v8/src/feedback-vector.cc
Camillo Bruni a4af0ce633 [ic] Track the IC state change in FeedbackNexus::ConfigureMegamorphic
- This precents us from logging two ICEvents for a megamorphic miss that adds
  a new property
- We don't have to reset the profiler ticks anymore for this miss

The particular case for missing to add a new property happens ~1700 times in
the Speedometer Angular benchmark where we get an already internalized key
as property name.

Change-Id: I2362c3b7a66d9def1bc4295f6f1e64c96b25fe8a
Reviewed-on: https://chromium-review.googlesource.com/777259
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Cr-Commit-Position: refs/heads/master@{#49464}
2017-11-18 00:52:12 +00:00

1200 lines
39 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/feedback-vector.h"
#include "src/code-stubs.h"
#include "src/feedback-vector-inl.h"
#include "src/ic/ic-inl.h"
#include "src/objects.h"
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
template <typename Derived>
FeedbackSlot FeedbackVectorSpecBase<Derived>::AddSlot(FeedbackSlotKind kind) {
int slot = This()->slots();
int entries_per_slot = FeedbackMetadata::GetSlotSize(kind);
This()->append(kind);
for (int i = 1; i < entries_per_slot; i++) {
This()->append(FeedbackSlotKind::kInvalid);
}
return FeedbackSlot(slot);
}
template FeedbackSlot FeedbackVectorSpecBase<FeedbackVectorSpec>::AddSlot(
FeedbackSlotKind kind);
template FeedbackSlot FeedbackVectorSpecBase<StaticFeedbackVectorSpec>::AddSlot(
FeedbackSlotKind kind);
template <typename Derived>
FeedbackSlot FeedbackVectorSpecBase<Derived>::AddTypeProfileSlot() {
FeedbackSlot slot = AddSlot(FeedbackSlotKind::kTypeProfile);
CHECK_EQ(FeedbackVectorSpec::kTypeProfileSlotIndex,
FeedbackVector::GetIndex(slot));
return slot;
}
template FeedbackSlot
FeedbackVectorSpecBase<FeedbackVectorSpec>::AddTypeProfileSlot();
template FeedbackSlot
FeedbackVectorSpecBase<StaticFeedbackVectorSpec>::AddTypeProfileSlot();
bool FeedbackVectorSpec::HasTypeProfileSlot() const {
FeedbackSlot slot =
FeedbackVector::ToSlot(FeedbackVectorSpec::kTypeProfileSlotIndex);
if (slots() <= slot.ToInt()) {
return false;
}
return GetKind(slot) == FeedbackSlotKind::kTypeProfile;
}
static bool IsPropertyNameFeedback(Object* feedback) {
if (feedback->IsString()) return true;
if (!feedback->IsSymbol()) return false;
Symbol* symbol = Symbol::cast(feedback);
Heap* heap = symbol->GetHeap();
return symbol != heap->uninitialized_symbol() &&
symbol != heap->premonomorphic_symbol() &&
symbol != heap->megamorphic_symbol();
}
std::ostream& operator<<(std::ostream& os, FeedbackSlotKind kind) {
return os << FeedbackMetadata::Kind2String(kind);
}
FeedbackSlotKind FeedbackMetadata::GetKind(FeedbackSlot slot) const {
int index = VectorICComputer::index(kReservedIndexCount, slot.ToInt());
int data = Smi::ToInt(get(index));
return VectorICComputer::decode(data, slot.ToInt());
}
void FeedbackMetadata::SetKind(FeedbackSlot slot, FeedbackSlotKind kind) {
int index = VectorICComputer::index(kReservedIndexCount, slot.ToInt());
int data = Smi::ToInt(get(index));
int new_data = VectorICComputer::encode(data, slot.ToInt(), kind);
set(index, Smi::FromInt(new_data));
}
template Handle<FeedbackMetadata> FeedbackMetadata::New(
Isolate* isolate, const StaticFeedbackVectorSpec* spec);
template Handle<FeedbackMetadata> FeedbackMetadata::New(
Isolate* isolate, const FeedbackVectorSpec* spec);
// static
template <typename Spec>
Handle<FeedbackMetadata> FeedbackMetadata::New(Isolate* isolate,
const Spec* spec) {
Factory* factory = isolate->factory();
const int slot_count = spec->slots();
const int slot_kinds_length = VectorICComputer::word_count(slot_count);
const int length = slot_kinds_length + kReservedIndexCount;
if (length == kReservedIndexCount) {
return Handle<FeedbackMetadata>::cast(factory->empty_fixed_array());
}
#ifdef DEBUG
for (int i = 0; i < slot_count;) {
FeedbackSlotKind kind = spec->GetKind(FeedbackSlot(i));
int entry_size = FeedbackMetadata::GetSlotSize(kind);
for (int j = 1; j < entry_size; j++) {
FeedbackSlotKind kind = spec->GetKind(FeedbackSlot(i + j));
DCHECK_EQ(FeedbackSlotKind::kInvalid, kind);
}
i += entry_size;
}
#endif
Handle<FixedArray> array = factory->NewFixedArray(length, TENURED);
array->set(kSlotsCountIndex, Smi::FromInt(slot_count));
// Fill the bit-vector part with zeros.
