v8/src/platform.h
hpayer@chromium.org 4c01c4040a Re-land "Add methods to enable configuration of ResourceConstraints based on limits derived at runtime."
Adds ConfigureResourceConstraintsForCurrentPlatform and SetDefaultResourceConstraintsForCurrentPlatform which configure the heap based on the available physical memory, rather than hard-coding by platform as previous. This change also adds OS::TotalPhysicalMemory to platform.h.

The re-land fix the performance regression caused by accidental change in default max young space size.

BUG=292928
R=hpayer@chromium.org

Review URL: https://codereview.chromium.org/24989003

Patch from Ross McIlroy <rmcilroy@chromium.org>.

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16983 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-09-27 10:53:07 +00:00

602 lines
20 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This module contains the platform-specific code. This make the rest of the
// code less dependent on operating system, compilers and runtime libraries.
// This module does specifically not deal with differences between different
// processor architecture.
// The platform classes have the same definition for all platforms. The
// implementation for a particular platform is put in platform_<os>.cc.
// The build system then uses the implementation for the target platform.
//
// This design has been chosen because it is simple and fast. Alternatively,
// the platform dependent classes could have been implemented using abstract
// superclasses with virtual methods and having specializations for each
// platform. This design was rejected because it was more complicated and
// slower. It would require factory methods for selecting the right
// implementation and the overhead of virtual methods for performance
// sensitive like mutex locking/unlocking.
#ifndef V8_PLATFORM_H_
#define V8_PLATFORM_H_
#include <cstdarg>
#include "platform/mutex.h"
#include "platform/semaphore.h"
#include "utils.h"
#include "v8globals.h"
#ifdef __sun
# ifndef signbit
namespace std {
int signbit(double x);
}
# endif
#endif
// Microsoft Visual C++ specific stuff.
#if V8_CC_MSVC
#include "win32-headers.h"
#include "win32-math.h"
int strncasecmp(const char* s1, const char* s2, int n);
// Visual C++ 2013 and higher implement this function.
#if (_MSC_VER < 1800)
inline int lrint(double flt) {
int intgr;
#if V8_TARGET_ARCH_IA32
__asm {
fld flt
fistp intgr
};
#else
intgr = static_cast<int>(flt + 0.5);
if ((intgr & 1) != 0 && intgr - flt == 0.5) {
// If the number is halfway between two integers, round to the even one.
intgr--;
}
#endif
return intgr;
}
#endif // _MSC_VER < 1800
#endif // V8_CC_MSVC
namespace v8 {
namespace internal {
double ceiling(double x);
double modulo(double x, double y);
// Custom implementation of math functions.
double fast_sin(double input);
double fast_cos(double input);
double fast_tan(double input);
double fast_log(double input);
double fast_exp(double input);
double fast_sqrt(double input);
// The custom exp implementation needs 16KB of lookup data; initialize it
// on demand.
void lazily_initialize_fast_exp();
// ----------------------------------------------------------------------------
// Fast TLS support
#ifndef V8_NO_FAST_TLS
#if defined(_MSC_VER) && V8_HOST_ARCH_IA32
#define V8_FAST_TLS_SUPPORTED 1
INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
const intptr_t kTibInlineTlsOffset = 0xE10;
const intptr_t kTibExtraTlsOffset = 0xF94;
const intptr_t kMaxInlineSlots = 64;
const intptr_t kMaxSlots = kMaxInlineSlots + 1024;
ASSERT(0 <= index && index < kMaxSlots);
if (index < kMaxInlineSlots) {
return static_cast<intptr_t>(__readfsdword(kTibInlineTlsOffset +
kPointerSize * index));
}
intptr_t extra = static_cast<intptr_t>(__readfsdword(kTibExtraTlsOffset));
ASSERT(extra != 0);
return *reinterpret_cast<intptr_t*>(extra +
kPointerSize * (index - kMaxInlineSlots));
}
#elif defined(__APPLE__) && (V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64)
#define V8_FAST_TLS_SUPPORTED 1
extern intptr_t kMacTlsBaseOffset;
INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
intptr_t result;
#if V8_HOST_ARCH_IA32
asm("movl %%gs:(%1,%2,4), %0;"
:"=r"(result) // Output must be a writable register.
