cooked = factory()->NewStringLiteral(tv, pos);
|
|
Literal* raw = factory()->NewStringLiteral(trv, pos);
|
|
(*state)->AddTemplateSpan(cooked, raw, end, zone());
|
|
}
|
|
|
|
|
|
void Parser::AddTemplateExpression(TemplateLiteralState* state,
|
|
Expression* expression) {
|
|
(*state)->AddExpression(expression, zone());
|
|
}
|
|
|
|
|
|
Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start,
|
|
Expression* tag) {
|
|
TemplateLiteral* lit = *state;
|
|
int pos = lit->position();
|
|
const ZoneList<Expression*>* cooked_strings = lit->cooked();
|
|
const ZoneList<Expression*>* raw_strings = lit->raw();
|
|
const ZoneList<Expression*>* expressions = lit->expressions();
|
|
DCHECK_EQ(cooked_strings->length(), raw_strings->length());
|
|
DCHECK_EQ(cooked_strings->length(), expressions->length() + 1);
|
|
|
|
if (!tag) {
|
|
// Build tree of BinaryOps to simplify code-generation
|
|
Expression* expr = cooked_strings->at(0);
|
|
int i = 0;
|
|
while (i < expressions->length()) {
|
|
Expression* sub = expressions->at(i++);
|
|
Expression* cooked_str = cooked_strings->at(i);
|
|
|
|
// Let middle be ToString(sub).
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(sub, zone());
|
|
Expression* middle = factory()->NewCallRuntime(Runtime::kInlineToString,
|
|
args, sub->position());
|
|
|
|
expr = factory()->NewBinaryOperation(
|
|
Token::ADD, factory()->NewBinaryOperation(
|
|
Token::ADD, expr, middle, expr->position()),
|
|
cooked_str, sub->position());
|
|
}
|
|
return expr;
|
|
} else {
|
|
uint32_t hash = ComputeTemplateLiteralHash(lit);
|
|
|
|
int cooked_idx = function_state_->NextMaterializedLiteralIndex();
|
|
int raw_idx = function_state_->NextMaterializedLiteralIndex();
|
|
|
|
// $getTemplateCallSite
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(4, zone());
|
|
args->Add(factory()->NewArrayLiteral(
|
|
const_cast<ZoneList<Expression*>*>(cooked_strings),
|
|
cooked_idx, pos),
|
|
zone());
|
|
args->Add(
|
|
factory()->NewArrayLiteral(
|
|
const_cast<ZoneList<Expression*>*>(raw_strings), raw_idx, pos),
|
|
zone());
|
|
|
|
// Ensure hash is suitable as a Smi value
|
|
Smi* hash_obj = Smi::cast(Internals::IntToSmi(static_cast<int>(hash)));
|
|
args->Add(factory()->NewSmiLiteral(hash_obj->value(), pos), zone());
|
|
|
|
Expression* call_site = factory()->NewCallRuntime(
|
|
Context::GET_TEMPLATE_CALL_SITE_INDEX, args, start);
|
|
|
|
// Call TagFn
|
|
ZoneList<Expression*>* call_args =
|
|
new (zone()) ZoneList<Expression*>(expressions->length() + 1, zone());
|
|
call_args->Add(call_site, zone());
|
|
call_args->AddAll(*expressions, zone());
|
|
return factory()->NewCall(tag, call_args, pos);
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t Parser::ComputeTemplateLiteralHash(const TemplateLiteral* lit) {
|
|
const ZoneList<Expression*>* raw_strings = lit->raw();
|
|
int total = raw_strings->length();
|
|
DCHECK(total);
|
|
|
|
uint32_t running_hash = 0;
|
|
|
|
for (int index = 0; index < total; ++index) {
|
|
if (index) {
|
|
running_hash = StringHasher::ComputeRunningHashOneByte(
|
|
running_hash, "${}", 3);
|
|
}
|
|
|
|
const AstRawString* raw_string =
|
|
raw_strings->at(index)->AsLiteral()->raw_value()->AsString();
|
|
if (raw_string->is_one_byte()) {
|
|
const char* data = reinterpret_cast<const char*>(raw_string->raw_data());
|
|
running_hash = StringHasher::ComputeRunningHashOneByte(
|
|
running_hash, data, raw_string->length());
|
|
} else {
|
|
const uc16* data = reinterpret_cast<const uc16*>(raw_string->raw_data());
|
|
running_hash = StringHasher::ComputeRunningHash(running_hash, data,
|
|
raw_string->length());
|
|
}
|
|
}
|
|
|
|
return running_hash;
|
|
}
|
|
|
|
|
|
ZoneList<v8::internal::Expression*>* Parser::PrepareSpreadArguments(
|
|
ZoneList<v8::internal::Expression*>* list) {
|
|
ZoneList<v8::internal::Expression*>* args =
|
|
new (zone()) ZoneList<v8::internal::Expression*>(1, zone());
|
|
if (list->length() == 1) {
|
|
// Spread-call with single spread argument produces an InternalArray
|
|
// containing the values from the array.
|
|
//
|
|
// Function is called or constructed with the produced array of arguments
|
|
//
|
|
// EG: Apply(Func, Spread(spread0))
|
|
ZoneList<Expression*>* spread_list =
|
|
new (zone()) ZoneList<Expression*>(0, zone());
|
|
spread_list->Add(list->at(0)->AsSpread()->expression(), zone());
|
|
args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX,
|
|
spread_list, RelocInfo::kNoPosition),
|
|
zone());
|
|
return args;
|
|
} else {
|
|
// Spread-call with multiple arguments produces array literals for each
|
|
// sequences of unspread arguments, and converts each spread iterable to
|
|
// an Internal array. Finally, all of these produced arrays are flattened
|
|
// into a single InternalArray, containing the arguments for the call.
