v8/src/compiler.cc
Ross McIlroy 5a6fece481 [RuntimeStats] Add some additional RCS events for background events.
Adds some additional RCS counters to correctly account background
compilation to the background thread.

Also adds a ParseBackgroundProgram as a top-level event for background
parsing since otherwise only pre-parsing was being tracked.

Perf Sheriffs: Note this is likely to increase the Parse-Background
bucket in v8.runtime_stats benchmarks as it now accounts all background
parsing correclty.

BUG=v8:5203

Change-Id: I6ff614b725d85b0bc1901a7bf0e2bac8de1f7cff
Reviewed-on: https://chromium-review.googlesource.com/786237
Reviewed-by: Marja Hölttä <marja@chromium.org>
Commit-Queue: Ross McIlroy <rmcilroy@chromium.org>
Cr-Commit-Position: refs/heads/master@{#49603}
2017-11-23 10:46:16 +00:00

1758 lines
69 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler.h"
#include <algorithm>
#include <memory>
#include "src/api.h"
#include "src/asmjs/asm-js.h"
#include "src/assembler-inl.h"
#include "src/ast/ast-numbering.h"
#include "src/ast/prettyprinter.h"
#include "src/ast/scopes.h"
#include "src/base/optional.h"
#include "src/bootstrapper.h"
#include "src/compilation-cache.h"
#include "src/compilation-info.h"
#include "src/compiler-dispatcher/compiler-dispatcher.h"
#include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
#include "src/compiler/pipeline.h"
#include "src/debug/debug.h"
#include "src/debug/liveedit.h"
#include "src/frames-inl.h"
#include "src/globals.h"
#include "src/heap/heap.h"
#include "src/interpreter/interpreter.h"
#include "src/isolate-inl.h"
#include "src/log-inl.h"
#include "src/messages.h"
#include "src/objects/map.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/parsing.h"
#include "src/parsing/rewriter.h"
#include "src/parsing/scanner-character-streams.h"
#include "src/runtime-profiler.h"
#include "src/snapshot/code-serializer.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
// A wrapper around a CompilationInfo that detaches the Handles from
// the underlying DeferredHandleScope and stores them in info_ on
// destruction.
class CompilationHandleScope final {
public:
explicit CompilationHandleScope(Isolate* isolate, CompilationInfo* info)
: deferred_(isolate), info_(info) {}
~CompilationHandleScope() { info_->set_deferred_handles(deferred_.Detach()); }
private:
DeferredHandleScope deferred_;
CompilationInfo* info_;
};
// Helper that times a scoped region and records the elapsed time.
struct ScopedTimer {
explicit ScopedTimer(base::TimeDelta* location) : location_(location) {
DCHECK_NOT_NULL(location_);
timer_.Start();
}
~ScopedTimer() { *location_ += timer_.Elapsed(); }
base::ElapsedTimer timer_;
base::TimeDelta* location_;
};
// ----------------------------------------------------------------------------
// Implementation of CompilationJob
CompilationJob::CompilationJob(uintptr_t stack_limit, ParseInfo* parse_info,
CompilationInfo* compilation_info,
const char* compiler_name, State initial_state)
: parse_info_(parse_info),
compilation_info_(compilation_info),
compiler_name_(compiler_name),
state_(initial_state),
stack_limit_(stack_limit) {}
CompilationJob::Status CompilationJob::PrepareJob(Isolate* isolate) {
DCHECK(ThreadId::Current().Equals(isolate->thread_id()));
DisallowJavascriptExecution no_js(isolate);
if (FLAG_trace_opt && compilation_info()->IsOptimizing()) {
OFStream os(stdout);
os << "[compiling method " << Brief(*compilation_info()->closure())
<< " using " << compiler_name_;
if (compilation_info()->is_osr()) os << " OSR";
os << "]" << std::endl;
}
// Delegate to the underlying implementation.
DCHECK_EQ(state(), State::kReadyToPrepare);
ScopedTimer t(&time_taken_to_prepare_);
return UpdateState(PrepareJobImpl(isolate), State::kReadyToExecute);
}
CompilationJob::Status CompilationJob::ExecuteJob() {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
DisallowCodeDependencyChange no_dependency_change;
// Delegate to the underlying implementation.
DCHECK_EQ(state(), State::kReadyToExecute);
ScopedTimer t(&time_taken_to_execute_);
return UpdateState(ExecuteJobImpl(), State::kReadyToFinalize);
}
CompilationJob::Status CompilationJob::FinalizeJob(Isolate* isolate) {
DCHECK(ThreadId::Current().Equals(isolate->thread_id()));
DisallowCodeDependencyChange no_dependency_change;
DisallowJavascriptExecution no_js(isolate);
DCHECK(!compilation_info()->dependencies() ||
!compilation_info()->dependencies()->HasAborted());
// Delegate to the underlying implementation.
DCHECK_EQ(state(), State::kReadyToFinalize);
ScopedTimer t(&time_taken_to_finalize_);
return UpdateState(FinalizeJobImpl(isolate), State::kSucceeded);
}
CompilationJob::Status CompilationJob::RetryOptimization(BailoutReason reason) {
DCHECK(compilation_info_->IsOptimizing());
compilation_info_->RetryOptimization(reason);
state_ = State::kFailed;
return FAILED;
}
CompilationJob::Status CompilationJob::AbortOptimization(BailoutReason reason) {
DCHECK(compilation_info_->IsOptimizing());
compilation_info_->AbortOptimization(reason);
state_ = State::kFailed;
return FAILED;
}
void CompilationJob::RecordUnoptimizedCompilationStats(Isolate* isolate) const {
int code_size;
if (compilation_info()->has_bytecode_array()) {
code_size = compilation_info()->bytecode_array()->SizeIncludingMetadata();
} else {
code_size = compilation_info()->code()->SizeIncludingMetadata();
}
Counters* counters = isolate->counters();
// TODO(4280): Rename counters from "baseline" to "unoptimized" eventually.
counters->total_baseline_code_size()->Increment(code_size);
counters->total_baseline_compile_count()->Increment(1);
// TODO(5203): Add timers for each phase of compilation.
}
void CompilationJob::RecordOptimizedCompilationStats() const {
DCHECK(compilation_info()->IsOptimizing());
Handle<JSFunction> function = compilation_info()->closure();
double ms_creategraph = time_taken_to_prepare_.InMillisecondsF();
double ms_optimize = time_taken_to_execute_.InMillisecondsF();
double ms_codegen = time_taken_to_finalize_.InMillisecondsF();
if (FLAG_trace_opt) {
PrintF("[optimizing ");
function->ShortPrint();
PrintF(" - took %0.3f, %0.3f, %0.3f ms]\n", ms_creategraph, ms_optimize,
ms_codegen);
}
if (FLAG_trace_opt_stats) {
static double compilation_time = 0.0;
static int compiled_functions = 0;
static int code_size = 0;
compilation_time += (ms_creategraph + ms_optimize + ms_codegen);
compiled_functions++;
code_size += function->shared()->SourceSize();
PrintF("Compiled: %d functions with %d byte source size in %fms.\n",
compiled_functions, code_size, compilation_time);
}
}
void CompilationJob::RecordFunctionCompilation(
CodeEventListener::LogEventsAndTags tag, Isolate* isolate) const {
// Log the code generation. If source information is available include
// script name and line number. Check explicitly whether logging is
// enabled as finding the line number is not free.