for (int i = 0; i < slot_kinds_length; i++) {
array->set(kReservedIndexCount + i, Smi::kZero);
}
Handle<FeedbackMetadata> metadata = Handle<FeedbackMetadata>::cast(array);
for (int i = 0; i < slot_count; i++) {
FeedbackSlot slot(i);
FeedbackSlotKind kind = spec->GetKind(slot);
metadata->SetKind(slot, kind);
}
// It's important that the FeedbackMetadata have a COW map, since it's
// pointed to by both a SharedFunctionInfo and indirectly by closures through
// the FeedbackVector. The serializer uses the COW map type to decide
// this object belongs in the startup snapshot and not the partial
// snapshot(s).
metadata->set_map(isolate->heap()->fixed_cow_array_map());
return metadata;
}
bool FeedbackMetadata::SpecDiffersFrom(
const FeedbackVectorSpec* other_spec) const {
if (other_spec->slots() != slot_count()) {
return true;
}
int slots = slot_count();
for (int i = 0; i < slots;) {
FeedbackSlot slot(i);
FeedbackSlotKind kind = GetKind(slot);
int entry_size = FeedbackMetadata::GetSlotSize(kind);
if (kind != other_spec->GetKind(slot)) {
return true;
}
i += entry_size;
}
return false;
}
const char* FeedbackMetadata::Kind2String(FeedbackSlotKind kind) {
switch (kind) {
case FeedbackSlotKind::kInvalid:
return "Invalid";
case FeedbackSlotKind::kCall:
return "Call";
case FeedbackSlotKind::kLoadProperty:
return "LoadProperty";
case FeedbackSlotKind::kLoadGlobalInsideTypeof:
return "LoadGlobalInsideTypeof";
case FeedbackSlotKind::kLoadGlobalNotInsideTypeof:
return "LoadGlobalNotInsideTypeof";
case FeedbackSlotKind::kLoadKeyed:
return "LoadKeyed";
case FeedbackSlotKind::kStoreNamedSloppy:
return "StoreNamedSloppy";
case FeedbackSlotKind::kStoreNamedStrict:
return "StoreNamedStrict";
case FeedbackSlotKind::kStoreOwnNamed:
return "StoreOwnNamed";
case FeedbackSlotKind::kStoreGlobalSloppy:
return "StoreGlobalSloppy";
case FeedbackSlotKind::kStoreGlobalStrict:
return "StoreGlobalStrict";
case FeedbackSlotKind::kStoreKeyedSloppy:
return "StoreKeyedSloppy";
case FeedbackSlotKind::kStoreKeyedStrict:
return "StoreKeyedStrict";
case FeedbackSlotKind::kBinaryOp:
return "BinaryOp";
case FeedbackSlotKind::kCompareOp:
return "CompareOp";
case FeedbackSlotKind::kStoreDataPropertyInLiteral:
return "StoreDataPropertyInLiteral";
case FeedbackSlotKind::kCreateClosure:
return "kCreateClosure";
case FeedbackSlotKind::kLiteral:
return "Literal";
case FeedbackSlotKind::kTypeProfile:
return "TypeProfile";
case FeedbackSlotKind::kForIn:
return "ForIn";
case FeedbackSlotKind::kInstanceOf:
return "InstanceOf";
case FeedbackSlotKind::kKindsNumber:
break;
}
UNREACHABLE();
}
bool FeedbackMetadata::HasTypeProfileSlot() const {
FeedbackSlot slot =
FeedbackVector::ToSlot(FeedbackVectorSpec::kTypeProfileSlotIndex);
return slot.ToInt() < this->length() &&
GetKind(slot) == FeedbackSlotKind::kTypeProfile;
}
FeedbackSlotKind FeedbackVector::GetKind(FeedbackSlot slot) const {
DCHECK(!is_empty());
return metadata()->GetKind(slot);
}
FeedbackSlot FeedbackVector::GetTypeProfileSlot() const {
DCHECK(metadata()->HasTypeProfileSlot());
FeedbackSlot slot =
FeedbackVector::ToSlot(FeedbackVectorSpec::kTypeProfileSlotIndex);
DCHECK_EQ(FeedbackSlotKind::kTypeProfile, GetKind(slot));
return slot;
}
// static
Handle<FeedbackVector> FeedbackVector::New(Isolate* isolate,
