v8/src/compiler/code-stub-assembler.cc
epertoso 165b68e227 [turbofan] Byte and word memory operands in x64 cmp/test. Fixes arithmetic_op_8 in assembler-x64.cc
Currently, if the size of two cmp or test operands is a byte or a word, we sign-extend or zero-extend each of them into a 32-bit register before doing the comparison, even when the conditions for the use of a memory operand are met.

This CL makes it possible to load only one of them into a register and address the other as a memory operand.

Meanwhile, comparisons between Uint8 values in the string relational comparison stubs are done with Uint32LessThan (previously we were always zero-extending the byte to a 32-bit value, so signed comparison was alright).

Found that Assembler::arithmetic_op_8(byte, Register, const Operand&) wasn't taking the Operand's rex_ field into account, so I fixed that too.

BUG=

Review URL: https://codereview.chromium.org/1780193003

Cr-Commit-Position: refs/heads/master@{#34862}
2016-03-17 14:23:53 +00:00

982 lines
36 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/code-stub-assembler.h"
#include <ostream>
#include "src/code-factory.h"
#include "src/compiler/graph.h"
#include "src/compiler/instruction-selector.h"
#include "src/compiler/linkage.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/raw-machine-assembler.h"
#include "src/compiler/schedule.h"
#include "src/frames.h"
#include "src/interface-descriptors.h"
#include "src/interpreter/bytecodes.h"
#include "src/machine-type.h"
#include "src/macro-assembler.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
namespace compiler {
CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
const CallInterfaceDescriptor& descriptor,
Code::Flags flags, const char* name,
size_t result_size)
: CodeStubAssembler(
isolate, zone,
Linkage::GetStubCallDescriptor(
isolate, zone, descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kNoFlags, Operator::kNoProperties,
MachineType::AnyTagged(), result_size),
flags, name) {}
CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
int parameter_count, Code::Flags flags,
const char* name)
: CodeStubAssembler(isolate, zone, Linkage::GetJSCallDescriptor(
zone, false, parameter_count,
CallDescriptor::kNoFlags),
flags, name) {}
CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
CallDescriptor* call_descriptor,
Code::Flags flags, const char* name)
: raw_assembler_(new RawMachineAssembler(isolate, new (zone) Graph(zone),
call_descriptor)),
flags_(flags),
name_(name),
code_generated_(false),
variables_(zone) {}
CodeStubAssembler::~CodeStubAssembler() {}
void CodeStubAssembler::CallPrologue() {}
void CodeStubAssembler::CallEpilogue() {}
Handle<Code> CodeStubAssembler::GenerateCode() {
DCHECK(!code_generated_);
Schedule* schedule = raw_assembler_->Export();
Handle<Code> code = Pipeline::GenerateCodeForCodeStub(
isolate(), raw_assembler_->call_descriptor(), graph(), schedule, flags_,
name_);
code_generated_ = true;
return code;
}
Node* CodeStubAssembler::Int32Constant(int value) {
return raw_assembler_->Int32Constant(value);
}
Node* CodeStubAssembler::IntPtrConstant(intptr_t value) {
return raw_assembler_->IntPtrConstant(value);
}
Node* CodeStubAssembler::NumberConstant(double value) {
return raw_assembler_->NumberConstant(value);
}
Node* CodeStubAssembler::SmiConstant(Smi* value) {
return IntPtrConstant(bit_cast<intptr_t>(value));
}
Node* CodeStubAssembler::HeapConstant(Handle<HeapObject> object) {
return raw_assembler_->HeapConstant(object);
}
Node* CodeStubAssembler::BooleanConstant(bool value) {
return raw_assembler_->BooleanConstant(value);
}
Node* CodeStubAssembler::ExternalConstant(ExternalReference address) {
return raw_assembler_->ExternalConstant(address);
}
Node* CodeStubAssembler::Float64Constant(double value) {
return raw_assembler_->Float64Constant(value);
}
Node* CodeStubAssembler::BooleanMapConstant() {
return HeapConstant(isolate()->factory()->boolean_map());
}
Node* CodeStubAssembler::HeapNumberMapConstant() {
return HeapConstant(isolate()->factory()->heap_number_map());
}
Node* CodeStubAssembler::NullConstant() {
return LoadRoot(Heap::kNullValueRootIndex);
}
Node* CodeStubAssembler::UndefinedConstant() {
return LoadRoot(Heap::kUndefinedValueRootIndex);
}
Node* CodeStubAssembler::Parameter(int value) {
return raw_assembler_->Parameter(value);
}
void CodeStubAssembler::Return(Node* value) {
return raw_assembler_->Return(value);
}
void CodeStubAssembler::Bind(CodeStubAssembler::Label* label) {
