v8/test/cctest/wasm/test-run-wasm-simd.cc
Ng Zhi An 10587a273d [wasm-simd] Enable SIMD by default
Bug: v8:11511,v8:6020
Change-Id: I07b87b2a3a2ea08def9be2d0da808c013dd6fc2a
Cq-Include-Trybots: luci.v8.try:v8_linux_blink_rel
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2728245
Commit-Queue: Zhi An Ng <zhin@chromium.org>
Reviewed-by: Deepti Gandluri <gdeepti@chromium.org>
Cr-Commit-Position: refs/heads/master@{#73237}
2021-03-05 17:49:39 +00:00

4514 lines
174 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <limits>
#include <tuple>
#include <type_traits>
#include <vector>
#include "src/base/bits.h"
#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/base/memory.h"
#include "src/base/overflowing-math.h"
#include "src/base/safe_conversions.h"
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/cpu-features.h"
#include "src/codegen/machine-type.h"
#include "src/common/globals.h"
#include "src/flags/flags.h"
#include "src/utils/utils.h"
#include "src/utils/vector.h"
#include "src/wasm/compilation-environment.h"
#include "src/wasm/value-type.h"
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-opcodes.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"
#include "test/common/flag-utils.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace test_run_wasm_simd {
namespace {
using DoubleUnOp = double (*)(double);
using DoubleBinOp = double (*)(double, double);
using DoubleCompareOp = int64_t (*)(double, double);
using FloatUnOp = float (*)(float);
using FloatBinOp = float (*)(float, float);
using FloatCompareOp = int (*)(float, float);
using Int64UnOp = int64_t (*)(int64_t);
using Int64BinOp = int64_t (*)(int64_t, int64_t);
using Int64ShiftOp = int64_t (*)(int64_t, int);
using Int32UnOp = int32_t (*)(int32_t);
using Int32BinOp = int32_t (*)(int32_t, int32_t);
using Int32CompareOp = int (*)(int32_t, int32_t);
using Int32ShiftOp = int32_t (*)(int32_t, int);
using Int16UnOp = int16_t (*)(int16_t);
using Int16BinOp = int16_t (*)(int16_t, int16_t);
using Int16CompareOp = int (*)(int16_t, int16_t);
using Int16ShiftOp = int16_t (*)(int16_t, int);
using Int8UnOp = int8_t (*)(int8_t);
using Int8BinOp = int8_t (*)(int8_t, int8_t);
using Int8CompareOp = int (*)(int8_t, int8_t);
using Int8ShiftOp = int8_t (*)(int8_t, int);
#define WASM_SIMD_TEST(name) \
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
TestExecutionTier execution_tier); \
TEST(RunWasm_##name##_turbofan) { \
EXPERIMENTAL_FLAG_SCOPE(simd); \
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \
} \
TEST(RunWasm_##name##_liftoff) { \
EXPERIMENTAL_FLAG_SCOPE(simd); \
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kLiftoff); \
} \
TEST(RunWasm_##name##_interpreter) { \
EXPERIMENTAL_FLAG_SCOPE(simd); \
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \
} \
TEST(RunWasm_##name##_simd_lowered) { \
EXPERIMENTAL_FLAG_SCOPE(simd); \
RunWasm_##name##_Impl(kLowerSimd, TestExecutionTier::kTurbofan); \
} \
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
TestExecutionTier execution_tier)
// Generic expected value functions.
template <typename T, typename = typename std::enable_if<
std::is_floating_point<T>::value>::type>
T Negate(T a) {
return -a;
}
// For signed integral types, use base::AddWithWraparound.
template <typename T, typename = typename std::enable_if<
std::is_floating_point<T>::value>::type>
T Add(T a, T b) {
return a + b;
}
// For signed integral types, use base::SubWithWraparound.
template <typename T, typename = typename std::enable_if<
std::is_floating_point<T>::value>::type>
T Sub(T a, T b) {
return a - b;
}
// For signed integral types, use base::MulWithWraparound.
template <typename T, typename = typename std::enable_if<
std::is_floating_point<T>::value>::type>
T Mul(T a, T b) {
return a * b;
}
template <typename T>
T Minimum(T a, T b) {
return std::min(a, b);
}
template <typename T>
T Maximum(T a, T b) {
return std::max(a, b);
}
template <typename T>
T UnsignedMinimum(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? a : b;
}
template <typename T>
T UnsignedMaximum(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? a : b;
}
int Equal(float a, float b) { return a == b ? -1 : 0; }
template <typename T>
T Equal(T a, T b) {
return a == b ? -1 : 0;
}
int NotEqual(float a, float b) { return a != b ? -1 : 0; }
template <typename T>
T NotEqual(T a, T b) {
return a != b ? -1 : 0;
}
int Less(float a, float b) { return a < b ? -1 : 0; }
template <typename T>
T Less(T a, T b) {
return a < b ? -1 : 0;
}
int LessEqual(float a, float b) { return a <= b ? -1 : 0; }
template <typename T>
T LessEqual(T a, T b) {
return a <= b ? -1 : 0;
}
int Greater(float a, float b) { return a > b ? -1 : 0; }
template <typename T>
T Greater(T a, T b) {
return a > b ? -1 : 0;
}
int GreaterEqual(float a, float b) { return a >= b ? -1 : 0; }
template <typename T>
T GreaterEqual(T a, T b) {
return a >= b ? -1 : 0;
}
template <typename T>
T UnsignedLess(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) < static_cast<UnsignedT>(b) ? -1 : 0;
}
template <typename T>
T UnsignedLessEqual(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? -1 : 0;
}
template <typename T>
T UnsignedGreater(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) > static_cast<UnsignedT>(b) ? -1 : 0;
}
template <typename T>
T UnsignedGreaterEqual(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? -1 : 0;
}
template <typename T>
T LogicalShiftLeft(T a, int shift) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) << (shift % (sizeof(T) * 8));
}
template <typename T>
T LogicalShiftRight(T a, int shift) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >> (shift % (sizeof(T) * 8));
}
// Define our own ArithmeticShiftRight instead of using the one from utils.h
// because the shift amount needs to be taken modulo lane width.
template <typename T>
T ArithmeticShiftRight(T a, int shift) {
return a >> (shift % (sizeof(T) * 8));
}
template <typename T>
T Abs(T a) {
return std::abs(a);
}
// only used for F64x2 tests below
int64_t Equal(double a, double b) { return a == b ? -1 : 0; }
int64_t NotEqual(double a, double b) { return a != b ? -1 : 0; }
int64_t Greater(double a, double b) { return a > b ? -1 : 0; }
int64_t GreaterEqual(double a, double b) { return a >= b ? -1 : 0; }
int64_t Less(double a, double b) { return a < b ? -1 : 0; }
int64_t LessEqual(double a, double b) { return a <= b ? -1 : 0; }
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
// Only used for qfma and qfms tests below.
// FMOperation holds the params (a, b, c) for a Multiply-Add or
// Multiply-Subtract operation, and the expected result if the operation was
// fused, rounded only once for the entire operation, or unfused, rounded after
// multiply and again after add/subtract.
template <typename T>
struct FMOperation {
const T a;
const T b;
const T c;
const T fused_result;
const T unfused_result;
};
// large_n is large number that overflows T when multiplied by itself, this is a
// useful constant to test fused/unfused behavior.
template <typename T>
constexpr T large_n = T(0);
template <>
constexpr double large_n<double> = 1e200;
template <>
constexpr float large_n<float> = 1e20;
// Fused Multiply-Add performs a + b * c.
template <typename T>
static constexpr FMOperation<T> qfma_array[] = {
{1.0f, 2.0f, 3.0f, 7.0f, 7.0f},
// fused: a + b * c = -inf + (positive overflow) = -inf
// unfused: a + b * c = -inf + inf = NaN
{-std::numeric_limits<T>::infinity(), large_n<T>, large_n<T>,
-std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()},
// fused: a + b * c = inf + (negative overflow) = inf
// unfused: a + b * c = inf + -inf = NaN
{std::numeric_limits<T>::infinity(), -large_n<T>, large_n<T>,
std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()},
// NaN
{std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f,
std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()},
// -NaN
{-std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f,
std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()}};
template <typename T>
static constexpr Vector<const FMOperation<T>> qfma_vector() {
return ArrayVector(qfma_array<T>);
}
// Fused Multiply-Subtract performs a - b * c.
template <typename T>
static constexpr FMOperation<T> qfms_array[]{
{1.0f, 2.0f, 3.0f, -5.0f, -5.0f},
// fused: a - b * c = inf - (positive overflow) = inf
// unfused: a - b * c = inf - inf = NaN
{std::numeric_limits<T>::infinity(), large_n<T>, large_n<T>,
std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()},
// fused: a - b * c = -inf - (negative overflow) = -inf
// unfused: a - b * c = -inf - -inf = NaN
{-std::numeric_limits<T>::infinity(), -large_n<T>, large_n<T>,
-std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()},
// NaN
{std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f,
std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()},
// -NaN
{-std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f,
std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()}};
template <typename T>
static constexpr Vector<const FMOperation<T>> qfms_vector() {
return ArrayVector(qfms_array<T>);
}
// Fused results only when fma3 feature is enabled, and running on TurboFan or
// Liftoff (which can fall back to TurboFan if FMA is not implemented).
bool ExpectFused(TestExecutionTier tier) {
#ifdef V8_TARGET_ARCH_X64
return CpuFeatures::IsSupported(FMA3) &&
(tier == TestExecutionTier::kTurbofan ||
tier == TestExecutionTier::kLiftoff);
#else
return (tier == TestExecutionTier::kTurbofan ||
tier == TestExecutionTier::kLiftoff);
#endif
}
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
} // namespace
#define WASM_SIMD_CHECK_LANE_S(TYPE, value, LANE_TYPE, lane_value, lane_index) \
WASM_IF(WASM_##LANE_TYPE##_NE(WASM_LOCAL_GET(lane_value), \
WASM_SIMD_##TYPE##_EXTRACT_LANE( \
lane_index, WASM_LOCAL_GET(value))), \
WASM_RETURN1(WASM_ZERO))
// Unsigned Extracts are only available for I8x16, I16x8 types
#define WASM_SIMD_CHECK_LANE_U(TYPE, value, LANE_TYPE, lane_value, lane_index) \
WASM_IF(WASM_##LANE_TYPE##_NE(WASM_LOCAL_GET(lane_value), \
WASM_SIMD_##TYPE##_EXTRACT_LANE_U( \
lane_index, WASM_LOCAL_GET(value))), \
WASM_RETURN1(WASM_ZERO))
// The macro below disables tests lowering for certain nodes where the simd
// lowering doesn't work correctly. Early return here if the CPU does not
// support SIMD as the graph will be implicitly lowered in that case.
#define WASM_SIMD_TEST_NO_LOWERING(name) \
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
TestExecutionTier execution_tier); \
TEST(RunWasm_##name##_turbofan) { \
if (!CpuFeatures::SupportsWasmSimd128()) return; \
EXPERIMENTAL_FLAG_SCOPE(simd); \
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \
} \
TEST(RunWasm_##name##_liftoff) { \
if (!CpuFeatures::SupportsWasmSimd128()) return; \
EXPERIMENTAL_FLAG_SCOPE(simd); \
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kLiftoff); \
} \
TEST(RunWasm_##name##_interpreter) { \
EXPERIMENTAL_FLAG_SCOPE(simd); \
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \
} \
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
TestExecutionTier execution_tier)
// Use this for post-mvp instructions, for which we only implement interpreter
// and TurboFan support. Liftoff support is generally not implemented yet, so
// don't test that, and neither is scalar lowering.
#define WASM_SIMD_TEST_POST_MVP(name) \
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
TestExecutionTier execution_tier); \
TEST(RunWasm_##name##_turbofan) { \
if (!CpuFeatures::SupportsWasmSimd128()) return; \
EXPERIMENTAL_FLAG_SCOPE(simd); \
FLAG_SCOPE(wasm_simd_post_mvp); \
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \
} \
TEST(RunWasm_##name##_interpreter) { \
EXPERIMENTAL_FLAG_SCOPE(simd); \
FLAG_SCOPE(wasm_simd_post_mvp); \
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \
} \
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
TestExecutionTier execution_tier)
// Returns true if the platform can represent the result.
template <typename T>
bool PlatformCanRepresent(T x) {
#if V8_TARGET_ARCH_ARM
return std::fpclassify(x) != FP_SUBNORMAL;
#else
return true;
#endif
}
// Returns true for very small and very large numbers. We skip these test
// values for the approximation instructions, which don't work at the extremes.
bool IsExtreme(float x) {
float abs_x = std::fabs(x);
const float kSmallFloatThreshold = 1.0e-32f;
const float kLargeFloatThreshold = 1.0e32f;
return abs_x != 0.0f && // 0 or -0 are fine.
(abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold);
}
#if V8_OS_AIX
template <typename T>
bool MightReverseSign(T float_op) {
return float_op == static_cast<T>(Negate) ||
float_op == static_cast<T>(std::abs);
}
#endif
WASM_SIMD_TEST(S128Globals) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up a global to hold input and output vectors.
int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(1, WASM_GLOBAL_GET(0)), WASM_ONE);
FOR_INT32_INPUTS(x) {
for (int i = 0; i < 4; i++) {
WriteLittleEndianValue<int32_t>(&g0[i], x);
}
r.Call();
int32_t expected = x;
for (int i = 0; i < 4; i++) {
int32_t actual = ReadLittleEndianValue<int32_t>(&g1[i]);
CHECK_EQ(actual, expected);
}
}
}
WASM_SIMD_TEST(F32x4Splat) {
WasmRunner<int32_t, float> r(execution_tier, lower_simd);
// Set up a global to hold output vector.
float* g = r.builder().AddGlobal<float>(kWasmS128);
byte param1 = 0;
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(param1))),
WASM_ONE);
FOR_FLOAT32_INPUTS(x) {
r.Call(x);
float expected = x;
for (int i = 0; i < 4; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
if (std::isnan(expected)) {
CHECK(std::isnan(actual));
} else {
CHECK_EQ(actual, expected);
}
}
}
}
WASM_SIMD_TEST(F32x4ReplaceLane) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up a global to hold input/output vector.
float* g = r.builder().AddGlobal<float>(kWasmS128);
// Build function to replace each lane with its (FP) index.
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_F32(3.14159f))),
WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
0, WASM_LOCAL_GET(temp1), WASM_F32(0.0f))),
WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
1, WASM_LOCAL_GET(temp1), WASM_F32(1.0f))),
WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
2, WASM_LOCAL_GET(temp1), WASM_F32(2.0f))),
WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_REPLACE_LANE(
3, WASM_LOCAL_GET(temp1), WASM_F32(3.0f))),
WASM_ONE);
r.Call();
for (int i = 0; i < 4; i++) {
CHECK_EQ(static_cast<float>(i), ReadLittleEndianValue<float>(&g[i]));
}
}
// Tests both signed and unsigned conversion.
WASM_SIMD_TEST(F32x4ConvertI32x4) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Create two output vectors to hold signed and unsigned results.
float* g0 = r.builder().AddGlobal<float>(kWasmS128);
float* g1 = r.builder().AddGlobal<float>(kWasmS128);
// Build fn to splat test value, perform conversions, and write the results.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(
0, WASM_SIMD_UNOP(kExprF32x4SConvertI32x4, WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(
1, WASM_SIMD_UNOP(kExprF32x4UConvertI32x4, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT32_INPUTS(x) {
r.Call(x);
float expected_signed = static_cast<float>(x);
float expected_unsigned = static_cast<float>(static_cast<uint32_t>(x));
for (int i = 0; i < 4; i++) {
CHECK_EQ(expected_signed, ReadLittleEndianValue<float>(&g0[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<float>(&g1[i]));
}
}
}
bool IsSameNan(float expected, float actual) {
// Sign is non-deterministic.
uint32_t expected_bits = bit_cast<uint32_t>(expected) & ~0x80000000;
uint32_t actual_bits = bit_cast<uint32_t>(actual) & ~0x80000000;
// Some implementations convert signaling NaNs to quiet NaNs.
return (expected_bits == actual_bits) ||
((expected_bits | 0x00400000) == actual_bits);
}
bool IsCanonical(float actual) {
uint32_t actual_bits = bit_cast<uint32_t>(actual);
// Canonical NaN has quiet bit and no payload.
return (actual_bits & 0xFFC00000) == actual_bits;
}
void CheckFloatResult(float x, float y, float expected, float actual,
bool exact = true) {
if (std::isnan(expected)) {
CHECK(std::isnan(actual));
if (std::isnan(x) && IsSameNan(x, actual)) return;
if (std::isnan(y) && IsSameNan(y, actual)) return;
if (IsSameNan(expected, actual)) return;
if (IsCanonical(actual)) return;
// This is expected to assert; it's useful for debugging.
CHECK_EQ(bit_cast<uint32_t>(expected), bit_cast<uint32_t>(actual));
} else {
if (exact) {
CHECK_EQ(expected, actual);
// The sign of 0's must match.
CHECK_EQ(std::signbit(expected), std::signbit(actual));
return;
}
// Otherwise, perform an approximate equality test. First check for
// equality to handle +/-Infinity where approximate equality doesn't work.
if (expected == actual) return;
// 1% error allows all platforms to pass easily.
constexpr float kApproximationError = 0.01f;
float abs_error = std::abs(expected) * kApproximationError,
min = expected - abs_error, max = expected + abs_error;
CHECK_LE(min, actual);
CHECK_GE(max, actual);
}
}
// Test some values not included in the float inputs from value_helper. These
// tests are useful for opcodes that are synthesized during code gen, like Min
// and Max on ia32 and x64.
static constexpr uint32_t nan_test_array[] = {
// Bit patterns of quiet NaNs and signaling NaNs, with or without
// additional payload.
0x7FC00000, 0xFFC00000, 0x7FFFFFFF, 0xFFFFFFFF, 0x7F876543, 0xFF876543,
// NaN with top payload bit unset.
0x7FA00000,
// Both Infinities.
0x7F800000, 0xFF800000,
// Some "normal" numbers, 1 and -1.