Handle<SharedFunctionInfo> shared) {
Factory* factory = isolate->factory();
const int slot_count = shared->feedback_metadata()->slot_count();
Handle<FeedbackVector> vector = factory->NewFeedbackVector(shared, TENURED);
DCHECK_EQ(vector->length(), slot_count);
DCHECK_EQ(vector->shared_function_info(), *shared);
DCHECK_EQ(vector->optimized_code_cell(),
Smi::FromEnum(OptimizationMarker::kNone));
DCHECK_EQ(vector->invocation_count(), 0);
DCHECK_EQ(vector->profiler_ticks(), 0);
DCHECK_EQ(vector->deopt_count(), 0);
// Ensure we can skip the write barrier
Handle<Object> uninitialized_sentinel = UninitializedSentinel(isolate);
DCHECK_EQ(isolate->heap()->uninitialized_symbol(), *uninitialized_sentinel);
Handle<Oddball> undefined_value = factory->undefined_value();
for (int i = 0; i < slot_count;) {
FeedbackSlot slot(i);
FeedbackSlotKind kind = shared->feedback_metadata()->GetKind(slot);
int index = FeedbackVector::GetIndex(slot);
int entry_size = FeedbackMetadata::GetSlotSize(kind);
Object* extra_value = *uninitialized_sentinel;
switch (kind) {
case FeedbackSlotKind::kLoadGlobalInsideTypeof:
case FeedbackSlotKind::kLoadGlobalNotInsideTypeof:
vector->set(index, isolate->heap()->empty_weak_cell(),
SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::kForIn:
case FeedbackSlotKind::kCompareOp:
case FeedbackSlotKind::kBinaryOp:
vector->set(index, Smi::kZero, SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::kCreateClosure: {
Handle<Cell> cell = factory->NewNoClosuresCell(undefined_value);
vector->set(index, *cell);
break;
}
case FeedbackSlotKind::kLiteral:
vector->set(index, Smi::kZero, SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::kCall:
vector->set(index, *uninitialized_sentinel, SKIP_WRITE_BARRIER);
extra_value = Smi::kZero;
break;
case FeedbackSlotKind::kLoadProperty:
case FeedbackSlotKind::kLoadKeyed:
case FeedbackSlotKind::kStoreNamedSloppy:
case FeedbackSlotKind::kStoreNamedStrict:
case FeedbackSlotKind::kStoreOwnNamed:
case FeedbackSlotKind::kStoreGlobalSloppy:
case FeedbackSlotKind::kStoreGlobalStrict:
case FeedbackSlotKind::kStoreKeyedSloppy:
case FeedbackSlotKind::kStoreKeyedStrict:
case FeedbackSlotKind::kStoreDataPropertyInLiteral:
case FeedbackSlotKind::kTypeProfile:
case FeedbackSlotKind::kInstanceOf:
vector->set(index, *uninitialized_sentinel, SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::kInvalid:
case FeedbackSlotKind::kKindsNumber:
UNREACHABLE();
break;
}
for (int j = 1; j < entry_size; j++) {
vector->set(index + j, extra_value, SKIP_WRITE_BARRIER);
}
i += entry_size;
}
Handle<FeedbackVector> result = Handle<FeedbackVector>::cast(vector);
if (!isolate->is_best_effort_code_coverage() ||
isolate->is_collecting_type_profile()) {
AddToVectorsForProfilingTools(isolate, result);
}
return result;
}
// static
Handle<FeedbackVector> FeedbackVector::Copy(Isolate* isolate,
Handle<FeedbackVector> vector) {
Handle<FeedbackVector> result;
result = Handle<FeedbackVector>::cast(
isolate->factory()->CopyFixedArray(Handle<FixedArray>::cast(vector)));
if (!isolate->is_best_effort_code_coverage() ||
isolate->is_collecting_type_profile()) {
AddToVectorsForProfilingTools(isolate, result);
}
return result;
}
// static
void FeedbackVector::AddToVectorsForProfilingTools(
Isolate* isolate, Handle<FeedbackVector> vector) {