|
|
//
|
|
// EG: Apply(Func, Flatten([unspread0, unspread1], Spread(spread0),
|
|
// Spread(spread1), [unspread2, unspread3]))
|
|
int i = 0;
|
|
int n = list->length();
|
|
while (i < n) {
|
|
if (!list->at(i)->IsSpread()) {
|
|
ZoneList<v8::internal::Expression*>* unspread =
|
|
new (zone()) ZoneList<v8::internal::Expression*>(1, zone());
|
|
|
|
// Push array of unspread parameters
|
|
while (i < n && !list->at(i)->IsSpread()) {
|
|
unspread->Add(list->at(i++), zone());
|
|
}
|
|
int literal_index = function_state_->NextMaterializedLiteralIndex();
|
|
args->Add(factory()->NewArrayLiteral(unspread, literal_index,
|
|
RelocInfo::kNoPosition),
|
|
zone());
|
|
|
|
if (i == n) break;
|
|
}
|
|
|
|
// Push eagerly spread argument
|
|
ZoneList<v8::internal::Expression*>* spread_list =
|
|
new (zone()) ZoneList<v8::internal::Expression*>(1, zone());
|
|
spread_list->Add(list->at(i++)->AsSpread()->expression(), zone());
|
|
args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX,
|
|
spread_list, RelocInfo::kNoPosition),
|
|
zone());
|
|
}
|
|
|
|
list = new (zone()) ZoneList<v8::internal::Expression*>(1, zone());
|
|
list->Add(factory()->NewCallRuntime(Context::SPREAD_ARGUMENTS_INDEX, args,
|
|
RelocInfo::kNoPosition),
|
|
zone());
|
|
return list;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
Expression* Parser::SpreadCall(Expression* function,
|
|
ZoneList<v8::internal::Expression*>* args,
|
|
int pos) {
|
|
if (function->IsSuperCallReference()) {
|
|
// Super calls
|
|
// $super_constructor = %_GetSuperConstructor(<this-function>)
|
|
// %reflect_construct($super_constructor, args, new.target)
|
|
ZoneList<Expression*>* tmp = new (zone()) ZoneList<Expression*>(1, zone());
|
|
tmp->Add(function->AsSuperCallReference()->this_function_var(), zone());
|
|
Expression* super_constructor = factory()->NewCallRuntime(
|
|
Runtime::kInlineGetSuperConstructor, tmp, pos);
|
|
args->InsertAt(0, super_constructor, zone());
|
|
args->Add(function->AsSuperCallReference()->new_target_var(), zone());
|
|
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args,
|
|
pos);
|
|
} else {
|
|
if (function->IsProperty()) {
|
|
// Method calls
|
|
if (function->AsProperty()->IsSuperAccess()) {
|
|
Expression* home =
|
|
ThisExpression(scope_, factory(), RelocInfo::kNoPosition);
|
|
args->InsertAt(0, function, zone());
|
|
args->InsertAt(1, home, zone());
|
|
} else {
|
|
Variable* temp =
|
|
scope_->NewTemporary(ast_value_factory()->empty_string());
|
|
VariableProxy* obj = factory()->NewVariableProxy(temp);
|
|
Assignment* assign_obj = factory()->NewAssignment(
|
|
Token::ASSIGN, obj, function->AsProperty()->obj(),
|
|
RelocInfo::kNoPosition);
|
|
function = factory()->NewProperty(
|
|
assign_obj, function->AsProperty()->key(), RelocInfo::kNoPosition);
|
|
args->InsertAt(0, function, zone());
|
|
obj = factory()->NewVariableProxy(temp);
|
|
args->InsertAt(1, obj, zone());
|
|
}
|
|
} else {
|
|
// Non-method calls
|
|
args->InsertAt(0, function, zone());
|
|
args->InsertAt(1, factory()->NewUndefinedLiteral(RelocInfo::kNoPosition),
|
|
zone());
|
|
}
|
|
return factory()->NewCallRuntime(Context::REFLECT_APPLY_INDEX, args, pos);
|
|
}
|
|
}
|
|
|
|
|
|
Expression* Parser::SpreadCallNew(Expression* function,
|
|
ZoneList<v8::internal::Expression*>* args,
|
|
int pos) {
|
|
args->InsertAt(0, function, zone());
|
|
|
|
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos);
|
|
}
|
|
|
|
|
|
void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) {
|
|
v8::Isolate::UseCounterFeature feature;
|
|
if (is_sloppy(mode))
|
|
feature = v8::Isolate::kSloppyMode;
|
|
else if (is_strict(mode))
|
|
feature = v8::Isolate::kStrictMode;
|
|
else
|
|
UNREACHABLE();
|
|
++use_counts_[feature];
|
|
scope->SetLanguageMode(mode);
|
|
}
|
|
|
|
|
|
void Parser::RaiseLanguageMode(LanguageMode mode) {
|
|
LanguageMode old = scope_->language_mode();
|
|
SetLanguageMode(scope_, old > mode ? old : mode);
|
|
}
|
|
|
|
|
|
void ParserTraits::RewriteDestructuringAssignments() {
|
|
parser_->RewriteDestructuringAssignments();
|
|
}
|
|
|
|
|
|
void ParserTraits::RewriteNonPattern(Type::ExpressionClassifier* classifier,
|
|
bool* ok) {
|
|
parser_->RewriteNonPattern(classifier, ok);
|
|
}
|
|
|
|
|
|
Zone* ParserTraits::zone() const {
|
|
return parser_->function_state_->scope()->zone();
|
|
}
|
|
|
|
|
|
ZoneList<Expression*>* ParserTraits::GetNonPatternList() const {
|
|
return parser_->function_state_->non_patterns_to_rewrite();
|
|
}
|
|
|
|
|
|
class NonPatternRewriter : public AstExpressionRewriter {
|
|
public:
|
|
NonPatternRewriter(uintptr_t stack_limit, Parser* parser)
|
|
: AstExpressionRewriter(stack_limit), parser_(parser) {}
|
|
~NonPatternRewriter() override {}
|
|
|
|
private:
|
|
bool RewriteExpression(Expression* expr) override {
|
|
if (expr->IsRewritableExpression()) return true;
|
|
// Rewrite only what could have been a pattern but is not.
|
|
if (expr->IsArrayLiteral()) {
|
|
// Spread rewriting in array literals.
|
|
ArrayLiteral* lit = expr->AsArrayLiteral();
|
|
VisitExpressions(lit->values());
|
|
replacement_ = parser_->RewriteSpreads(lit);
|
|
return false;
|
|
}
|
|
if (expr->IsObjectLiteral()) {
|
|
return true;
|
|
}
|
|
if (expr->IsBinaryOperation() &&
|
|
expr->AsBinaryOperation()->op() == Token::COMMA) {
|
|
return true;
|
|
}
|
|
// Everything else does not need rewriting.
|
|
return false;
|
|
}
|
|
|
|
void VisitObjectLiteralProperty(ObjectLiteralProperty* property) override {
|
|
if (property == nullptr) return;
|
|
// Do not rewrite (computed) key expressions
|
|
AST_REWRITE_PROPERTY(Expression, property, value);
|
|
}
|
|
|
|
Parser* parser_;
|
|
};
|
|
|
|
|
|
void Parser::RewriteNonPattern(ExpressionClassifier* classifier, bool* ok) {
|
|
ValidateExpression(classifier, ok);
|
|
if (!*ok) return;
|
|
auto non_patterns_to_rewrite = function_state_->non_patterns_to_rewrite();
|
|
int begin = classifier->GetNonPatternBegin();
|
|
int end = non_patterns_to_rewrite->length();
|
|
if (begin < end) {
|
|
NonPatternRewriter rewriter(stack_limit_, this);
|
|
for (int i = begin; i < end; i++) {
|
|
DCHECK(non_patterns_to_rewrite->at(i)->IsRewritableExpression());
|
|
rewriter.Rewrite(non_patterns_to_rewrite->at(i));
|
|
}
|
|
non_patterns_to_rewrite->Rewind(begin);
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::RewriteDestructuringAssignments() {
|
|
const auto& assignments =
|
|
function_state_->destructuring_assignments_to_rewrite();
|
|
for (int i = assignments.length() - 1; i >= 0; --i) {
|
|
// Rewrite list in reverse, so that nested assignment patterns are rewritten
|
|
// correctly.
|
|
const DestructuringAssignment& pair = assignments.at(i);
|
|
RewritableExpression* to_rewrite =
|
|
pair.assignment->AsRewritableExpression();
|
|
DCHECK_NOT_NULL(to_rewrite);
|
|
if (!to_rewrite->is_rewritten()) {
|
|
PatternRewriter::RewriteDestructuringAssignment(this, to_rewrite,
|
|
pair.scope);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Expression* Parser::RewriteSpreads(ArrayLiteral* lit) {
|
|
// Array literals containing spreads are rewritten using do expressions, e.g.
|
|
// [1, 2, 3, ...x, 4, ...y, 5]
|
|
// is roughly rewritten as:
|
|
// do {
|
|
// $R = [1, 2, 3];
|
|
// for ($i of x) %AppendElement($R, $i);
|
|
// %AppendElement($R, 4);
|
|
// for ($j of y) %AppendElement($R, $j);
|
|
// %AppendElement($R, 5);
|
|
// $R
|
|
// }
|
|
// where $R, $i and $j are fresh temporary variables.
|
|
ZoneList<Expression*>::iterator s = lit->FirstSpread();
|
|
if (s == lit->EndValue()) return nullptr; // no spread, no rewriting...
|
|
Variable* result =
|
|
scope_->NewTemporary(ast_value_factory()->dot_result_string());
|
|
// NOTE: The value assigned to R is the whole original array literal,
|
|
// spreads included. This will be fixed before the rewritten AST is returned.