:"r"(kMacTlsBaseOffset), "r"(index));
#else
asm("movq %%gs:(%1,%2,8), %0;"
:"=r"(result)
:"r"(kMacTlsBaseOffset), "r"(index));
#endif
return result;
}
#endif
#endif // V8_NO_FAST_TLS
// ----------------------------------------------------------------------------
// OS
//
// This class has static methods for the different platform specific
// functions. Add methods here to cope with differences between the
// supported platforms.
class OS {
public:
// Initializes the platform OS support that depend on CPU features. This is
// called after CPU initialization.
static void PostSetUp();
// Returns the accumulated user time for thread. This routine
// can be used for profiling. The implementation should
// strive for high-precision timer resolution, preferable
// micro-second resolution.
static int GetUserTime(uint32_t* secs, uint32_t* usecs);
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
static double TimeCurrentMillis();
// Returns a string identifying the current time zone. The
// timestamp is used for determining if DST is in effect.
static const char* LocalTimezone(double time);
// Returns the local time offset in milliseconds east of UTC without
// taking daylight savings time into account.
static double LocalTimeOffset();
// Returns the daylight savings offset for the given time.
static double DaylightSavingsOffset(double time);
// Returns last OS error.
static int GetLastError();
static FILE* FOpen(const char* path, const char* mode);
static bool Remove(const char* path);
// Opens a temporary file, the file is auto removed on close.
static FILE* OpenTemporaryFile();
// Log file open mode is platform-dependent due to line ends issues.
static const char* const LogFileOpenMode;
// Print output to console. This is mostly used for debugging output.
// On platforms that has standard terminal output, the output
// should go to stdout.
static void Print(const char* format, ...);
static void VPrint(const char* format, va_list args);
// Print output to a file. This is mostly used for debugging output.
static void FPrint(FILE* out, const char* format, ...);
static void VFPrint(FILE* out, const char* format, va_list args);
// Print error output to console. This is mostly used for error message
// output. On platforms that has standard terminal output, the output
// should go to stderr.
static void PrintError(const char* format, ...);
static void VPrintError(const char* format, va_list args);
// Allocate/Free memory used by JS heap. Pages are readable/writable, but
// they are not guaranteed to be executable unless 'executable' is true.
// Returns the address of allocated memory, or NULL if failed.
static void* Allocate(const size_t requested,
size_t* allocated,
bool is_executable);
static void Free(void* address, const size_t size);
// This is the granularity at which the ProtectCode(...) call can set page
// permissions.
static intptr_t CommitPageSize();
// Mark code segments non-writable.
static void ProtectCode(void* address, const size_t size);
// Assign memory as a guard page so that access will cause an exception.
static void Guard(void* address, const size_t size);
// Generate a random address to be used for hinting mmap().
static void* GetRandomMmapAddr();
// Get the Alignment guaranteed by Allocate().
static size_t AllocateAlignment();
// Sleep for a number of milliseconds.
static void Sleep(const int milliseconds);
// Abort the current process.
static void Abort();
// Debug break.
static void DebugBreak();
// Walk the stack.
static const int kStackWalkError = -1;
static const int kStackWalkMaxNameLen = 256;
static const int kStackWalkMaxTextLen = 256;
struct StackFrame {
void* address;
char text[kStackWalkMaxTextLen];
};
class MemoryMappedFile {
public:
static MemoryMappedFile* open(const char* name);
static MemoryMappedFile* create(const char* name, int size, void* initial);
virtual ~MemoryMappedFile() { }
virtual void* memory() = 0;
virtual int size() = 0;
};
// Safe formatting print. Ensures that str is always null-terminated.
// Returns the number of chars written, or -1 if output was truncated.
static int SNPrintF(Vector<char> str, const char* format, ...);
static int VSNPrintF(Vector<char> str,
const char* format,
va_list args);
static char* StrChr(char* str, int c);
static void StrNCpy(Vector<char> dest, const char* src, size_t n);
// Support for the profiler. Can do nothing, in which case ticks
// occuring in shared libraries will not be properly accounted for.
static void LogSharedLibraryAddresses(Isolate* isolate);
// Support for the profiler. Notifies the external profiling
// process that a code moving garbage collection starts. Can do
// nothing, in which case the code objects must not move (e.g., by
// using --never-compact) if accurate profiling is desired.
static void SignalCodeMovingGC();
// The return value indicates the CPU features we are sure of because of the
// OS. For example MacOSX doesn't run on any x86 CPUs that don't have SSE2
// instructions.