DCHECK(!isolate->is_best_effort_code_coverage() ||
isolate->is_collecting_type_profile());
if (!vector->shared_function_info()->IsSubjectToDebugging()) return;
Handle<ArrayList> list = Handle<ArrayList>::cast(
isolate->factory()->feedback_vectors_for_profiling_tools());
list = ArrayList::Add(list, vector);
isolate->SetFeedbackVectorsForProfilingTools(*list);
}
// static
void FeedbackVector::SetOptimizedCode(Handle<FeedbackVector> vector,
Handle<Code> code) {
DCHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
Factory* factory = vector->GetIsolate()->factory();
Handle<WeakCell> cell = factory->NewWeakCell(code);
vector->set_optimized_code_cell(*cell);
}
void FeedbackVector::SetOptimizationMarker(OptimizationMarker marker) {
set_optimized_code_cell(Smi::FromEnum(marker));
}
void FeedbackVector::ClearOptimizedCode() {
set_optimized_code_cell(Smi::FromEnum(OptimizationMarker::kNone));
}
void FeedbackVector::EvictOptimizedCodeMarkedForDeoptimization(
SharedFunctionInfo* shared, const char* reason) {
Object* slot = optimized_code_cell();
if (slot->IsSmi()) return;
WeakCell* cell = WeakCell::cast(slot);
if (cell->cleared()) {
ClearOptimizedCode();
return;
}
Code* code = Code::cast(cell->value());
if (code->marked_for_deoptimization()) {
if (FLAG_trace_deopt) {
PrintF("[evicting optimizing code marked for deoptimization (%s) for ",
reason);
shared->ShortPrint();
PrintF("]\n");
}
if (!code->deopt_already_counted()) {
increment_deopt_count();
code->set_deopt_already_counted(true);
}
ClearOptimizedCode();
}
}
bool FeedbackVector::ClearSlots(Isolate* isolate) {
Object* uninitialized_sentinel =
FeedbackVector::RawUninitializedSentinel(isolate);
bool feedback_updated = false;
FeedbackMetadataIterator iter(metadata());
while (iter.HasNext()) {
FeedbackSlot slot = iter.Next();
FeedbackSlotKind kind = iter.kind();
Object* obj = Get(slot);
if (obj != uninitialized_sentinel) {
switch (kind) {
case FeedbackSlotKind::kCall: {
CallICNexus nexus(this, slot);
if (!nexus.IsCleared()) {
nexus.Clear();
feedback_updated = true;
}
break;
}
case FeedbackSlotKind::kLoadProperty: {
LoadICNexus nexus(this, slot);
if (!nexus.IsCleared()) {
nexus.Clear();
feedback_updated = true;
}
break;
}
case FeedbackSlotKind::kLoadGlobalInsideTypeof:
case FeedbackSlotKind::kLoadGlobalNotInsideTypeof: {
LoadGlobalICNexus nexus(this, slot);
if (!nexus.IsCleared()) {
nexus.Clear();
feedback_updated = true;
}
break;
}
case FeedbackSlotKind::kLoadKeyed: {
KeyedLoadICNexus nexus(this, slot);
if (!nexus.IsCleared()) {
nexus.Clear();
feedback_updated = true;
}
break;
}
case FeedbackSlotKind::kStoreNamedSloppy:
case FeedbackSlotKind::kStoreNamedStrict:
case FeedbackSlotKind::kStoreOwnNamed:
case FeedbackSlotKind::kStoreGlobalSloppy:
case FeedbackSlotKind::kStoreGlobalStrict: {
StoreICNexus nexus(this, slot);
if (!nexus.IsCleared()) {
nexus.Clear();
feedback_updated = true;
}
break;
}
case FeedbackSlotKind::kStoreKeyedSloppy:
case FeedbackSlotKind::kStoreKeyedStrict: {
KeyedStoreICNexus nexus(this, slot);
if (!nexus.IsCleared()) {
nexus.Clear();
feedback_updated = true;
}
break;
}
case FeedbackSlotKind::kForIn:
case FeedbackSlotKind::kBinaryOp:
case FeedbackSlotKind::kCompareOp: {
DCHECK(Get(slot)->IsSmi());
// don't clear these smi slots.