|
|
// $R = lit
|
|
Expression* init_result =
|
|
factory()->NewAssignment(Token::INIT, factory()->NewVariableProxy(result),
|
|
lit, RelocInfo::kNoPosition);
|
|
Block* do_block =
|
|
factory()->NewBlock(nullptr, 16, false, RelocInfo::kNoPosition);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(init_result, RelocInfo::kNoPosition),
|
|
zone());
|
|
// Traverse the array literal starting from the first spread.
|
|
while (s != lit->EndValue()) {
|
|
Expression* value = *s++;
|
|
Spread* spread = value->AsSpread();
|
|
if (spread == nullptr) {
|
|
// If the element is not a spread, we're adding a single:
|
|
// %AppendElement($R, value)
|
|
ZoneList<Expression*>* append_element_args = NewExpressionList(2, zone());
|
|
append_element_args->Add(factory()->NewVariableProxy(result), zone());
|
|
append_element_args->Add(value, zone());
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kAppendElement,
|
|
append_element_args,
|
|
RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition),
|
|
zone());
|
|
} else {
|
|
// If it's a spread, we're adding a for/of loop iterating through it.
|
|
Variable* each =
|
|
scope_->NewTemporary(ast_value_factory()->dot_for_string());
|
|
Expression* subject = spread->expression();
|
|
// %AppendElement($R, each)
|
|
Statement* append_body;
|
|
{
|
|
ZoneList<Expression*>* append_element_args =
|
|
NewExpressionList(2, zone());
|
|
append_element_args->Add(factory()->NewVariableProxy(result), zone());
|
|
append_element_args->Add(factory()->NewVariableProxy(each), zone());
|
|
append_body = factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kAppendElement,
|
|
append_element_args,
|
|
RelocInfo::kNoPosition),
|
|
RelocInfo::kNoPosition);
|
|
}
|
|
// for (each of spread) %AppendElement($R, each)
|
|
ForEachStatement* loop = factory()->NewForEachStatement(
|
|
ForEachStatement::ITERATE, nullptr, RelocInfo::kNoPosition);
|
|
InitializeForOfStatement(loop->AsForOfStatement(),
|
|
factory()->NewVariableProxy(each), subject,
|
|
append_body, spread->expression_position());
|
|
do_block->statements()->Add(loop, zone());
|
|
}
|
|
}
|
|
// Now, rewind the original array literal to truncate everything from the
|
|
// first spread (included) until the end. This fixes $R's initialization.
|
|
lit->RewindSpreads();
|
|
return factory()->NewDoExpression(do_block, result, lit->position());
|
|
}
|
|
|
|
|
|
void ParserTraits::QueueDestructuringAssignmentForRewriting(Expression* expr) {
|
|
DCHECK(expr->IsRewritableExpression());
|
|
parser_->function_state_->AddDestructuringAssignment(
|
|
Parser::DestructuringAssignment(expr, parser_->scope_));
|
|
}
|
|
|
|
|
|
void ParserTraits::QueueNonPatternForRewriting(Expression* expr) {
|
|
DCHECK(expr->IsRewritableExpression());
|
|
parser_->function_state_->AddNonPatternForRewriting(expr);
|
|
}
|
|
|
|
|
|
void ParserTraits::SetFunctionNameFromPropertyName(
|
|
ObjectLiteralProperty* property, const AstRawString* name) {
|
|
Expression* value = property->value();
|
|
|
|
// Computed name setting must happen at runtime.
|
|
if (property->is_computed_name()) return;
|
|
|
|
// Getter and setter names are handled here because their names
|
|
// change in ES2015, even though they are not anonymous.
|
|
auto function = value->AsFunctionLiteral();
|
|
if (function != nullptr) {
|
|
bool is_getter = property->kind() == ObjectLiteralProperty::GETTER;
|
|
bool is_setter = property->kind() == ObjectLiteralProperty::SETTER;
|
|
if (is_getter || is_setter) {
|
|
DCHECK_NOT_NULL(name);
|
|
const AstRawString* prefix =
|
|
is_getter ? parser_->ast_value_factory()->get_space_string()
|
|
: parser_->ast_value_factory()->set_space_string();
|
|
function->set_raw_name(
|
|
parser_->ast_value_factory()->NewConsString(prefix, name));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!value->IsAnonymousFunctionDefinition()) return;
|
|
DCHECK_NOT_NULL(name);
|
|
|
|
// Ignore "__proto__" as a name when it's being used to set the [[Prototype]]
|
|
// of an object literal.
|
|
if (property->kind() == ObjectLiteralProperty::PROTOTYPE) return;
|
|
|
|
if (function != nullptr) {
|
|
function->set_raw_name(name);
|
|
DCHECK_EQ(ObjectLiteralProperty::COMPUTED, property->kind());
|
|
} else {
|
|
DCHECK(value->IsClassLiteral());
|
|
DCHECK_EQ(ObjectLiteralProperty::COMPUTED, property->kind());
|
|
value->AsClassLiteral()->constructor()->set_raw_name(name);
|
|
}
|
|
}
|
|
|
|
|
|
void ParserTraits::SetFunctionNameFromIdentifierRef(Expression* value,
|
|
Expression* identifier) {
|
|
if (!value->IsAnonymousFunctionDefinition()) return;
|
|
if (!identifier->IsVariableProxy()) return;
|
|
|
|
auto name = identifier->AsVariableProxy()->raw_name();
|
|
DCHECK_NOT_NULL(name);
|
|
|
|
auto function = value->AsFunctionLiteral();
|
|
if (function != nullptr) {
|
|
function->set_raw_name(name);
|
|
} else {
|
|
DCHECK(value->IsClassLiteral());
|
|
value->AsClassLiteral()->constructor()->set_raw_name(name);
|
|
}
|
|
}
|
|
|
|
|
|
// Desugaring of yield*
|
|
// ====================
|
|
//
|
|
// With the help of do-expressions and function.sent, we desugar yield* into a
|
|
// loop containing a "raw" yield (a yield that doesn't wrap an iterator result
|
|
// object around its argument). Concretely, "yield* iterable" turns into
|
|
// roughly the following code:
|
|
//
|
|
// do {
|
|
// const kNext = 0;
|
|
// const kReturn = 1;
|
|
// const kThrow = 2;
|
|
//
|
|
// let input = function.sent;
|
|
// let mode = kNext;
|
|
// let output = undefined;
|
|
//
|
|
// let iterator = iterable[Symbol.iterator]();
|
|
// if (!IS_RECEIVER(iterator)) throw MakeTypeError(kSymbolIteratorInvalid);
|
|
//
|
|
// while (true) {
|
|
// // From the generator to the iterator:
|
|
// // Forward input according to resume mode and obtain output.
|
|
// switch (mode) {
|
|
// case kNext:
|
|
// output = iterator.next(input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
// break;
|
|
// case kReturn:
|
|
// IteratorClose(iterator, input, output); // See below.
|
|
// break;
|
|
// case kThrow:
|
|
// let iteratorThrow = iterator.throw;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorThrow)) {
|
|
// IteratorClose(iterator); // See below.
|
|
// throw MakeTypeError(kThrowMethodMissing);
|
|
// }
|
|
// output = %_Call(iteratorThrow, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
// break;
|
|
// }
|
|
// if (output.done) break;
|
|
//
|
|
// // From the generator to its user:
|
|
// // Forward output, receive new input, and determine resume mode.
|
|
// mode = kReturn;
|
|
// try {
|
|
// try {
|
|
// RawYield(output); // See explanation above.