0x3F800000, 0xBF800000};
#define FOR_FLOAT32_NAN_INPUTS(i) \
for (size_t i = 0; i < arraysize(nan_test_array); ++i)
void RunF32x4UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, FloatUnOp expected_op,
bool exact = true) {
WasmRunner<int32_t, float> r(execution_tier, lower_simd);
// Global to hold output.
float* g = r.builder().AddGlobal<float>(kWasmS128);
// Build fn to splat test value, perform unop, and write the result.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_FLOAT32_INPUTS(x) {
if (!PlatformCanRepresent(x)) continue;
// Extreme values have larger errors so skip them for approximation tests.
if (!exact && IsExtreme(x)) continue;
float expected = expected_op(x);
#if V8_OS_AIX
if (!MightReverseSign<FloatUnOp>(expected_op))
expected = FpOpWorkaround<float>(x, expected);
#endif
if (!PlatformCanRepresent(expected)) continue;
r.Call(x);
for (int i = 0; i < 4; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
CheckFloatResult(x, x, expected, actual, exact);
}
}
FOR_FLOAT32_NAN_INPUTS(i) {
float x = bit_cast<float>(nan_test_array[i]);
if (!PlatformCanRepresent(x)) continue;
// Extreme values have larger errors so skip them for approximation tests.
if (!exact && IsExtreme(x)) continue;
float expected = expected_op(x);
if (!PlatformCanRepresent(expected)) continue;
r.Call(x);
for (int i = 0; i < 4; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
CheckFloatResult(x, x, expected, actual, exact);
}
}
}
WASM_SIMD_TEST(F32x4Abs) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Abs, std::abs);
}
WASM_SIMD_TEST(F32x4Neg) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Neg, Negate);
}
WASM_SIMD_TEST(F32x4Sqrt) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Sqrt, std::sqrt);
}
WASM_SIMD_TEST_POST_MVP(F32x4RecipApprox) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipApprox,
base::Recip, false /* !exact */);
}
WASM_SIMD_TEST_POST_MVP(F32x4RecipSqrtApprox) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipSqrtApprox,
base::RecipSqrt, false /* !exact */);
}
WASM_SIMD_TEST(F32x4Ceil) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Ceil, ceilf, true);
}
WASM_SIMD_TEST(F32x4Floor) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Floor, floorf, true);
}
WASM_SIMD_TEST(F32x4Trunc) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Trunc, truncf, true);
}
WASM_SIMD_TEST(F32x4NearestInt) {
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4NearestInt, nearbyintf,
true);
}
void RunF32x4BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, FloatBinOp expected_op) {
WasmRunner<int32_t, float, float> r(execution_tier, lower_simd);
// Global to hold output.
float* g = r.builder().AddGlobal<float>(kWasmS128);
// Build fn to splat test values, perform binop, and write the result.
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
FOR_FLOAT32_INPUTS(x) {
if (!PlatformCanRepresent(x)) continue;
FOR_FLOAT32_INPUTS(y) {
if (!PlatformCanRepresent(y)) continue;
float expected = expected_op(x, y);
if (!PlatformCanRepresent(expected)) continue;
r.Call(x, y);
for (int i = 0; i < 4; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
CheckFloatResult(x, y, expected, actual, true /* exact */);
}
}
}
FOR_FLOAT32_NAN_INPUTS(i) {
float x = bit_cast<float>(nan_test_array[i]);
if (!PlatformCanRepresent(x)) continue;
FOR_FLOAT32_NAN_INPUTS(j) {
float y = bit_cast<float>(nan_test_array[j]);
if (!PlatformCanRepresent(y)) continue;
float expected = expected_op(x, y);
if (!PlatformCanRepresent(expected)) continue;
r.Call(x, y);
for (int i = 0; i < 4; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
CheckFloatResult(x, y, expected, actual, true /* exact */);
}
}
}
}
#undef FOR_FLOAT32_NAN_INPUTS
WASM_SIMD_TEST(F32x4Add) {
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Add, Add);
}
WASM_SIMD_TEST(F32x4Sub) {
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Sub, Sub);
}
WASM_SIMD_TEST(F32x4Mul) {
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Mul, Mul);
}
WASM_SIMD_TEST(F32x4Div) {
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Div, base::Divide);
}
WASM_SIMD_TEST(F32x4Min) {
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Min, JSMin);
}
WASM_SIMD_TEST(F32x4Max) {
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Max, JSMax);
}
WASM_SIMD_TEST(F32x4Pmin) {
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Pmin, Minimum);
}
WASM_SIMD_TEST(F32x4Pmax) {
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Pmax, Maximum);
}
void RunF32x4CompareOpTest(TestExecutionTier execution_tier,
LowerSimd lower_simd, WasmOpcode opcode,
FloatCompareOp expected_op) {
WasmRunner<int32_t, float, float> r(execution_tier, lower_simd);
// Set up global to hold mask output.
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
// Build fn to splat test values, perform compare op, and write the result.
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
FOR_FLOAT32_INPUTS(x) {
if (!PlatformCanRepresent(x)) continue;
FOR_FLOAT32_INPUTS(y) {
if (!PlatformCanRepresent(y)) continue;
float diff = x - y; // Model comparison as subtraction.
if (!PlatformCanRepresent(diff)) continue;
r.Call(x, y);
int32_t expected = expected_op(x, y);
for (int i = 0; i < 4; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
}
}
}
}
WASM_SIMD_TEST(F32x4Eq) {
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Eq, Equal);
}
WASM_SIMD_TEST(F32x4Ne) {
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ne, NotEqual);
}
WASM_SIMD_TEST(F32x4Gt) {
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Gt, Greater);
}
WASM_SIMD_TEST(F32x4Ge) {
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ge, GreaterEqual);
}
WASM_SIMD_TEST(F32x4Lt) {
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Lt, Less);
}
WASM_SIMD_TEST(F32x4Le) {
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Le, LessEqual);
}
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
WASM_SIMD_TEST_POST_MVP(F32x4Qfma) {
WasmRunner<int32_t, float, float, float> r(execution_tier, lower_simd);
// Set up global to hold mask output.
float* g = r.builder().AddGlobal<float>(kWasmS128);
// Build fn to splat test values, perform compare op, and write the result.
byte value1 = 0, value2 = 1, value3 = 2;
BUILD(r,
WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_QFMA(
WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value1)),
WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value2)),
WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value3)))),
WASM_ONE);
for (FMOperation<float> x : qfma_vector<float>()) {
r.Call(x.a, x.b, x.c);
float expected =
ExpectFused(execution_tier) ? x.fused_result : x.unfused_result;
for (int i = 0; i < 4; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
CheckFloatResult(x.a, x.b, expected, actual, true /* exact */);
}
}
}
WASM_SIMD_TEST_POST_MVP(F32x4Qfms) {
WasmRunner<int32_t, float, float, float> r(execution_tier, lower_simd);
// Set up global to hold mask output.
float* g = r.builder().AddGlobal<float>(kWasmS128);
// Build fn to splat test values, perform compare op, and write the result.
byte value1 = 0, value2 = 1, value3 = 2;
BUILD(r,
WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_QFMS(
WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value1)),
WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value2)),
WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value3)))),
WASM_ONE);
for (FMOperation<float> x : qfms_vector<float>()) {
r.Call(x.a, x.b, x.c);
float expected =
ExpectFused(execution_tier) ? x.fused_result : x.unfused_result;
for (int i = 0; i < 4; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
CheckFloatResult(x.a, x.b, expected, actual, true /* exact */);
}
}
}
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
WASM_SIMD_TEST(I64x2Splat) {
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
// Set up a global to hold output vector.
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
byte param1 = 0;
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(param1))),
WASM_ONE);
FOR_INT64_INPUTS(x) {
r.Call(x);
int64_t expected = x;
for (int i = 0; i < 2; i++) {
int64_t actual = ReadLittleEndianValue<int64_t>(&g[i]);
CHECK_EQ(actual, expected);
}
}
}
WASM_SIMD_TEST(I64x2ExtractLane) {
WasmRunner<int64_t> r(execution_tier, lower_simd);
r.AllocateLocal(kWasmI64);
r.AllocateLocal(kWasmS128);
BUILD(
r,
WASM_LOCAL_SET(0, WASM_SIMD_I64x2_EXTRACT_LANE(
0, WASM_SIMD_I64x2_SPLAT(WASM_I64V(0xFFFFFFFFFF)))),
WASM_LOCAL_SET(1, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(0))),
WASM_SIMD_I64x2_EXTRACT_LANE(1, WASM_LOCAL_GET(1)));
CHECK_EQ(0xFFFFFFFFFF, r.Call());
}
WASM_SIMD_TEST(I64x2ReplaceLane) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up a global to hold input/output vector.
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
// Build function to replace each lane with its index.
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I64x2_SPLAT(WASM_I64V(-1))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I64x2_REPLACE_LANE(
0, WASM_LOCAL_GET(temp1), WASM_I64V(0))),
WASM_GLOBAL_SET(0, WASM_SIMD_I64x2_REPLACE_LANE(
1, WASM_LOCAL_GET(temp1), WASM_I64V(1))),
WASM_ONE);
r.Call();
for (int64_t i = 0; i < 2; i++) {
CHECK_EQ(i, ReadLittleEndianValue<int64_t>(&g[i]));
}
}
void RunI64x2UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int64UnOp expected_op) {
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
// Global to hold output.
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
// Build fn to splat test value, perform unop, and write the result.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT64_INPUTS(x) {
r.Call(x);
int64_t expected = expected_op(x);
for (int i = 0; i < 2; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g[i]));
}
}
}
WASM_SIMD_TEST(I64x2Neg) {
RunI64x2UnOpTest(execution_tier, lower_simd, kExprI64x2Neg,
base::NegateWithWraparound);
}
WASM_SIMD_TEST_NO_LOWERING(I64x2Abs) {
RunI64x2UnOpTest(execution_tier, lower_simd, kExprI64x2Abs, std::abs);
}
void RunI64x2ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int64ShiftOp expected_op) {
// Intentionally shift by 64, should be no-op.
for (int shift = 1; shift <= 64; shift++) {
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
int32_t* memory = r.builder().AddMemoryElems<int32_t>(1);
int64_t* g_imm = r.builder().AddGlobal<int64_t>(kWasmS128);
int64_t* g_mem = r.builder().AddGlobal<int64_t>(kWasmS128);
byte value = 0;
byte simd = r.AllocateLocal(kWasmS128);
// Shift using an immediate, and shift using a value loaded from memory.
BUILD(
r, WASM_LOCAL_SET(simd, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_SHIFT_OP(opcode, WASM_LOCAL_GET(simd),
WASM_I32V(shift))),
WASM_GLOBAL_SET(1, WASM_SIMD_SHIFT_OP(
opcode, WASM_LOCAL_GET(simd),
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))),
WASM_ONE);
r.builder().WriteMemory(&memory[0], shift);
FOR_INT64_INPUTS(x) {
r.Call(x);
int64_t expected = expected_op(x, shift);
for (int i = 0; i < 2; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g_imm[i]));
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g_mem[i]));
}
}
}
}
WASM_SIMD_TEST(I64x2Shl) {
RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2Shl,
LogicalShiftLeft);
}
WASM_SIMD_TEST(I64x2ShrS) {
RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2ShrS,
ArithmeticShiftRight);
}
WASM_SIMD_TEST(I64x2ShrU) {
RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2ShrU,
LogicalShiftRight);
}
void RunI64x2BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int64BinOp expected_op) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier, lower_simd);
// Global to hold output.
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
// Build fn to splat test values, perform binop, and write the result.
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
FOR_INT64_INPUTS(x) {
FOR_INT64_INPUTS(y) {
r.Call(x, y);
int64_t expected = expected_op(x, y);
for (int i = 0; i < 2; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g[i]));
}
}
}
}
WASM_SIMD_TEST(I64x2Add) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Add,
base::AddWithWraparound);
}
WASM_SIMD_TEST(I64x2Sub) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Sub,
base::SubWithWraparound);
}
WASM_SIMD_TEST_NO_LOWERING(I64x2Eq) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Eq, Equal);
}
WASM_SIMD_TEST_NO_LOWERING(I64x2Ne) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Ne, NotEqual);
}
WASM_SIMD_TEST_NO_LOWERING(I64x2LtS) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2LtS, Less);
}
WASM_SIMD_TEST_NO_LOWERING(I64x2LeS) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2LeS, LessEqual);
}
WASM_SIMD_TEST_NO_LOWERING(I64x2GtS) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2GtS, Greater);
}
WASM_SIMD_TEST_NO_LOWERING(I64x2GeS) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2GeS, GreaterEqual);
}
WASM_SIMD_TEST(F64x2Splat) {
WasmRunner<int32_t, double> r(execution_tier, lower_simd);
// Set up a global to hold output vector.
double* g = r.builder().AddGlobal<double>(kWasmS128);
byte param1 = 0;
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(param1))),
WASM_ONE);
FOR_FLOAT64_INPUTS(x) {
r.Call(x);
double expected = x;
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
if (std::isnan(expected)) {
CHECK(std::isnan(actual));
} else {
CHECK_EQ(actual, expected);
}
}
}
}
WASM_SIMD_TEST(F64x2ExtractLane) {
WasmRunner<double, double> r(execution_tier, lower_simd);
byte param1 = 0;
byte temp1 = r.AllocateLocal(kWasmF64);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_LOCAL_SET(temp1,
WASM_SIMD_F64x2_EXTRACT_LANE(
0, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(param1)))),
WASM_LOCAL_SET(temp2, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(temp1))),
WASM_SIMD_F64x2_EXTRACT_LANE(1, WASM_LOCAL_GET(temp2)));
FOR_FLOAT64_INPUTS(x) {
double actual = r.Call(x);
double expected = x;
if (std::isnan(expected)) {
CHECK(std::isnan(actual));
} else {
CHECK_EQ(actual, expected);
}
}
}
WASM_SIMD_TEST(F64x2ReplaceLane) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up globals to hold input/output vector.
double* g0 = r.builder().AddGlobal<double>(kWasmS128);
double* g1 = r.builder().AddGlobal<double>(kWasmS128);
// Build function to replace each lane with its (FP) index.
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_SPLAT(WASM_F64(1e100))),
// Replace lane 0.
WASM_GLOBAL_SET(0, WASM_SIMD_F64x2_REPLACE_LANE(
0, WASM_LOCAL_GET(temp1), WASM_F64(0.0f))),
// Replace lane 1.
WASM_GLOBAL_SET(1, WASM_SIMD_F64x2_REPLACE_LANE(
1, WASM_LOCAL_GET(temp1), WASM_F64(1.0f))),
WASM_ONE);
r.Call();
CHECK_EQ(0., ReadLittleEndianValue<double>(&g0[0]));
CHECK_EQ(1e100, ReadLittleEndianValue<double>(&g0[1]));
CHECK_EQ(1e100, ReadLittleEndianValue<double>(&g1[0]));
CHECK_EQ(1., ReadLittleEndianValue<double>(&g1[1]));
}
WASM_SIMD_TEST(F64x2ExtractLaneWithI64x2) {
WasmRunner<int64_t> r(execution_tier, lower_simd);
BUILD(r, WASM_IF_ELSE_L(
WASM_F64_EQ(WASM_SIMD_F64x2_EXTRACT_LANE(
0, WASM_SIMD_I64x2_SPLAT(WASM_I64V(1e15))),
WASM_F64_REINTERPRET_I64(WASM_I64V(1e15))),
WASM_I64V(1), WASM_I64V(0)));
CHECK_EQ(1, r.Call());
}
WASM_SIMD_TEST(I64x2ExtractWithF64x2) {
WasmRunner<int64_t> r(execution_tier, lower_simd);
BUILD(r, WASM_IF_ELSE_L(
WASM_I64_EQ(WASM_SIMD_I64x2_EXTRACT_LANE(
0, WASM_SIMD_F64x2_SPLAT(WASM_F64(1e15))),
WASM_I64_REINTERPRET_F64(WASM_F64(1e15))),
WASM_I64V(1), WASM_I64V(0)));
CHECK_EQ(1, r.Call());
}
bool IsExtreme(double x) {
double abs_x = std::fabs(x);
const double kSmallFloatThreshold = 1.0e-298;
const double kLargeFloatThreshold = 1.0e298;
return abs_x != 0.0f && // 0 or -0 are fine.
(abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold);
}
bool IsSameNan(double expected, double actual) {
// Sign is non-deterministic.
uint64_t expected_bits = bit_cast<uint64_t>(expected) & ~0x8000000000000000;
uint64_t actual_bits = bit_cast<uint64_t>(actual) & ~0x8000000000000000;
// Some implementations convert signaling NaNs to quiet NaNs.
return (expected_bits == actual_bits) ||
((expected_bits | 0x0008000000000000) == actual_bits);
}
bool IsCanonical(double actual) {
uint64_t actual_bits = bit_cast<uint64_t>(actual);
// Canonical NaN has quiet bit and no payload.
return (actual_bits & 0xFFF8000000000000) == actual_bits;
}
void CheckDoubleResult(double x, double y, double expected, double actual,
bool exact = true) {
if (std::isnan(expected)) {
CHECK(std::isnan(actual));
if (std::isnan(x) && IsSameNan(x, actual)) return;
if (std::isnan(y) && IsSameNan(y, actual)) return;
if (IsSameNan(expected, actual)) return;
if (IsCanonical(actual)) return;
// This is expected to assert; it's useful for debugging.
CHECK_EQ(bit_cast<uint64_t>(expected), bit_cast<uint64_t>(actual));
} else {
if (exact) {
CHECK_EQ(expected, actual);
// The sign of 0's must match.
CHECK_EQ(std::signbit(expected), std::signbit(actual));
return;
}
// Otherwise, perform an approximate equality test. First check for
// equality to handle +/-Infinity where approximate equality doesn't work.
if (expected == actual) return;
// 1% error allows all platforms to pass easily.
constexpr double kApproximationError = 0.01f;
double abs_error = std::abs(expected) * kApproximationError,
min = expected - abs_error, max = expected + abs_error;
CHECK_LE(min, actual);
CHECK_GE(max, actual);
}
}
// Test some values not included in the double inputs from value_helper. These
// tests are useful for opcodes that are synthesized during code gen, like Min
// and Max on ia32 and x64.
static constexpr uint64_t double_nan_test_array[] = {
// quiet NaNs, + and -
0x7FF8000000000001, 0xFFF8000000000001,
// with payload
0x7FF8000000000011, 0xFFF8000000000011,
// signaling NaNs, + and -
0x7FF0000000000001, 0xFFF0000000000001,
// with payload
0x7FF0000000000011, 0xFFF0000000000011,
// Both Infinities.
0x7FF0000000000000, 0xFFF0000000000000,
// Some "normal" numbers, 1 and -1.
