v8/test/cctest/wasm/test-run-wasm-simd-liftoff.cc
Manos Koukoutos 862ddf1efd [wasm] Do not enforce LE for globals and WasmValue
Changes:
- Remove endianness transformations from WasmValue contstructors.
  WasmValue will now use the system's endianness. Remove
  CopyToWithSystemEndianness.
- Remove endianness transformation from global variable load/stores in:
  wasm-compiler.cc, liftoff-compiler.cc, wasm-objects{.cc, -inl.h}, and
  wasm-interpreter.cc
- Adjust SIMD tests that directly access part of a value by changing
  which lane they access within that value. We do that by introducing
  a LANE macro and use it over ReadLittleEndianValue.

Change-Id: I99e97c6eae72e9a135b184633ec266049803bb03
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2944437
Commit-Queue: Manos Koukoutos <manoskouk@chromium.org>
Reviewed-by: Zhi An Ng <zhin@chromium.org>
Reviewed-by: Clemens Backes <clemensb@chromium.org>
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Cr-Commit-Position: refs/heads/master@{#75085}
2021-06-10 18:08:38 +00:00

230 lines
8.9 KiB
C++

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This file contains tests that run only on Liftoff, and each test verifies
// that the code was compiled by Liftoff. The default behavior is that each
// function is first attempted to be compiled by Liftoff, and if it fails, fall
// back to TurboFan. However we want to enforce that Liftoff is the tier that
// compiles these functions, in order to verify correctness of SIMD
// implementation in Liftoff.
#include "src/codegen/assembler-inl.h"
#include "src/wasm/wasm-opcodes.h"
#include "test/cctest/cctest.h"
#include "test/cctest/wasm/wasm-run-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace test_run_wasm_simd_liftoff {
#define WASM_SIMD_LIFTOFF_TEST(name) \
void RunWasm_##name##_Impl(); \
TEST(RunWasm_##name##_liftoff) { \
EXPERIMENTAL_FLAG_SCOPE(simd); \
RunWasm_##name##_Impl(); \
} \
void RunWasm_##name##_Impl()
WASM_SIMD_LIFTOFF_TEST(S128Local) {
WasmRunner<int32_t> r(TestExecutionTier::kLiftoff);
byte temp1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_LOCAL_SET(temp1, WASM_LOCAL_GET(temp1)), WASM_ONE);
CHECK_EQ(1, r.Call());
}
WASM_SIMD_LIFTOFF_TEST(S128Global) {
WasmRunner<int32_t> r(TestExecutionTier::kLiftoff);
int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
BUILD(r, WASM_GLOBAL_SET(1, WASM_GLOBAL_GET(0)), WASM_ONE);
int32_t expected = 0x1234;
for (int i = 0; i < 4; i++) {
LANE(g0, i) = expected;
}
r.Call();
for (int i = 0; i < 4; i++) {
int32_t actual = LANE(g1, i);
CHECK_EQ(actual, expected);
}
}
WASM_SIMD_LIFTOFF_TEST(S128Param) {
// Test how SIMD parameters in functions are processed. There is no easy way
// to specify a SIMD value when initializing a WasmRunner, so we manually
// add a new function with the right signature, and call it from main.
WasmRunner<int32_t> r(TestExecutionTier::kLiftoff);
TestSignatures sigs;
// We use a temp local to materialize a SIMD value, since at this point
// Liftoff does not support any SIMD operations.
byte temp1 = r.AllocateLocal(kWasmS128);
WasmFunctionCompiler& simd_func = r.NewFunction(sigs.i_s());
BUILD(simd_func, WASM_ONE);
BUILD(r,
WASM_CALL_FUNCTION(simd_func.function_index(), WASM_LOCAL_GET(temp1)));
CHECK_EQ(1, r.Call());
}
WASM_SIMD_LIFTOFF_TEST(S128Return) {
// Test how functions returning SIMD values are processed.
WasmRunner<int32_t> r(TestExecutionTier::kLiftoff);
TestSignatures sigs;
WasmFunctionCompiler& simd_func = r.NewFunction(sigs.s_i());
byte temp1 = simd_func.AllocateLocal(kWasmS128);
BUILD(simd_func, WASM_LOCAL_GET(temp1));
BUILD(r, WASM_CALL_FUNCTION(simd_func.function_index(), WASM_ONE), kExprDrop,
WASM_ONE);
CHECK_EQ(1, r.Call());
}
WASM_SIMD_LIFTOFF_TEST(REGRESS_1088273) {
// TODO(v8:9418): This is a regression test for Liftoff, translated from a
// mjsunit test. We do not have I64x2Mul lowering yet, so this will cause a
// crash on arch that don't support SIMD 128 and require lowering, thus
// explicitly skip them.
if (!CpuFeatures::SupportsWasmSimd128()) return;
WasmRunner<int32_t> r(TestExecutionTier::kLiftoff);
TestSignatures sigs;
WasmFunctionCompiler& simd_func = r.NewFunction(sigs.s_i());
byte temp1 = simd_func.AllocateLocal(kWasmS128);
BUILD(simd_func, WASM_LOCAL_GET(temp1));
BUILD(r, WASM_SIMD_SPLAT(I8x16, WASM_I32V(0x80)),
WASM_SIMD_SPLAT(I8x16, WASM_I32V(0x92)),
WASM_SIMD_I16x8_EXTRACT_LANE_U(0, WASM_SIMD_OP(kExprI64x2Mul)));
CHECK_EQ(18688, r.Call());
}
// A test to exercise logic in Liftoff's implementation of shuffle. The
// implementation in Liftoff is a bit more tricky due to shuffle requiring