|
|
// mode = kNext;
|
|
// } catch (error) {
|
|
// mode = kThrow;
|
|
// }
|
|
// } finally {
|
|
// input = function.sent;
|
|
// continue;
|
|
// }
|
|
// }
|
|
//
|
|
// output.value;
|
|
// }
|
|
//
|
|
// IteratorClose(iterator) expands to the following:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn)) return;
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
//
|
|
// IteratorClose(iterator, input, output) expands to the following:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn)) return input;
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
|
|
|
|
Expression* ParserTraits::RewriteYieldStar(
|
|
Expression* generator, Expression* iterable, int pos) {
|
|
|
|
const int nopos = RelocInfo::kNoPosition;
|
|
|
|
auto factory = parser_->factory();
|
|
auto avfactory = parser_->ast_value_factory();
|
|
auto scope = parser_->scope_;
|
|
auto zone = parser_->zone();
|
|
|
|
|
|
// Forward definition for break/continue statements.
|
|
WhileStatement* loop = factory->NewWhileStatement(nullptr, nopos);
|
|
|
|
|
|
// let input = undefined;
|
|
Variable* var_input = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* initialize_input;
|
|
{
|
|
Expression* input_proxy = factory->NewVariableProxy(var_input);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, input_proxy, factory->NewUndefinedLiteral(nopos), nopos);
|
|
initialize_input = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// let mode = kNext;
|
|
Variable* var_mode = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* initialize_mode;
|
|
{
|
|
Expression* mode_proxy = factory->NewVariableProxy(var_mode);
|
|
Expression* knext = factory->NewSmiLiteral(JSGeneratorObject::NEXT, nopos);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, mode_proxy, knext, nopos);
|
|
initialize_mode = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// let output = undefined;
|
|
Variable* var_output = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* initialize_output;
|
|
{
|
|
Expression* output_proxy = factory->NewVariableProxy(var_output);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, output_proxy, factory->NewUndefinedLiteral(nopos),
|
|
nopos);
|
|
initialize_output = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// let iterator = iterable[Symbol.iterator];
|
|
Variable* var_iterator = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* get_iterator;
|
|
{
|
|
Expression* iterator = GetIterator(iterable, factory, nopos);
|
|
Expression* iterator_proxy = factory->NewVariableProxy(var_iterator);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, iterator_proxy, iterator, nopos);
|
|
get_iterator = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// if (!IS_RECEIVER(iterator)) throw MakeTypeError(kSymbolIteratorInvalid);
|
|
Statement* validate_iterator;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_iterator), zone);
|
|
is_receiver_call =
|
|
factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
Expression* call = NewThrowTypeError(
|
|
MessageTemplate::kSymbolIteratorInvalid, avfactory->empty_string(),
|
|
nopos);
|
|
throw_call = factory->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_iterator = factory->NewIfStatement(
|
|
is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos);
|
|
}
|
|
|
|
|
|
// output = iterator.next(input);
|
|
Statement* call_next;
|
|
{
|
|
Expression* iterator_proxy = factory->NewVariableProxy(var_iterator);
|
|
Expression* literal =
|
|
factory->NewStringLiteral(avfactory->next_string(), nopos);
|
|
Expression* next_property =
|
|
factory->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* input_proxy = factory->NewVariableProxy(var_input);
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(input_proxy, zone);
|
|
Expression* call = factory->NewCall(next_property, args, nopos);
|
|
Expression* output_proxy = factory->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_next = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
Statement* validate_next_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_output), zone);
|
|
is_receiver_call =
|
|
factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_output), zone);
|
|
Expression* call = factory->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_next_output = factory->NewIfStatement(
|
|
is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos);
|
|
}
|
|
|
|
|
|
// let iteratorThrow = iterator.throw;
|
|
Variable* var_throw = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* get_throw;
|
|
{
|
|
Expression* iterator_proxy = factory->NewVariableProxy(var_iterator);
|
|
Expression* literal =
|
|
factory->NewStringLiteral(avfactory->throw_string(), nopos);
|
|
Expression* property =
|
|
factory->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* throw_proxy = factory->NewVariableProxy(var_throw);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, throw_proxy, property, nopos);
|
|
get_throw = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorThrow) {
|
|
// IteratorClose(iterator);
|
|
// throw MakeTypeError(kThrowMethodMissing);
|
|
// }
|
|
Statement* check_throw;
|
|
{
|
|
Expression* condition = factory->NewCompareOperation(
|
|
Token::EQ, factory->NewVariableProxy(var_throw),
|
|
factory->NewNullLiteral(nopos), nopos);
|
|
|
|
Expression* call = NewThrowTypeError(
|
|
MessageTemplate::kThrowMethodMissing,
|
|
avfactory->empty_string(), nopos);
|
|
Statement* throw_call = factory->NewExpressionStatement(call, nopos);
|
|
|
|
Block* then = factory->NewBlock(nullptr, 4+1, false, nopos);
|
|
Variable* var_tmp = scope->NewTemporary(avfactory->empty_string());
|
|
BuildIteratorClose(then->statements(), var_iterator, Nothing<Variable*>(),
|
|
var_tmp);
|
|
then->statements()->Add(throw_call, zone);
|
|
check_throw = factory->NewIfStatement(
|
|
condition, then, factory->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
|
|
// output = %_Call(iteratorThrow, iterator, input);
|
|
Statement* call_throw;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(3, zone);
|
|
args->Add(factory->NewVariableProxy(var_throw), zone);
|
|
args->Add(factory->NewVariableProxy(var_iterator), zone);
|
|
args->Add(factory->NewVariableProxy(var_input), zone);
|
|
Expression* call =
|
|
factory->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, factory->NewVariableProxy(var_output), call, nopos);
|
|
call_throw = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
Statement* validate_throw_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_output), zone);
|
|
is_receiver_call =
|
|
factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_output), zone);
|
|
Expression* call = factory->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_throw_output = factory->NewIfStatement(
|
|
is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos);
|
|
}
|
|
|
|
|
|
// if (output.done) break;
|
|
Statement* if_done;
|
|
{
|
|
Expression* output_proxy = factory->NewVariableProxy(var_output);
|
|
Expression* literal =
|
|
factory->NewStringLiteral(avfactory->done_string(), nopos);
|
|
Expression* property = factory->NewProperty(output_proxy, literal, nopos);
|
|
BreakStatement* break_loop = factory->NewBreakStatement(loop, nopos);
|
|
if_done = factory->NewIfStatement(
|
|
property, break_loop, factory->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
|
|
// mode = kReturn;
|
|
Statement* set_mode_return;
|
|
{
|
|
Expression* mode_proxy = factory->NewVariableProxy(var_mode);
|
|
Expression* kreturn =
|
|
factory->NewSmiLiteral(JSGeneratorObject::RETURN, nopos);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, mode_proxy, kreturn, nopos);
|
|
set_mode_return = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// Yield(output);
|
|
Statement* yield_output;
|
|
{
|
|
Expression* output_proxy = factory->NewVariableProxy(var_output);
|
|
Yield* yield = factory->NewYield(generator, output_proxy, nopos);
|
|
yield_output = factory->NewExpressionStatement(yield, nopos);
|
|
}
|
|
|
|
|
|
// mode = kNext;
|
|
Statement* set_mode_next;
|
|
{
|
|
Expression* mode_proxy = factory->NewVariableProxy(var_mode);
|
|
Expression* knext = factory->NewSmiLiteral(JSGeneratorObject::NEXT, nopos);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, mode_proxy, knext, nopos);
|
|
set_mode_next = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// mode = kThrow;
|
|
Statement* set_mode_throw;
|
|
{
|
|
Expression* mode_proxy = factory->NewVariableProxy(var_mode);
|
|
Expression* kthrow =
|
|
factory->NewSmiLiteral(JSGeneratorObject::THROW, nopos);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, mode_proxy, kthrow, nopos);
|
|
set_mode_throw = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// input = function.sent;
|
|
Statement* get_input;
|
|
{
|
|
Expression* function_sent = FunctionSentExpression(scope, factory, nopos);
|
|
Expression* input_proxy = factory->NewVariableProxy(var_input);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, input_proxy, function_sent, nopos);
|
|
get_input = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
|
|
// output.value;
|
|
Statement* get_value;
|
|
{
|
|
Expression* output_proxy = factory->NewVariableProxy(var_output);
|
|
Expression* literal =
|
|
factory->NewStringLiteral(avfactory->value_string(), nopos);
|
|
Expression* property = factory->NewProperty(output_proxy, literal, nopos);
|
|
get_value = factory->NewExpressionStatement(property, nopos);
|
|
}
|
|
|
|
|
|
// Now put things together.