CompilationInfo* compilation_info = this->compilation_info();
if (!isolate->logger()->is_logging_code_events() &&
!isolate->is_profiling() && !FLAG_log_function_events) {
return;
}
Handle<SharedFunctionInfo> shared = compilation_info->shared_info();
Handle<Script> script = parse_info()->script();
Handle<AbstractCode> abstract_code =
compilation_info->has_bytecode_array()
? Handle<AbstractCode>::cast(compilation_info->bytecode_array())
: Handle<AbstractCode>::cast(compilation_info->code());
if (abstract_code.is_identical_to(BUILTIN_CODE(isolate, CompileLazy))) {
return;
}
int line_num = Script::GetLineNumber(script, shared->start_position()) + 1;
int column_num =
Script::GetColumnNumber(script, shared->start_position()) + 1;
String* script_name = script->name()->IsString()
? String::cast(script->name())
: isolate->heap()->empty_string();
CodeEventListener::LogEventsAndTags log_tag =
Logger::ToNativeByScript(tag, *script);
PROFILE(isolate, CodeCreateEvent(log_tag, *abstract_code, *shared,
script_name, line_num, column_num));
if (!FLAG_log_function_events) return;
DisallowHeapAllocation no_gc;
double ms = time_taken_to_prepare_.InMillisecondsF();
ms += time_taken_to_execute_.InMillisecondsF();
ms += time_taken_to_finalize_.InMillisecondsF();
std::string name = compilation_info->IsOptimizing() ? "optimize" : "compile";
switch (tag) {
case CodeEventListener::EVAL_TAG:
name += "-eval";
break;
case CodeEventListener::SCRIPT_TAG:
break;
case CodeEventListener::LAZY_COMPILE_TAG:
name += "-lazy";
break;
case CodeEventListener::FUNCTION_TAG:
break;
default:
UNREACHABLE();
}
LOG(isolate, FunctionEvent(name.c_str(), nullptr, script->id(), ms,
shared->start_position(), shared->end_position(),
shared->DebugName()));
}
// ----------------------------------------------------------------------------
// Local helper methods that make up the compilation pipeline.
namespace {
void EnsureFeedbackMetadata(CompilationInfo* compilation_info,
Isolate* isolate) {
DCHECK(compilation_info->has_shared_info());
// If no type feedback metadata exists, create it. At this point the
// AstNumbering pass has already run. Note the snapshot can contain outdated
// vectors for a different configuration, hence we also recreate a new vector
// when the function is not compiled (i.e. no code was serialized).
// TODO(mvstanton): reintroduce is_empty() predicate to feedback_metadata().
if (compilation_info->shared_info()->feedback_metadata()->length() == 0 ||
!compilation_info->shared_info()->is_compiled()) {
Handle<FeedbackMetadata> feedback_metadata = FeedbackMetadata::New(
isolate, compilation_info->feedback_vector_spec());
compilation_info->shared_info()->set_feedback_metadata(*feedback_metadata);
}
// It's very important that recompiles do not alter the structure of the type
// feedback vector. Verify that the structure fits the function literal.
CHECK(!compilation_info->shared_info()->feedback_metadata()->SpecDiffersFrom(
compilation_info->feedback_vector_spec()));
}
bool UseAsmWasm(FunctionLiteral* literal, bool asm_wasm_broken) {
// Check whether asm.js validation is enabled.
if (!FLAG_validate_asm) return false;
// Modules that have validated successfully, but were subsequently broken by
// invalid module instantiation attempts are off limit forever.
if (asm_wasm_broken) return false;
// In stress mode we want to run the validator on everything.
if (FLAG_stress_validate_asm) return true;
// In general, we respect the "use asm" directive.
return literal->scope()->IsAsmModule();
}
void InstallUnoptimizedCode(CompilationInfo* compilation_info,
Isolate* isolate) {
Handle<SharedFunctionInfo> shared = compilation_info->shared_info();
DCHECK_EQ(compilation_info->shared_info()->language_mode(),
compilation_info->literal()->language_mode());
// Ensure feedback metadata is installed.
EnsureFeedbackMetadata(compilation_info, isolate);
// Update the shared function info with the scope info.
Handle<ScopeInfo> scope_info = compilation_info->scope()->scope_info();
shared->set_scope_info(*scope_info);
Scope* outer_scope = compilation_info->scope()->GetOuterScopeWithContext();
if (outer_scope) {
shared->set_outer_scope_info(*outer_scope->scope_info());
}
DCHECK(!compilation_info->code().is_null());
shared->set_code(*compilation_info->code());
if (compilation_info->has_bytecode_array()) {
DCHECK(!shared->HasBytecodeArray()); // Only compiled once.
DCHECK(!compilation_info->has_asm_wasm_data());
shared->set_bytecode_array(*compilation_info->bytecode_array());
} else if (compilation_info->has_asm_wasm_data()) {
shared->set_asm_wasm_data(*compilation_info->asm_wasm_data());
}
// Install coverage info on the shared function info.
if (compilation_info->has_coverage_info()) {
DCHECK(isolate->is_block_code_coverage());
isolate->debug()->InstallCoverageInfo(compilation_info->shared_info(),
compilation_info->coverage_info());
}
}
void EnsureSharedFunctionInfosArrayOnScript(ParseInfo* parse_info,
Isolate* isolate) {
DCHECK(parse_info->is_toplevel());
DCHECK(!parse_info->script().is_null());
if (parse_info->script()->shared_function_infos()->length() > 0) {
DCHECK_EQ(parse_info->script()->shared_function_infos()->length(),
parse_info->max_function_literal_id() + 1);
return;
}
Handle<FixedArray> infos(isolate->factory()->NewFixedArray(
parse_info->max_function_literal_id() + 1));
parse_info->script()->set_shared_function_infos(*infos);
}
void SetSharedFunctionFlagsFromLiteral(FunctionLiteral* literal,
Handle<SharedFunctionInfo> shared_info) {
// Don't overwrite values set by the bootstrapper.
if (!shared_info->HasLength()) {
shared_info->set_length(literal->function_length());
}
shared_info->set_has_duplicate_parameters(
literal->has_duplicate_parameters());
shared_info->SetExpectedNofPropertiesFromEstimate(literal);
if (literal->dont_optimize_reason() != kNoReason) {
shared_info->DisableOptimization(literal->dont_optimize_reason());
}
}
CompilationJob::Status FinalizeUnoptimizedCompilationJob(CompilationJob* job,
Isolate* isolate) {
CompilationInfo* compilation_info = job->compilation_info();
ParseInfo* parse_info = job->parse_info();
SetSharedFunctionFlagsFromLiteral(compilation_info->literal(),
compilation_info->shared_info());
CompilationJob::Status status = job->FinalizeJob(isolate);
if (status == CompilationJob::SUCCEEDED) {
InstallUnoptimizedCode(compilation_info, isolate);
CodeEventListener::LogEventsAndTags log_tag;
if (parse_info->is_toplevel()) {
log_tag = compilation_info->is_eval() ? CodeEventListener::EVAL_TAG
: CodeEventListener::SCRIPT_TAG;
} else {
log_tag = parse_info->lazy_compile() ? CodeEventListener::LAZY_COMPILE_TAG
: CodeEventListener::FUNCTION_TAG;
}
job->RecordFunctionCompilation(log_tag, isolate);
job->RecordUnoptimizedCompilationStats(isolate);
}
return status;
}
bool Renumber(ParseInfo* parse_info,
Compiler::EagerInnerFunctionLiterals* eager_literals) {
RuntimeCallTimerScope runtimeTimer(
parse_info->runtime_call_stats(),
parse_info->on_background_thread()
? &RuntimeCallStats::CompileBackgroundRenumber
: &RuntimeCallStats::CompileRenumber);
return AstNumbering::Renumber(parse_info->stack_limit(), parse_info->zone(),
parse_info->literal(), eager_literals);
}
std::unique_ptr<CompilationJob> PrepareAndExecuteUnoptimizedCompileJob(
ParseInfo* parse_info, FunctionLiteral* literal,
AccountingAllocator* allocator) {
if (UseAsmWasm(literal, parse_info->is_asm_wasm_broken())) {
std::unique_ptr<CompilationJob> asm_job(
AsmJs::NewCompilationJob(parse_info, literal, allocator));
if (asm_job->ExecuteJob() == CompilationJob::SUCCEEDED) {
return asm_job;
}
// asm.js validation failed, fall through to standard unoptimized compile.
// Note: we rely on the fact that AsmJs jobs have done all validation in the
// PrepareJob and ExecuteJob phases and can't fail in FinalizeJob with
// with a validation error or another error that could be solve by falling
// through to standard unoptimized compile.
}
std::unique_ptr<CompilationJob> job(
interpreter::Interpreter::NewCompilationJob(parse_info, literal,
allocator));
if (job->ExecuteJob() == CompilationJob::SUCCEEDED) {
return job;
}
return std::unique_ptr<CompilationJob>(); // Compilation failed, return null.