0x3FF0000000000000, 0xBFF0000000000000};
#define FOR_FLOAT64_NAN_INPUTS(i) \
for (size_t i = 0; i < arraysize(double_nan_test_array); ++i)
void RunF64x2UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, DoubleUnOp expected_op,
bool exact = true) {
WasmRunner<int32_t, double> r(execution_tier, lower_simd);
// Global to hold output.
double* g = r.builder().AddGlobal<double>(kWasmS128);
// Build fn to splat test value, perform unop, and write the result.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_FLOAT64_INPUTS(x) {
if (!PlatformCanRepresent(x)) continue;
// Extreme values have larger errors so skip them for approximation tests.
if (!exact && IsExtreme(x)) continue;
double expected = expected_op(x);
#if V8_OS_AIX
if (!MightReverseSign<DoubleUnOp>(expected_op))
expected = FpOpWorkaround<double>(x, expected);
#endif
if (!PlatformCanRepresent(expected)) continue;
r.Call(x);
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
CheckDoubleResult(x, x, expected, actual, exact);
}
}
FOR_FLOAT64_NAN_INPUTS(i) {
double x = bit_cast<double>(double_nan_test_array[i]);
if (!PlatformCanRepresent(x)) continue;
// Extreme values have larger errors so skip them for approximation tests.
if (!exact && IsExtreme(x)) continue;
double expected = expected_op(x);
if (!PlatformCanRepresent(expected)) continue;
r.Call(x);
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
CheckDoubleResult(x, x, expected, actual, exact);
}
}
}
WASM_SIMD_TEST(F64x2Abs) {
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Abs, std::abs);
}
WASM_SIMD_TEST(F64x2Neg) {
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Neg, Negate);
}
WASM_SIMD_TEST(F64x2Sqrt) {
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Sqrt, std::sqrt);
}
WASM_SIMD_TEST(F64x2Ceil) {
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Ceil, ceil, true);
}
WASM_SIMD_TEST(F64x2Floor) {
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Floor, floor, true);
}
WASM_SIMD_TEST(F64x2Trunc) {
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Trunc, trunc, true);
}
WASM_SIMD_TEST(F64x2NearestInt) {
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2NearestInt, nearbyint,
true);
}
template <typename SrcType>
void RunF64x2ConvertLowI32x4Test(TestExecutionTier execution_tier,
LowerSimd lower_simd, WasmOpcode opcode) {
WasmRunner<int32_t, SrcType> r(execution_tier, lower_simd);
double* g = r.builder().template AddGlobal<double>(kWasmS128);
// TODO(zhin): set top lanes to 0 to assert conversion happens on low lanes.
BUILD(
r,
WASM_GLOBAL_SET(
0, WASM_SIMD_UNOP(opcode, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(0)))),
WASM_ONE);
for (SrcType x : compiler::ValueHelper::GetVector<SrcType>()) {
r.Call(x);
double expected = static_cast<double>(x);
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
CheckDoubleResult(x, x, expected, actual, true);
}
}
}
WASM_SIMD_TEST_NO_LOWERING(F64x2ConvertLowI32x4S) {
RunF64x2ConvertLowI32x4Test<int32_t>(execution_tier, lower_simd,
kExprF64x2ConvertLowI32x4S);
}
WASM_SIMD_TEST_NO_LOWERING(F64x2ConvertLowI32x4U) {
RunF64x2ConvertLowI32x4Test<uint32_t>(execution_tier, lower_simd,
kExprF64x2ConvertLowI32x4U);
}
template <typename SrcType>
void RunI32x4TruncSatF64x2Test(TestExecutionTier execution_tier,
LowerSimd lower_simd, WasmOpcode opcode) {
WasmRunner<int32_t, double> r(execution_tier, lower_simd);
SrcType* g = r.builder().AddGlobal<SrcType>(kWasmS128);
BUILD(
r,
WASM_GLOBAL_SET(
0, WASM_SIMD_UNOP(opcode, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(0)))),
WASM_ONE);
FOR_FLOAT64_INPUTS(x) {
r.Call(x);
SrcType expected = base::saturated_cast<SrcType>(x);
for (int i = 0; i < 2; i++) {
SrcType actual = ReadLittleEndianValue<SrcType>(&g[i]);
CHECK_EQ(expected, actual);
}
// Top lanes are zero-ed.
for (int i = 2; i < 4; i++) {
CHECK_EQ(0, ReadLittleEndianValue<SrcType>(&g[i]));
}
}
}
WASM_SIMD_TEST_NO_LOWERING(I32x4TruncSatF64x2SZero) {
RunI32x4TruncSatF64x2Test<int32_t>(execution_tier, lower_simd,
kExprI32x4TruncSatF64x2SZero);
}
WASM_SIMD_TEST_NO_LOWERING(I32x4TruncSatF64x2UZero) {
RunI32x4TruncSatF64x2Test<uint32_t>(execution_tier, lower_simd,
kExprI32x4TruncSatF64x2UZero);
}
WASM_SIMD_TEST_NO_LOWERING(F32x4DemoteF64x2Zero) {
WasmRunner<int32_t, double> r(execution_tier, lower_simd);
float* g = r.builder().AddGlobal<float>(kWasmS128);
BUILD(r,
WASM_GLOBAL_SET(
0, WASM_SIMD_UNOP(kExprF32x4DemoteF64x2Zero,
WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(0)))),
WASM_ONE);
FOR_FLOAT64_INPUTS(x) {
r.Call(x);
float expected = DoubleToFloat32(x);
for (int i = 0; i < 2; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
CheckFloatResult(x, x, expected, actual, true);
}
for (int i = 2; i < 4; i++) {
float actual = ReadLittleEndianValue<float>(&g[i]);
CheckFloatResult(x, x, 0, actual, true);
}
}
}
WASM_SIMD_TEST_NO_LOWERING(F64x2PromoteLowF32x4) {
WasmRunner<int32_t, float> r(execution_tier, lower_simd);
double* g = r.builder().AddGlobal<double>(kWasmS128);
BUILD(r,
WASM_GLOBAL_SET(
0, WASM_SIMD_UNOP(kExprF64x2PromoteLowF32x4,
WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(0)))),
WASM_ONE);
FOR_FLOAT32_INPUTS(x) {
r.Call(x);
double expected = static_cast<double>(x);
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
CheckDoubleResult(x, x, expected, actual, true);
}
}
}
void RunF64x2BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, DoubleBinOp expected_op) {
WasmRunner<int32_t, double, double> r(execution_tier, lower_simd);
// Global to hold output.
double* g = r.builder().AddGlobal<double>(kWasmS128);
// Build fn to splat test value, perform binop, and write the result.
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
FOR_FLOAT64_INPUTS(x) {
if (!PlatformCanRepresent(x)) continue;
FOR_FLOAT64_INPUTS(y) {
if (!PlatformCanRepresent(x)) continue;
double expected = expected_op(x, y);
if (!PlatformCanRepresent(expected)) continue;
r.Call(x, y);
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
CheckDoubleResult(x, y, expected, actual, true /* exact */);
}
}
}
FOR_FLOAT64_NAN_INPUTS(i) {
double x = bit_cast<double>(double_nan_test_array[i]);
if (!PlatformCanRepresent(x)) continue;
FOR_FLOAT64_NAN_INPUTS(j) {
double y = bit_cast<double>(double_nan_test_array[j]);
double expected = expected_op(x, y);
if (!PlatformCanRepresent(expected)) continue;
r.Call(x, y);
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
CheckDoubleResult(x, y, expected, actual, true /* exact */);
}
}
}
}
#undef FOR_FLOAT64_NAN_INPUTS
WASM_SIMD_TEST(F64x2Add) {
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Add, Add);
}
WASM_SIMD_TEST(F64x2Sub) {
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Sub, Sub);
}
WASM_SIMD_TEST(F64x2Mul) {
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Mul, Mul);
}
WASM_SIMD_TEST(F64x2Div) {
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Div, base::Divide);
}
WASM_SIMD_TEST(F64x2Pmin) {
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Pmin, Minimum);
}
WASM_SIMD_TEST(F64x2Pmax) {
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Pmax, Maximum);
}
void RunF64x2CompareOpTest(TestExecutionTier execution_tier,
LowerSimd lower_simd, WasmOpcode opcode,
DoubleCompareOp expected_op) {
WasmRunner<int32_t, double, double> r(execution_tier, lower_simd);
// Set up global to hold mask output.
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
// Build fn to splat test values, perform compare op, and write the result.
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
// Make the lanes of each temp compare differently:
// temp1 = y, x and temp2 = y, y.
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp1,
WASM_SIMD_F64x2_REPLACE_LANE(1, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(value2))),
WASM_LOCAL_SET(temp2, WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
FOR_FLOAT64_INPUTS(x) {
if (!PlatformCanRepresent(x)) continue;
FOR_FLOAT64_INPUTS(y) {
if (!PlatformCanRepresent(y)) continue;
double diff = x - y; // Model comparison as subtraction.
if (!PlatformCanRepresent(diff)) continue;
r.Call(x, y);
int64_t expected0 = expected_op(x, y);
int64_t expected1 = expected_op(y, y);
CHECK_EQ(expected0, ReadLittleEndianValue<int64_t>(&g[0]));
CHECK_EQ(expected1, ReadLittleEndianValue<int64_t>(&g[1]));
}
}
}
WASM_SIMD_TEST(F64x2Eq) {
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Eq, Equal);
}
WASM_SIMD_TEST(F64x2Ne) {
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Ne, NotEqual);
}
WASM_SIMD_TEST(F64x2Gt) {
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Gt, Greater);
}
WASM_SIMD_TEST(F64x2Ge) {
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Ge, GreaterEqual);
}
WASM_SIMD_TEST(F64x2Lt) {
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Lt, Less);
}
WASM_SIMD_TEST(F64x2Le) {
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Le, LessEqual);
}
WASM_SIMD_TEST(F64x2Min) {
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Min, JSMin);
}
WASM_SIMD_TEST(F64x2Max) {
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Max, JSMax);
}
WASM_SIMD_TEST(I64x2Mul) {
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Mul,
base::MulWithWraparound);
}
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
WASM_SIMD_TEST_POST_MVP(F64x2Qfma) {
WasmRunner<int32_t, double, double, double> r(execution_tier, lower_simd);
// Set up global to hold mask output.
double* g = r.builder().AddGlobal<double>(kWasmS128);
// Build fn to splat test values, perform compare op, and write the result.
byte value1 = 0, value2 = 1, value3 = 2;
BUILD(r,
WASM_GLOBAL_SET(0, WASM_SIMD_F64x2_QFMA(
WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value1)),
WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value2)),
WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value3)))),
WASM_ONE);
for (FMOperation<double> x : qfma_vector<double>()) {
r.Call(x.a, x.b, x.c);
double expected =
ExpectFused(execution_tier) ? x.fused_result : x.unfused_result;
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
CheckDoubleResult(x.a, x.b, expected, actual, true /* exact */);
}
}
}
WASM_SIMD_TEST_POST_MVP(F64x2Qfms) {
WasmRunner<int32_t, double, double, double> r(execution_tier, lower_simd);
// Set up global to hold mask output.
double* g = r.builder().AddGlobal<double>(kWasmS128);
// Build fn to splat test values, perform compare op, and write the result.
byte value1 = 0, value2 = 1, value3 = 2;
BUILD(r,
WASM_GLOBAL_SET(0, WASM_SIMD_F64x2_QFMS(
WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value1)),
WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value2)),
WASM_SIMD_F64x2_SPLAT(WASM_LOCAL_GET(value3)))),
WASM_ONE);
for (FMOperation<double> x : qfms_vector<double>()) {
r.Call(x.a, x.b, x.c);
double expected =
ExpectFused(execution_tier) ? x.fused_result : x.unfused_result;
for (int i = 0; i < 2; i++) {
double actual = ReadLittleEndianValue<double>(&g[i]);
CheckDoubleResult(x.a, x.b, expected, actual, true /* exact */);
}
}
}
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
WASM_SIMD_TEST(I32x4Splat) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Set up a global to hold output vector.
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
byte param1 = 0;
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(param1))),
WASM_ONE);
FOR_INT32_INPUTS(x) {
r.Call(x);
int32_t expected = x;
for (int i = 0; i < 4; i++) {
int32_t actual = ReadLittleEndianValue<int32_t>(&g[i]);
CHECK_EQ(actual, expected);
}
}
}
WASM_SIMD_TEST(I32x4ReplaceLane) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up a global to hold input/output vector.
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
// Build function to replace each lane with its index.
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(-1))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
0, WASM_LOCAL_GET(temp1), WASM_I32V(0))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
1, WASM_LOCAL_GET(temp1), WASM_I32V(1))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
2, WASM_LOCAL_GET(temp1), WASM_I32V(2))),
WASM_GLOBAL_SET(0, WASM_SIMD_I32x4_REPLACE_LANE(
3, WASM_LOCAL_GET(temp1), WASM_I32V(3))),
WASM_ONE);
r.Call();
for (int32_t i = 0; i < 4; i++) {
CHECK_EQ(i, ReadLittleEndianValue<int32_t>(&g[i]));
}
}
WASM_SIMD_TEST(I16x8Splat) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Set up a global to hold output vector.
int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
byte param1 = 0;
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(param1))),
WASM_ONE);
FOR_INT16_INPUTS(x) {
r.Call(x);
int16_t expected = x;
for (int i = 0; i < 8; i++) {
int16_t actual = ReadLittleEndianValue<int16_t>(&g[i]);
CHECK_EQ(actual, expected);
}
}
// Test values that do not fit in a int16.
FOR_INT32_INPUTS(x) {
r.Call(x);
int16_t expected = truncate_to_int16(x);
for (int i = 0; i < 8; i++) {
int16_t actual = ReadLittleEndianValue<int16_t>(&g[i]);
CHECK_EQ(actual, expected);
}
}
}
WASM_SIMD_TEST(I16x8ReplaceLane) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up a global to hold input/output vector.
int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
// Build function to replace each lane with its index.
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_I32V(-1))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
0, WASM_LOCAL_GET(temp1), WASM_I32V(0))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
1, WASM_LOCAL_GET(temp1), WASM_I32V(1))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
2, WASM_LOCAL_GET(temp1), WASM_I32V(2))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
3, WASM_LOCAL_GET(temp1), WASM_I32V(3))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
4, WASM_LOCAL_GET(temp1), WASM_I32V(4))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
5, WASM_LOCAL_GET(temp1), WASM_I32V(5))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
6, WASM_LOCAL_GET(temp1), WASM_I32V(6))),
WASM_GLOBAL_SET(0, WASM_SIMD_I16x8_REPLACE_LANE(
7, WASM_LOCAL_GET(temp1), WASM_I32V(7))),
WASM_ONE);
r.Call();
for (int16_t i = 0; i < 8; i++) {
CHECK_EQ(i, ReadLittleEndianValue<int16_t>(&g[i]));
}
}
WASM_SIMD_TEST(I8x16BitMask) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
byte value1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(value1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(0))),
WASM_LOCAL_SET(value1, WASM_SIMD_I8x16_REPLACE_LANE(
0, WASM_LOCAL_GET(value1), WASM_I32V(0))),
WASM_LOCAL_SET(value1, WASM_SIMD_I8x16_REPLACE_LANE(
1, WASM_LOCAL_GET(value1), WASM_I32V(-1))),
WASM_SIMD_UNOP(kExprI8x16BitMask, WASM_LOCAL_GET(value1)));
FOR_INT8_INPUTS(x) {
int32_t actual = r.Call(x);
// Lane 0 is always 0 (positive), lane 1 is always -1.
int32_t expected = std::signbit(static_cast<double>(x)) ? 0xFFFE : 0x0002;
CHECK_EQ(actual, expected);
}
}
WASM_SIMD_TEST(I16x8BitMask) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
byte value1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(value1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(0))),
WASM_LOCAL_SET(value1, WASM_SIMD_I16x8_REPLACE_LANE(
0, WASM_LOCAL_GET(value1), WASM_I32V(0))),
WASM_LOCAL_SET(value1, WASM_SIMD_I16x8_REPLACE_LANE(
1, WASM_LOCAL_GET(value1), WASM_I32V(-1))),
WASM_SIMD_UNOP(kExprI16x8BitMask, WASM_LOCAL_GET(value1)));
FOR_INT16_INPUTS(x) {
int32_t actual = r.Call(x);
// Lane 0 is always 0 (positive), lane 1 is always -1.
int32_t expected = std::signbit(static_cast<double>(x)) ? 0xFE : 2;
CHECK_EQ(actual, expected);
}
}
WASM_SIMD_TEST(I32x4BitMask) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
byte value1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(value1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(0))),
WASM_LOCAL_SET(value1, WASM_SIMD_I32x4_REPLACE_LANE(
0, WASM_LOCAL_GET(value1), WASM_I32V(0))),
WASM_LOCAL_SET(value1, WASM_SIMD_I32x4_REPLACE_LANE(
1, WASM_LOCAL_GET(value1), WASM_I32V(-1))),
WASM_SIMD_UNOP(kExprI32x4BitMask, WASM_LOCAL_GET(value1)));
FOR_INT32_INPUTS(x) {
int32_t actual = r.Call(x);
// Lane 0 is always 0 (positive), lane 1 is always -1.
int32_t expected = std::signbit(static_cast<double>(x)) ? 0xE : 2;
CHECK_EQ(actual, expected);
}
}
WASM_SIMD_TEST_NO_LOWERING(I64x2BitMask) {
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
byte value1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(value1, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(0))),
WASM_LOCAL_SET(value1, WASM_SIMD_I64x2_REPLACE_LANE(
0, WASM_LOCAL_GET(value1), WASM_I64V_1(0))),
WASM_SIMD_UNOP(kExprI64x2BitMask, WASM_LOCAL_GET(value1)));
for (int64_t x : compiler::ValueHelper::GetVector<int64_t>()) {
int32_t actual = r.Call(x);
// Lane 0 is always 0 (positive).
int32_t expected = std::signbit(static_cast<double>(x)) ? 0x2 : 0x0;
CHECK_EQ(actual, expected);
}
}
WASM_SIMD_TEST(I8x16Splat) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Set up a global to hold output vector.
int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
byte param1 = 0;
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(param1))),
WASM_ONE);
FOR_INT8_INPUTS(x) {
r.Call(x);
int8_t expected = x;
for (int i = 0; i < 16; i++) {
int8_t actual = ReadLittleEndianValue<int8_t>(&g[i]);
CHECK_EQ(actual, expected);
}
}
// Test values that do not fit in a int16.
FOR_INT16_INPUTS(x) {
r.Call(x);
int8_t expected = truncate_to_int8(x);
for (int i = 0; i < 16; i++) {
int8_t actual = ReadLittleEndianValue<int8_t>(&g[i]);
CHECK_EQ(actual, expected);
}
}
}
WASM_SIMD_TEST(I8x16ReplaceLane) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up a global to hold input/output vector.
int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
// Build function to replace each lane with its index.