|
|
|
|
|
|
// try { ... } catch(e) { ... }
|
|
Statement* try_catch;
|
|
{
|
|
Block* try_block = factory->NewBlock(nullptr, 2, false, nopos);
|
|
try_block->statements()->Add(yield_output, zone);
|
|
try_block->statements()->Add(set_mode_next, zone);
|
|
|
|
Block* catch_block = factory->NewBlock(nullptr, 1, false, nopos);
|
|
catch_block->statements()->Add(set_mode_throw, zone);
|
|
|
|
Scope* catch_scope = NewScope(scope, CATCH_SCOPE);
|
|
const AstRawString* name = avfactory->dot_catch_string();
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(name, VAR, kCreatedInitialized,
|
|
Variable::NORMAL);
|
|
|
|
try_catch = factory->NewTryCatchStatement(
|
|
try_block, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
|
|
// try { ... } finally { ... }
|
|
Statement* try_finally;
|
|
{
|
|
Block* try_block = factory->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(try_catch, zone);
|
|
|
|
Block* finally = factory->NewBlock(nullptr, 2, false, nopos);
|
|
finally->statements()->Add(get_input, zone);
|
|
finally->statements()->Add(
|
|
factory->NewContinueStatement(loop, nopos), zone);
|
|
|
|
try_finally = factory->NewTryFinallyStatement(try_block, finally, nopos);
|
|
}
|
|
|
|
|
|
// switch (mode) { ... }
|
|
SwitchStatement* switch_mode = factory->NewSwitchStatement(nullptr, nopos);
|
|
{
|
|
auto case_next = new (zone) ZoneList<Statement*>(3, zone);
|
|
case_next->Add(call_next, zone);
|
|
case_next->Add(validate_next_output, zone);
|
|
case_next->Add(factory->NewBreakStatement(switch_mode, nopos), zone);
|
|
|
|
auto case_return = new (zone) ZoneList<Statement*>(5, zone);
|
|
BuildIteratorClose(case_return, var_iterator, Just(var_input), var_output);
|
|
case_return->Add(factory->NewBreakStatement(switch_mode, nopos), zone);
|
|
|
|
auto case_throw = new (zone) ZoneList<Statement*>(5, zone);
|
|
case_throw->Add(get_throw, zone);
|
|
case_throw->Add(check_throw, zone);
|
|
case_throw->Add(call_throw, zone);
|
|
case_throw->Add(validate_throw_output, zone);
|
|
case_throw->Add(factory->NewBreakStatement(switch_mode, nopos), zone);
|
|
|
|
auto cases = new (zone) ZoneList<CaseClause*>(3, zone);
|
|
Expression* knext = factory->NewSmiLiteral(JSGeneratorObject::NEXT, nopos);
|
|
Expression* kreturn =
|
|
factory->NewSmiLiteral(JSGeneratorObject::RETURN, nopos);
|
|
Expression* kthrow =
|
|
factory->NewSmiLiteral(JSGeneratorObject::THROW, nopos);
|
|
cases->Add(factory->NewCaseClause(knext, case_next, nopos), zone);
|
|
cases->Add(factory->NewCaseClause(kreturn, case_return, nopos), zone);
|
|
cases->Add(factory->NewCaseClause(kthrow, case_throw, nopos), zone);
|
|
|
|
switch_mode->Initialize(factory->NewVariableProxy(var_mode), cases);
|
|
}
|
|
|
|
|
|
// while (true) { ... }
|
|
// Already defined earlier: WhileStatement* loop = ...
|
|
{
|
|
Block* loop_body = factory->NewBlock(nullptr, 4, false, nopos);
|
|
loop_body->statements()->Add(switch_mode, zone);
|
|
loop_body->statements()->Add(if_done, zone);
|
|
loop_body->statements()->Add(set_mode_return, zone);
|
|
loop_body->statements()->Add(try_finally, zone);
|
|
|
|
loop->Initialize(factory->NewBooleanLiteral(true, nopos), loop_body);
|
|
}
|
|
|
|
|
|
// do { ... }
|
|
DoExpression* yield_star;
|
|
{
|
|
// The rewriter needs to process the get_value statement only, hence we
|
|
// put the preceding statements into an init block.
|
|
|
|
Block* do_block_ = factory->NewBlock(nullptr, 6, true, nopos);
|
|
do_block_->statements()->Add(initialize_input, zone);
|
|
do_block_->statements()->Add(initialize_mode, zone);
|
|
do_block_->statements()->Add(initialize_output, zone);
|
|
do_block_->statements()->Add(get_iterator, zone);
|
|
do_block_->statements()->Add(validate_iterator, zone);
|
|
do_block_->statements()->Add(loop, zone);
|
|
|
|
Block* do_block = factory->NewBlock(nullptr, 2, false, nopos);
|
|
do_block->statements()->Add(do_block_, zone);
|
|
do_block->statements()->Add(get_value, zone);
|
|
|
|
Variable* dot_result = scope->NewTemporary(avfactory->dot_result_string());
|
|
yield_star = factory->NewDoExpression(do_block, dot_result, nopos);
|
|
Rewriter::Rewrite(parser_, yield_star, avfactory);
|
|
}
|
|
|
|
return yield_star;
|
|
}
|
|
|
|
// Desugaring of (lhs) instanceof (rhs)
|
|
// ====================================
|
|
//
|
|
// We desugar instanceof into a load of property @@hasInstance on the rhs.