}
std::unique_ptr<CompilationJob> GenerateUnoptimizedCode(
ParseInfo* parse_info, AccountingAllocator* allocator,
CompilationJobList* inner_function_jobs) {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
DCHECK(inner_function_jobs->empty());
Compiler::EagerInnerFunctionLiterals inner_literals;
if (!Compiler::Analyze(parse_info, &inner_literals)) {
return std::unique_ptr<CompilationJob>();
}
// Prepare and execute compilation of the outer-most function.
std::unique_ptr<CompilationJob> outer_function_job(
PrepareAndExecuteUnoptimizedCompileJob(parse_info, parse_info->literal(),
allocator));
if (!outer_function_job) return std::unique_ptr<CompilationJob>();
// Prepare and execute compilation jobs for eager inner functions.
for (auto it : inner_literals) {
FunctionLiteral* inner_literal = it->value();
std::unique_ptr<CompilationJob> inner_job(
PrepareAndExecuteUnoptimizedCompileJob(parse_info, inner_literal,
allocator));
if (!inner_job) return std::unique_ptr<CompilationJob>();
inner_function_jobs->emplace_front(std::move(inner_job));
}
// Character stream shouldn't be used again.
parse_info->ResetCharacterStream();
return outer_function_job;
}
bool FinalizeUnoptimizedCode(ParseInfo* parse_info, Isolate* isolate,
Handle<SharedFunctionInfo> shared_info,
CompilationJob* outer_function_job,
CompilationJobList* inner_function_jobs) {
DCHECK(AllowCompilation::IsAllowed(isolate));
// Allocate scope infos for the literal.
DeclarationScope::AllocateScopeInfos(parse_info, isolate,
AnalyzeMode::kRegular);
// Finalize the outer-most function's compilation job.
outer_function_job->compilation_info()->set_shared_info(shared_info);
if (FinalizeUnoptimizedCompilationJob(outer_function_job, isolate) !=
CompilationJob::SUCCEEDED) {
return false;
}
// Finalize the inner functions' compilation jobs.
for (auto&& inner_job : *inner_function_jobs) {
Handle<SharedFunctionInfo> inner_shared_info =
Compiler::GetSharedFunctionInfo(
inner_job->compilation_info()->literal(), parse_info->script(),
isolate);
// The inner function might be compiled already if compiling for debug.
// TODO(rmcilroy): Fix this and DCHECK !is_compiled() once Full-Codegen dies
if (inner_shared_info->is_compiled()) continue;
inner_job->compilation_info()->set_shared_info(inner_shared_info);
if (FinalizeUnoptimizedCompilationJob(inner_job.get(), isolate) !=
CompilationJob::SUCCEEDED) {
return false;
}
}
// Report any warnings generated during compilation.
if (parse_info->pending_error_handler()->has_pending_warnings()) {
parse_info->pending_error_handler()->ReportWarnings(isolate,
parse_info->script());
}
return true;
}
MUST_USE_RESULT MaybeHandle<Code> GetCodeFromOptimizedCodeCache(
Handle<JSFunction> function, BailoutId osr_offset) {
RuntimeCallTimerScope runtimeTimer(
function->GetIsolate(),
&RuntimeCallStats::CompileGetFromOptimizedCodeMap);
Handle<SharedFunctionInfo> shared(function->shared());
DisallowHeapAllocation no_gc;
if (osr_offset.IsNone()) {
if (function->feedback_vector_cell()->value()->IsFeedbackVector()) {
FeedbackVector* feedback_vector = function->feedback_vector();
feedback_vector->EvictOptimizedCodeMarkedForDeoptimization(
function->shared(), "GetCodeFromOptimizedCodeCache");
Code* code = feedback_vector->optimized_code();
if (code != nullptr) {
// Caching of optimized code enabled and optimized code found.
DCHECK(!code->marked_for_deoptimization());
DCHECK(function->shared()->is_compiled());
return Handle<Code>(code);
}
}
}
return MaybeHandle<Code>();
}
void ClearOptimizedCodeCache(CompilationInfo* compilation_info) {
Handle<JSFunction> function = compilation_info->closure();
if (compilation_info->osr_offset().IsNone()) {
Handle<FeedbackVector> vector =
handle(function->feedback_vector(), function->GetIsolate());
vector->ClearOptimizedCode();
}
}
void InsertCodeIntoOptimizedCodeCache(CompilationInfo* compilation_info) {
Handle<Code> code = compilation_info->code();
if (code->kind() != Code::OPTIMIZED_FUNCTION) return; // Nothing to do.
// Function context specialization folds-in the function context,
// so no sharing can occur.
if (compilation_info->is_function_context_specializing()) {
// Native context specialized code is not shared, so make sure the optimized
// code cache is clear.
ClearOptimizedCodeCache(compilation_info);
return;
}
// Cache optimized context-specific code.
Handle<JSFunction> function = compilation_info->closure();
Handle<SharedFunctionInfo> shared(function->shared());
Handle<Context> native_context(function->context()->native_context());
if (compilation_info->osr_offset().IsNone()) {
Handle<FeedbackVector> vector =
handle(function->feedback_vector(), function->GetIsolate());
FeedbackVector::SetOptimizedCode(vector, code);
}
}
bool GetOptimizedCodeNow(CompilationJob* job, Isolate* isolate) {
TimerEventScope<TimerEventRecompileSynchronous> timer(isolate);
RuntimeCallTimerScope runtimeTimer(isolate,
&RuntimeCallStats::RecompileSynchronous);
CompilationInfo* compilation_info = job->compilation_info();
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.RecompileSynchronous");
if (job->PrepareJob(isolate) != CompilationJob::SUCCEEDED ||
job->ExecuteJob() != CompilationJob::SUCCEEDED ||
job->FinalizeJob(isolate) != CompilationJob::SUCCEEDED) {
if (FLAG_trace_opt) {
PrintF("[aborted optimizing ");
compilation_info->closure()->ShortPrint();
PrintF(" because: %s]\n",
GetBailoutReason(compilation_info->bailout_reason()));
}
return false;
}
// Success!
job->RecordOptimizedCompilationStats();
DCHECK(!isolate->has_pending_exception());
InsertCodeIntoOptimizedCodeCache(compilation_info);
job->RecordFunctionCompilation(CodeEventListener::LAZY_COMPILE_TAG, isolate);
return true;
}
bool GetOptimizedCodeLater(CompilationJob* job, Isolate* isolate) {
CompilationInfo* compilation_info = job->compilation_info();
if (!isolate->optimizing_compile_dispatcher()->IsQueueAvailable()) {
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Compilation queue full, will retry optimizing ");
compilation_info->closure()->ShortPrint();
PrintF(" later.\n");
}
return false;
}
if (isolate->heap()->HighMemoryPressure()) {
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** High memory pressure, will retry optimizing ");
compilation_info->closure()->ShortPrint();
PrintF(" later.\n");
}
return false;
}
TimerEventScope<TimerEventRecompileSynchronous> timer(isolate);
RuntimeCallTimerScope runtimeTimer(isolate,
&RuntimeCallStats::RecompileSynchronous);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.RecompileSynchronous");
if (job->PrepareJob(isolate) != CompilationJob::SUCCEEDED) return false;
isolate->optimizing_compile_dispatcher()->QueueForOptimization(job);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Queued ");
compilation_info->closure()->ShortPrint();
PrintF(" for concurrent optimization.\n");
}
return true;
}
MaybeHandle<Code> GetOptimizedCode(Handle<JSFunction> function,
ConcurrencyMode mode,
BailoutId osr_offset = BailoutId::None(),
JavaScriptFrame* osr_frame = nullptr) {
Isolate* isolate = function->GetIsolate();
Handle<SharedFunctionInfo> shared(function->shared(), isolate);
// Make sure we clear the optimization marker on the function so that we
// don't try to re-optimize.
if (function->HasOptimizationMarker()) {
function->ClearOptimizationMarker();
}
Handle<Code> cached_code;
if (GetCodeFromOptimizedCodeCache(function, osr_offset)
.ToHandle(&cached_code)) {
if (FLAG_trace_opt) {
PrintF("[found optimized code for ");
function->ShortPrint();
if (!osr_offset.IsNone()) {
PrintF(" at OSR AST id %d", osr_offset.ToInt());
}
PrintF("]\n");
}
return cached_code;
}
// Reset profiler ticks, function is no longer considered hot.
DCHECK(shared->is_compiled());
function->feedback_vector()->set_profiler_ticks(0);
VMState<COMPILER> state(isolate);
DCHECK(!isolate->has_pending_exception());
PostponeInterruptsScope postpone(isolate);
bool has_script = shared->script()->IsScript();
// BUG(5946): This DCHECK is necessary to make certain that we won't
// tolerate the lack of a script without bytecode.