// Set(slot, Smi::kZero);
break;
}
case FeedbackSlotKind::kInstanceOf: {
InstanceOfICNexus nexus(this, slot);
if (!nexus.IsCleared()) {
nexus.Clear();
feedback_updated = true;
}
break;
}
case FeedbackSlotKind::kCreateClosure:
case FeedbackSlotKind::kTypeProfile: {
break;
}
case FeedbackSlotKind::kLiteral: {
Set(slot, Smi::kZero, SKIP_WRITE_BARRIER);
feedback_updated = true;
break;
}
case FeedbackSlotKind::kStoreDataPropertyInLiteral: {
StoreDataPropertyInLiteralICNexus nexus(this, slot);
if (!nexus.IsCleared()) {
nexus.Clear();
feedback_updated = true;
}
break;
}
case FeedbackSlotKind::kInvalid:
case FeedbackSlotKind::kKindsNumber:
UNREACHABLE();
break;
}
}
}
return feedback_updated;
}
Handle<FixedArray> FeedbackNexus::EnsureArrayOfSize(int length) {
Isolate* isolate = GetIsolate();
Handle<Object> feedback = handle(GetFeedback(), isolate);
if (!feedback->IsFixedArray() ||
FixedArray::cast(*feedback)->length() != length) {
Handle<FixedArray> array = isolate->factory()->NewFixedArray(length);
SetFeedback(*array);
return array;
}
return Handle<FixedArray>::cast(feedback);
}
Handle<FixedArray> FeedbackNexus::EnsureExtraArrayOfSize(int length) {
Isolate* isolate = GetIsolate();
Handle<Object> feedback_extra = handle(GetFeedbackExtra(), isolate);
if (!feedback_extra->IsFixedArray() ||
FixedArray::cast(*feedback_extra)->length() != length) {
Handle<FixedArray> array = isolate->factory()->NewFixedArray(length);
SetFeedbackExtra(*array);
return array;
}
return Handle<FixedArray>::cast(feedback_extra);
}
void FeedbackNexus::ConfigureUninitialized() {
SetFeedback(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
}
void FeedbackNexus::ConfigurePremonomorphic() {
SetFeedback(*FeedbackVector::PremonomorphicSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
}
bool FeedbackNexus::ConfigureMegamorphic(IcCheckType property_type) {
DisallowHeapAllocation no_gc;
Isolate* isolate = GetIsolate();
bool changed = false;
Symbol* sentinel = *FeedbackVector::MegamorphicSentinel(isolate);
if (GetFeedback() != sentinel) {
SetFeedback(sentinel, SKIP_WRITE_BARRIER);
changed = true;
}
Smi* extra = Smi::FromInt(static_cast<int>(property_type));
if (changed || GetFeedbackExtra() != extra) {
SetFeedbackExtra(extra, SKIP_WRITE_BARRIER);
changed = true;
}
return changed;
}
InlineCacheState LoadICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState LoadGlobalICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
Object* extra = GetFeedbackExtra();
if (!WeakCell::cast(feedback)->cleared() ||
extra != *FeedbackVector::UninitializedSentinel(isolate)) {
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState KeyedLoadICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
} else if (feedback->IsName()) {
Object* extra = GetFeedbackExtra();
FixedArray* extra_array = FixedArray::cast(extra);
return extra_array->length() > 2 ? POLYMORPHIC : MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState StoreICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState KeyedStoreICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
} else if (feedback->IsName()) {
Object* extra = GetFeedbackExtra();
FixedArray* extra_array = FixedArray::cast(extra);
return extra_array->length() > 2 ? POLYMORPHIC : MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState CallICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
DCHECK(GetFeedbackExtra() ==
*FeedbackVector::UninitializedSentinel(isolate) ||
GetFeedbackExtra()->IsSmi());
if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return GENERIC;
} else if (feedback->IsAllocationSite() || feedback->IsWeakCell()) {
return MONOMORPHIC;
}
CHECK(feedback == *FeedbackVector::UninitializedSentinel(isolate));
return UNINITIALIZED;
}
int CallICNexus::ExtractCallCount() {
Object* call_count = GetFeedbackExtra();
CHECK(call_count->IsSmi());
int value = Smi::ToInt(call_count);
return value;
}
float CallICNexus::ComputeCallFrequency() {
double const invocation_count = vector()->invocation_count();
double const call_count = ExtractCallCount();
if (invocation_count == 0) {
// Prevent division by 0.