// This is a little messy because the interpretation is subject to the cross
// of the CPU and the OS. The bits in the answer correspond to the bit
// positions indicated by the members of the CpuFeature enum from globals.h
static uint64_t CpuFeaturesImpliedByPlatform();
// The total amount of physical memory available on the current system.
static uint64_t TotalPhysicalMemory();
// Maximum size of the virtual memory. 0 means there is no artificial
// limit.
static intptr_t MaxVirtualMemory();
// Returns the double constant NAN
static double nan_value();
// Support runtime detection of whether the hard float option of the
// EABI is used.
static bool ArmUsingHardFloat();
// Returns the activation frame alignment constraint or zero if
// the platform doesn't care. Guaranteed to be a power of two.
static int ActivationFrameAlignment();
#if defined(V8_TARGET_ARCH_IA32)
// Limit below which the extra overhead of the MemCopy function is likely
// to outweigh the benefits of faster copying.
static const int kMinComplexMemCopy = 64;
// Copy memory area. No restrictions.
static void MemMove(void* dest, const void* src, size_t size);
typedef void (*MemMoveFunction)(void* dest, const void* src, size_t size);
// Keep the distinction of "move" vs. "copy" for the benefit of other
// architectures.
static void MemCopy(void* dest, const void* src, size_t size) {
MemMove(dest, src, size);
}
#elif defined(V8_HOST_ARCH_ARM)
typedef void (*MemCopyUint8Function)(uint8_t* dest,
const uint8_t* src,
size_t size);
static MemCopyUint8Function memcopy_uint8_function;
static void MemCopyUint8Wrapper(uint8_t* dest,
const uint8_t* src,
size_t chars) {
memcpy(dest, src, chars);
}
// For values < 16, the assembler function is slower than the inlined C code.
static const int kMinComplexMemCopy = 16;
static void MemCopy(void* dest, const void* src, size_t size) {
(*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest),
reinterpret_cast<const uint8_t*>(src),
size);
}
static void MemMove(void* dest, const void* src, size_t size) {
memmove(dest, src, size);
}
typedef void (*MemCopyUint16Uint8Function)(uint16_t* dest,
const uint8_t* src,
size_t size);
static MemCopyUint16Uint8Function memcopy_uint16_uint8_function;
static void MemCopyUint16Uint8Wrapper(uint16_t* dest,
const uint8_t* src,
size_t chars);
// For values < 12, the assembler function is slower than the inlined C code.
static const int kMinComplexConvertMemCopy = 12;
static void MemCopyUint16Uint8(uint16_t* dest,
const uint8_t* src,
size_t size) {
(*memcopy_uint16_uint8_function)(dest, src, size);
}
#else
// Copy memory area to disjoint memory area.
static void MemCopy(void* dest, const void* src, size_t size) {
memcpy(dest, src, size);
}
static void MemMove(void* dest, const void* src, size_t size) {
memmove(dest, src, size);
}
static const int kMinComplexMemCopy = 16 * kPointerSize;
#endif // V8_TARGET_ARCH_IA32
static int GetCurrentProcessId();
private:
static const int msPerSecond = 1000;
DISALLOW_IMPLICIT_CONSTRUCTORS(OS);
};
// Represents and controls an area of reserved memory.
// Control of the reserved memory can be assigned to another VirtualMemory
// object by assignment or copy-contructing. This removes the reserved memory
// from the original object.
class VirtualMemory {
public:
// Empty VirtualMemory object, controlling no reserved memory.
VirtualMemory();
// Reserves virtual memory with size.
explicit VirtualMemory(size_t size);
// Reserves virtual memory containing an area of the given size that
// is aligned per alignment. This may not be at the position returned
// by address().
VirtualMemory(size_t size, size_t alignment);
// Releases the reserved memory, if any, controlled by this VirtualMemory
// object.
~VirtualMemory();
// Returns whether the memory has been reserved.
bool IsReserved();
// Initialize or resets an embedded VirtualMemory object.
void Reset();
// Returns the start address of the reserved memory.
// If the memory was reserved with an alignment, this address is not
// necessarily aligned. The user might need to round it up to a multiple of
// the alignment to get the start of the aligned block.
void* address() {
ASSERT(IsReserved());
return address_;
}
// Returns the size of the reserved memory. The returned value is only
// meaningful when IsReserved() returns true.
// If the memory was reserved with an alignment, this size may be larger
// than the requested size.
size_t size() { return size_; }
// Commits real memory. Returns whether the operation succeeded.
bool Commit(void* address, size_t size, bool is_executable);
// Uncommit real memory. Returns whether the operation succeeded.
bool Uncommit(void* address, size_t size);
// Creates a single guard page at the given address.
bool Guard(void* address);
void Release() {
ASSERT(IsReserved());
// Notice: Order is important here. The VirtualMemory object might live
// inside the allocated region.
void* address = address_;
size_t size = size_;
Reset();
bool result = ReleaseRegion(address, size);
USE(result);
ASSERT(result);
}
// Assign control of the reserved region to a different VirtualMemory object.