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_I32V(-1))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
0, WASM_LOCAL_GET(temp1), WASM_I32V(0))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
1, WASM_LOCAL_GET(temp1), WASM_I32V(1))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
2, WASM_LOCAL_GET(temp1), WASM_I32V(2))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
3, WASM_LOCAL_GET(temp1), WASM_I32V(3))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
4, WASM_LOCAL_GET(temp1), WASM_I32V(4))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
5, WASM_LOCAL_GET(temp1), WASM_I32V(5))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
6, WASM_LOCAL_GET(temp1), WASM_I32V(6))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
7, WASM_LOCAL_GET(temp1), WASM_I32V(7))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
8, WASM_LOCAL_GET(temp1), WASM_I32V(8))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
9, WASM_LOCAL_GET(temp1), WASM_I32V(9))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
10, WASM_LOCAL_GET(temp1), WASM_I32V(10))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
11, WASM_LOCAL_GET(temp1), WASM_I32V(11))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
12, WASM_LOCAL_GET(temp1), WASM_I32V(12))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
13, WASM_LOCAL_GET(temp1), WASM_I32V(13))),
WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
14, WASM_LOCAL_GET(temp1), WASM_I32V(14))),
WASM_GLOBAL_SET(0, WASM_SIMD_I8x16_REPLACE_LANE(
15, WASM_LOCAL_GET(temp1), WASM_I32V(15))),
WASM_ONE);
r.Call();
for (int8_t i = 0; i < 16; i++) {
CHECK_EQ(i, ReadLittleEndianValue<int8_t>(&g[i]));
}
}
// Use doubles to ensure exact conversion.
int32_t ConvertToInt(double val, bool unsigned_integer) {
if (std::isnan(val)) return 0;
if (unsigned_integer) {
if (val < 0) return 0;
if (val > kMaxUInt32) return kMaxUInt32;
return static_cast<uint32_t>(val);
} else {
if (val < kMinInt) return kMinInt;
if (val > kMaxInt) return kMaxInt;
return static_cast<int>(val);
}
}
// Tests both signed and unsigned conversion.
WASM_SIMD_TEST(I32x4ConvertF32x4) {
WasmRunner<int32_t, float> r(execution_tier, lower_simd);
// Create two output vectors to hold signed and unsigned results.
int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
// Build fn to splat test value, perform conversions, and write the results.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(
0, WASM_SIMD_UNOP(kExprI32x4SConvertF32x4, WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(
1, WASM_SIMD_UNOP(kExprI32x4UConvertF32x4, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_FLOAT32_INPUTS(x) {
if (!PlatformCanRepresent(x)) continue;
r.Call(x);
int32_t expected_signed = ConvertToInt(x, false);
int32_t expected_unsigned = ConvertToInt(x, true);
for (int i = 0; i < 4; i++) {
CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g1[i]));
}
}
}
// Tests both signed and unsigned conversion from I16x8 (unpacking).
WASM_SIMD_TEST(I32x4ConvertI16x8) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Create four output vectors to hold signed and unsigned results.
int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
int32_t* g2 = r.builder().AddGlobal<int32_t>(kWasmS128);
int32_t* g3 = r.builder().AddGlobal<int32_t>(kWasmS128);
// Build fn to splat test value, perform conversions, and write the results.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8High,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(1, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8Low,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(2, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8High,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(3, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8Low,
WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT16_INPUTS(x) {
r.Call(x);
int32_t expected_signed = static_cast<int32_t>(x);
int32_t expected_unsigned = static_cast<int32_t>(static_cast<uint16_t>(x));
for (int i = 0; i < 4; i++) {
CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i]));
CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g1[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g2[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g3[i]));
}
}
}
// Tests both signed and unsigned conversion from I32x4 (unpacking).
WASM_SIMD_TEST_NO_LOWERING(I64x2ConvertI32x4) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Create four output vectors to hold signed and unsigned results.
int64_t* g0 = r.builder().AddGlobal<int64_t>(kWasmS128);
int64_t* g1 = r.builder().AddGlobal<int64_t>(kWasmS128);
uint64_t* g2 = r.builder().AddGlobal<uint64_t>(kWasmS128);
uint64_t* g3 = r.builder().AddGlobal<uint64_t>(kWasmS128);
// Build fn to splat test value, perform conversions, and write the results.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(kExprI64x2SConvertI32x4High,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(1, WASM_SIMD_UNOP(kExprI64x2SConvertI32x4Low,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(2, WASM_SIMD_UNOP(kExprI64x2UConvertI32x4High,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(3, WASM_SIMD_UNOP(kExprI64x2UConvertI32x4Low,
WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT32_INPUTS(x) {
r.Call(x);
int64_t expected_signed = static_cast<int64_t>(x);
uint64_t expected_unsigned =
static_cast<uint64_t>(static_cast<uint32_t>(x));
for (int i = 0; i < 2; i++) {
CHECK_EQ(expected_signed, ReadLittleEndianValue<int64_t>(&g0[i]));
CHECK_EQ(expected_signed, ReadLittleEndianValue<int64_t>(&g1[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<uint64_t>(&g2[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<uint64_t>(&g3[i]));
}
}
}
void RunI32x4UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int32UnOp expected_op) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Global to hold output.
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
// Build fn to splat test value, perform unop, and write the result.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT32_INPUTS(x) {
r.Call(x);
int32_t expected = expected_op(x);
for (int i = 0; i < 4; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
}
}
}
WASM_SIMD_TEST(I32x4Neg) {
RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Neg,
base::NegateWithWraparound);
}
WASM_SIMD_TEST(I32x4Abs) {
RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Abs, std::abs);
}
WASM_SIMD_TEST(S128Not) {
RunI32x4UnOpTest(execution_tier, lower_simd, kExprS128Not,
[](int32_t x) { return ~x; });
}
template <typename Narrow, typename Wide>
void RunExtAddPairwiseTest(TestExecutionTier execution_tier,
LowerSimd lower_simd, WasmOpcode ext_add_pairwise,
WasmOpcode splat) {
constexpr int num_lanes = kSimd128Size / sizeof(Wide);
WasmRunner<int32_t, Narrow> r(execution_tier, lower_simd);
Wide* g = r.builder().template AddGlobal<Wide>(kWasmS128);
// TODO(v8:11086) We splat the same value, so pairwise adding ends up adding
// the same value to itself, consider a more complicated test, like having 2
// vectors, and shuffling them.
BUILD(r, WASM_LOCAL_GET(0), WASM_SIMD_OP(splat),
WASM_SIMD_OP(ext_add_pairwise), kExprGlobalSet, 0, WASM_ONE);
for (Narrow x : compiler::ValueHelper::GetVector<Narrow>()) {
r.Call(x);
Wide expected = AddLong<Wide>(x, x);
for (int i = 0; i < num_lanes; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<Wide>(&g[i]));
}
}
}
WASM_SIMD_TEST_NO_LOWERING(I32x4ExtAddPairwiseI16x8S) {
RunExtAddPairwiseTest<int16_t, int32_t>(execution_tier, lower_simd,
kExprI32x4ExtAddPairwiseI16x8S,
kExprI16x8Splat);
}
WASM_SIMD_TEST_NO_LOWERING(I32x4ExtAddPairwiseI16x8U) {
RunExtAddPairwiseTest<uint16_t, uint32_t>(execution_tier, lower_simd,
kExprI32x4ExtAddPairwiseI16x8U,
kExprI16x8Splat);
}
WASM_SIMD_TEST_NO_LOWERING(I16x8ExtAddPairwiseI8x16S) {
RunExtAddPairwiseTest<int8_t, int16_t>(execution_tier, lower_simd,
kExprI16x8ExtAddPairwiseI8x16S,
kExprI8x16Splat);
}
WASM_SIMD_TEST_NO_LOWERING(I16x8ExtAddPairwiseI8x16U) {
RunExtAddPairwiseTest<uint8_t, uint16_t>(execution_tier, lower_simd,
kExprI16x8ExtAddPairwiseI8x16U,
kExprI8x16Splat);
}
void RunI32x4BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int32BinOp expected_op) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
// Global to hold output.
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
// Build fn to splat test values, perform binop, and write the result.
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
FOR_INT32_INPUTS(x) {
FOR_INT32_INPUTS(y) {
r.Call(x, y);
int32_t expected = expected_op(x, y);
for (int i = 0; i < 4; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
}
}
}
}
WASM_SIMD_TEST(I32x4Add) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Add,
base::AddWithWraparound);
}
WASM_SIMD_TEST(I32x4Sub) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Sub,
base::SubWithWraparound);
}
WASM_SIMD_TEST(I32x4Mul) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Mul,
base::MulWithWraparound);
}
WASM_SIMD_TEST(I32x4MinS) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinS, Minimum);
}
WASM_SIMD_TEST(I32x4MaxS) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxS, Maximum);
}
WASM_SIMD_TEST(I32x4MinU) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinU,
UnsignedMinimum);
}
WASM_SIMD_TEST(I32x4MaxU) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxU,
UnsignedMaximum);
}
WASM_SIMD_TEST(S128And) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128And,
[](int32_t x, int32_t y) { return x & y; });
}
WASM_SIMD_TEST(S128Or) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Or,
[](int32_t x, int32_t y) { return x | y; });
}
WASM_SIMD_TEST(S128Xor) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Xor,
[](int32_t x, int32_t y) { return x ^ y; });
}
// Bitwise operation, doesn't really matter what simd type we test it with.
WASM_SIMD_TEST(S128AndNot) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128AndNot,
[](int32_t x, int32_t y) { return x & ~y; });
}
WASM_SIMD_TEST(I32x4Eq) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Eq, Equal);
}
WASM_SIMD_TEST(I32x4Ne) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Ne, NotEqual);
}
WASM_SIMD_TEST(I32x4LtS) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtS, Less);
}
WASM_SIMD_TEST(I32x4LeS) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeS, LessEqual);
}
WASM_SIMD_TEST(I32x4GtS) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtS, Greater);
}
WASM_SIMD_TEST(I32x4GeS) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeS, GreaterEqual);
}
WASM_SIMD_TEST(I32x4LtU) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtU, UnsignedLess);
}
WASM_SIMD_TEST(I32x4LeU) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeU,
UnsignedLessEqual);
}
WASM_SIMD_TEST(I32x4GtU) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtU, UnsignedGreater);
}
WASM_SIMD_TEST(I32x4GeU) {
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeU,
UnsignedGreaterEqual);
}
void RunI32x4ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int32ShiftOp expected_op) {
// Intentionally shift by 32, should be no-op.
for (int shift = 1; shift <= 32; shift++) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
int32_t* memory = r.builder().AddMemoryElems<int32_t>(1);
int32_t* g_imm = r.builder().AddGlobal<int32_t>(kWasmS128);
int32_t* g_mem = r.builder().AddGlobal<int32_t>(kWasmS128);
byte value = 0;
byte simd = r.AllocateLocal(kWasmS128);
// Shift using an immediate, and shift using a value loaded from memory.
BUILD(
r, WASM_LOCAL_SET(simd, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_SHIFT_OP(opcode, WASM_LOCAL_GET(simd),
WASM_I32V(shift))),
WASM_GLOBAL_SET(1, WASM_SIMD_SHIFT_OP(
opcode, WASM_LOCAL_GET(simd),
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))),
WASM_ONE);
r.builder().WriteMemory(&memory[0], shift);
FOR_INT32_INPUTS(x) {
r.Call(x);
int32_t expected = expected_op(x, shift);
for (int i = 0; i < 4; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g_imm[i]));
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g_mem[i]));
}
}
}
}
WASM_SIMD_TEST(I32x4Shl) {
RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4Shl,
LogicalShiftLeft);
}
WASM_SIMD_TEST(I32x4ShrS) {
RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrS,
ArithmeticShiftRight);
}
WASM_SIMD_TEST(I32x4ShrU) {
RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrU,
LogicalShiftRight);
}
// Tests both signed and unsigned conversion from I8x16 (unpacking).
WASM_SIMD_TEST(I16x8ConvertI8x16) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Create four output vectors to hold signed and unsigned results.
int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128);
int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128);
int16_t* g2 = r.builder().AddGlobal<int16_t>(kWasmS128);
int16_t* g3 = r.builder().AddGlobal<int16_t>(kWasmS128);
// Build fn to splat test value, perform conversions, and write the results.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16High,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(1, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16Low,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(2, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16High,
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(3, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16Low,
WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT8_INPUTS(x) {
r.Call(x);
int16_t expected_signed = static_cast<int16_t>(x);
int16_t expected_unsigned = static_cast<int16_t>(static_cast<uint8_t>(x));
for (int i = 0; i < 8; i++) {
CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i]));
CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g1[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g2[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g3[i]));
}
}
}
// Tests both signed and unsigned conversion from I32x4 (packing).
WASM_SIMD_TEST(I16x8ConvertI32x4) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Create output vectors to hold signed and unsigned results.
int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128);
int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128);
// Build fn to splat test value, perform conversions, and write the results.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(
0, WASM_SIMD_BINOP(kExprI16x8SConvertI32x4, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(
1, WASM_SIMD_BINOP(kExprI16x8UConvertI32x4, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT32_INPUTS(x) {
r.Call(x);
int16_t expected_signed = base::saturated_cast<int16_t>(x);
int16_t expected_unsigned = base::saturated_cast<uint16_t>(x);
for (int i = 0; i < 8; i++) {
CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g1[i]));
}
}
}
void RunI16x8UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int16UnOp expected_op) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Global to hold output.
int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
// Build fn to splat test value, perform unop, and write the result.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT16_INPUTS(x) {
r.Call(x);
int16_t expected = expected_op(x);
for (int i = 0; i < 8; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i]));
}
}
}
WASM_SIMD_TEST(I16x8Neg) {
RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Neg,
base::NegateWithWraparound);
}
WASM_SIMD_TEST(I16x8Abs) {
RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Abs, Abs);
}
template <typename T = int16_t, typename OpType = T (*)(T, T)>
void RunI16x8BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, OpType expected_op) {
WasmRunner<int32_t, T, T> r(execution_tier, lower_simd);
// Global to hold output.
T* g = r.builder().template AddGlobal<T>(kWasmS128);
// Build fn to splat test values, perform binop, and write the result.
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
for (T x : compiler::ValueHelper::GetVector<T>()) {
for (T y : compiler::ValueHelper::GetVector<T>()) {
r.Call(x, y);
T expected = expected_op(x, y);
for (int i = 0; i < 8; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i]));
}
}
}
}
WASM_SIMD_TEST(I16x8Add) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Add,
base::AddWithWraparound);
}
WASM_SIMD_TEST(I16x8AddSatS) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSatS,
SaturateAdd<int16_t>);
}
WASM_SIMD_TEST(I16x8Sub) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Sub,
base::SubWithWraparound);
}
WASM_SIMD_TEST(I16x8SubSatS) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSatS,
SaturateSub<int16_t>);
}
WASM_SIMD_TEST(I16x8Mul) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Mul,
base::MulWithWraparound);
}
WASM_SIMD_TEST(I16x8MinS) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinS, Minimum);
}
WASM_SIMD_TEST(I16x8MaxS) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxS, Maximum);
}
WASM_SIMD_TEST(I16x8AddSatU) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSatU,
SaturateAdd<uint16_t>);
}
WASM_SIMD_TEST(I16x8SubSatU) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSatU,
SaturateSub<uint16_t>);
}
WASM_SIMD_TEST(I16x8MinU) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinU,
UnsignedMinimum);
}
WASM_SIMD_TEST(I16x8MaxU) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxU,
UnsignedMaximum);
}
WASM_SIMD_TEST(I16x8Eq) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Eq, Equal);
}
WASM_SIMD_TEST(I16x8Ne) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Ne, NotEqual);
}
WASM_SIMD_TEST(I16x8LtS) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtS, Less);
}
WASM_SIMD_TEST(I16x8LeS) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeS, LessEqual);
}
WASM_SIMD_TEST(I16x8GtS) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtS, Greater);
}
WASM_SIMD_TEST(I16x8GeS) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeS, GreaterEqual);
}
WASM_SIMD_TEST(I16x8GtU) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtU, UnsignedGreater);
}
WASM_SIMD_TEST(I16x8GeU) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeU,
UnsignedGreaterEqual);
}
WASM_SIMD_TEST(I16x8LtU) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtU, UnsignedLess);
}
WASM_SIMD_TEST(I16x8LeU) {
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeU,
UnsignedLessEqual);
}
WASM_SIMD_TEST(I16x8RoundingAverageU) {
RunI16x8BinOpTest<uint16_t>(execution_tier, lower_simd,
kExprI16x8RoundingAverageU,
base::RoundingAverageUnsigned);
}
WASM_SIMD_TEST_NO_LOWERING(I16x8Q15MulRSatS) {
RunI16x8BinOpTest<int16_t>(execution_tier, lower_simd, kExprI16x8Q15MulRSatS,
SaturateRoundingQMul<int16_t>);
}
namespace {
enum class MulHalf { kLow, kHigh };
// Helper to run ext mul tests. It will splat 2 input values into 2 v128, call
// the mul op on these operands, and set the result into a global.