|
|
// We end up with roughly the following code (O, C):
|
|
//
|
|
// do {
|
|
// let O = lhs;
|
|
// let C = rhs;
|
|
// if (!IS_RECEIVER(C)) throw MakeTypeError(kNonObjectInInstanceOfCheck);
|
|
// let handler_result = C[Symbol.hasInstance];
|
|
// if (handler_result === undefined) {
|
|
// if (!IS_CALLABLE(C)) {
|
|
// throw MakeTypeError(kCalledNonCallableInstanceOf);
|
|
// }
|
|
// handler_result = %_GetOrdinaryHasInstance()
|
|
// handler_result = %_Call(handler_result, C, O);
|
|
// } else {
|
|
// handler_result = !!(%_Call(handler_result, C, O));
|
|
// }
|
|
// handler_result;
|
|
// }
|
|
//
|
|
Expression* ParserTraits::RewriteInstanceof(Expression* lhs, Expression* rhs,
|
|
int pos) {
|
|
const int nopos = RelocInfo::kNoPosition;
|
|
|
|
auto factory = parser_->factory();
|
|
auto avfactory = parser_->ast_value_factory();
|
|
auto scope = parser_->scope_;
|
|
auto zone = parser_->zone();
|
|
|
|
// let O = lhs;
|
|
Variable* var_O = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* get_O;
|
|
{
|
|
Expression* O_proxy = factory->NewVariableProxy(var_O);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, O_proxy, lhs, nopos);
|
|
get_O = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// let C = lhs;
|
|
Variable* var_C = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* get_C;
|
|
{
|
|
Expression* C_proxy = factory->NewVariableProxy(var_C);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, C_proxy, rhs, nopos);
|
|
get_C = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(C)) throw MakeTypeError(kNonObjectInInstanceOfCheck);
|
|
Statement* validate_C;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_C), zone);
|
|
Expression* is_receiver_call =
|
|
factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
Expression* call =
|
|
NewThrowTypeError(MessageTemplate::kNonObjectInInstanceOfCheck,
|
|
avfactory->empty_string(), pos);
|
|
Statement* throw_call = factory->NewExpressionStatement(call, nopos);
|
|
|
|
validate_C =
|
|
factory->NewIfStatement(is_receiver_call,
|
|
factory->NewEmptyStatement(nopos),
|
|
throw_call,
|
|
nopos);
|
|
}
|
|
|
|
// let handler_result = C[Symbol.hasInstance];
|
|
Variable* var_handler_result = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* initialize_handler;
|
|
{
|
|
Expression* hasInstance_symbol_literal =
|
|
factory->NewSymbolLiteral("hasInstance_symbol", RelocInfo::kNoPosition);
|
|
Expression* prop = factory->NewProperty(factory->NewVariableProxy(var_C),
|
|
hasInstance_symbol_literal, pos);
|
|
Expression* handler_proxy = factory->NewVariableProxy(var_handler_result);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, handler_proxy, prop, nopos);
|
|
initialize_handler = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (handler_result === undefined) {
|
|
// if (!IS_CALLABLE(C)) {
|
|
// throw MakeTypeError(kCalledNonCallableInstanceOf);
|
|
// }
|
|
// handler_result = %_GetOrdinaryHasInstance()
|
|
// handler_result = %_Call(handler_result, C, O);
|
|
// } else {
|
|
// handler_result = !!%_Call(handler_result, C, O);
|
|
// }
|
|
Statement* call_handler;
|
|
{
|
|
Expression* condition = factory->NewCompareOperation(
|
|
Token::EQ_STRICT, factory->NewVariableProxy(var_handler_result),
|
|
factory->NewUndefinedLiteral(nopos), nopos);
|
|
|
|
Block* then_side = factory->NewBlock(nullptr, 3, false, nopos);
|
|
{
|
|
Expression* throw_expr =
|
|
NewThrowTypeError(MessageTemplate::kCalledNonCallableInstanceOf,
|
|
avfactory->empty_string(), pos);
|
|
Statement* validate_C = CheckCallable(var_C, throw_expr);
|
|
|
|
ZoneList<Expression*>* empty_args =
|
|
new (zone) ZoneList<Expression*>(0, zone);
|
|
Expression* ordinary_has_instance = factory->NewCallRuntime(
|
|
Runtime::kInlineGetOrdinaryHasInstance, empty_args, pos);
|
|
Expression* handler_proxy = factory->NewVariableProxy(var_handler_result);
|
|
Expression* assignment_handler = factory->NewAssignment(
|
|
Token::ASSIGN, handler_proxy, ordinary_has_instance, nopos);
|
|
Statement* assignment_get_handler =
|
|
factory->NewExpressionStatement(assignment_handler, nopos);
|
|
|
|
ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(3, zone);
|
|
args->Add(factory->NewVariableProxy(var_handler_result), zone);
|
|
args->Add(factory->NewVariableProxy(var_C), zone);
|
|
args->Add(factory->NewVariableProxy(var_O), zone);
|
|
Expression* call =
|
|
factory->NewCallRuntime(Runtime::kInlineCall, args, pos);
|
|
Expression* result_proxy = factory->NewVariableProxy(var_handler_result);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, result_proxy, call, nopos);
|
|
Statement* assignment_return =
|
|
factory->NewExpressionStatement(assignment, nopos);
|
|
|
|
then_side->statements()->Add(validate_C, zone);
|
|
then_side->statements()->Add(assignment_get_handler, zone);
|
|
then_side->statements()->Add(assignment_return, zone);
|
|
}
|
|
|
|
Statement* else_side;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(3, zone);
|
|
args->Add(factory->NewVariableProxy(var_handler_result), zone);
|
|
args->Add(factory->NewVariableProxy(var_C), zone);
|
|
args->Add(factory->NewVariableProxy(var_O), zone);
|
|
Expression* call =
|
|
factory->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
Expression* inner_not =
|
|
factory->NewUnaryOperation(Token::NOT, call, nopos);
|
|
Expression* outer_not =
|
|
factory->NewUnaryOperation(Token::NOT, inner_not, nopos);
|
|
Expression* result_proxy = factory->NewVariableProxy(var_handler_result);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, result_proxy, outer_not, nopos);
|
|
|
|
else_side = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
call_handler =
|
|
factory->NewIfStatement(condition, then_side, else_side, nopos);
|
|
}
|
|
|
|
// do { ... }
|
|
DoExpression* instanceof;
|
|
{
|
|
Block* block = factory->NewBlock(nullptr, 5, true, nopos);
|
|
block->statements()->Add(get_O, zone);
|
|
block->statements()->Add(get_C, zone);
|
|
block->statements()->Add(validate_C, zone);
|
|
block->statements()->Add(initialize_handler, zone);
|
|
block->statements()->Add(call_handler, zone);
|
|
|
|
// Here is the desugared instanceof.
|
|
instanceof = factory->NewDoExpression(block, var_handler_result, nopos);
|
|
Rewriter::Rewrite(parser_, instanceof, avfactory);
|
|
}
|
|
|
|
return instanceof;
|
|
}
|
|
|
|
Statement* ParserTraits::CheckCallable(Variable* var, Expression* error) {
|
|
auto factory = parser_->factory();
|
|
auto avfactory = parser_->ast_value_factory();
|
|
const int nopos = RelocInfo::kNoPosition;
|
|
Statement* validate_var;
|
|
{
|
|
Expression* type_of = factory->NewUnaryOperation(
|
|
Token::TYPEOF, factory->NewVariableProxy(var), nopos);
|
|
Expression* function_literal =
|
|
factory->NewStringLiteral(avfactory->function_string(), nopos);
|
|
Expression* condition = factory->NewCompareOperation(
|
|
Token::EQ_STRICT, type_of, function_literal, nopos);
|
|
|
|
Statement* throw_call = factory->NewExpressionStatement(error, nopos);
|
|
|
|
validate_var = factory->NewIfStatement(
|
|
condition, factory->NewEmptyStatement(nopos), throw_call, nopos);
|
|
}
|
|
return validate_var;
|
|
}
|
|
|
|
void ParserTraits::BuildIteratorClose(ZoneList<Statement*>* statements,
|
|
Variable* iterator,
|
|
Maybe<Variable*> input,
|
|
Variable* var_output) {
|
|
//
|
|
// This function adds four statements to [statements], corresponding to the
|
|
// following code:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) return |input|;
|
|
// output = %_Call(iteratorReturn, iterator|, input|);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
//
|
|
// Here, |...| denotes optional parts, depending on the presence of the
|
|
// input variable. The reason for allowing input is that BuildIteratorClose
|
|
// can then be reused to handle the return case in yield*.
|
|
//
|
|
|
|
const int nopos = RelocInfo::kNoPosition;
|
|
auto factory = parser_->factory();
|
|
auto avfactory = parser_->ast_value_factory();
|
|
auto zone = parser_->zone();
|
|
|
|
// let iteratorReturn = iterator.return;
|
|
Variable* var_return = var_output; // Reusing the output variable.