DCHECK_IMPLIES(!has_script, shared->HasBytecodeArray());
std::unique_ptr<CompilationJob> job(
compiler::Pipeline::NewCompilationJob(function, has_script));
CompilationInfo* compilation_info = job->compilation_info();
ParseInfo* parse_info = job->parse_info();
compilation_info->SetOptimizingForOsr(osr_offset, osr_frame);
// Do not use TurboFan if we need to be able to set break points.
if (compilation_info->shared_info()->HasBreakInfo()) {
compilation_info->AbortOptimization(kFunctionBeingDebugged);
return MaybeHandle<Code>();
}
// Do not use TurboFan when %NeverOptimizeFunction was applied.
if (shared->optimization_disabled() &&
shared->disable_optimization_reason() == kOptimizationDisabledForTest) {
compilation_info->AbortOptimization(kOptimizationDisabledForTest);
return MaybeHandle<Code>();
}
// Do not use TurboFan if optimization is disabled or function doesn't pass
// turbo_filter.
if (!FLAG_opt || !shared->PassesFilter(FLAG_turbo_filter)) {
compilation_info->AbortOptimization(kOptimizationDisabled);
return MaybeHandle<Code>();
}
TimerEventScope<TimerEventOptimizeCode> optimize_code_timer(isolate);
RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::OptimizeCode);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.OptimizeCode");
// In case of concurrent recompilation, all handles below this point will be
// allocated in a deferred handle scope that is detached and handed off to
// the background thread when we return.
base::Optional<CompilationHandleScope> compilation;
if (mode == ConcurrencyMode::kConcurrent) {
compilation.emplace(isolate, compilation_info);
}
// All handles below will be canonicalized.
CanonicalHandleScope canonical(isolate);
// Reopen handles in the new CompilationHandleScope.
compilation_info->ReopenHandlesInNewHandleScope();
parse_info->ReopenHandlesInNewHandleScope();
if (mode == ConcurrencyMode::kConcurrent) {
if (GetOptimizedCodeLater(job.get(), isolate)) {
job.release(); // The background recompile job owns this now.
// Set the optimization marker and return a code object which checks it.
function->SetOptimizationMarker(OptimizationMarker::kInOptimizationQueue);
if (function->IsInterpreted()) {
return BUILTIN_CODE(isolate, InterpreterEntryTrampoline);
} else {
return BUILTIN_CODE(isolate, CheckOptimizationMarker);
}
}
} else {
if (GetOptimizedCodeNow(job.get(), isolate))
return compilation_info->code();
}
if (isolate->has_pending_exception()) isolate->clear_pending_exception();
return MaybeHandle<Code>();
}
CompilationJob::Status FinalizeOptimizedCompilationJob(CompilationJob* job,
Isolate* isolate) {
CompilationInfo* compilation_info = job->compilation_info();
TimerEventScope<TimerEventRecompileSynchronous> timer(isolate);
RuntimeCallTimerScope runtimeTimer(isolate,
&RuntimeCallStats::RecompileSynchronous);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.RecompileSynchronous");
Handle<SharedFunctionInfo> shared = compilation_info->shared_info();
// Reset profiler ticks, function is no longer considered hot.
compilation_info->closure()->feedback_vector()->set_profiler_ticks(0);
DCHECK(!shared->HasBreakInfo());
// 1) Optimization on the concurrent thread may have failed.
// 2) The function may have already been optimized by OSR. Simply continue.
// Except when OSR already disabled optimization for some reason.
// 3) The code may have already been invalidated due to dependency change.
// 4) Code generation may have failed.
if (job->state() == CompilationJob::State::kReadyToFinalize) {
if (shared->optimization_disabled()) {
job->RetryOptimization(kOptimizationDisabled);
} else if (compilation_info->dependencies()->HasAborted()) {
job->RetryOptimization(kBailedOutDueToDependencyChange);
} else if (job->FinalizeJob(isolate) == CompilationJob::SUCCEEDED) {
job->RecordOptimizedCompilationStats();
job->RecordFunctionCompilation(CodeEventListener::LAZY_COMPILE_TAG,
isolate);
InsertCodeIntoOptimizedCodeCache(compilation_info);
if (FLAG_trace_opt) {
PrintF("[completed optimizing ");
compilation_info->closure()->ShortPrint();
PrintF("]\n");
}
compilation_info->closure()->set_code(*compilation_info->code());
return CompilationJob::SUCCEEDED;
}
}
DCHECK_EQ(job->state(), CompilationJob::State::kFailed);
if (FLAG_trace_opt) {
PrintF("[aborted optimizing ");
compilation_info->closure()->ShortPrint();
PrintF(" because: %s]\n",
GetBailoutReason(compilation_info->bailout_reason()));
}
compilation_info->closure()->set_code(shared->code());
// Clear the InOptimizationQueue marker, if it exists.
if (compilation_info->closure()->IsInOptimizationQueue()) {
compilation_info->closure()->ClearOptimizationMarker();
}
return CompilationJob::FAILED;
}
MaybeHandle<SharedFunctionInfo> FinalizeTopLevel(
ParseInfo* parse_info, Isolate* isolate, CompilationJob* outer_function_job,
CompilationJobList* inner_function_jobs) {
Handle<Script> script = parse_info->script();
// Internalize ast values onto the heap.
parse_info->ast_value_factory()->Internalize(isolate);
// Create shared function infos for top level and shared function infos array
// for inner functions.
EnsureSharedFunctionInfosArrayOnScript(parse_info, isolate);
DCHECK_EQ(kNoSourcePosition,
parse_info->literal()->function_token_position());
Handle<SharedFunctionInfo> shared_info =
isolate->factory()->NewSharedFunctionInfoForLiteral(parse_info->literal(),
parse_info->script());
shared_info->set_is_toplevel(true);
// Finalize compilation of the unoptimized bytecode or asm-js data.
if (!FinalizeUnoptimizedCode(parse_info, isolate, shared_info,
outer_function_job, inner_function_jobs)) {
if (!isolate->has_pending_exception()) isolate->StackOverflow();
return MaybeHandle<SharedFunctionInfo>();
}
if (!script.is_null()) {
script->set_compilation_state(Script::COMPILATION_STATE_COMPILED);
}
return shared_info;
}
MaybeHandle<SharedFunctionInfo> CompileToplevel(ParseInfo* parse_info,
Isolate* isolate) {
TimerEventScope<TimerEventCompileCode> top_level_timer(isolate);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileCode");
DCHECK(ThreadId::Current().Equals(isolate->thread_id()));
PostponeInterruptsScope postpone(isolate);
DCHECK(!isolate->native_context().is_null());
RuntimeCallTimerScope runtimeTimer(
isolate, parse_info->is_eval() ? &RuntimeCallStats::CompileEval
: &RuntimeCallStats::CompileScript);
VMState<BYTECODE_COMPILER> state(isolate);
if (parse_info->literal() == nullptr &&
!parsing::ParseProgram(parse_info, isolate)) {
return MaybeHandle<SharedFunctionInfo>();
}
// Measure how long it takes to do the compilation; only take the
// rest of the function into account to avoid overlap with the
// parsing statistics.
HistogramTimer* rate = parse_info->is_eval()
? isolate->counters()->compile_eval()
: isolate->counters()->compile();
HistogramTimerScope timer(rate);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
parse_info->is_eval() ? "V8.CompileEval" : "V8.Compile");
// Generate the unoptimized bytecode or asm-js data.
CompilationJobList inner_function_jobs;
std::unique_ptr<CompilationJob> outer_function_job(GenerateUnoptimizedCode(
parse_info, isolate->allocator(), &inner_function_jobs));
if (!outer_function_job) {
if (!isolate->has_pending_exception()) isolate->StackOverflow();
return MaybeHandle<SharedFunctionInfo>();
}
return FinalizeTopLevel(parse_info, isolate, outer_function_job.get(),
&inner_function_jobs);
}
bool FailWithPendingException(Isolate* isolate,
Compiler::ClearExceptionFlag flag) {
if (flag == Compiler::CLEAR_EXCEPTION) {
isolate->clear_pending_exception();
} else if (!isolate->has_pending_exception()) {
isolate->StackOverflow();
}
return false;
}
} // namespace
// ----------------------------------------------------------------------------
// Implementation of Compiler
bool Compiler::Analyze(ParseInfo* parse_info,
EagerInnerFunctionLiterals* eager_literals) {
DCHECK_NOT_NULL(parse_info->literal());
RuntimeCallTimerScope runtimeTimer(
parse_info->runtime_call_stats(),
parse_info->on_background_thread()
? &RuntimeCallStats::CompileBackgroundAnalyse
: &RuntimeCallStats::CompileAnalyse);
if (!Rewriter::Rewrite(parse_info)) return false;
DeclarationScope::Analyze(parse_info);
if (!Renumber(parse_info, eager_literals)) return false;
return true;
}
bool Compiler::ParseAndAnalyze(ParseInfo* parse_info,
Handle<SharedFunctionInfo> shared_info,
Isolate* isolate) {
if (!parsing::ParseAny(parse_info, shared_info, isolate)) {
return false;
}
return Compiler::Analyze(parse_info);
}
bool Compiler::Compile(Handle<SharedFunctionInfo> shared_info,
ClearExceptionFlag flag) {
// We should never reach here if the function is already compiled.