// It will zero the top or bottom half of one of the operands, this will catch
// mistakes if we are multiply the incorrect halves.
template <typename S, typename T, typename OpType = T (*)(S, S)>
void RunExtMulTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, OpType expected_op, WasmOpcode splat,
MulHalf half) {
WasmRunner<int32_t, S, S> r(execution_tier, lower_simd);
int lane_to_zero = half == MulHalf::kLow ? 1 : 0;
T* g = r.builder().template AddGlobal<T>(kWasmS128);
BUILD(r,
WASM_GLOBAL_SET(
0, WASM_SIMD_BINOP(
opcode,
WASM_SIMD_I64x2_REPLACE_LANE(
lane_to_zero, WASM_SIMD_UNOP(splat, WASM_LOCAL_GET(0)),
WASM_I64V_1(0)),
WASM_SIMD_UNOP(splat, WASM_LOCAL_GET(1)))),
WASM_ONE);
constexpr int lanes = kSimd128Size / sizeof(T);
for (S x : compiler::ValueHelper::GetVector<S>()) {
for (S y : compiler::ValueHelper::GetVector<S>()) {
r.Call(x, y);
T expected = expected_op(x, y);
for (int i = 0; i < lanes; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i]));
}
}
}
}
} // namespace
WASM_SIMD_TEST(I16x8ExtMulLowI8x16S) {
RunExtMulTest<int8_t, int16_t>(execution_tier, lower_simd,
kExprI16x8ExtMulLowI8x16S, MultiplyLong,
kExprI8x16Splat, MulHalf::kLow);
}
WASM_SIMD_TEST(I16x8ExtMulHighI8x16S) {
RunExtMulTest<int8_t, int16_t>(execution_tier, lower_simd,
kExprI16x8ExtMulHighI8x16S, MultiplyLong,
kExprI8x16Splat, MulHalf::kHigh);
}
WASM_SIMD_TEST(I16x8ExtMulLowI8x16U) {
RunExtMulTest<uint8_t, uint16_t>(execution_tier, lower_simd,
kExprI16x8ExtMulLowI8x16U, MultiplyLong,
kExprI8x16Splat, MulHalf::kLow);
}
WASM_SIMD_TEST(I16x8ExtMulHighI8x16U) {
RunExtMulTest<uint8_t, uint16_t>(execution_tier, lower_simd,
kExprI16x8ExtMulHighI8x16U, MultiplyLong,
kExprI8x16Splat, MulHalf::kHigh);
}
WASM_SIMD_TEST(I32x4ExtMulLowI16x8S) {
RunExtMulTest<int16_t, int32_t>(execution_tier, lower_simd,
kExprI32x4ExtMulLowI16x8S, MultiplyLong,
kExprI16x8Splat, MulHalf::kLow);
}
WASM_SIMD_TEST(I32x4ExtMulHighI16x8S) {
RunExtMulTest<int16_t, int32_t>(execution_tier, lower_simd,
kExprI32x4ExtMulHighI16x8S, MultiplyLong,
kExprI16x8Splat, MulHalf::kHigh);
}
WASM_SIMD_TEST(I32x4ExtMulLowI16x8U) {
RunExtMulTest<uint16_t, uint32_t>(execution_tier, lower_simd,
kExprI32x4ExtMulLowI16x8U, MultiplyLong,
kExprI16x8Splat, MulHalf::kLow);
}
WASM_SIMD_TEST(I32x4ExtMulHighI16x8U) {
RunExtMulTest<uint16_t, uint32_t>(execution_tier, lower_simd,
kExprI32x4ExtMulHighI16x8U, MultiplyLong,
kExprI16x8Splat, MulHalf::kHigh);
}
WASM_SIMD_TEST(I64x2ExtMulLowI32x4S) {
RunExtMulTest<int32_t, int64_t>(execution_tier, lower_simd,
kExprI64x2ExtMulLowI32x4S, MultiplyLong,
kExprI32x4Splat, MulHalf::kLow);
}
WASM_SIMD_TEST(I64x2ExtMulHighI32x4S) {
RunExtMulTest<int32_t, int64_t>(execution_tier, lower_simd,
kExprI64x2ExtMulHighI32x4S, MultiplyLong,
kExprI32x4Splat, MulHalf::kHigh);
}
WASM_SIMD_TEST(I64x2ExtMulLowI32x4U) {
RunExtMulTest<uint32_t, uint64_t>(execution_tier, lower_simd,
kExprI64x2ExtMulLowI32x4U, MultiplyLong,
kExprI32x4Splat, MulHalf::kLow);
}
WASM_SIMD_TEST(I64x2ExtMulHighI32x4U) {
RunExtMulTest<uint32_t, uint64_t>(execution_tier, lower_simd,
kExprI64x2ExtMulHighI32x4U, MultiplyLong,
kExprI32x4Splat, MulHalf::kHigh);
}
WASM_SIMD_TEST(I32x4DotI16x8S) {
WasmRunner<int32_t, int16_t, int16_t> r(execution_tier, lower_simd);
int32_t* g = r.builder().template AddGlobal<int32_t>(kWasmS128);
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(
0, WASM_SIMD_BINOP(kExprI32x4DotI16x8S, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
for (int16_t x : compiler::ValueHelper::GetVector<int16_t>()) {
for (int16_t y : compiler::ValueHelper::GetVector<int16_t>()) {
r.Call(x, y);
// x * y * 2 can overflow (0x8000), the behavior is to wraparound.
int32_t expected = base::MulWithWraparound(x * y, 2);
for (int i = 0; i < 4; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
}
}
}
}
void RunI16x8ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int16ShiftOp expected_op) {
// Intentionally shift by 16, should be no-op.
for (int shift = 1; shift <= 16; shift++) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
int32_t* memory = r.builder().AddMemoryElems<int32_t>(1);
int16_t* g_imm = r.builder().AddGlobal<int16_t>(kWasmS128);
int16_t* g_mem = r.builder().AddGlobal<int16_t>(kWasmS128);
byte value = 0;
byte simd = r.AllocateLocal(kWasmS128);
// Shift using an immediate, and shift using a value loaded from memory.
BUILD(
r, WASM_LOCAL_SET(simd, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_SHIFT_OP(opcode, WASM_LOCAL_GET(simd),
WASM_I32V(shift))),
WASM_GLOBAL_SET(1, WASM_SIMD_SHIFT_OP(
opcode, WASM_LOCAL_GET(simd),
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))),
WASM_ONE);
r.builder().WriteMemory(&memory[0], shift);
FOR_INT16_INPUTS(x) {
r.Call(x);
int16_t expected = expected_op(x, shift);
for (int i = 0; i < 8; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g_imm[i]));
CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g_mem[i]));
}
}
}
}
WASM_SIMD_TEST(I16x8Shl) {
RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8Shl,
LogicalShiftLeft);
}
WASM_SIMD_TEST(I16x8ShrS) {
RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrS,
ArithmeticShiftRight);
}
WASM_SIMD_TEST(I16x8ShrU) {
RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrU,
LogicalShiftRight);
}
void RunI8x16UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int8UnOp expected_op) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Global to hold output.
int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
// Build fn to splat test value, perform unop, and write the result.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_UNOP(opcode, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT8_INPUTS(x) {
r.Call(x);
int8_t expected = expected_op(x);
for (int i = 0; i < 16; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
}
}
}
WASM_SIMD_TEST(I8x16Neg) {
RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Neg,
base::NegateWithWraparound);
}
WASM_SIMD_TEST(I8x16Abs) {
RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Abs, Abs);
}
WASM_SIMD_TEST_NO_LOWERING(I8x16Popcnt) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Global to hold output.
int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
// Build fn to splat test value, perform unop, and write the result.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(
0, WASM_SIMD_UNOP(kExprI8x16Popcnt, WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_UINT8_INPUTS(x) {
r.Call(x);
unsigned expected = base::bits::CountPopulation(x);
for (int i = 0; i < 16; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
}
}
}
// Tests both signed and unsigned conversion from I16x8 (packing).
WASM_SIMD_TEST(I8x16ConvertI16x8) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Create output vectors to hold signed and unsigned results.
int8_t* g_s = r.builder().AddGlobal<int8_t>(kWasmS128);
uint8_t* g_u = r.builder().AddGlobal<uint8_t>(kWasmS128);
// Build fn to splat test value, perform conversions, and write the results.
byte value = 0;
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(
0, WASM_SIMD_BINOP(kExprI8x16SConvertI16x8, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp1))),
WASM_GLOBAL_SET(
1, WASM_SIMD_BINOP(kExprI8x16UConvertI16x8, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp1))),
WASM_ONE);
FOR_INT16_INPUTS(x) {
r.Call(x);
int8_t expected_signed = base::saturated_cast<int8_t>(x);
uint8_t expected_unsigned = base::saturated_cast<uint8_t>(x);
for (int i = 0; i < 16; i++) {
CHECK_EQ(expected_signed, ReadLittleEndianValue<int8_t>(&g_s[i]));
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<uint8_t>(&g_u[i]));
}
}
}
template <typename T = int8_t, typename OpType = T (*)(T, T)>
void RunI8x16BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, OpType expected_op) {
WasmRunner<int32_t, T, T> r(execution_tier, lower_simd);
// Global to hold output.
T* g = r.builder().template AddGlobal<T>(kWasmS128);
// Build fn to splat test values, perform binop, and write the result.
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value2))),
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_ONE);
for (T x : compiler::ValueHelper::GetVector<T>()) {
for (T y : compiler::ValueHelper::GetVector<T>()) {
r.Call(x, y);
T expected = expected_op(x, y);
for (int i = 0; i < 16; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i]));
}
}
}
}
WASM_SIMD_TEST(I8x16Add) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Add,
base::AddWithWraparound);
}
WASM_SIMD_TEST(I8x16AddSatS) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSatS,
SaturateAdd<int8_t>);
}
WASM_SIMD_TEST(I8x16Sub) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Sub,
base::SubWithWraparound);
}
WASM_SIMD_TEST(I8x16SubSatS) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSatS,
SaturateSub<int8_t>);
}
WASM_SIMD_TEST(I8x16MinS) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinS, Minimum);
}
WASM_SIMD_TEST(I8x16MaxS) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxS, Maximum);
}
WASM_SIMD_TEST(I8x16AddSatU) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSatU,
SaturateAdd<uint8_t>);
}
WASM_SIMD_TEST(I8x16SubSatU) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSatU,
SaturateSub<uint8_t>);
}
WASM_SIMD_TEST(I8x16MinU) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinU,
UnsignedMinimum);
}
WASM_SIMD_TEST(I8x16MaxU) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxU,
UnsignedMaximum);
}
WASM_SIMD_TEST(I8x16Eq) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Eq, Equal);
}
WASM_SIMD_TEST(I8x16Ne) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Ne, NotEqual);
}
WASM_SIMD_TEST(I8x16GtS) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtS, Greater);
}
WASM_SIMD_TEST(I8x16GeS) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeS, GreaterEqual);
}
WASM_SIMD_TEST(I8x16LtS) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtS, Less);
}
WASM_SIMD_TEST(I8x16LeS) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeS, LessEqual);
}
WASM_SIMD_TEST(I8x16GtU) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtU, UnsignedGreater);
}
WASM_SIMD_TEST(I8x16GeU) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeU,
UnsignedGreaterEqual);
}
WASM_SIMD_TEST(I8x16LtU) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtU, UnsignedLess);
}
WASM_SIMD_TEST(I8x16LeU) {
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeU,
UnsignedLessEqual);
}
WASM_SIMD_TEST(I8x16RoundingAverageU) {
RunI8x16BinOpTest<uint8_t>(execution_tier, lower_simd,
kExprI8x16RoundingAverageU,
base::RoundingAverageUnsigned);
}
void RunI8x16ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode opcode, Int8ShiftOp expected_op) {
// Intentionally shift by 8, should be no-op.
for (int shift = 1; shift <= 8; shift++) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
int32_t* memory = r.builder().AddMemoryElems<int32_t>(1);
int8_t* g_imm = r.builder().AddGlobal<int8_t>(kWasmS128);
int8_t* g_mem = r.builder().AddGlobal<int8_t>(kWasmS128);
byte value = 0;
byte simd = r.AllocateLocal(kWasmS128);
// Shift using an immediate, and shift using a value loaded from memory.
BUILD(
r, WASM_LOCAL_SET(simd, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value))),
WASM_GLOBAL_SET(0, WASM_SIMD_SHIFT_OP(opcode, WASM_LOCAL_GET(simd),
WASM_I32V(shift))),
WASM_GLOBAL_SET(1, WASM_SIMD_SHIFT_OP(
opcode, WASM_LOCAL_GET(simd),
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))),
WASM_ONE);
r.builder().WriteMemory(&memory[0], shift);
FOR_INT8_INPUTS(x) {
r.Call(x);
int8_t expected = expected_op(x, shift);
for (int i = 0; i < 16; i++) {
CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g_imm[i]));
CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g_mem[i]));
}
}
}
}
WASM_SIMD_TEST(I8x16Shl) {
RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16Shl,
LogicalShiftLeft);
}
WASM_SIMD_TEST(I8x16ShrS) {
RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrS,
ArithmeticShiftRight);
}
WASM_SIMD_TEST(I8x16ShrU) {
RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrU,
LogicalShiftRight);
}
// Test Select by making a mask where the 0th and 3rd lanes are true and the
// rest false, and comparing for non-equality with zero to convert to a boolean
// vector.
#define WASM_SIMD_SELECT_TEST(format) \
WASM_SIMD_TEST(S##format##Select) { \
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd); \
byte val1 = 0; \
byte val2 = 1; \
byte src1 = r.AllocateLocal(kWasmS128); \
byte src2 = r.AllocateLocal(kWasmS128); \
byte zero = r.AllocateLocal(kWasmS128); \
byte mask = r.AllocateLocal(kWasmS128); \
BUILD(r, \
WASM_LOCAL_SET(src1, \
WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(val1))), \
WASM_LOCAL_SET(src2, \
WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(val2))), \
WASM_LOCAL_SET(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
WASM_LOCAL_SET(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
1, WASM_LOCAL_GET(zero), WASM_I32V(-1))), \
WASM_LOCAL_SET(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
2, WASM_LOCAL_GET(mask), WASM_I32V(-1))), \
WASM_LOCAL_SET( \
mask, \
WASM_SIMD_SELECT( \
format, WASM_LOCAL_GET(src1), WASM_LOCAL_GET(src2), \
WASM_SIMD_BINOP(kExprI##format##Ne, WASM_LOCAL_GET(mask), \
WASM_LOCAL_GET(zero)))), \
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 0), \
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val1, 1), \
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val1, 2), \
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 3), WASM_ONE); \
\
CHECK_EQ(1, r.Call(0x12, 0x34)); \
}
WASM_SIMD_SELECT_TEST(32x4)
WASM_SIMD_SELECT_TEST(16x8)
WASM_SIMD_SELECT_TEST(8x16)
// Test Select by making a mask where the 0th and 3rd lanes are non-zero and the
// rest 0. The mask is not the result of a comparison op.
#define WASM_SIMD_NON_CANONICAL_SELECT_TEST(format) \
WASM_SIMD_TEST(S##format##NonCanonicalSelect) { \
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(execution_tier, \
lower_simd); \
byte val1 = 0; \
byte val2 = 1; \
byte combined = 2; \
byte src1 = r.AllocateLocal(kWasmS128); \
byte src2 = r.AllocateLocal(kWasmS128); \
byte zero = r.AllocateLocal(kWasmS128); \
byte mask = r.AllocateLocal(kWasmS128); \
BUILD(r, \
WASM_LOCAL_SET(src1, \
WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(val1))), \
WASM_LOCAL_SET(src2, \
WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(val2))), \
WASM_LOCAL_SET(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
WASM_LOCAL_SET(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
1, WASM_LOCAL_GET(zero), WASM_I32V(0xF))), \
WASM_LOCAL_SET(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
2, WASM_LOCAL_GET(mask), WASM_I32V(0xF))), \
WASM_LOCAL_SET(mask, WASM_SIMD_SELECT(format, WASM_LOCAL_GET(src1), \
WASM_LOCAL_GET(src2), \
WASM_LOCAL_GET(mask))), \
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 0), \
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, combined, 1), \
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, combined, 2), \
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 3), WASM_ONE); \
\
CHECK_EQ(1, r.Call(0x12, 0x34, 0x32)); \
}
WASM_SIMD_NON_CANONICAL_SELECT_TEST(32x4)
WASM_SIMD_NON_CANONICAL_SELECT_TEST(16x8)
WASM_SIMD_NON_CANONICAL_SELECT_TEST(8x16)
// Test binary ops with two lane test patterns, all lanes distinct.
template <typename T>
void RunBinaryLaneOpTest(
TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op,
const std::array<T, kSimd128Size / sizeof(T)>& expected) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
T* src0 = r.builder().AddGlobal<T>(kWasmS128);
T* src1 = r.builder().AddGlobal<T>(kWasmS128);
static const int kElems = kSimd128Size / sizeof(T);
for (int i = 0; i < kElems; i++) {
WriteLittleEndianValue<T>(&src0[i], i);
WriteLittleEndianValue<T>(&src1[i], kElems + i);
}
if (simd_op == kExprI8x16Shuffle) {
BUILD(r,
WASM_GLOBAL_SET(0, WASM_SIMD_I8x16_SHUFFLE_OP(simd_op, expected,
WASM_GLOBAL_GET(0),
WASM_GLOBAL_GET(1))),
WASM_ONE);
} else {
BUILD(r,
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(simd_op, WASM_GLOBAL_GET(0),
WASM_GLOBAL_GET(1))),
WASM_ONE);
}
CHECK_EQ(1, r.Call());
for (size_t i = 0; i < expected.size(); i++) {
CHECK_EQ(ReadLittleEndianValue<T>(&src0[i]), expected[i]);
}
}
// Test shuffle ops.
void RunShuffleOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode simd_op,
const std::array<int8_t, kSimd128Size>& shuffle) {
// Test the original shuffle.
RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, shuffle);
// Test a non-canonical (inputs reversed) version of the shuffle.
std::array<int8_t, kSimd128Size> other_shuffle(shuffle);
for (size_t i = 0; i < shuffle.size(); ++i) other_shuffle[i] ^= kSimd128Size;
RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op,
other_shuffle);
// Test the swizzle (one-operand) version of the shuffle.
std::array<int8_t, kSimd128Size> swizzle(shuffle);
for (size_t i = 0; i < shuffle.size(); ++i) swizzle[i] &= (kSimd128Size - 1);
RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, swizzle);
// Test the non-canonical swizzle (one-operand) version of the shuffle.
std::array<int8_t, kSimd128Size> other_swizzle(shuffle);
for (size_t i = 0; i < shuffle.size(); ++i) other_swizzle[i] |= kSimd128Size;
RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op,
other_swizzle);
}
#define SHUFFLE_LIST(V) \
V(S128Identity) \
V(S32x4Dup) \
V(S32x4ZipLeft) \
V(S32x4ZipRight) \
V(S32x4UnzipLeft) \
V(S32x4UnzipRight) \
V(S32x4TransposeLeft) \
V(S32x4TransposeRight) \
V(S32x2Reverse) \
V(S32x4Irregular) \
V(S32x4Rotate) \
V(S16x8Dup) \
V(S16x8ZipLeft) \
V(S16x8ZipRight) \
V(S16x8UnzipLeft) \
V(S16x8UnzipRight) \
V(S16x8TransposeLeft) \
V(S16x8TransposeRight) \
V(S16x4Reverse) \
V(S16x2Reverse) \
V(S16x8Irregular) \
V(S8x16Dup) \
V(S8x16ZipLeft) \
V(S8x16ZipRight) \
V(S8x16UnzipLeft) \
V(S8x16UnzipRight) \
V(S8x16TransposeLeft) \
V(S8x16TransposeRight) \
V(S8x8Reverse) \
V(S8x4Reverse) \
V(S8x2Reverse) \
V(S8x16Irregular)
enum ShuffleKey {
#define SHUFFLE_ENUM_VALUE(Name) k##Name,
SHUFFLE_LIST(SHUFFLE_ENUM_VALUE)
#undef SHUFFLE_ENUM_VALUE
kNumShuffleKeys
};
using Shuffle = std::array<int8_t, kSimd128Size>;
using ShuffleMap = std::map<ShuffleKey, const Shuffle>;
ShuffleMap test_shuffles = {
{kS128Identity,
{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}},
{kS32x4Dup,
{{16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19}}},
{kS32x4ZipLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}}},
{kS32x4ZipRight,
{{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}}},
{kS32x4UnzipLeft,
{{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}}},
{kS32x4UnzipRight,
{{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}}},
{kS32x4TransposeLeft,
{{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}}},
{kS32x4TransposeRight,
{{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}}},
{kS32x2Reverse, // swizzle only
{{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}}},
{kS32x4Irregular,
{{0, 1, 2, 3, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 22, 23}}},
{kS32x4Rotate, {{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3}}},
{kS16x8Dup,
{{18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19}}},
{kS16x8ZipLeft, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}}},
{kS16x8ZipRight,
{{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}}},
{kS16x8UnzipLeft,
{{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}}},
{kS16x8UnzipRight,
{{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}}},
{kS16x8TransposeLeft,
{{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}}},
{kS16x8TransposeRight,
{{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}}},
{kS16x4Reverse, // swizzle only
{{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}}},
{kS16x2Reverse, // swizzle only
{{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}}},
{kS16x8Irregular,
{{0, 1, 16, 17, 16, 17, 0, 1, 4, 5, 20, 21, 6, 7, 22, 23}}},
{kS8x16Dup,
{{19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19}}},
{kS8x16ZipLeft, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}},
{kS8x16ZipRight,
{{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}}},
{kS8x16UnzipLeft,
{{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}}},
{kS8x16UnzipRight,
{{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}}},
{kS8x16TransposeLeft,
{{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}}},
{kS8x16TransposeRight,
{{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}}},
{kS8x8Reverse, // swizzle only
{{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}}},
{kS8x4Reverse, // swizzle only
{{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}}},
{kS8x2Reverse, // swizzle only
{{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}}},
{kS8x16Irregular,
{{0, 16, 0, 16, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}},
};
#define SHUFFLE_TEST(Name) \
WASM_SIMD_TEST(Name) { \
ShuffleMap::const_iterator it = test_shuffles.find(k##Name); \
DCHECK_NE(it, test_shuffles.end()); \
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, \
it->second); \
}
SHUFFLE_LIST(SHUFFLE_TEST)
#undef SHUFFLE_TEST
#undef SHUFFLE_LIST
// Test shuffles that blend the two vectors (elements remain in their lanes.)
WASM_SIMD_TEST(S8x16Blend) {
std::array<int8_t, kSimd128Size> expected;
for (int bias = 1; bias < kSimd128Size; bias++) {
for (int i = 0; i < bias; i++) expected[i] = i;
for (int i = bias; i < kSimd128Size; i++) expected[i] = i + kSimd128Size;
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected);
}
}
// Test shuffles that concatenate the two vectors.
WASM_SIMD_TEST(S8x16Concat) {
std::array<int8_t, kSimd128Size> expected;
// n is offset or bias of concatenation.
for (int n = 1; n < kSimd128Size; ++n) {
int i = 0;
// last kLanes - n bytes of first vector.
for (int j = n; j < kSimd128Size; ++j) {
expected[i++] = j;
}
// first n bytes of second vector
for (int j = 0; j < n; ++j) {
expected[i++] = j + kSimd128Size;
}
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected);
}
}
WASM_SIMD_TEST(ShuffleShufps) {
// We reverse engineer the shufps immediates into 8x16 shuffles.
std::array<int8_t, kSimd128Size> expected;
for (int mask = 0; mask < 256; mask++) {
// Each iteration of this loop sets byte[i] of the 32x4 lanes.
// Low 2 lanes (2-bits each) select from first input.
uint8_t index0 = (mask & 3) * 4;
uint8_t index1 = ((mask >> 2) & 3) * 4;
// Next 2 bits select from src2, so add 16 to the index.
uint8_t index2 = ((mask >> 4) & 3) * 4 + 16;
uint8_t index3 = ((mask >> 6) & 3) * 4 + 16;
for (int i = 0; i < 4; i++) {
expected[0 + i] = index0 + i;
expected[4 + i] = index1 + i;
expected[8 + i] = index2 + i;
expected[12 + i] = index3 + i;
}
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected);
}
}
struct SwizzleTestArgs {
const Shuffle input;
const Shuffle indices;
const Shuffle expected;
};
static constexpr SwizzleTestArgs swizzle_test_args[] = {
{{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
{{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
{15, 0, 14, 1, 13, 2, 12, 3, 11, 4, 10, 5, 9, 6, 8, 7},
{0, 15, 1, 14, 2, 13, 3, 12, 4, 11, 5, 10, 6, 9, 7, 8}},
{{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
{15, 13, 11, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0}},
// all indices are out of range
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{16, 17, 18, 19, 20, 124, 125, 126, 127, -1, -2, -3, -4, -5, -6, -7},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}};
static constexpr Vector<const SwizzleTestArgs> swizzle_test_vector =
ArrayVector(swizzle_test_args);
WASM_SIMD_TEST(I8x16Swizzle) {
// RunBinaryLaneOpTest set up the two globals to be consecutive integers,
// [0-15] and [16-31]. Using [0-15] as the indices will not sufficiently test
// swizzle since the expected result is a no-op, using [16-31] will result in
// all 0s.
WasmRunner<int32_t> r(execution_tier, lower_simd);
static const int kElems = kSimd128Size / sizeof(uint8_t);
uint8_t* dst = r.builder().AddGlobal<uint8_t>(kWasmS128);
uint8_t* src0 = r.builder().AddGlobal<uint8_t>(kWasmS128);
uint8_t* src1 = r.builder().AddGlobal<uint8_t>(kWasmS128);
BUILD(
r,
WASM_GLOBAL_SET(0, WASM_SIMD_BINOP(kExprI8x16Swizzle, WASM_GLOBAL_GET(1),
WASM_GLOBAL_GET(2))),
WASM_ONE);
for (SwizzleTestArgs si : swizzle_test_vector) {
for (int i = 0; i < kElems; i++) {
WriteLittleEndianValue<uint8_t>(&src0[i], si.input[i]);
WriteLittleEndianValue<uint8_t>(&src1[i], si.indices[i]);
}
CHECK_EQ(1, r.Call());
for (int i = 0; i < kElems; i++) {
CHECK_EQ(ReadLittleEndianValue<uint8_t>(&dst[i]), si.expected[i]);
}
}
}
// Combine 3 shuffles a, b, and c by applying both a and b and then applying c
// to those two results.
Shuffle Combine(const Shuffle& a, const Shuffle& b, const Shuffle& c) {
Shuffle result;
for (int i = 0; i < kSimd128Size; ++i) {
result[i] = c[i] < kSimd128Size ? a[c[i]] : b[c[i] - kSimd128Size];
}
return result;
}
const Shuffle& GetRandomTestShuffle(v8::base::RandomNumberGenerator* rng) {
return test_shuffles[static_cast<ShuffleKey>(rng->NextInt(kNumShuffleKeys))];
}
// Test shuffles that are random combinations of 3 test shuffles. Completely
// random shuffles almost always generate the slow general shuffle code, so
// don't exercise as many code paths.
WASM_SIMD_TEST(I8x16ShuffleFuzz) {
v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator();
static const int kTests = 100;
for (int i = 0; i < kTests; ++i) {
auto shuffle = Combine(GetRandomTestShuffle(rng), GetRandomTestShuffle(rng),
GetRandomTestShuffle(rng));
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, shuffle);
}
}
void AppendShuffle(const Shuffle& shuffle, std::vector<byte>* buffer) {
byte opcode[] = {WASM_SIMD_OP(kExprI8x16Shuffle)};
for (size_t i = 0; i < arraysize(opcode); ++i) buffer->push_back(opcode[i]);
for (size_t i = 0; i < kSimd128Size; ++i) buffer->push_back((shuffle[i]));
}
void BuildShuffle(const std::vector<Shuffle>& shuffles,
std::vector<byte>* buffer) {
// Perform the leaf shuffles on globals 0 and 1.
size_t row_index = (shuffles.size() - 1) / 2;
for (size_t i = row_index; i < shuffles.size(); ++i) {
byte operands[] = {WASM_GLOBAL_GET(0), WASM_GLOBAL_GET(1)};
for (size_t j = 0; j < arraysize(operands); ++j)
buffer->push_back(operands[j]);
AppendShuffle(shuffles[i], buffer);
}
// Now perform inner shuffles in the correct order on operands on the stack.
do {
for (size_t i = row_index / 2; i < row_index; ++i) {
AppendShuffle(shuffles[i], buffer);
}
row_index /= 2;
} while (row_index != 0);
byte epilog[] = {kExprGlobalSet, static_cast<byte>(0), WASM_ONE};
for (size_t j = 0; j < arraysize(epilog); ++j) buffer->push_back(epilog[j]);
}
void RunWasmCode(TestExecutionTier execution_tier, LowerSimd lower_simd,
const std::vector<byte>& code,
std::array<int8_t, kSimd128Size>* result) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
// Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
int8_t* src0 = r.builder().AddGlobal<int8_t>(kWasmS128);
int8_t* src1 = r.builder().AddGlobal<int8_t>(kWasmS128);
for (int i = 0; i < kSimd128Size; ++i) {
WriteLittleEndianValue<int8_t>(&src0[i], i);
WriteLittleEndianValue<int8_t>(&src1[i], kSimd128Size + i);
}
r.Build(code.data(), code.data() + code.size());
CHECK_EQ(1, r.Call());
for (size_t i = 0; i < kSimd128Size; i++) {
(*result)[i] = ReadLittleEndianValue<int8_t>(&src0[i]);
}
}
// Test multiple shuffles executed in sequence.
WASM_SIMD_TEST(S8x16MultiShuffleFuzz) {
// Don't compare interpreter results with itself.
if (execution_tier == TestExecutionTier::kInterpreter) {
return;
}
v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator();
static const int kShuffles = 100;
for (int i = 0; i < kShuffles; ++i) {
// Create an odd number in [3..23] of random test shuffles so we can build
// a complete binary tree (stored as a heap) of shuffle operations. The leaf
// shuffles operate on the test pattern inputs, while the interior shuffles
// operate on the results of the two child shuffles.
int num_shuffles = rng->NextInt(10) * 2 + 3;
std::vector<Shuffle> shuffles;
for (int j = 0; j < num_shuffles; ++j) {
shuffles.push_back(GetRandomTestShuffle(rng));
}
// Generate the code for the shuffle expression.
std::vector<byte> buffer;
BuildShuffle(shuffles, &buffer);
// Run the code using the interpreter to get the expected result.
std::array<int8_t, kSimd128Size> expected;
RunWasmCode(TestExecutionTier::kInterpreter, kNoLowerSimd, buffer,
&expected);
// Run the SIMD or scalar lowered compiled code and compare results.
std::array<int8_t, kSimd128Size> result;
RunWasmCode(execution_tier, lower_simd, buffer, &result);
for (size_t i = 0; i < kSimd128Size; ++i) {
CHECK_EQ(result[i], expected[i]);
}
}
}
// Boolean unary operations are 'AllTrue' and 'AnyTrue', which return an integer
// result. Use relational ops on numeric vectors to create the boolean vector
// test inputs. Test inputs with all true, all false, one true, and one false.
#define WASM_SIMD_BOOL_REDUCTION_TEST(format, lanes, int_type) \
WASM_SIMD_TEST(ReductionTest##lanes) { \
WasmRunner<int32_t> r(execution_tier, lower_simd); \
if (lanes == 2 && lower_simd == kLowerSimd) return; \
byte zero = r.AllocateLocal(kWasmS128); \
byte one_one = r.AllocateLocal(kWasmS128); \
byte reduced = r.AllocateLocal(kWasmI32); \
BUILD(r, WASM_LOCAL_SET(zero, WASM_SIMD_I##format##_SPLAT(int_type(0))), \
WASM_LOCAL_SET( \
reduced, WASM_SIMD_UNOP(kExprV128AnyTrue, \
WASM_SIMD_BINOP(kExprI##format##Eq, \
WASM_LOCAL_GET(zero), \
WASM_LOCAL_GET(zero)))), \
WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_LOCAL_SET( \
reduced, WASM_SIMD_UNOP(kExprV128AnyTrue, \
WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_LOCAL_GET(zero), \
WASM_LOCAL_GET(zero)))), \
WASM_IF(WASM_I32_NE(WASM_LOCAL_GET(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_LOCAL_SET( \
reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \
WASM_SIMD_BINOP(kExprI##format##Eq, \
WASM_LOCAL_GET(zero), \
WASM_LOCAL_GET(zero)))), \
WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_LOCAL_SET( \
reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \
WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_LOCAL_GET(zero), \
WASM_LOCAL_GET(zero)))), \
WASM_IF(WASM_I32_NE(WASM_LOCAL_GET(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_LOCAL_SET(one_one, \
WASM_SIMD_I##format##_REPLACE_LANE( \
lanes - 1, WASM_LOCAL_GET(zero), int_type(1))), \
WASM_LOCAL_SET( \
reduced, WASM_SIMD_UNOP(kExprV128AnyTrue, \
WASM_SIMD_BINOP(kExprI##format##Eq, \
WASM_LOCAL_GET(one_one), \
WASM_LOCAL_GET(zero)))), \
WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_LOCAL_SET( \
reduced, WASM_SIMD_UNOP(kExprV128AnyTrue, \
WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_LOCAL_GET(one_one), \
WASM_LOCAL_GET(zero)))), \
WASM_IF(WASM_I32_EQ(WASM_LOCAL_GET(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_LOCAL_SET( \
reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \
WASM_SIMD_BINOP(kExprI##format##Eq, \
WASM_LOCAL_GET(one_one), \
WASM_LOCAL_GET(zero)))), \
WASM_IF(WASM_I32_NE(WASM_LOCAL_GET(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_LOCAL_SET( \
reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \
WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_LOCAL_GET(one_one), \
WASM_LOCAL_GET(zero)))), \
WASM_IF(WASM_I32_NE(WASM_LOCAL_GET(reduced), WASM_ZERO), \
WASM_RETURN1(WASM_ZERO)), \
WASM_ONE); \
CHECK_EQ(1, r.Call()); \
}
WASM_SIMD_BOOL_REDUCTION_TEST(64x2, 2, WASM_I64V)
WASM_SIMD_BOOL_REDUCTION_TEST(32x4, 4, WASM_I32V)
WASM_SIMD_BOOL_REDUCTION_TEST(16x8, 8, WASM_I32V)
WASM_SIMD_BOOL_REDUCTION_TEST(8x16, 16, WASM_I32V)
WASM_SIMD_TEST(SimdI32x4ExtractWithF32x4) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
BUILD(r, WASM_IF_ELSE_I(
WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))),
WASM_I32_REINTERPRET_F32(WASM_F32(30.5))),
WASM_I32V(1), WASM_I32V(0)));
CHECK_EQ(1, r.Call());
}
WASM_SIMD_TEST(SimdF32x4ExtractWithI32x4) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
BUILD(r,
WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE(
0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))),
WASM_F32_REINTERPRET_I32(WASM_I32V(15))),
WASM_I32V(1), WASM_I32V(0)));
CHECK_EQ(1, r.Call());
}
WASM_SIMD_TEST(SimdF32x4ExtractLane) {
WasmRunner<float> r(execution_tier, lower_simd);
r.AllocateLocal(kWasmF32);
r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_LOCAL_SET(0, WASM_SIMD_F32x4_EXTRACT_LANE(
0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5)))),
WASM_LOCAL_SET(1, WASM_SIMD_F32x4_SPLAT(WASM_LOCAL_GET(0))),
WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_LOCAL_GET(1)));
CHECK_EQ(30.5, r.Call());
}
WASM_SIMD_TEST(SimdF32x4AddWithI32x4) {
// Choose two floating point values whose sum is normal and exactly
// representable as a float.
const int kOne = 0x3F800000;
const int kTwo = 0x40000000;
WasmRunner<int32_t> r(execution_tier, lower_simd);
BUILD(r,
WASM_IF_ELSE_I(
WASM_F32_EQ(
WASM_SIMD_F32x4_EXTRACT_LANE(
0, WASM_SIMD_BINOP(kExprF32x4Add,
WASM_SIMD_I32x4_SPLAT(WASM_I32V(kOne)),
WASM_SIMD_I32x4_SPLAT(WASM_I32V(kTwo)))),
WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(kOne)),
WASM_F32_REINTERPRET_I32(WASM_I32V(kTwo)))),
WASM_I32V(1), WASM_I32V(0)));
CHECK_EQ(1, r.Call());
}
WASM_SIMD_TEST(SimdI32x4AddWithF32x4) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
BUILD(r,
WASM_IF_ELSE_I(
WASM_I32_EQ(
WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_BINOP(kExprI32x4Add,
WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)),
WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))),
WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)),
WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))),
WASM_I32V(1), WASM_I32V(0)));
CHECK_EQ(1, r.Call());
}
WASM_SIMD_TEST(SimdI32x4Local) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_LOCAL_GET(0)));
CHECK_EQ(31, r.Call());
}
WASM_SIMD_TEST(SimdI32x4SplatFromExtract) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_LOCAL_SET(0, WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))),
WASM_LOCAL_SET(1, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(0))),
WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_LOCAL_GET(1)));
CHECK_EQ(76, r.Call());
}
WASM_SIMD_TEST(SimdI32x4For) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_LOCAL_SET(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
WASM_LOCAL_SET(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_LOCAL_GET(1),
WASM_I32V(53))),
WASM_LOCAL_SET(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_LOCAL_GET(1),
WASM_I32V(23))),
WASM_LOCAL_SET(0, WASM_I32V(0)),
WASM_LOOP(
WASM_LOCAL_SET(
1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_LOCAL_GET(1),
WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))),
WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))),
WASM_LOCAL_SET(0, WASM_I32V(1)),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_LOCAL_GET(1)),
WASM_I32V(36)),
WASM_LOCAL_SET(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_LOCAL_GET(1)),
WASM_I32V(58)),
WASM_LOCAL_SET(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_LOCAL_GET(1)),
WASM_I32V(28)),
WASM_LOCAL_SET(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_LOCAL_GET(1)),
WASM_I32V(36)),
WASM_LOCAL_SET(0, WASM_I32V(0))),
WASM_LOCAL_GET(0));
CHECK_EQ(1, r.Call());
}
WASM_SIMD_TEST(SimdF32x4For) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))),
WASM_LOCAL_SET(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_LOCAL_GET(1),
WASM_F32(19.5))),
WASM_LOCAL_SET(0, WASM_I32V(0)),
WASM_LOOP(
WASM_LOCAL_SET(
1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_LOCAL_GET(1),
WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))),
WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))),
WASM_LOCAL_SET(0, WASM_I32V(1)),
WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_LOCAL_GET(1)),
WASM_F32(27.25)),
WASM_LOCAL_SET(0, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_LOCAL_GET(1)),
WASM_F32(25.5)),
WASM_LOCAL_SET(0, WASM_I32V(0))),
WASM_LOCAL_GET(0));
CHECK_EQ(1, r.Call());
}
template <typename T, int numLanes = 4>
void SetVectorByLanes(T* v, const std::array<T, numLanes>& arr) {
for (int lane = 0; lane < numLanes; lane++) {
WriteLittleEndianValue<T>(&v[lane], arr[lane]);
}
}
template <typename T>
const T GetScalar(T* v, int lane) {
constexpr int kElems = kSimd128Size / sizeof(T);
const int index = lane;
USE(kElems);
DCHECK(index >= 0 && index < kElems);
return ReadLittleEndianValue<T>(&v[index]);
}
WASM_SIMD_TEST(SimdI32x4GetGlobal) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Pad the globals with a few unused slots to get a non-zero offset.