return 0.0f;
}
return static_cast<float>(call_count / invocation_count);
}
void CallICNexus::ConfigureUninitialized() {
Isolate* isolate = GetIsolate();
SetFeedback(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(Smi::kZero, SKIP_WRITE_BARRIER);
}
void LoadGlobalICNexus::ConfigureUninitialized() {
Isolate* isolate = GetIsolate();
SetFeedback(isolate->heap()->empty_weak_cell(), SKIP_WRITE_BARRIER);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void LoadGlobalICNexus::ConfigurePropertyCellMode(Handle<PropertyCell> cell) {
Isolate* isolate = GetIsolate();
SetFeedback(*isolate->factory()->NewWeakCell(cell));
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void LoadGlobalICNexus::ConfigureHandlerMode(Handle<Object> handler) {
SetFeedback(GetIsolate()->heap()->empty_weak_cell());
SetFeedbackExtra(*handler);
}
void FeedbackNexus::ConfigureMonomorphic(Handle<Name> name,
Handle<Map> receiver_map,
Handle<Object> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
if (name.is_null()) {
SetFeedback(*cell);
SetFeedbackExtra(*handler);
} else {
Handle<FixedArray> array = EnsureExtraArrayOfSize(2);
SetFeedback(*name);
array->set(0, *cell);
array->set(1, *handler);
}
}
void FeedbackNexus::ConfigurePolymorphic(Handle<Name> name,
MapHandles const& maps,
ObjectHandles* handlers) {
int receiver_count = static_cast<int>(maps.size());
DCHECK_GT(receiver_count, 1);
Handle<FixedArray> array;
if (name.is_null()) {
array = EnsureArrayOfSize(receiver_count * 2);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
} else {
array = EnsureExtraArrayOfSize(receiver_count * 2);
SetFeedback(*name);
}
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map = maps[current];
Handle<WeakCell> cell = Map::WeakCellForMap(map);
array->set(current * 2, *cell);
array->set(current * 2 + 1, *handlers->at(current));
}
}
int FeedbackNexus::ExtractMaps(MapHandles* maps) const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
int found = 0;
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
const int increment = 2;
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
if (!cell->cleared()) {
Map* map = Map::cast(cell->value());
maps->push_back(handle(map, isolate));
found++;
}
}
return found;
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Map* map = Map::cast(cell->value());
maps->push_back(handle(map, isolate));
return 1;
}
}
return 0;
}
MaybeHandle<Object> FeedbackNexus::FindHandlerForMap(Handle<Map> map) const {
Object* feedback = GetFeedback();
Isolate* isolate = GetIsolate();
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
const int increment = 2;
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
if (!cell->cleared()) {
Map* array_map = Map::cast(cell->value());
if (array_map == *map) {
Object* code = array->get(i + increment - 1);
DCHECK(IC::IsHandler(code));
return handle(code, isolate);
}
}
}
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Map* cell_map = Map::cast(cell->value());
if (cell_map == *map) {
Object* code = GetFeedbackExtra();
DCHECK(IC::IsHandler(code));
return handle(code, isolate);
}
}
}
return MaybeHandle<Code>();
}
bool FeedbackNexus::FindHandlers(ObjectHandles* code_list, int length) const {
Object* feedback = GetFeedback();
Isolate* isolate = GetIsolate();
int count = 0;
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
const int increment = 2;
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
// Be sure to skip handlers whose maps have been cleared.
if (!cell->cleared()) {
Object* code = array->get(i + increment - 1);
DCHECK(IC::IsHandler(code));
code_list->push_back(handle(code, isolate));
count++;
}
}
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Object* code = GetFeedbackExtra();
DCHECK(IC::IsHandler(code));
code_list->push_back(handle(code, isolate));
count++;
}
}
return count == length;
}
Name* KeyedLoadICNexus::FindFirstName() const {
Object* feedback = GetFeedback();
if (IsPropertyNameFeedback(feedback)) {
return Name::cast(feedback);
}
return nullptr;
}
Name* KeyedStoreICNexus::FindFirstName() const {
Object* feedback = GetFeedback();
if (IsPropertyNameFeedback(feedback)) {
return Name::cast(feedback);
}
return nullptr;
}
KeyedAccessLoadMode KeyedLoadICNexus::GetKeyedAccessLoadMode() const {
MapHandles maps;
ObjectHandles handlers;
if (GetKeyType() == PROPERTY) return STANDARD_LOAD;
ExtractMaps(&maps);
FindHandlers(&handlers, static_cast<int>(maps.size()));
for (Handle<Object> const& handler : handlers) {
KeyedAccessLoadMode mode = LoadHandler::GetKeyedAccessLoadMode(*handler);
if (mode != STANDARD_LOAD) return mode;
}
return STANDARD_LOAD;
}
KeyedAccessStoreMode KeyedStoreICNexus::GetKeyedAccessStoreMode() const {
KeyedAccessStoreMode mode = STANDARD_STORE;
MapHandles maps;
ObjectHandles handlers;
if (GetKeyType() == PROPERTY) return mode;
ExtractMaps(&maps);
FindHandlers(&handlers, static_cast<int>(maps.size()));
for (const Handle<Object>& maybe_code_handler : handlers) {
// The first handler that isn't the slow handler will have the bits we need.