// The old object is no longer functional (IsReserved() returns false).
void TakeControl(VirtualMemory* from) {
ASSERT(!IsReserved());
address_ = from->address_;
size_ = from->size_;
from->Reset();
}
static void* ReserveRegion(size_t size);
static bool CommitRegion(void* base, size_t size, bool is_executable);
static bool UncommitRegion(void* base, size_t size);
// Must be called with a base pointer that has been returned by ReserveRegion
// and the same size it was reserved with.
static bool ReleaseRegion(void* base, size_t size);
// Returns true if OS performs lazy commits, i.e. the memory allocation call
// defers actual physical memory allocation till the first memory access.
// Otherwise returns false.
static bool HasLazyCommits();
private:
void* address_; // Start address of the virtual memory.
size_t size_; // Size of the virtual memory.
};
// ----------------------------------------------------------------------------
// Thread
//
// Thread objects are used for creating and running threads. When the start()
// method is called the new thread starts running the run() method in the new
// thread. The Thread object should not be deallocated before the thread has
// terminated.
class Thread {
public:
// Opaque data type for thread-local storage keys.
// LOCAL_STORAGE_KEY_MIN_VALUE and LOCAL_STORAGE_KEY_MAX_VALUE are specified
// to ensure that enumeration type has correct value range (see Issue 830 for
// more details).
enum LocalStorageKey {
LOCAL_STORAGE_KEY_MIN_VALUE = kMinInt,
LOCAL_STORAGE_KEY_MAX_VALUE = kMaxInt
};
class Options {
public:
Options() : name_("v8:<unknown>"), stack_size_(0) {}
Options(const char* name, int stack_size = 0)
: name_(name), stack_size_(stack_size) {}
const char* name() const { return name_; }
int stack_size() const { return stack_size_; }
private:
const char* name_;
int stack_size_;
};
// Create new thread.
explicit Thread(const Options& options);
virtual ~Thread();
// Start new thread by calling the Run() method on the new thread.
void Start();
// Start new thread and wait until Run() method is called on the new thread.
void StartSynchronously() {
start_semaphore_ = new Semaphore(0);
Start();
start_semaphore_->Wait();
delete start_semaphore_;
start_semaphore_ = NULL;
}
// Wait until thread terminates.
void Join();
inline const char* name() const {
return name_;
}
// Abstract method for run handler.
virtual void Run() = 0;
// Thread-local storage.
static LocalStorageKey CreateThreadLocalKey();
static void DeleteThreadLocalKey(LocalStorageKey key);
static void* GetThreadLocal(LocalStorageKey key);
static int GetThreadLocalInt(LocalStorageKey key) {
return static_cast<int>(reinterpret_cast<intptr_t>(GetThreadLocal(key)));
}
static void SetThreadLocal(LocalStorageKey key, void* value);
static void SetThreadLocalInt(LocalStorageKey key, int value) {
SetThreadLocal(key, reinterpret_cast<void*>(static_cast<intptr_t>(value)));
}
static bool HasThreadLocal(LocalStorageKey key) {
return GetThreadLocal(key) != NULL;
}
#ifdef V8_FAST_TLS_SUPPORTED
static inline void* GetExistingThreadLocal(LocalStorageKey key) {
void* result = reinterpret_cast<void*>(
InternalGetExistingThreadLocal(static_cast<intptr_t>(key)));
ASSERT(result == GetThreadLocal(key));
return result;
}
#else
static inline void* GetExistingThreadLocal(LocalStorageKey key) {
return GetThreadLocal(key);
}
#endif
// A hint to the scheduler to let another thread run.
static void YieldCPU();
// The thread name length is limited to 16 based on Linux's implementation of
// prctl().
static const int kMaxThreadNameLength = 16;
class PlatformData;
PlatformData* data() { return data_; }
void NotifyStartedAndRun() {
if (start_semaphore_) start_semaphore_->Signal();
Run();
}
private:
void set_name(const char* name);
PlatformData* data_;
char name_[kMaxThreadNameLength];
int stack_size_;
Semaphore* start_semaphore_;
DISALLOW_COPY_AND_ASSIGN(Thread);
};
} } // namespace v8::internal
#endif // V8_PLATFORM_H_