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128);
SetVectorByLanes(global, {{0, 1, 2, 3}});
r.AllocateLocal(kWasmI32);
BUILD(
r, WASM_LOCAL_SET(1, WASM_I32V(1)),
WASM_IF(WASM_I32_NE(WASM_I32V(0),
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GLOBAL_GET(4))),
WASM_LOCAL_SET(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(1),
WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GLOBAL_GET(4))),
WASM_LOCAL_SET(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(2),
WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GLOBAL_GET(4))),
WASM_LOCAL_SET(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(3),
WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GLOBAL_GET(4))),
WASM_LOCAL_SET(1, WASM_I32V(0))),
WASM_LOCAL_GET(1));
CHECK_EQ(1, r.Call(0));
}
WASM_SIMD_TEST(SimdI32x4SetGlobal) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
// Pad the globals with a few unused slots to get a non-zero offset.
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))),
WASM_GLOBAL_SET(4, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GLOBAL_GET(4),
WASM_I32V(34))),
WASM_GLOBAL_SET(4, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GLOBAL_GET(4),
WASM_I32V(45))),
WASM_GLOBAL_SET(4, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GLOBAL_GET(4),
WASM_I32V(56))),
WASM_I32V(1));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(GetScalar(global, 0), 23);
CHECK_EQ(GetScalar(global, 1), 34);
CHECK_EQ(GetScalar(global, 2), 45);
CHECK_EQ(GetScalar(global, 3), 56);
}
WASM_SIMD_TEST(SimdF32x4GetGlobal) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
float* global = r.builder().AddGlobal<float>(kWasmS128);
SetVectorByLanes<float>(global, {{0.0, 1.5, 2.25, 3.5}});
r.AllocateLocal(kWasmI32);
BUILD(
r, WASM_LOCAL_SET(1, WASM_I32V(1)),
WASM_IF(WASM_F32_NE(WASM_F32(0.0),
WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GLOBAL_GET(0))),
WASM_LOCAL_SET(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(1.5),
WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GLOBAL_GET(0))),
WASM_LOCAL_SET(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(2.25),
WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GLOBAL_GET(0))),
WASM_LOCAL_SET(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(3.5),
WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GLOBAL_GET(0))),
WASM_LOCAL_SET(1, WASM_I32V(0))),
WASM_LOCAL_GET(1));
CHECK_EQ(1, r.Call(0));
}
WASM_SIMD_TEST(SimdF32x4SetGlobal) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
float* global = r.builder().AddGlobal<float>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))),
WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GLOBAL_GET(0),
WASM_F32(45.5))),
WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GLOBAL_GET(0),
WASM_F32(32.25))),
WASM_GLOBAL_SET(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GLOBAL_GET(0),
WASM_F32(65.0))),
WASM_I32V(1));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(GetScalar(global, 0), 13.5f);
CHECK_EQ(GetScalar(global, 1), 45.5f);
CHECK_EQ(GetScalar(global, 2), 32.25f);
CHECK_EQ(GetScalar(global, 3), 65.0f);
}
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
// TODO(v8:11168): Prototyping prefetch.
WASM_SIMD_TEST_POST_MVP(SimdPrefetch) {
{
// Test PrefetchT.
WasmRunner<int32_t> r(execution_tier, lower_simd);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r, WASM_ZERO, WASM_SIMD_OP(kExprPrefetchT), ZERO_ALIGNMENT,
ZERO_OFFSET,
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO)));
FOR_INT32_INPUTS(i) {
r.builder().WriteMemory(&memory[0], i);
CHECK_EQ(i, r.Call());
}
}
{
// Test PrefetchNT.
WasmRunner<int32_t> r(execution_tier, lower_simd);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r, WASM_ZERO, WASM_SIMD_OP(kExprPrefetchNT), ZERO_ALIGNMENT,
ZERO_OFFSET,
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO)));
FOR_INT32_INPUTS(i) {
r.builder().WriteMemory(&memory[0], i);
CHECK_EQ(i, r.Call());
}
}
{
// Test OOB.
WasmRunner<int32_t> r(execution_tier, lower_simd);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
// Prefetch kWasmPageSize+1 but still load from 0.
BUILD(r, WASM_I32V(kWasmPageSize + 1), WASM_SIMD_OP(kExprPrefetchNT),
ZERO_ALIGNMENT, ZERO_OFFSET,
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO)));
FOR_INT32_INPUTS(i) {
r.builder().WriteMemory(&memory[0], i);
CHECK_EQ(i, r.Call());
}
}
}
#endif // V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
WASM_SIMD_TEST(SimdLoadStoreLoad) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
// Load memory, store it, then reload it and extract the first lane. Use a
// non-zero offset into the memory of 1 lane (4 bytes) to test indexing.
BUILD(r, WASM_SIMD_STORE_MEM(WASM_I32V(8), WASM_SIMD_LOAD_MEM(WASM_I32V(4))),
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_I32V(8))));
FOR_INT32_INPUTS(i) {
int32_t expected = i;
r.builder().WriteMemory(&memory[1], expected);
CHECK_EQ(expected, r.Call());
}
{
// OOB tests for loads.
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r, WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_LOAD_MEM(WASM_LOCAL_GET(0))));
for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1);
offset < kWasmPageSize; ++offset) {
CHECK_TRAP(r.Call(offset));
}
}
{
// OOB tests for stores.
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r,
WASM_SIMD_STORE_MEM(WASM_LOCAL_GET(0), WASM_SIMD_LOAD_MEM(WASM_ZERO)),
WASM_ONE);
for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1);
offset < kWasmPageSize; ++offset) {
CHECK_TRAP(r.Call(offset));
}
}
}
WASM_SIMD_TEST(SimdLoadStoreLoadMemargOffset) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
int32_t* memory =
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
constexpr byte offset_1 = 4;
constexpr byte offset_2 = 8;
// Load from memory at offset_1, store to offset_2, load from offset_2, and
// extract first lane. We use non-zero memarg offsets to test offset decoding.
BUILD(
r,
WASM_SIMD_STORE_MEM_OFFSET(
offset_2, WASM_ZERO, WASM_SIMD_LOAD_MEM_OFFSET(offset_1, WASM_ZERO)),
WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_LOAD_MEM_OFFSET(offset_2, WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = i;
// Index 1 of memory (int32_t) will be bytes 4 to 8.
r.builder().WriteMemory(&memory[1], expected);
CHECK_EQ(expected, r.Call());
}
{
// OOB tests for loads with offsets.
for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1);
offset < kWasmPageSize; ++offset) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r, WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_LOAD_MEM_OFFSET(U32V_3(offset), WASM_ZERO)));
CHECK_TRAP(r.Call());
}
}
{
// OOB tests for stores with offsets
for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1);
offset < kWasmPageSize; ++offset) {
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
BUILD(r,
WASM_SIMD_STORE_MEM_OFFSET(U32V_3(offset), WASM_ZERO,
WASM_SIMD_LOAD_MEM(WASM_ZERO)),
WASM_ONE);
CHECK_TRAP(r.Call(offset));
}
}
}
// Test a multi-byte opcode with offset values that encode into valid opcodes.
// This is to exercise decoding logic and make sure we get the lengths right.
WASM_SIMD_TEST(S128Load8SplatOffset) {
// This offset is [82, 22] when encoded, which contains valid opcodes.
constexpr int offset = 4354;
WasmRunner<int32_t> r(execution_tier, lower_simd);
int8_t* memory = r.builder().AddMemoryElems<int8_t>(kWasmPageSize);
int8_t* global = r.builder().AddGlobal<int8_t>(kWasmS128);
BUILD(r,
WASM_GLOBAL_SET(
0, WASM_SIMD_LOAD_OP_OFFSET(kExprS128Load8Splat, WASM_I32V(0),
U32V_2(offset))),
WASM_ONE);
// We don't really care about all valid values, so just test for 1.
int8_t x = 7;
r.builder().WriteMemory(&memory[offset], x);
r.Call();
for (int i = 0; i < 16; i++) {
CHECK_EQ(x, ReadLittleEndianValue<int8_t>(&global[i]));
}
}
template <typename T>
void RunLoadSplatTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode op) {
constexpr int lanes = 16 / sizeof(T);
constexpr int mem_index = 16; // Load from mem index 16 (bytes).
WasmRunner<int32_t> r(execution_tier, lower_simd);
T* memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
T* global = r.builder().AddGlobal<T>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_I32V(mem_index))),
WASM_ONE);
for (T x : compiler::ValueHelper::GetVector<T>()) {
// 16-th byte in memory is lanes-th element (size T) of memory.
r.builder().WriteMemory(&memory[lanes], x);
r.Call();
for (int i = 0; i < lanes; i++) {
CHECK_EQ(x, ReadLittleEndianValue<T>(&global[i]));
}
}
// Test for OOB.
{
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
r.builder().AddGlobal<T>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_LOCAL_GET(0))),
WASM_ONE);
// Load splats load sizeof(T) bytes.
for (uint32_t offset = kWasmPageSize - (sizeof(T) - 1);
offset < kWasmPageSize; ++offset) {
CHECK_TRAP(r.Call(offset));
}
}
}
WASM_SIMD_TEST(S128Load8Splat) {
RunLoadSplatTest<int8_t>(execution_tier, lower_simd, kExprS128Load8Splat);
}
WASM_SIMD_TEST(S128Load16Splat) {
RunLoadSplatTest<int16_t>(execution_tier, lower_simd, kExprS128Load16Splat);
}
WASM_SIMD_TEST(S128Load32Splat) {
RunLoadSplatTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Splat);
}
WASM_SIMD_TEST(S128Load64Splat) {
RunLoadSplatTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Splat);
}
template <typename S, typename T>
void RunLoadExtendTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode op) {
static_assert(sizeof(S) < sizeof(T),
"load extend should go from smaller to larger type");
constexpr int lanes_s = 16 / sizeof(S);
constexpr int lanes_t = 16 / sizeof(T);
constexpr int mem_index = 16; // Load from mem index 16 (bytes).
// Load extends always load 64 bits, so alignment values can be from 0 to 3.
for (byte alignment = 0; alignment <= 3; alignment++) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
S* memory = r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
T* global = r.builder().AddGlobal<T>(kWasmS128);
BUILD(r,
WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP_ALIGNMENT(
op, WASM_I32V(mem_index), alignment)),
WASM_ONE);
for (S x : compiler::ValueHelper::GetVector<S>()) {
for (int i = 0; i < lanes_s; i++) {
// 16-th byte in memory is lanes-th element (size T) of memory.
r.builder().WriteMemory(&memory[lanes_s + i], x);
}
r.Call();
for (int i = 0; i < lanes_t; i++) {
CHECK_EQ(static_cast<T>(x), ReadLittleEndianValue<T>(&global[i]));
}
}
}
// Test for offset.
{
WasmRunner<int32_t> r(execution_tier, lower_simd);
S* memory = r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
T* global = r.builder().AddGlobal<T>(kWasmS128);
constexpr byte offset = sizeof(S);
BUILD(r,
WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP_OFFSET(op, WASM_ZERO, offset)),
WASM_ONE);
// Let max_s be the max_s value for type S, we set up the memory as such:
// memory = [max_s, max_s - 1, ... max_s - (lane_s - 1)].
constexpr S max_s = std::numeric_limits<S>::max();
for (int i = 0; i < lanes_s; i++) {
// Integer promotion due to -, static_cast to narrow.
r.builder().WriteMemory(&memory[i], static_cast<S>(max_s - i));
}
r.Call();
// Loads will be offset by sizeof(S), so will always start from (max_s - 1).
for (int i = 0; i < lanes_t; i++) {
// Integer promotion due to -, static_cast to narrow.
T expected = static_cast<T>(max_s - i - 1);
CHECK_EQ(expected, ReadLittleEndianValue<T>(&global[i]));
}
}
// Test for OOB.
{
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
r.builder().AddGlobal<T>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_LOCAL_GET(0))),
WASM_ONE);
// Load extends load 8 bytes, so should trap from -7.
for (uint32_t offset = kWasmPageSize - 7; offset < kWasmPageSize;
++offset) {
CHECK_TRAP(r.Call(offset));
}
}
}
WASM_SIMD_TEST(S128Load8x8U) {
RunLoadExtendTest<uint8_t, uint16_t>(execution_tier, lower_simd,
kExprS128Load8x8U);
}
WASM_SIMD_TEST(S128Load8x8S) {
RunLoadExtendTest<int8_t, int16_t>(execution_tier, lower_simd,
kExprS128Load8x8S);
}
WASM_SIMD_TEST(S128Load16x4U) {
RunLoadExtendTest<uint16_t, uint32_t>(execution_tier, lower_simd,
kExprS128Load16x4U);
}
WASM_SIMD_TEST(S128Load16x4S) {
RunLoadExtendTest<int16_t, int32_t>(execution_tier, lower_simd,
kExprS128Load16x4S);
}
WASM_SIMD_TEST(S128Load32x2U) {
RunLoadExtendTest<uint32_t, uint64_t>(execution_tier, lower_simd,
kExprS128Load32x2U);
}
WASM_SIMD_TEST(S128Load32x2S) {
RunLoadExtendTest<int32_t, int64_t>(execution_tier, lower_simd,
kExprS128Load32x2S);
}
template <typename S>
void RunLoadZeroTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode op) {
constexpr int lanes_s = kSimd128Size / sizeof(S);
constexpr int mem_index = 16; // Load from mem index 16 (bytes).
constexpr S sentinel = S{-1};
S* memory;
S* global;
auto initialize_builder = [=](WasmRunner<int32_t>* r) -> std::tuple<S*, S*> {
S* memory = r->builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
S* global = r->builder().AddGlobal<S>(kWasmS128);
r->builder().RandomizeMemory();
r->builder().WriteMemory(&memory[lanes_s], sentinel);
return std::make_tuple(memory, global);
};
// Check all supported alignments.
constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(S));
for (byte alignment = 0; alignment <= max_alignment; alignment++) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
std::tie(memory, global) = initialize_builder(&r);
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_I32V(mem_index))),
WASM_ONE);
r.Call();
// Only first lane is set to sentinel.
CHECK_EQ(sentinel, ReadLittleEndianValue<S>(&global[0]));
// The other lanes are zero.
for (int i = 1; i < lanes_s; i++) {
CHECK_EQ(S{0}, ReadLittleEndianValue<S>(&global[i]));
}
}
{
// Use memarg to specific offset.
WasmRunner<int32_t> r(execution_tier, lower_simd);
std::tie(memory, global) = initialize_builder(&r);
BUILD(
r,
WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP_OFFSET(op, WASM_ZERO, mem_index)),
WASM_ONE);
r.Call();
// Only first lane is set to sentinel.
CHECK_EQ(sentinel, ReadLittleEndianValue<S>(&global[0]));
// The other lanes are zero.
for (int i = 1; i < lanes_s; i++) {
CHECK_EQ(S{0}, ReadLittleEndianValue<S>(&global[i]));
}
}
// Test for OOB.
{
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
r.builder().AddGlobal<S>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(0, WASM_SIMD_LOAD_OP(op, WASM_LOCAL_GET(0))),
WASM_ONE);
// Load extends load sizeof(S) bytes.
for (uint32_t offset = kWasmPageSize - (sizeof(S) - 1);
offset < kWasmPageSize; ++offset) {
CHECK_TRAP(r.Call(offset));
}
}
}
WASM_SIMD_TEST(S128Load32Zero) {
RunLoadZeroTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Zero);
}
WASM_SIMD_TEST(S128Load64Zero) {
RunLoadZeroTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Zero);
}
template <typename T>
void RunLoadLaneTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode load_op, WasmOpcode splat_op) {
WasmOpcode const_op =
splat_op == kExprI64x2Splat ? kExprI64Const : kExprI32Const;
constexpr int lanes_s = kSimd128Size / sizeof(T);
constexpr int mem_index = 16; // Load from mem index 16 (bytes).
constexpr int splat_value = 33;
T sentinel = T{-1};
T* memory;
T* global;
auto build_fn = [=, &memory, &global](WasmRunner<int32_t>& r, int mem_index,
int lane, int alignment, int offset) {
memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
global = r.builder().AddGlobal<T>(kWasmS128);
r.builder().WriteMemory(&memory[lanes_s], sentinel);
// Splat splat_value, then only load and replace a single lane with the
// sentinel value.