Handle<Code> handler;
if (maybe_code_handler->IsTuple3()) {
// Elements transition.
Handle<Tuple3> data_handler = Handle<Tuple3>::cast(maybe_code_handler);
handler = handle(Code::cast(data_handler->value2()));
} else if (maybe_code_handler->IsTuple2()) {
// Element store with prototype chain check.
Handle<Tuple2> data_handler = Handle<Tuple2>::cast(maybe_code_handler);
handler = handle(Code::cast(data_handler->value2()));
} else if (maybe_code_handler->IsSmi()) {
// Skip proxy handlers.
DCHECK_EQ(*maybe_code_handler, *StoreHandler::StoreProxy(GetIsolate()));
continue;
} else {
// Element store without prototype chain check.
handler = Handle<Code>::cast(maybe_code_handler);
if (handler->is_builtin()) continue;
}
CodeStub::Major major_key = CodeStub::MajorKeyFromKey(handler->stub_key());
uint32_t minor_key = CodeStub::MinorKeyFromKey(handler->stub_key());
CHECK(major_key == CodeStub::KeyedStoreSloppyArguments ||
major_key == CodeStub::StoreFastElement ||
major_key == CodeStub::StoreSlowElement ||
major_key == CodeStub::ElementsTransitionAndStore ||
major_key == CodeStub::NoCache);
if (major_key != CodeStub::NoCache) {
mode = CommonStoreModeBits::decode(minor_key);
break;
}
}
return mode;
}
IcCheckType KeyedLoadICNexus::GetKeyType() const {
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::MegamorphicSentinel(GetIsolate())) {
return static_cast<IcCheckType>(Smi::ToInt(GetFeedbackExtra()));
}
return IsPropertyNameFeedback(feedback) ? PROPERTY : ELEMENT;
}
IcCheckType KeyedStoreICNexus::GetKeyType() const {
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::MegamorphicSentinel(GetIsolate())) {
return static_cast<IcCheckType>(Smi::ToInt(GetFeedbackExtra()));
}
return IsPropertyNameFeedback(feedback) ? PROPERTY : ELEMENT;
}
InlineCacheState BinaryOpICNexus::StateFromFeedback() const {
BinaryOperationHint hint = GetBinaryOperationFeedback();
if (hint == BinaryOperationHint::kNone) {
return UNINITIALIZED;
} else if (hint == BinaryOperationHint::kAny) {
return GENERIC;
}
return MONOMORPHIC;
}
InlineCacheState CompareICNexus::StateFromFeedback() const {
CompareOperationHint hint = GetCompareOperationFeedback();
if (hint == CompareOperationHint::kNone) {
return UNINITIALIZED;
} else if (hint == CompareOperationHint::kAny) {
return GENERIC;
}
return MONOMORPHIC;
}
BinaryOperationHint BinaryOpICNexus::GetBinaryOperationFeedback() const {
int feedback = Smi::ToInt(GetFeedback());
return BinaryOperationHintFromFeedback(feedback);
}
CompareOperationHint CompareICNexus::GetCompareOperationFeedback() const {
int feedback = Smi::ToInt(GetFeedback());
return CompareOperationHintFromFeedback(feedback);
}
InlineCacheState ForInICNexus::StateFromFeedback() const {
ForInHint hint = GetForInFeedback();
if (hint == ForInHint::kNone) {
return UNINITIALIZED;
} else if (hint == ForInHint::kAny) {
return GENERIC;
}
return MONOMORPHIC;
}
ForInHint ForInICNexus::GetForInFeedback() const {
int feedback = Smi::ToInt(GetFeedback());
return ForInHintFromFeedback(feedback);
}
void InstanceOfICNexus::ConfigureUninitialized() {
SetFeedback(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
}
InlineCacheState InstanceOfICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
}
return MONOMORPHIC;
}
MaybeHandle<JSObject> InstanceOfICNexus::GetConstructorFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback->IsWeakCell() && !WeakCell::cast(feedback)->cleared()) {
return handle(JSObject::cast(WeakCell::cast(feedback)->value()), isolate);
}
return MaybeHandle<JSObject>();
}
InlineCacheState StoreDataPropertyInLiteralICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return MEGAMORPHIC;
}
void StoreDataPropertyInLiteralICNexus::ConfigureMonomorphic(
Handle<Name> name, Handle<Map> receiver_map) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
SetFeedback(*cell);
SetFeedbackExtra(*name);
}
InlineCacheState CollectTypeProfileNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* const feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
}
return MONOMORPHIC;
}
namespace {
bool InList(Handle<ArrayList> types, Handle<String> type) {