DCHECK(!shared_info->is_compiled());
Isolate* isolate = shared_info->GetIsolate();
DCHECK(ThreadId::Current().Equals(isolate->thread_id()));
DCHECK(!isolate->has_pending_exception());
DCHECK(!shared_info->HasBytecodeArray());
VMState<BYTECODE_COMPILER> state(isolate);
PostponeInterruptsScope postpone(isolate);
TimerEventScope<TimerEventCompileCode> compile_timer(isolate);
RuntimeCallTimerScope runtimeTimer(isolate,
&RuntimeCallStats::CompileFunction);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileCode");
AggregatedHistogramTimerScope timer(isolate->counters()->compile_lazy());
// Check if the compiler dispatcher has shared_info enqueued for compile.
CompilerDispatcher* dispatcher = isolate->compiler_dispatcher();
if (dispatcher->IsEnqueued(shared_info)) {
if (!dispatcher->FinishNow(shared_info)) {
return FailWithPendingException(isolate, flag);
}
return true;
}
// Set up parse info.
ParseInfo parse_info(shared_info);
parse_info.set_lazy_compile();
if (FLAG_preparser_scope_analysis) {
if (shared_info->HasPreParsedScopeData()) {
Handle<PreParsedScopeData> data(
PreParsedScopeData::cast(shared_info->preparsed_scope_data()));
parse_info.consumed_preparsed_scope_data()->SetData(data);
// After we've compiled the function, we don't need data about its
// skippable functions any more.
shared_info->ClearPreParsedScopeData();
}
}
// Parse and update ParseInfo with the results.
if (!parsing::ParseFunction(&parse_info, shared_info, isolate)) {
return FailWithPendingException(isolate, flag);
}
// Generate the unoptimized bytecode or asm-js data.
CompilationJobList inner_function_jobs;
std::unique_ptr<CompilationJob> outer_function_job(GenerateUnoptimizedCode(
&parse_info, isolate->allocator(), &inner_function_jobs));
if (!outer_function_job) {
return FailWithPendingException(isolate, flag);
}
// Internalize ast values onto the heap.
parse_info.ast_value_factory()->Internalize(isolate);
// Finalize compilation of the unoptimized bytecode or asm-js data.
if (!FinalizeUnoptimizedCode(&parse_info, isolate, shared_info,
outer_function_job.get(),
&inner_function_jobs)) {
return FailWithPendingException(isolate, flag);
}
DCHECK(!isolate->has_pending_exception());
return true;
}
bool Compiler::Compile(Handle<JSFunction> function, ClearExceptionFlag flag) {
// We should never reach here if the function is already compiled or optimized
DCHECK(!function->is_compiled());
DCHECK(!function->IsOptimized());
DCHECK(!function->HasOptimizationMarker());
DCHECK(!function->HasOptimizedCode());
Isolate* isolate = function->GetIsolate();
Handle<SharedFunctionInfo> shared_info = handle(function->shared());
DCHECK(AllowCompilation::IsAllowed(isolate));
// Ensure shared function info is compiled.
if (!shared_info->is_compiled() && !Compile(shared_info, flag)) return false;
Handle<Code> code = handle(shared_info->code(), isolate);
// Allocate literals for the JSFunction.
JSFunction::EnsureLiterals(function);
// Optimize now if --always-opt is enabled.
if (FLAG_always_opt && !function->shared()->HasAsmWasmData()) {
if (FLAG_trace_opt) {
PrintF("[optimizing ");
function->ShortPrint();
PrintF(" because --always-opt]\n");
}
Handle<Code> opt_code;
if (GetOptimizedCode(function, ConcurrencyMode::kNotConcurrent)
.ToHandle(&opt_code)) {
code = opt_code;
}
}
// Install code on closure.
function->set_code(*code);
// Check postconditions on success.
DCHECK(!isolate->has_pending_exception());
DCHECK(function->shared()->is_compiled());
DCHECK(function->is_compiled());
return true;
}
bool Compiler::CompileOptimized(Handle<JSFunction> function,
ConcurrencyMode mode) {
if (function->IsOptimized()) return true;
Isolate* isolate = function->GetIsolate();
DCHECK(AllowCompilation::IsAllowed(isolate));
// Start a compilation.
Handle<Code> code;
if (!GetOptimizedCode(function, mode).ToHandle(&code)) {
// Optimization failed, get unoptimized code. Unoptimized code must exist
// already if we are optimizing.
DCHECK(!isolate->has_pending_exception());
DCHECK(function->shared()->is_compiled());
code = handle(function->shared()->code(), isolate);
}
// Install code on closure.
function->set_code(*code);
// Check postconditions on success.
DCHECK(!isolate->has_pending_exception());
DCHECK(function->shared()->is_compiled());
DCHECK(function->is_compiled());
DCHECK_IMPLIES(function->HasOptimizationMarker(),
function->IsInOptimizationQueue());
DCHECK_IMPLIES(function->HasOptimizationMarker(),
function->ChecksOptimizationMarker());
DCHECK_IMPLIES(function->IsInOptimizationQueue(),
mode == ConcurrencyMode::kConcurrent);
return true;
}
MaybeHandle<JSArray> Compiler::CompileForLiveEdit(Handle<Script> script) {
Isolate* isolate = script->GetIsolate();
DCHECK(AllowCompilation::IsAllowed(isolate));
// In order to ensure that live edit function info collection finds the newly
// generated shared function infos, clear the script's list temporarily
// and restore it at the end of this method.
Handle<FixedArray> old_function_infos(script->shared_function_infos(),
isolate);
script->set_shared_function_infos(isolate->heap()->empty_fixed_array());
// Start a compilation.
ParseInfo parse_info(script);
parse_info.set_eager();
// TODO(635): support extensions.
Handle<JSArray> infos;
Handle<SharedFunctionInfo> shared_info;
if (CompileToplevel(&parse_info, isolate).ToHandle(&shared_info)) {
// Check postconditions on success.
DCHECK(!isolate->has_pending_exception());
infos = LiveEditFunctionTracker::Collect(parse_info.literal(), script,
parse_info.zone(), isolate);
}
// Restore the original function info list in order to remain side-effect
// free as much as possible, since some code expects the old shared function
// infos to stick around.
script->set_shared_function_infos(*old_function_infos);
return infos;
}
MaybeHandle<JSFunction> Compiler::GetFunctionFromEval(
Handle<String> source, Handle<SharedFunctionInfo> outer_info,
Handle<Context> context, LanguageMode language_mode,
ParseRestriction restriction, int parameters_end_pos,
int eval_scope_position, int eval_position, int line_offset,
int column_offset, Handle<Object> script_name,
ScriptOriginOptions options) {
Isolate* isolate = source->GetIsolate();
int source_length = source->length();
isolate->counters()->total_eval_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
// The cache lookup key needs to be aware of the separation between the
// parameters and the body to prevent this valid invocation:
// Function("", "function anonymous(\n/**/) {\n}");
// from adding an entry that falsely approves this invalid invocation:
// Function("\n/**/) {\nfunction anonymous(", "}");
// The actual eval_scope_position for indirect eval and CreateDynamicFunction
// is unused (just 0), which means it's an available field to use to indicate
// this separation. But to make sure we're not causing other false hits, we
// negate the scope position.
int position = eval_scope_position;
if (FLAG_harmony_function_tostring &&
restriction == ONLY_SINGLE_FUNCTION_LITERAL &&
parameters_end_pos != kNoSourcePosition) {
// use the parameters_end_pos as the eval_scope_position in the eval cache.
DCHECK_EQ(eval_scope_position, 0);
position = -parameters_end_pos;
}
CompilationCache* compilation_cache = isolate->compilation_cache();
InfoVectorPair eval_result = compilation_cache->LookupEval(
source, outer_info, context, language_mode, position);
Handle<Cell> vector;
if (eval_result.has_vector()) {
vector = Handle<Cell>(eval_result.vector(), isolate);
}
Handle<SharedFunctionInfo> shared_info;
Handle<Script> script;
if (eval_result.has_shared()) {
shared_info = Handle<SharedFunctionInfo>(eval_result.shared(), isolate);
script = Handle<Script>(Script::cast(shared_info->script()), isolate);
} else {
script = isolate->factory()->NewScript(source);
if (isolate->NeedsSourcePositionsForProfiling()) {
Script::InitLineEnds(script);
}
if (!script_name.is_null()) {
script->set_name(*script_name);
script->set_line_offset(line_offset);
script->set_column_offset(column_offset);
}
script->set_origin_options(options);
script->set_compilation_type(Script::COMPILATION_TYPE_EVAL);
script->set_eval_from_shared(*outer_info);
if (eval_position == kNoSourcePosition) {
// If the position is missing, attempt to get the code offset by
// walking the stack. Do not translate the code offset into source
// position, but store it as negative value for lazy translation.