BUILD(r, WASM_I32V(mem_index), const_op, splat_value,
WASM_SIMD_OP(splat_op), WASM_SIMD_OP(load_op), alignment, offset,
lane, kExprGlobalSet, 0, WASM_ONE);
};
auto check_results = [=](T* global, int sentinel_lane = 0) {
// Only one lane is loaded, the rest of the lanes are unchanged.
for (int i = 0; i < lanes_s; i++) {
T expected = i == sentinel_lane ? sentinel : static_cast<T>(splat_value);
CHECK_EQ(expected, ReadLittleEndianValue<T>(&global[i]));
}
};
for (int lane_index = 0; lane_index < lanes_s; ++lane_index) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
build_fn(r, mem_index, lane_index, /*alignment=*/0, /*offset=*/0);
r.Call();
check_results(global, lane_index);
}
// Check all possible alignments.
constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(T));
for (byte alignment = 0; alignment <= max_alignment; ++alignment) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
build_fn(r, mem_index, /*lane=*/0, alignment, /*offset=*/0);
r.Call();
check_results(global);
}
{
// Use memarg to specify offset.
int lane_index = 0;
WasmRunner<int32_t> r(execution_tier, lower_simd);
build_fn(r, /*mem_index=*/0, /*lane=*/0, /*alignment=*/0,
/*offset=*/mem_index);
r.Call();
check_results(global, lane_index);
}
// Test for OOB.
{
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
r.builder().AddGlobal<T>(kWasmS128);
BUILD(r, WASM_LOCAL_GET(0), const_op, splat_value, WASM_SIMD_OP(splat_op),
WASM_SIMD_OP(load_op), ZERO_ALIGNMENT, ZERO_OFFSET, 0, kExprGlobalSet,
0, WASM_ONE);
// Load lane load sizeof(T) bytes.
for (uint32_t index = kWasmPageSize - (sizeof(T) - 1);
index < kWasmPageSize; ++index) {
CHECK_TRAP(r.Call(index));
}
}
}
WASM_SIMD_TEST_NO_LOWERING(S128Load8Lane) {
RunLoadLaneTest<int8_t>(execution_tier, lower_simd, kExprS128Load8Lane,
kExprI8x16Splat);
}
WASM_SIMD_TEST_NO_LOWERING(S128Load16Lane) {
RunLoadLaneTest<int16_t>(execution_tier, lower_simd, kExprS128Load16Lane,
kExprI16x8Splat);
}
WASM_SIMD_TEST_NO_LOWERING(S128Load32Lane) {
RunLoadLaneTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Lane,
kExprI32x4Splat);
}
WASM_SIMD_TEST_NO_LOWERING(S128Load64Lane) {
RunLoadLaneTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Lane,
kExprI64x2Splat);
}
template <typename T>
void RunStoreLaneTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
WasmOpcode store_op, WasmOpcode splat_op) {
constexpr int lanes = kSimd128Size / sizeof(T);
constexpr int mem_index = 16; // Store to mem index 16 (bytes).
constexpr int splat_value = 33;
WasmOpcode const_op =
splat_op == kExprI64x2Splat ? kExprI64Const : kExprI32Const;
T* memory; // Will be set by build_fn.
auto build_fn = [=, &memory](WasmRunner<int32_t>& r, int mem_index,
int lane_index, int alignment, int offset) {
memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
// Splat splat_value, then only Store and replace a single lane.
BUILD(r, WASM_I32V(mem_index), const_op, splat_value,
WASM_SIMD_OP(splat_op), WASM_SIMD_OP(store_op), alignment, offset,
lane_index, WASM_ONE);
r.builder().BlankMemory();
};
auto check_results = [=](WasmRunner<int32_t>& r, T* memory) {
for (int i = 0; i < lanes; i++) {
CHECK_EQ(0, r.builder().ReadMemory(&memory[i]));
}
CHECK_EQ(splat_value, r.builder().ReadMemory(&memory[lanes]));
for (int i = lanes + 1; i < lanes * 2; i++) {
CHECK_EQ(0, r.builder().ReadMemory(&memory[i]));
}
};
for (int lane_index = 0; lane_index < lanes; lane_index++) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
build_fn(r, mem_index, lane_index, ZERO_ALIGNMENT, ZERO_OFFSET);
r.Call();
check_results(r, memory);
}
// Check all possible alignments.
constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(T));
for (byte alignment = 0; alignment <= max_alignment; ++alignment) {
WasmRunner<int32_t> r(execution_tier, lower_simd);
build_fn(r, mem_index, /*lane_index=*/0, alignment, ZERO_OFFSET);
r.Call();
check_results(r, memory);
}
{
// Use memarg for offset.
WasmRunner<int32_t> r(execution_tier, lower_simd);
build_fn(r, /*mem_index=*/0, /*lane_index=*/0, ZERO_ALIGNMENT, mem_index);
r.Call();
check_results(r, memory);
}
// OOB stores
{
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
BUILD(r, WASM_LOCAL_GET(0), const_op, splat_value, WASM_SIMD_OP(splat_op),
WASM_SIMD_OP(store_op), ZERO_ALIGNMENT, ZERO_OFFSET, 0, WASM_ONE);
// StoreLane stores sizeof(T) bytes.
for (uint32_t index = kWasmPageSize - (sizeof(T) - 1);
index < kWasmPageSize; ++index) {
CHECK_TRAP(r.Call(index));
}
}
}
WASM_SIMD_TEST_NO_LOWERING(S128Store8Lane) {
RunStoreLaneTest<int8_t>(execution_tier, lower_simd, kExprS128Store8Lane,
kExprI8x16Splat);
}
WASM_SIMD_TEST_NO_LOWERING(S128Store16Lane) {
RunStoreLaneTest<int16_t>(execution_tier, lower_simd, kExprS128Store16Lane,
kExprI16x8Splat);
}
WASM_SIMD_TEST_NO_LOWERING(S128Store32Lane) {
RunStoreLaneTest<int32_t>(execution_tier, lower_simd, kExprS128Store32Lane,
kExprI32x4Splat);
}
WASM_SIMD_TEST_NO_LOWERING(S128Store64Lane) {
RunStoreLaneTest<int64_t>(execution_tier, lower_simd, kExprS128Store64Lane,
kExprI64x2Splat);
}
#define WASM_SIMD_ANYTRUE_TEST(format, lanes, max, param_type) \
WASM_SIMD_TEST(S##format##AnyTrue) { \
WasmRunner<int32_t, param_type> r(execution_tier, lower_simd); \
if (lanes == 2 && lower_simd == kLowerSimd) return; \
byte simd = r.AllocateLocal(kWasmS128); \
BUILD( \
r, \
WASM_LOCAL_SET(simd, WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(0))), \
WASM_SIMD_UNOP(kExprV128AnyTrue, WASM_LOCAL_GET(simd))); \
CHECK_EQ(1, r.Call(max)); \
CHECK_EQ(1, r.Call(5)); \
CHECK_EQ(0, r.Call(0)); \
}
WASM_SIMD_ANYTRUE_TEST(32x4, 4, 0xffffffff, int32_t)
WASM_SIMD_ANYTRUE_TEST(16x8, 8, 0xffff, int32_t)
WASM_SIMD_ANYTRUE_TEST(8x16, 16, 0xff, int32_t)
// Special any true test cases that splats a -0.0 double into a i64x2.
// This is specifically to ensure that our implementation correct handles that
// 0.0 and -0.0 will be different in an anytrue (IEEE753 says they are equals).
WASM_SIMD_TEST(V128AnytrueWithNegativeZero) {
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(simd, WASM_SIMD_I64x2_SPLAT(WASM_LOCAL_GET(0))),
WASM_SIMD_UNOP(kExprV128AnyTrue, WASM_LOCAL_GET(simd)));
CHECK_EQ(1, r.Call(0x8000000000000000));
CHECK_EQ(0, r.Call(0x0000000000000000));
}
#define WASM_SIMD_ALLTRUE_TEST(format, lanes, max, param_type) \
WASM_SIMD_TEST(V##format##AllTrue) { \
WasmRunner<int32_t, param_type> r(execution_tier, lower_simd); \
if (lanes == 2 && lower_simd == kLowerSimd) return; \
byte simd = r.AllocateLocal(kWasmS128); \
BUILD( \
r, \
WASM_LOCAL_SET(simd, WASM_SIMD_I##format##_SPLAT(WASM_LOCAL_GET(0))), \
WASM_SIMD_UNOP(kExprV##format##AllTrue, WASM_LOCAL_GET(simd))); \
CHECK_EQ(1, r.Call(max)); \
CHECK_EQ(1, r.Call(0x1)); \
CHECK_EQ(0, r.Call(0)); \
}
WASM_SIMD_ALLTRUE_TEST(64x2, 2, 0xffffffffffffffff, int64_t)
WASM_SIMD_ALLTRUE_TEST(32x4, 4, 0xffffffff, int32_t)
WASM_SIMD_ALLTRUE_TEST(16x8, 8, 0xffff, int32_t)
WASM_SIMD_ALLTRUE_TEST(8x16, 16, 0xff, int32_t)
WASM_SIMD_TEST(BitSelect) {
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_LOCAL_SET(
simd,
WASM_SIMD_SELECT(32x4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(0x01020304)),
WASM_SIMD_I32x4_SPLAT(WASM_I32V(0)),
WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(0)))),
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_LOCAL_GET(simd)));
CHECK_EQ(0x01020304, r.Call(0xFFFFFFFF));
}
void RunSimdConstTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
const std::array<uint8_t, kSimd128Size>& expected) {
WasmRunner<uint32_t> r(execution_tier, lower_simd);
byte temp1 = r.AllocateLocal(kWasmS128);
uint8_t* src0 = r.builder().AddGlobal<uint8_t>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(temp1, WASM_SIMD_CONSTANT(expected)), WASM_ONE);
CHECK_EQ(1, r.Call());
for (size_t i = 0; i < expected.size(); i++) {
CHECK_EQ(ReadLittleEndianValue<uint8_t>(&src0[i]), expected[i]);
}
}
WASM_SIMD_TEST(S128Const) {
std::array<uint8_t, kSimd128Size> expected;
// Test for generic constant
for (int i = 0; i < kSimd128Size; i++) {
expected[i] = i;
}
RunSimdConstTest(execution_tier, lower_simd, expected);
// Keep the first 4 lanes as 0, set the remaining ones.
for (int i = 0; i < 4; i++) {
expected[i] = 0;
}
for (int i = 4; i < kSimd128Size; i++) {
expected[i] = i;
}
RunSimdConstTest(execution_tier, lower_simd, expected);
// Check sign extension logic used to pack int32s into int64.
expected = {0};
// Set the top bit of lane 3 (top bit of first int32), the rest can be 0.
expected[3] = 0x80;
RunSimdConstTest(execution_tier, lower_simd, expected);
}
WASM_SIMD_TEST(S128ConstAllZero) {
std::array<uint8_t, kSimd128Size> expected = {0};
RunSimdConstTest(execution_tier, lower_simd, expected);
}
WASM_SIMD_TEST(S128ConstAllOnes) {
std::array<uint8_t, kSimd128Size> expected;
// Test for generic constant
for (int i = 0; i < kSimd128Size; i++) {
expected[i] = 0xff;
}
RunSimdConstTest(execution_tier, lower_simd, expected);
}
void RunI8x16MixedRelationalOpTest(TestExecutionTier execution_tier,
LowerSimd lower_simd, WasmOpcode opcode,
Int8BinOp expected_op) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
byte temp3 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value2))),
WASM_LOCAL_SET(temp3, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_SIMD_I8x16_EXTRACT_LANE(0, WASM_LOCAL_GET(temp3)));
CHECK_EQ(expected_op(0xff, static_cast<uint8_t>(0x7fff)),
r.Call(0xff, 0x7fff));
CHECK_EQ(expected_op(0xfe, static_cast<uint8_t>(0x7fff)),
r.Call(0xfe, 0x7fff));
CHECK_EQ(expected_op(0xff, static_cast<uint8_t>(0x7ffe)),
r.Call(0xff, 0x7ffe));
}
WASM_SIMD_TEST(I8x16LeUMixed) {
RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LeU,
UnsignedLessEqual);
}
WASM_SIMD_TEST(I8x16LtUMixed) {
RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LtU,
UnsignedLess);
}
WASM_SIMD_TEST(I8x16GeUMixed) {
RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GeU,
UnsignedGreaterEqual);
}
WASM_SIMD_TEST(I8x16GtUMixed) {
RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GtU,
UnsignedGreater);
}
void RunI16x8MixedRelationalOpTest(TestExecutionTier execution_tier,
LowerSimd lower_simd, WasmOpcode opcode,
Int16BinOp expected_op) {
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
byte value1 = 0, value2 = 1;
byte temp1 = r.AllocateLocal(kWasmS128);
byte temp2 = r.AllocateLocal(kWasmS128);
byte temp3 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(value1))),
WASM_LOCAL_SET(temp2, WASM_SIMD_I32x4_SPLAT(WASM_LOCAL_GET(value2))),
WASM_LOCAL_SET(temp3, WASM_SIMD_BINOP(opcode, WASM_LOCAL_GET(temp1),
WASM_LOCAL_GET(temp2))),
WASM_SIMD_I16x8_EXTRACT_LANE(0, WASM_LOCAL_GET(temp3)));
CHECK_EQ(expected_op(0xffff, static_cast<uint16_t>(0x7fffffff)),
r.Call(0xffff, 0x7fffffff));
CHECK_EQ(expected_op(0xfeff, static_cast<uint16_t>(0x7fffffff)),
r.Call(0xfeff, 0x7fffffff));
CHECK_EQ(expected_op(0xffff, static_cast<uint16_t>(0x7ffffeff)),
r.Call(0xffff, 0x7ffffeff));
}
WASM_SIMD_TEST(I16x8LeUMixed) {
RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LeU,
UnsignedLessEqual);
}
WASM_SIMD_TEST(I16x8LtUMixed) {
RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LtU,
UnsignedLess);
}
WASM_SIMD_TEST(I16x8GeUMixed) {
RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GeU,
UnsignedGreaterEqual);
}
WASM_SIMD_TEST(I16x8GtUMixed) {
RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GtU,
UnsignedGreater);
}
WASM_SIMD_TEST(I16x8ExtractLaneU_I8x16Splat) {
// Test that we are correctly signed/unsigned extending when extracting.
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
byte simd_val = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(simd_val, WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(0))),
WASM_SIMD_I16x8_EXTRACT_LANE_U(0, WASM_LOCAL_GET(simd_val)));
CHECK_EQ(0xfafa, r.Call(0xfa));
}
#define WASM_EXTRACT_I16x8_TEST(Sign, Type) \
WASM_SIMD_TEST(I16X8ExtractLane##Sign) { \
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); \
byte int_val = r.AllocateLocal(kWasmI32); \
byte simd_val = r.AllocateLocal(kWasmS128); \
BUILD(r, \
WASM_LOCAL_SET(simd_val, \
WASM_SIMD_I16x8_SPLAT(WASM_LOCAL_GET(int_val))), \
WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 0), \
WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 2), \
WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 4), \
WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 6), WASM_ONE); \
FOR_##Type##_INPUTS(x) { CHECK_EQ(1, r.Call(x)); } \
}
WASM_EXTRACT_I16x8_TEST(S, UINT16) WASM_EXTRACT_I16x8_TEST(I, INT16)
#undef WASM_EXTRACT_I16x8_TEST
#define WASM_EXTRACT_I8x16_TEST(Sign, Type) \
WASM_SIMD_TEST(I8x16ExtractLane##Sign) { \
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); \
byte int_val = r.AllocateLocal(kWasmI32); \
byte simd_val = r.AllocateLocal(kWasmS128); \
BUILD(r, \
WASM_LOCAL_SET(simd_val, \
WASM_SIMD_I8x16_SPLAT(WASM_LOCAL_GET(int_val))), \
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 1), \
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 3), \
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 5), \
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 7), \
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 9), \
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 10), \
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 11), \
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 13), \
WASM_ONE); \
FOR_##Type##_INPUTS(x) { CHECK_EQ(1, r.Call(x)); } \
}
WASM_EXTRACT_I8x16_TEST(S, UINT8) WASM_EXTRACT_I8x16_TEST(I, INT8)
#undef WASM_EXTRACT_I8x16_TEST
#undef WASM_SIMD_TEST
#undef WASM_SIMD_CHECK_LANE_S
#undef WASM_SIMD_CHECK_LANE_U
#undef TO_BYTE
#undef WASM_SIMD_OP
#undef WASM_SIMD_SPLAT
#undef WASM_SIMD_UNOP
#undef WASM_SIMD_BINOP
#undef WASM_SIMD_SHIFT_OP
#undef WASM_SIMD_CONCAT_OP
#undef WASM_SIMD_SELECT
#undef WASM_SIMD_F64x2_SPLAT
#undef WASM_SIMD_F64x2_EXTRACT_LANE
#undef WASM_SIMD_F64x2_REPLACE_LANE
#undef WASM_SIMD_F32x4_SPLAT
#undef WASM_SIMD_F32x4_EXTRACT_LANE
#undef WASM_SIMD_F32x4_REPLACE_LANE
#undef WASM_SIMD_I64x2_SPLAT
#undef WASM_SIMD_I64x2_EXTRACT_LANE
#undef WASM_SIMD_I64x2_REPLACE_LANE
#undef WASM_SIMD_I32x4_SPLAT
#undef WASM_SIMD_I32x4_EXTRACT_LANE
#undef WASM_SIMD_I32x4_REPLACE_LANE
#undef WASM_SIMD_I16x8_SPLAT
#undef WASM_SIMD_I16x8_EXTRACT_LANE
#undef WASM_SIMD_I16x8_EXTRACT_LANE_U
#undef WASM_SIMD_I16x8_REPLACE_LANE
#undef WASM_SIMD_I8x16_SPLAT
#undef WASM_SIMD_I8x16_EXTRACT_LANE
#undef WASM_SIMD_I8x16_EXTRACT_LANE_U
#undef WASM_SIMD_I8x16_REPLACE_LANE
#undef WASM_SIMD_I8x16_SHUFFLE_OP
#undef WASM_SIMD_LOAD_MEM
#undef WASM_SIMD_LOAD_MEM_OFFSET
#undef WASM_SIMD_STORE_MEM
#undef WASM_SIMD_STORE_MEM_OFFSET
#undef WASM_SIMD_SELECT_TEST
#undef WASM_SIMD_NON_CANONICAL_SELECT_TEST
#undef WASM_SIMD_BOOL_REDUCTION_TEST
#undef WASM_SIMD_TEST_NO_LOWERING
#undef WASM_SIMD_ANYTRUE_TEST
#undef WASM_SIMD_ALLTRUE_TEST
#undef WASM_SIMD_F64x2_QFMA
#undef WASM_SIMD_F64x2_QFMS
#undef WASM_SIMD_F32x4_QFMA
#undef WASM_SIMD_F32x4_QFMS
#undef WASM_SIMD_LOAD_OP
#undef WASM_SIMD_LOAD_OP_OFFSET
#undef WASM_SIMD_LOAD_OP_ALIGNMENT
} // namespace test_run_wasm_simd
} // namespace wasm
} // namespace internal
} // namespace v8