// adjacent registers in ARM/ARM64.
WASM_SIMD_LIFTOFF_TEST(I8x16Shuffle) {
WasmRunner<int32_t> r(TestExecutionTier::kLiftoff);
// Temps to use up registers and force non-adjacent registers for shuffle.
byte local0 = r.AllocateLocal(kWasmS128);
byte local1 = r.AllocateLocal(kWasmS128);
// g0 and g1 are globals that hold input values for the shuffle,
// g0 contains byte array [0, 1, ... 15], g1 contains byte array [16, 17,
// ... 31]. They should never be overwritten - write only to output.
byte* g0 = r.builder().AddGlobal<byte>(kWasmS128);
byte* g1 = r.builder().AddGlobal<byte>(kWasmS128);
for (int i = 0; i < 16; i++) {
LANE(g0, i) = i;
LANE(g1, i) = i + 16;
}
// Output global holding a kWasmS128.
byte* output = r.builder().AddGlobal<byte>(kWasmS128);
// i8x16_shuffle(lhs, rhs, pattern) will take the last element of rhs and
// place it into the last lane of lhs.
std::array<byte, 16> pattern = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31}};
// Set up locals so shuffle is called with non-adjacent registers v2 and v0.
BUILD(r, WASM_LOCAL_SET(local0, WASM_GLOBAL_GET(1)), // local0 is in v0
WASM_LOCAL_SET(local1, WASM_GLOBAL_GET(0)), // local1 is in v1
WASM_GLOBAL_GET(0), // global0 is in v2
WASM_LOCAL_GET(local0), // local0 is in v0
WASM_GLOBAL_SET(2, WASM_SIMD_I8x16_SHUFFLE_OP(
kExprI8x16Shuffle, pattern, WASM_NOP, WASM_NOP)),
WASM_ONE);
r.Call();
// The shuffle pattern only changes the last element.
for (int i = 0; i < 15; i++) {
byte actual = LANE(output, i);
CHECK_EQ(i, actual);
}
CHECK_EQ(31, LANE(output, 15));
}
// Exercise logic in Liftoff's implementation of shuffle when inputs to the
// shuffle are the same register.
WASM_SIMD_LIFTOFF_TEST(I8x16Shuffle_SingleOperand) {
WasmRunner<int32_t> r(TestExecutionTier::kLiftoff);
byte local0 = r.AllocateLocal(kWasmS128);
byte* g0 = r.builder().AddGlobal<byte>(kWasmS128);
for (int i = 0; i < 16; i++) {
LANE(g0, i) = i;
}
byte* output = r.builder().AddGlobal<byte>(kWasmS128);
// This pattern reverses first operand. 31 should select the last lane of
// the second operand, but since the operands are the same, the effect is that
// the first operand is reversed.
std::array<byte, 16> pattern = {
{31, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}};
// Set up locals so shuffle is called with non-adjacent registers v2 and v0.
BUILD(r, WASM_LOCAL_SET(local0, WASM_GLOBAL_GET(0)), WASM_LOCAL_GET(local0),
WASM_LOCAL_GET(local0),
WASM_GLOBAL_SET(1, WASM_SIMD_I8x16_SHUFFLE_OP(
kExprI8x16Shuffle, pattern, WASM_NOP, WASM_NOP)),
WASM_ONE);
r.Call();
for (int i = 0; i < 16; i++) {
// Check that the output is the reverse of input.
byte actual = LANE(output, i);
CHECK_EQ(15 - i, actual);
}
}
// Exercise Liftoff's logic for zero-initializing stack slots. We were using an
// incorrect instruction for storing zeroes into the slot when the slot offset
// was too large to fit in the instruction as an immediate.
WASM_SIMD_LIFTOFF_TEST(FillStackSlotsWithZero_CheckStartOffset) {
WasmRunner<int64_t> r(TestExecutionTier::kLiftoff);
// Function that takes in 32 i64 arguments, returns i64. This gets us a large
// enough starting offset from which we spill locals.
// start = 32 * 8 + 16 (instance) = 272 (cannot fit in signed int9).
FunctionSig* sig =
r.CreateSig<int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t,
int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t,
int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t,
int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t,
int64_t, int64_t, int64_t, int64_t, int64_t>();
WasmFunctionCompiler& simd_func = r.NewFunction(sig);
// We zero 16 bytes at a time using stp, so allocate locals such that we get a
// remainder, 8 in this case, so we hit the case where we use str.
simd_func.AllocateLocal(kWasmS128);
simd_func.AllocateLocal(kWasmI64);
BUILD(simd_func, WASM_I64V_1(1));
BUILD(r, WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1),
WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1),
WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1),
WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1),
WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1),
WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1),
WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1),
WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1), WASM_I64V_1(1),
WASM_CALL_FUNCTION0(simd_func.function_index()));
CHECK_EQ(1, r.Call());
}
#undef WASM_SIMD_LIFTOFF_TEST
} // namespace test_run_wasm_simd_liftoff
} // namespace wasm
} // namespace internal
} // namespace v8