StackTraceFrameIterator it(script->GetIsolate());
if (!it.done() && it.is_javascript()) {
FrameSummary summary = FrameSummary::GetTop(it.javascript_frame());
script->set_eval_from_shared(
summary.AsJavaScript().function()->shared());
eval_position = -summary.code_offset();
} else {
eval_position = 0;
}
}
script->set_eval_from_position(eval_position);
ParseInfo parse_info(script);
parse_info.set_eval();
parse_info.set_language_mode(language_mode);
parse_info.set_parse_restriction(restriction);
parse_info.set_parameters_end_pos(parameters_end_pos);
if (!context->IsNativeContext()) {
parse_info.set_outer_scope_info(handle(context->scope_info()));
}
DCHECK(!parse_info.is_module());
if (!CompileToplevel(&parse_info, isolate).ToHandle(&shared_info)) {
return MaybeHandle<JSFunction>();
}
}
// If caller is strict mode, the result must be in strict mode as well.
DCHECK(is_sloppy(language_mode) || is_strict(shared_info->language_mode()));
Handle<JSFunction> result;
if (eval_result.has_shared()) {
if (eval_result.has_vector()) {
result = isolate->factory()->NewFunctionFromSharedFunctionInfo(
shared_info, context, vector, NOT_TENURED);
} else {
result = isolate->factory()->NewFunctionFromSharedFunctionInfo(
shared_info, context, NOT_TENURED);
JSFunction::EnsureLiterals(result);
// Make sure to cache this result.
Handle<Cell> new_vector(result->feedback_vector_cell(), isolate);
compilation_cache->PutEval(source, outer_info, context, shared_info,
new_vector, eval_scope_position);
}
} else {
result = isolate->factory()->NewFunctionFromSharedFunctionInfo(
shared_info, context, NOT_TENURED);
JSFunction::EnsureLiterals(result);
// Add the SharedFunctionInfo and the LiteralsArray to the eval cache if
// we didn't retrieve from there.
Handle<Cell> vector(result->feedback_vector_cell(), isolate);
compilation_cache->PutEval(source, outer_info, context, shared_info, vector,
eval_scope_position);
}
// OnAfterCompile has to be called after we create the JSFunction, which we
// may require to recompile the eval for debugging, if we find a function
// that contains break points in the eval script.
isolate->debug()->OnAfterCompile(script);
return result;
}
namespace {
bool ContainsAsmModule(Handle<Script> script) {
DisallowHeapAllocation no_gc;
SharedFunctionInfo::ScriptIterator iter(script);
while (SharedFunctionInfo* info = iter.Next()) {
if (info->HasAsmWasmData()) return true;
}
return false;
}
bool ShouldProduceCodeCache(ScriptCompiler::CompileOptions options) {
return options == ScriptCompiler::kProduceCodeCache ||
options == ScriptCompiler::kProduceFullCodeCache;
}
} // namespace
bool Compiler::CodeGenerationFromStringsAllowed(Isolate* isolate,
Handle<Context> context,
Handle<String> source) {
DCHECK(context->allow_code_gen_from_strings()->IsFalse(isolate));
// Check with callback if set.
AllowCodeGenerationFromStringsCallback callback =
isolate->allow_code_gen_callback();
if (callback == nullptr) {
// No callback set and code generation disallowed.
return false;
} else {
// Callback set. Let it decide if code generation is allowed.
VMState<EXTERNAL> state(isolate);
return callback(v8::Utils::ToLocal(context), v8::Utils::ToLocal(source));
}
}
MaybeHandle<JSFunction> Compiler::GetFunctionFromString(
Handle<Context> context, Handle<String> source,
ParseRestriction restriction, int parameters_end_pos) {
Isolate* const isolate = context->GetIsolate();
Handle<Context> native_context(context->native_context(), isolate);
// Check if native context allows code generation from
// strings. Throw an exception if it doesn't.
if (native_context->allow_code_gen_from_strings()->IsFalse(isolate) &&
!CodeGenerationFromStringsAllowed(isolate, native_context, source)) {
Handle<Object> error_message =
native_context->ErrorMessageForCodeGenerationFromStrings();
THROW_NEW_ERROR(isolate, NewEvalError(MessageTemplate::kCodeGenFromStrings,
error_message),
JSFunction);
}
// Compile source string in the native context.
int eval_scope_position = 0;
int eval_position = kNoSourcePosition;
Handle<SharedFunctionInfo> outer_info(native_context->closure()->shared());
return Compiler::GetFunctionFromEval(
source, outer_info, native_context, LanguageMode::kSloppy, restriction,
parameters_end_pos, eval_scope_position, eval_position);
}
namespace {
struct ScriptCompileTimerScope {
public:
// TODO(leszeks): There are too many blink-specific entries in this enum,
// figure out a way to push produce/hit-isolate-cache/consume/consume-failed
// back up the API and log them in blink instead.
enum class CacheBehaviour {
kProduceCodeCache,
kHitIsolateCacheWhenNoCache,
kConsumeCodeCache,
kConsumeCodeCacheFailed,
kNoCacheBecauseInlineScript,
kNoCacheBecauseScriptTooSmall,
kNoCacheBecauseCacheTooCold,
kNoCacheNoReason,
kNoCacheBecauseNoResource,
kNoCacheBecauseInspector,
kNoCacheBecauseCachingDisabled,
kNoCacheBecauseModule,
kNoCacheBecauseStreamingSource,
kNoCacheBecauseV8Extension,
kHitIsolateCacheWhenProduceCodeCache,
kHitIsolateCacheWhenConsumeCodeCache,
kNoCacheBecauseExtensionModule,
kNoCacheBecausePacScript,
kNoCacheBecauseInDocumentWrite,
kNoCacheBecauseResourceWithNoCacheHandler,
kCount
};
explicit ScriptCompileTimerScope(
Isolate* isolate, ScriptCompiler::NoCacheReason no_cache_reason)
: isolate_(isolate),
all_scripts_histogram_scope_(isolate->counters()->compile_script(),
true),
no_cache_reason_(no_cache_reason),
hit_isolate_cache_(false),
producing_code_cache_(false),
consuming_code_cache_(false),
consuming_code_cache_failed_(false) {}
~ScriptCompileTimerScope() {
CacheBehaviour cache_behaviour = GetCacheBehaviour();
Histogram* cache_behaviour_histogram =
isolate_->counters()->compile_script_cache_behaviour();
// Sanity check that the histogram has exactly one bin per enum entry.
DCHECK_EQ(0, cache_behaviour_histogram->min());
DCHECK_EQ(static_cast<int>(CacheBehaviour::kCount),
cache_behaviour_histogram->max() + 1);
DCHECK_EQ(static_cast<int>(CacheBehaviour::kCount),
cache_behaviour_histogram->num_buckets());
cache_behaviour_histogram->AddSample(static_cast<int>(cache_behaviour));
histogram_scope_.set_histogram(
GetCacheBehaviourTimedHistogram(cache_behaviour));
}
void set_hit_isolate_cache() { hit_isolate_cache_ = true; }
void set_producing_code_cache() { producing_code_cache_ = true; }
void set_consuming_code_cache() { consuming_code_cache_ = true; }
void set_consuming_code_cache_failed() {
consuming_code_cache_failed_ = true;
}
private:
Isolate* isolate_;
LazyTimedHistogramScope histogram_scope_;
// TODO(leszeks): This timer is the sum of the other times, consider removing
// it to save space.