|
|
Statement* get_return;
|
|
{
|
|
Expression* iterator_proxy = factory->NewVariableProxy(iterator);
|
|
Expression* literal =
|
|
factory->NewStringLiteral(avfactory->return_string(), nopos);
|
|
Expression* property =
|
|
factory->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* return_proxy = factory->NewVariableProxy(var_return);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, return_proxy, property, nopos);
|
|
get_return = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) return |input|;
|
|
Statement* check_return;
|
|
{
|
|
Expression* condition = factory->NewCompareOperation(
|
|
Token::EQ, factory->NewVariableProxy(var_return),
|
|
factory->NewNullLiteral(nopos), nopos);
|
|
|
|
Expression* value = input.IsJust()
|
|
? static_cast<Expression*>(
|
|
factory->NewVariableProxy(input.FromJust()))
|
|
: factory->NewUndefinedLiteral(nopos);
|
|
|
|
Statement* return_input = factory->NewReturnStatement(value, nopos);
|
|
|
|
check_return = factory->NewIfStatement(
|
|
condition, return_input, factory->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// output = %_Call(iteratorReturn, iterator, |input|);
|
|
Statement* call_return;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(3, zone);
|
|
args->Add(factory->NewVariableProxy(var_return), zone);
|
|
args->Add(factory->NewVariableProxy(iterator), zone);
|
|
if (input.IsJust()) {
|
|
args->Add(factory->NewVariableProxy(input.FromJust()), zone);
|
|
}
|
|
|
|
Expression* call =
|
|
factory->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
Expression* output_proxy = factory->NewVariableProxy(var_output);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, output_proxy, call, nopos);
|
|
call_return = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIteratorResultNotAnObject(output);
|
|
Statement* validate_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_output), zone);
|
|
is_receiver_call =
|
|
factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_output), zone);
|
|
Expression* call = factory->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_output = factory->NewIfStatement(
|
|
is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos);
|
|
}
|
|
|
|
statements->Add(get_return, zone);
|
|
statements->Add(check_return, zone);
|
|
statements->Add(call_return, zone);
|
|
statements->Add(validate_output, zone);
|
|
}
|
|
|
|
void ParserTraits::FinalizeIteratorUse(Variable* completion,
|
|
Expression* condition, Variable* iter,
|
|
Block* iterator_use, Block* target) {
|
|
if (!FLAG_harmony_iterator_close) return;
|
|
|
|
//
|
|
// This function adds two statements to [target], corresponding to the
|
|
// following code:
|
|
//
|
|
// completion = kNormalCompletion;
|
|
// try {
|
|
// try {
|
|
// iterator_use
|
|
// } catch(e) {
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
// throw e;
|
|
// }
|
|
// } finally {
|
|
// if (condition) {
|
|
// #BuildIteratorCloseForCompletion(iter, completion)
|
|
// }
|
|
// }
|
|
//
|
|
|
|
const int nopos = RelocInfo::kNoPosition;
|
|
auto factory = parser_->factory();
|
|
auto avfactory = parser_->ast_value_factory();
|
|
auto scope = parser_->scope_;
|
|
auto zone = parser_->zone();
|
|
|
|
// completion = kNormalCompletion;
|
|
Statement* initialize_completion;
|
|
{
|
|
Expression* proxy = factory->NewVariableProxy(completion);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
initialize_completion = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
Statement* set_completion_throw;
|
|
{
|
|
Expression* condition = factory->NewCompareOperation(
|
|
Token::EQ_STRICT, factory->NewVariableProxy(completion),
|
|
factory->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
|
|
|
|
Expression* proxy = factory->NewVariableProxy(completion);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
|
|
Statement* statement = factory->NewExpressionStatement(assignment, nopos);
|
|
set_completion_throw = factory->NewIfStatement(
|
|
condition, statement, factory->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// if (condition) {
|
|
// #BuildIteratorCloseForCompletion(iter, completion)
|
|
// }
|
|
Block* maybe_close;
|
|
{
|
|
Block* block = factory->NewBlock(nullptr, 2, true, nopos);
|
|
parser_->BuildIteratorCloseForCompletion(block->statements(), iter,
|
|
completion);
|
|
DCHECK(block->statements()->length() == 2);
|
|
|
|
maybe_close = factory->NewBlock(nullptr, 1, true, nopos);
|
|
maybe_close->statements()->Add(
|
|
factory->NewIfStatement(condition, block,
|
|
factory->NewEmptyStatement(nopos), nopos),
|
|
zone);
|
|
}
|
|
|
|
// try { #try_block }
|
|
// catch(e) {
|
|
// #set_completion_throw;
|
|
// throw e;
|
|
// }
|
|
Statement* try_catch;
|
|
{
|
|
Scope* catch_scope = parser_->NewScope(scope, CATCH_SCOPE);
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(avfactory->dot_catch_string(), VAR,
|
|
kCreatedInitialized, Variable::NORMAL);
|
|
|
|
Statement* rethrow;
|
|
{
|
|
Expression* proxy = factory->NewVariableProxy(catch_variable);
|
|
rethrow = factory->NewExpressionStatement(factory->NewThrow(proxy, nopos),
|
|
nopos);
|
|
}
|
|
|
|
Block* catch_block = factory->NewBlock(nullptr, 2, false, nopos);
|
|
catch_block->statements()->Add(set_completion_throw, zone);
|
|
catch_block->statements()->Add(rethrow, zone);
|
|
|
|
try_catch = factory->NewTryCatchStatement(
|
|
iterator_use, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
// try { #try_catch } finally { #maybe_close }
|
|
Statement* try_finally;
|
|
{
|
|
Block* try_block = factory->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(try_catch, zone);
|
|
|
|
try_finally =
|
|
factory->NewTryFinallyStatement(try_block, maybe_close, nopos);
|
|
}
|
|
|
|
target->statements()->Add(initialize_completion, zone);
|
|
target->statements()->Add(try_finally, zone);
|
|
}
|
|
|
|
void ParserTraits::BuildIteratorCloseForCompletion(
|
|
ZoneList<Statement*>* statements, Variable* iterator,
|
|
Variable* completion) {
|
|
//
|
|
// This function adds two statements to [statements], corresponding to the
|
|
// following code:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) {
|
|
// if (completion === kThrowCompletion) {
|
|
// if (!IS_CALLABLE(iteratorReturn)) {
|
|
// throw MakeTypeError(kReturnMethodNotCallable);
|
|
// }
|
|
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
|
|
// } else {
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) {
|
|
// %ThrowIterResultNotAnObject(output);
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
|
|
const int nopos = RelocInfo::kNoPosition;
|
|
auto factory = parser_->factory();
|
|
auto avfactory = parser_->ast_value_factory();
|
|
auto scope = parser_->scope_;
|
|
auto zone = parser_->zone();
|
|
|
|
|
|
// let iteratorReturn = iterator.return;
|
|
Variable* var_return = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* get_return;
|
|
{
|
|
Expression* iterator_proxy = factory->NewVariableProxy(iterator);
|
|
Expression* literal =
|
|
factory->NewStringLiteral(avfactory->return_string(), nopos);
|
|
Expression* property =
|
|
factory->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* return_proxy = factory->NewVariableProxy(var_return);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, return_proxy, property, nopos);
|
|
get_return = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_CALLABLE(iteratorReturn)) {
|
|
// throw MakeTypeError(kReturnMethodNotCallable);
|
|
// }
|
|
Statement* check_return_callable;
|
|
{
|
|
Expression* throw_expr = NewThrowTypeError(
|
|
MessageTemplate::kReturnMethodNotCallable,
|
|
avfactory->empty_string(), nopos);
|
|