for (int i = 0; i < types->Length(); i++) {
Object* obj = types->Get(i);
if (String::cast(obj)->Equals(*type)) {
return true;
}
}
return false;
}
} // anonymous namespace
void CollectTypeProfileNexus::Collect(Handle<String> type, int position) {
DCHECK_GE(position, 0);
Isolate* isolate = GetIsolate();
Object* const feedback = GetFeedback();
// Map source position to collection of types
Handle<NumberDictionary> types;
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
types = NumberDictionary::New(isolate, 1);
} else {
types = handle(NumberDictionary::cast(feedback));
}
Handle<ArrayList> position_specific_types;
int entry = types->FindEntry(position);
if (entry == NumberDictionary::kNotFound) {
position_specific_types = ArrayList::New(isolate, 1);
types = NumberDictionary::Set(
types, position, ArrayList::Add(position_specific_types, type));
} else {
DCHECK(types->ValueAt(entry)->IsArrayList());
position_specific_types = handle(ArrayList::cast(types->ValueAt(entry)));
if (!InList(position_specific_types, type)) { // Add type
types = NumberDictionary::Set(
types, position, ArrayList::Add(position_specific_types, type));
}
}
SetFeedback(*types);
}
void CollectTypeProfileNexus::Clear() {
SetFeedback(*FeedbackVector::UninitializedSentinel(GetIsolate()));
}
std::vector<int> CollectTypeProfileNexus::GetSourcePositions() const {
std::vector<int> source_positions;
Isolate* isolate = GetIsolate();
Object* const feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return source_positions;
}
Handle<NumberDictionary> types =
Handle<NumberDictionary>(NumberDictionary::cast(feedback), isolate);
for (int index = NumberDictionary::kElementsStartIndex;
index < types->length(); index += NumberDictionary::kEntrySize) {
int key_index = index + NumberDictionary::kEntryKeyIndex;
Object* key = types->get(key_index);
if (key->IsSmi()) {
int position = Smi::cast(key)->value();
source_positions.push_back(position);
}
}
return source_positions;
}
std::vector<Handle<String>> CollectTypeProfileNexus::GetTypesForSourcePositions(
uint32_t position) const {
Isolate* isolate = GetIsolate();
Object* const feedback = GetFeedback();
std::vector<Handle<String>> types_for_position;
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return types_for_position;
}
Handle<NumberDictionary> types =
Handle<NumberDictionary>(NumberDictionary::cast(feedback), isolate);
int entry = types->FindEntry(position);
if (entry == NumberDictionary::kNotFound) {
return types_for_position;
}
DCHECK(types->ValueAt(entry)->IsArrayList());
Handle<ArrayList> position_specific_types =
Handle<ArrayList>(ArrayList::cast(types->ValueAt(entry)));
for (int i = 0; i < position_specific_types->Length(); i++) {
Object* t = position_specific_types->Get(i);
types_for_position.push_back(Handle<String>(String::cast(t), isolate));
}
return types_for_position;
}
namespace {
Handle<JSObject> ConvertToJSObject(Isolate* isolate,
Handle<NumberDictionary> feedback) {
Handle<JSObject> type_profile =
isolate->factory()->NewJSObject(isolate->object_function());
for (int index = NumberDictionary::kElementsStartIndex;
index < feedback->length(); index += NumberDictionary::kEntrySize) {
int key_index = index + NumberDictionary::kEntryKeyIndex;
Object* key = feedback->get(key_index);
if (key->IsSmi()) {
int value_index = index + NumberDictionary::kEntryValueIndex;
Handle<ArrayList> position_specific_types(
ArrayList::cast(feedback->get(value_index)));
int position = Smi::ToInt(key);
JSObject::AddDataElement(
type_profile, position,
isolate->factory()->NewJSArrayWithElements(
ArrayList::Elements(position_specific_types)),
PropertyAttributes::NONE)
.ToHandleChecked();
}
}
return type_profile;
}
} // namespace
JSObject* CollectTypeProfileNexus::GetTypeProfile() const {
Isolate* isolate = GetIsolate();
Object* const feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return *isolate->factory()->NewJSObject(isolate->object_function());
}
return *ConvertToJSObject(isolate, handle(NumberDictionary::cast(feedback)));
}
} // namespace internal
} // namespace v8