HistogramTimerScope all_scripts_histogram_scope_;
ScriptCompiler::NoCacheReason no_cache_reason_;
bool hit_isolate_cache_;
bool producing_code_cache_;
bool consuming_code_cache_;
bool consuming_code_cache_failed_;
CacheBehaviour GetCacheBehaviour() {
if (producing_code_cache_) {
if (hit_isolate_cache_) {
return CacheBehaviour::kHitIsolateCacheWhenProduceCodeCache;
} else {
return CacheBehaviour::kProduceCodeCache;
}
}
if (consuming_code_cache_) {
if (hit_isolate_cache_) {
return CacheBehaviour::kHitIsolateCacheWhenConsumeCodeCache;
} else if (consuming_code_cache_failed_) {
return CacheBehaviour::kConsumeCodeCacheFailed;
}
return CacheBehaviour::kConsumeCodeCache;
}
if (hit_isolate_cache_) {
// There's probably no need to distinguish the different isolate cache
// hits.
return CacheBehaviour::kHitIsolateCacheWhenNoCache;
}
switch (no_cache_reason_) {
case ScriptCompiler::kNoCacheBecauseInlineScript:
return CacheBehaviour::kNoCacheBecauseInlineScript;
case ScriptCompiler::kNoCacheBecauseScriptTooSmall:
return CacheBehaviour::kNoCacheBecauseScriptTooSmall;
case ScriptCompiler::kNoCacheBecauseCacheTooCold:
return CacheBehaviour::kNoCacheBecauseCacheTooCold;
case ScriptCompiler::kNoCacheNoReason:
return CacheBehaviour::kNoCacheNoReason;
case ScriptCompiler::kNoCacheBecauseNoResource:
return CacheBehaviour::kNoCacheBecauseNoResource;
case ScriptCompiler::kNoCacheBecauseInspector:
return CacheBehaviour::kNoCacheBecauseInspector;
case ScriptCompiler::kNoCacheBecauseCachingDisabled:
return CacheBehaviour::kNoCacheBecauseCachingDisabled;
case ScriptCompiler::kNoCacheBecauseModule:
return CacheBehaviour::kNoCacheBecauseModule;
case ScriptCompiler::kNoCacheBecauseStreamingSource:
return CacheBehaviour::kNoCacheBecauseStreamingSource;
case ScriptCompiler::kNoCacheBecauseV8Extension:
return CacheBehaviour::kNoCacheBecauseV8Extension;
case ScriptCompiler::kNoCacheBecauseExtensionModule:
return CacheBehaviour::kNoCacheBecauseExtensionModule;
case ScriptCompiler::kNoCacheBecausePacScript:
return CacheBehaviour::kNoCacheBecausePacScript;
case ScriptCompiler::kNoCacheBecauseInDocumentWrite:
return CacheBehaviour::kNoCacheBecauseInDocumentWrite;
case ScriptCompiler::kNoCacheBecauseResourceWithNoCacheHandler:
return CacheBehaviour::kNoCacheBecauseResourceWithNoCacheHandler;
}
UNREACHABLE();
}
TimedHistogram* GetCacheBehaviourTimedHistogram(
CacheBehaviour cache_behaviour) {
switch (cache_behaviour) {
case CacheBehaviour::kProduceCodeCache:
// Even if we hit the isolate's compilation cache, we currently recompile
// when we want to produce the code cache.
case CacheBehaviour::kHitIsolateCacheWhenProduceCodeCache:
return isolate_->counters()->compile_script_with_produce_cache();
case CacheBehaviour::kHitIsolateCacheWhenNoCache:
case CacheBehaviour::kHitIsolateCacheWhenConsumeCodeCache:
return isolate_->counters()->compile_script_with_isolate_cache_hit();
case CacheBehaviour::kConsumeCodeCacheFailed:
return isolate_->counters()->compile_script_consume_failed();
case CacheBehaviour::kConsumeCodeCache:
return isolate_->counters()->compile_script_with_consume_cache();
case CacheBehaviour::kNoCacheBecauseInlineScript:
return isolate_->counters()
->compile_script_no_cache_because_inline_script();
case CacheBehaviour::kNoCacheBecauseScriptTooSmall:
return isolate_->counters()
->compile_script_no_cache_because_script_too_small();
case CacheBehaviour::kNoCacheBecauseCacheTooCold:
return isolate_->counters()
->compile_script_no_cache_because_cache_too_cold();
// Aggregate all the other "no cache" counters into a single histogram, to
// save space.
case CacheBehaviour::kNoCacheNoReason:
case CacheBehaviour::kNoCacheBecauseNoResource:
case CacheBehaviour::kNoCacheBecauseInspector:
case CacheBehaviour::kNoCacheBecauseCachingDisabled:
// TODO(leszeks): Consider counting separately once modules are more
// common.
case CacheBehaviour::kNoCacheBecauseModule:
// TODO(leszeks): Count separately or remove entirely once we have
// background compilation.
case CacheBehaviour::kNoCacheBecauseStreamingSource:
case CacheBehaviour::kNoCacheBecauseV8Extension:
case CacheBehaviour::kNoCacheBecauseExtensionModule:
case CacheBehaviour::kNoCacheBecausePacScript:
case CacheBehaviour::kNoCacheBecauseInDocumentWrite:
case CacheBehaviour::kNoCacheBecauseResourceWithNoCacheHandler:
return isolate_->counters()->compile_script_no_cache_other();
case CacheBehaviour::kCount:
UNREACHABLE();
}
UNREACHABLE();
}
};
} // namespace
MaybeHandle<SharedFunctionInfo> Compiler::GetSharedFunctionInfoForScript(
Handle<String> source, MaybeHandle<Object> maybe_script_name,
int line_offset, int column_offset, ScriptOriginOptions resource_options,
MaybeHandle<Object> maybe_source_map_url, Handle<Context> context,
v8::Extension* extension, ScriptData** cached_data,
ScriptCompiler::CompileOptions compile_options,
ScriptCompiler::NoCacheReason no_cache_reason, NativesFlag natives,
MaybeHandle<FixedArray> maybe_host_defined_options) {
Isolate* isolate = source->GetIsolate();
ScriptCompileTimerScope compile_timer(isolate, no_cache_reason);
if (compile_options == ScriptCompiler::kNoCompileOptions) {
cached_data = nullptr;
} else if (compile_options == ScriptCompiler::kProduceParserCache ||
ShouldProduceCodeCache(compile_options)) {
DCHECK(cached_data && !*cached_data);
DCHECK_NULL(extension);
DCHECK(!isolate->debug()->is_loaded());
} else {
DCHECK(compile_options == ScriptCompiler::kConsumeParserCache ||
compile_options == ScriptCompiler::kConsumeCodeCache);
DCHECK(cached_data && *cached_data);
DCHECK_NULL(extension);
}
int source_length = source->length();
isolate->counters()->total_load_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
LanguageMode language_mode = construct_language_mode(FLAG_use_strict);
CompilationCache* compilation_cache = isolate->compilation_cache();
// Do a lookup in the compilation cache but not for extensions.
MaybeHandle<SharedFunctionInfo> maybe_result;
Handle<Cell> vector;
if (extension == nullptr) {
bool can_consume_code_cache =
compile_options == ScriptCompiler::kConsumeCodeCache &&
!isolate->debug()->is_loaded();
if (can_consume_code_cache) {
compile_timer.set_consuming_code_cache();
}
// First check per-isolate compilation cache.
InfoVectorPair pair = compilation_cache->LookupScript(
source, maybe_script_name, line_offset, column_offset, resource_options,
context, language_mode);
if (can_consume_code_cache && !pair.has_shared()) {
compile_timer.set_consuming_code_cache();
// Then check cached code provided by embedder.
HistogramTimerScope timer(isolate->counters()->compile_deserialize());
RuntimeCallTimerScope runtimeTimer(isolate,
&RuntimeCallStats::CompileDeserialize);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.CompileDeserialize");
Handle<SharedFunctionInfo> inner_result;
if (CodeSerializer::Deserialize(isolate, *cached_data, source)
.ToHandle(&inner_result)) {
// Promote to per-isolate compilation cache.
DCHECK(inner_result->is_compiled());
Handle<FeedbackVector> feedback_vector =
FeedbackVector::New(isolate, inner_result);
vector = isolate->factory()->NewCell(feedback_vector);
compilation_cache->PutScript(source, context, language_mode,
inner_result, vector);
Handle<Script> script(Script::cast(inner_result->script()), isolate);
isolate->debug()->OnAfterCompile(script);
return inner_result;
}
// Deserializer failed. Fall through to compile.
compile_timer.set_consuming_code_cache_failed();
} else {
if (pair.has_shared()) {
maybe_result = MaybeHandle<SharedFunctionInfo>(pair.shared(), isolate);
compile_timer.set_hit_isolate_cache();
}
if (pair.has_vector()) {
vector = Handle<Cell>(pair.vector(), isolate);
}
}
}
base::ElapsedTimer timer;
if (FLAG_profile_deserialization && ShouldProduceCodeCache(compile_options)) {
timer.Start();
}
if (maybe_result.is_null() || ShouldProduceCodeCache(compile_options)) {
// No cache entry found, or embedder wants a code cache. Compile the script.
// Create a script object describing the script to be compiled.