check_return_callable = CheckCallable(var_return, throw_expr);
|
|
}
|
|
|
|
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
|
|
Statement* try_call_return;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(2, zone);
|
|
args->Add(factory->NewVariableProxy(var_return), zone);
|
|
args->Add(factory->NewVariableProxy(iterator), zone);
|
|
|
|
Expression* call =
|
|
factory->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
|
|
Block* try_block = factory->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(factory->NewExpressionStatement(call, nopos),
|
|
zone);
|
|
|
|
Block* catch_block = factory->NewBlock(nullptr, 0, false, nopos);
|
|
|
|
Scope* catch_scope = NewScope(scope, CATCH_SCOPE);
|
|
Variable* catch_variable = catch_scope->DeclareLocal(
|
|
avfactory->dot_catch_string(), VAR, kCreatedInitialized,
|
|
Variable::NORMAL);
|
|
|
|
try_call_return = factory->NewTryCatchStatement(
|
|
try_block, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) {
|
|
// %ThrowIteratorResultNotAnObject(output);
|
|
// }
|
|
Block* validate_return;
|
|
{
|
|
Variable* var_output = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* call_return;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(2, zone);
|
|
args->Add(factory->NewVariableProxy(var_return), zone);
|
|
args->Add(factory->NewVariableProxy(iterator), zone);
|
|
Expression* call =
|
|
factory->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
|
|
Expression* output_proxy = factory->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_return = factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_output), zone);
|
|
is_receiver_call =
|
|
factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone) ZoneList<Expression*>(1, zone);
|
|
args->Add(factory->NewVariableProxy(var_output), zone);
|
|
Expression* call = factory->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
Statement* check_return = factory->NewIfStatement(
|
|
is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos);
|
|
|
|
validate_return = factory->NewBlock(nullptr, 2, false, nopos);
|
|
validate_return->statements()->Add(call_return, zone);
|
|
validate_return->statements()->Add(check_return, zone);
|
|
}
|
|
|
|
// if (completion === kThrowCompletion) {
|
|
// #check_return_callable;
|
|
// #try_call_return;
|
|
// } else {
|
|
// #validate_return;
|
|
// }
|
|
Statement* call_return_carefully;
|
|
{
|
|
Expression* condition = factory->NewCompareOperation(
|
|
Token::EQ_STRICT, factory->NewVariableProxy(completion),
|
|
factory->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
|
|
|
|
Block* then_block = factory->NewBlock(nullptr, 2, false, nopos);
|
|
then_block->statements()->Add(check_return_callable, zone);
|
|
then_block->statements()->Add(try_call_return, zone);
|
|
|
|
call_return_carefully =
|
|
factory->NewIfStatement(condition, then_block, validate_return, nopos);
|
|
}
|
|
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) { ... }
|
|
Statement* maybe_call_return;
|
|
{
|
|
Expression* condition = factory->NewCompareOperation(
|
|
Token::EQ, factory->NewVariableProxy(var_return),
|
|
factory->NewNullLiteral(nopos), nopos);
|
|
|
|
maybe_call_return =
|
|
factory->NewIfStatement(condition, factory->NewEmptyStatement(nopos),
|
|
call_return_carefully, nopos);
|
|
}
|
|
|
|
|
|
statements->Add(get_return, zone);
|
|
statements->Add(maybe_call_return, zone);
|
|
}
|
|
|
|
|
|
Statement* ParserTraits::FinalizeForOfStatement(ForOfStatement* loop, int pos) {
|
|
if (!FLAG_harmony_iterator_close) return loop;
|
|
|
|
//
|
|
// This function replaces the loop with the following wrapping:
|
|
//
|
|
// let each;
|
|
// let completion = kNormalCompletion;
|
|
// try {
|
|
// try {
|
|
// #loop;
|
|
// } catch(e) {
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
// throw e;
|
|
// }
|
|
// } finally {
|
|
// if (!(completion === kNormalCompletion || IS_UNDEFINED(#iterator))) {
|
|
// #BuildIteratorCloseForCompletion(#iterator, completion)
|
|
// }
|
|
// }
|
|
//
|
|
// where the loop's body is wrapped as follows:
|
|
//
|
|
// {
|
|
// #loop-body
|
|
// {{completion = kNormalCompletion;}}
|
|
// }
|
|
//
|
|
// and the loop's assign_each is wrapped as follows
|
|
//
|
|
// do {
|
|
// {{completion = kAbruptCompletion;}}
|
|
// #assign-each
|
|
// }
|
|
//
|
|
|
|
const int nopos = RelocInfo::kNoPosition;
|
|
auto factory = parser_->factory();
|
|
auto avfactory = parser_->ast_value_factory();
|
|
auto scope = parser_->scope_;
|
|
auto zone = parser_->zone();
|
|
|
|
Variable* var_completion = scope->NewTemporary(avfactory->empty_string());
|
|
|
|
// let each;
|
|
Variable* var_each = scope->NewTemporary(avfactory->empty_string());
|
|
Statement* initialize_each;
|
|
{
|
|
Expression* proxy = factory->NewVariableProxy(var_each);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory->NewUndefinedLiteral(nopos), nopos);
|
|
initialize_each =
|
|
factory->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// !(completion === kNormalCompletion || IS_UNDEFINED(#iterator))
|
|
Expression* closing_condition;
|
|
{
|
|
Expression* lhs = factory->NewCompareOperation(
|
|
Token::EQ_STRICT, factory->NewVariableProxy(var_completion),
|
|
factory->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
Expression* rhs = factory->NewCompareOperation(
|
|
Token::EQ_STRICT, factory->NewVariableProxy(loop->iterator()),
|
|
factory->NewUndefinedLiteral(nopos), nopos);
|
|
closing_condition = factory->NewUnaryOperation(
|
|
Token::NOT, factory->NewBinaryOperation(Token::OR, lhs, rhs, nopos),
|
|
nopos);
|
|
}
|
|
|
|
// {{completion = kNormalCompletion;}}
|
|
Statement* set_completion_normal;
|
|
{
|
|
Expression* proxy = factory->NewVariableProxy(var_completion);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
|
|
Block* block = factory->NewBlock(nullptr, 1, true, nopos);
|
|
block->statements()->Add(
|
|
factory->NewExpressionStatement(assignment, nopos), zone);
|
|
set_completion_normal = block;
|
|
}
|
|
|
|
// {{completion = kAbruptCompletion;}}
|
|
Statement* set_completion_abrupt;
|
|
{
|
|
Expression* proxy = factory->NewVariableProxy(var_completion);
|
|
Expression* assignment = factory->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
|
|
|
|
Block* block = factory->NewBlock(nullptr, 1, true, nopos);
|
|
block->statements()->Add(factory->NewExpressionStatement(assignment, nopos),
|
|
zone);
|
|
set_completion_abrupt = block;
|
|
}
|
|
|
|
// { #loop-body; #set_completion_normal }
|
|
Block* new_body = factory->NewBlock(nullptr, 2, false, nopos);
|
|
{
|
|
new_body->statements()->Add(loop->body(), zone);
|
|
new_body->statements()->Add(set_completion_normal, zone);
|
|
}
|
|
|
|
// { #set_completion_abrupt; #assign-each }
|
|
Block* new_assign_each = factory->NewBlock(nullptr, 2, false, nopos);
|
|
{
|
|
new_assign_each->statements()->Add(set_completion_abrupt, zone);
|
|
new_assign_each->statements()->Add(
|
|
factory->NewExpressionStatement(loop->assign_each(), nopos), zone);
|
|
}
|
|
|
|
// Now put things together.
|
|
|
|
loop->set_body(new_body);
|
|
loop->set_assign_each(
|
|
factory->NewDoExpression(new_assign_each, var_each, nopos));
|
|
|
|
Statement* final_loop;
|
|
{
|
|
Block* target = factory->NewBlock(nullptr, 3, false, nopos);
|
|
target->statements()->Add(initialize_each, zone);
|
|
|
|
Block* try_block = factory->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(loop, zone);
|
|
|
|
FinalizeIteratorUse(var_completion, closing_condition, loop->iterator(),
|
|
try_block, target);
|
|
final_loop = target;
|
|
}
|
|
|
|
return final_loop;
|
|
}
|
|
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|