Handle<Script> script = isolate->factory()->NewScript(source);
if (isolate->NeedsSourcePositionsForProfiling()) {
Script::InitLineEnds(script);
}
if (natives == NATIVES_CODE) {
script->set_type(Script::TYPE_NATIVE);
} else if (natives == EXTENSION_CODE) {
script->set_type(Script::TYPE_EXTENSION);
} else if (natives == INSPECTOR_CODE) {
script->set_type(Script::TYPE_INSPECTOR);
}
Handle<Object> script_name;
if (maybe_script_name.ToHandle(&script_name)) {
script->set_name(*script_name);
script->set_line_offset(line_offset);
script->set_column_offset(column_offset);
}
script->set_origin_options(resource_options);
Handle<Object> source_map_url;
if (maybe_source_map_url.ToHandle(&source_map_url)) {
script->set_source_mapping_url(*source_map_url);
}
Handle<FixedArray> host_defined_options;
if (maybe_host_defined_options.ToHandle(&host_defined_options)) {
script->set_host_defined_options(*host_defined_options);
}
// Compile the function and add it to the cache.
ParseInfo parse_info(script);
Zone compile_zone(isolate->allocator(), ZONE_NAME);
if (resource_options.IsModule()) parse_info.set_module();
if (compile_options != ScriptCompiler::kNoCompileOptions) {
parse_info.set_cached_data(cached_data);
}
parse_info.set_compile_options(compile_options);
parse_info.set_extension(extension);
if (!context->IsNativeContext()) {
parse_info.set_outer_scope_info(handle(context->scope_info()));
}
parse_info.set_eager(compile_options ==
ScriptCompiler::kProduceFullCodeCache);
parse_info.set_language_mode(
stricter_language_mode(parse_info.language_mode(), language_mode));
maybe_result = CompileToplevel(&parse_info, isolate);
Handle<SharedFunctionInfo> result;
if (extension == nullptr && maybe_result.ToHandle(&result)) {
// We need a feedback vector.
DCHECK(result->is_compiled());
Handle<FeedbackVector> feedback_vector =
FeedbackVector::New(isolate, result);
vector = isolate->factory()->NewCell(feedback_vector);
compilation_cache->PutScript(source, context, language_mode, result,
vector);
if (ShouldProduceCodeCache(compile_options) &&
!ContainsAsmModule(script)) {
compile_timer.set_producing_code_cache();
HistogramTimerScope histogram_timer(
isolate->counters()->compile_serialize());
RuntimeCallTimerScope runtimeTimer(isolate,
&RuntimeCallStats::CompileSerialize);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.CompileSerialize");
*cached_data = CodeSerializer::Serialize(isolate, result, source);
if (FLAG_profile_deserialization) {
PrintF("[Compiling and serializing took %0.3f ms]\n",
timer.Elapsed().InMillisecondsF());
}
}
}
if (maybe_result.is_null()) {
if (natives != EXTENSION_CODE && natives != NATIVES_CODE) {
isolate->ReportPendingMessages();
}
} else {
isolate->debug()->OnAfterCompile(script);
}
}
return maybe_result;
}
std::unique_ptr<CompilationJob> Compiler::CompileTopLevelOnBackgroundThread(
ParseInfo* parse_info, AccountingAllocator* allocator,
CompilationJobList* inner_function_jobs) {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.CompileCodeBackground");
RuntimeCallTimerScope runtimeTimer(
parse_info->runtime_call_stats(),
parse_info->is_eval() ? &RuntimeCallStats::CompileBackgroundEval
: &RuntimeCallStats::CompileBackgroundScript);
LanguageMode language_mode = construct_language_mode(FLAG_use_strict);
parse_info->set_language_mode(
stricter_language_mode(parse_info->language_mode(), language_mode));
// Can't access scope info data off-main-thread.
DCHECK(!parse_info->consumed_preparsed_scope_data()->HasData());
// Generate the unoptimized bytecode or asm-js data.
std::unique_ptr<CompilationJob> outer_function_job(
GenerateUnoptimizedCode(parse_info, allocator, inner_function_jobs));
return outer_function_job;
}
Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfoForBackgroundCompile(
Handle<Script> script, ParseInfo* parse_info, int source_length,
CompilationJob* outer_function_job,
CompilationJobList* inner_function_jobs) {
Isolate* isolate = script->GetIsolate();
PostponeInterruptsScope postpone(isolate);
// TODO(titzer): increment the counters in caller.
isolate->counters()->total_load_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
if (outer_function_job == nullptr) {
// Compilation failed on background thread - throw an exception.
if (!isolate->has_pending_exception()) isolate->StackOverflow();
return Handle<SharedFunctionInfo>();
}
Handle<SharedFunctionInfo> result;
if (FinalizeTopLevel(parse_info, isolate, outer_function_job,
inner_function_jobs)
.ToHandle(&result)) {
isolate->debug()->OnAfterCompile(script);
}
return result;
}
Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfoForStreamedScript(
Handle<Script> script, ParseInfo* parse_info, int source_length) {
Isolate* isolate = script->GetIsolate();
// TODO(titzer): increment the counters in caller.
isolate->counters()->total_load_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
LanguageMode language_mode = construct_language_mode(FLAG_use_strict);
parse_info->set_language_mode(
stricter_language_mode(parse_info->language_mode(), language_mode));
Handle<SharedFunctionInfo> result;
if (CompileToplevel(parse_info, isolate).ToHandle(&result)) {
isolate->debug()->OnAfterCompile(script);
}
return result;
}
Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfo(
FunctionLiteral* literal, Handle<Script> script, Isolate* isolate) {
// Precondition: code has been parsed and scopes have been analyzed.
MaybeHandle<SharedFunctionInfo> maybe_existing;
// Find any previously allocated shared function info for the given literal.
maybe_existing = script->FindSharedFunctionInfo(isolate, literal);
// If we found an existing shared function info, return it.
Handle<SharedFunctionInfo> existing;
if (maybe_existing.ToHandle(&existing)) {
DCHECK(!existing->is_toplevel());
return existing;
}
// Allocate a shared function info object which will be compiled lazily.
Handle<SharedFunctionInfo> result =
isolate->factory()->NewSharedFunctionInfoForLiteral(literal, script);
result->set_is_toplevel(false);
Scope* outer_scope = literal->scope()->GetOuterScopeWithContext();
if (outer_scope) {
result->set_outer_scope_info(*outer_scope->scope_info());
}
return result;
}
MaybeHandle<Code> Compiler::GetOptimizedCodeForOSR(Handle<JSFunction> function,
BailoutId osr_offset,
JavaScriptFrame* osr_frame) {
DCHECK(!osr_offset.IsNone());
DCHECK_NOT_NULL(osr_frame);
return GetOptimizedCode(function, ConcurrencyMode::kNotConcurrent, osr_offset,
osr_frame);
}
bool Compiler::FinalizeCompilationJob(CompilationJob* raw_job,
Isolate* isolate) {
// Take ownership of compilation job. Deleting job also tears down the zone.
std::unique_ptr<CompilationJob> job(raw_job);
if (job->compilation_info()->IsOptimizing()) {
VMState<COMPILER> state(isolate);
return FinalizeOptimizedCompilationJob(job.get(), isolate) ==
CompilationJob::SUCCEEDED;
} else {
VMState<BYTECODE_COMPILER> state(isolate);
return FinalizeUnoptimizedCompilationJob(job.get(), isolate) ==
CompilationJob::SUCCEEDED;
}
}
void Compiler::PostInstantiation(Handle<JSFunction> function,
PretenureFlag pretenure) {
Handle<SharedFunctionInfo> shared(function->shared());
if (FLAG_always_opt && shared->allows_lazy_compilation() &&
!shared->optimization_disabled() && !shared->HasAsmWasmData() &&
shared->is_compiled()) {
// TODO(mvstanton): pass pretenure flag to EnsureLiterals.
JSFunction::EnsureLiterals(function);
if (!function->IsOptimized()) {
// Only mark for optimization if we don't already have optimized code.
if (!function->HasOptimizedCode()) {
function->MarkForOptimization(ConcurrencyMode::kNotConcurrent);
}
}
}
if (shared->is_compiled() && !shared->HasAsmWasmData()) {
// TODO(mvstanton): pass pretenure flag to EnsureLiterals.
JSFunction::EnsureLiterals(function);
Code* code = function->feedback_vector()->optimized_code();
if (code != nullptr) {
// Caching of optimized code enabled and optimized code found.
DCHECK(!code->marked_for_deoptimization());
DCHECK(function->shared()->is_compiled());
function->set_code(code);
}
}
}
} // namespace internal
} // namespace v8