return label->Bind();
}
Node* CodeStubAssembler::LoadFramePointer() {
return raw_assembler_->LoadFramePointer();
}
Node* CodeStubAssembler::LoadParentFramePointer() {
return raw_assembler_->LoadParentFramePointer();
}
Node* CodeStubAssembler::LoadStackPointer() {
return raw_assembler_->LoadStackPointer();
}
Node* CodeStubAssembler::SmiShiftBitsConstant() {
return IntPtrConstant(kSmiShiftSize + kSmiTagSize);
}
Node* CodeStubAssembler::SmiTag(Node* value) {
return raw_assembler_->WordShl(value, SmiShiftBitsConstant());
}
Node* CodeStubAssembler::SmiUntag(Node* value) {
return raw_assembler_->WordSar(value, SmiShiftBitsConstant());
}
Node* CodeStubAssembler::SmiToInt32(Node* value) {
Node* result = raw_assembler_->WordSar(value, SmiShiftBitsConstant());
if (raw_assembler_->machine()->Is64()) {
result = raw_assembler_->TruncateInt64ToInt32(result);
}
return result;
}
Node* CodeStubAssembler::SmiToFloat64(Node* value) {
return ChangeInt32ToFloat64(SmiUntag(value));
}
Node* CodeStubAssembler::SmiAdd(Node* a, Node* b) { return IntPtrAdd(a, b); }
Node* CodeStubAssembler::SmiEqual(Node* a, Node* b) { return WordEqual(a, b); }
Node* CodeStubAssembler::SmiLessThan(Node* a, Node* b) {
return IntPtrLessThan(a, b);
}
Node* CodeStubAssembler::SmiLessThanOrEqual(Node* a, Node* b) {
return IntPtrLessThanOrEqual(a, b);
}
Node* CodeStubAssembler::SmiMin(Node* a, Node* b) {
// TODO(bmeurer): Consider using Select once available.
Variable min(this, MachineRepresentation::kTagged);
Label if_a(this), if_b(this), join(this);
BranchIfSmiLessThan(a, b, &if_a, &if_b);
Bind(&if_a);
min.Bind(a);
Goto(&join);
Bind(&if_b);
min.Bind(b);
Goto(&join);
Bind(&join);
return min.value();
}
#define DEFINE_CODE_STUB_ASSEMBER_BINARY_OP(name) \
Node* CodeStubAssembler::name(Node* a, Node* b) { \
return raw_assembler_->name(a, b); \
}
CODE_STUB_ASSEMBLER_BINARY_OP_LIST(DEFINE_CODE_STUB_ASSEMBER_BINARY_OP)
#undef DEFINE_CODE_STUB_ASSEMBER_BINARY_OP
Node* CodeStubAssembler::WordShl(Node* value, int shift) {
return raw_assembler_->WordShl(value, IntPtrConstant(shift));
}
#define DEFINE_CODE_STUB_ASSEMBER_UNARY_OP(name) \
Node* CodeStubAssembler::name(Node* a) { return raw_assembler_->name(a); }
CODE_STUB_ASSEMBLER_UNARY_OP_LIST(DEFINE_CODE_STUB_ASSEMBER_UNARY_OP)
#undef DEFINE_CODE_STUB_ASSEMBER_UNARY_OP
Node* CodeStubAssembler::WordIsSmi(Node* a) {
return WordEqual(raw_assembler_->WordAnd(a, IntPtrConstant(kSmiTagMask)),
IntPtrConstant(0));
}
Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset,
MachineType rep) {
return raw_assembler_->Load(rep, buffer, IntPtrConstant(offset));
}
Node* CodeStubAssembler::LoadObjectField(Node* object, int offset,
MachineType rep) {
return raw_assembler_->Load(rep, object,
IntPtrConstant(offset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) {
return Load(MachineType::Float64(), object,
IntPtrConstant(HeapNumber::kValueOffset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadMapBitField(Node* map) {
return Load(MachineType::Uint8(), map,
IntPtrConstant(Map::kBitFieldOffset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadMapInstanceType(Node* map) {
return Load(MachineType::Uint8(), map,
IntPtrConstant(Map::kInstanceTypeOffset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadFixedArrayElementSmiIndex(Node* object,
Node* smi_index,
int additional_offset) {
int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
Node* header_size = IntPtrConstant(additional_offset +
FixedArray::kHeaderSize - kHeapObjectTag);
Node* scaled_index =
(kSmiShiftBits > kPointerSizeLog2)
? WordSar(smi_index, IntPtrConstant(kSmiShiftBits - kPointerSizeLog2))
: WordShl(smi_index,
IntPtrConstant(kPointerSizeLog2 - kSmiShiftBits));
Node* offset = IntPtrAdd(scaled_index, header_size);
return Load(MachineType::AnyTagged(), object, offset);
}
Node* CodeStubAssembler::LoadFixedArrayElementConstantIndex(Node* object,
int index) {
Node* offset = IntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag +
index * kPointerSize);
return raw_assembler_->Load(MachineType::AnyTagged(), object, offset);
}
Node* CodeStubAssembler::StoreFixedArrayElementNoWriteBarrier(Node* object,
Node* index,
Node* value) {
Node* offset =
IntPtrAdd(WordShl(index, IntPtrConstant(kPointerSizeLog2)),
IntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag));
return StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset,
value);
}
Node* CodeStubAssembler::LoadRoot(Heap::RootListIndex root_index) {
if (isolate()->heap()->RootCanBeTreatedAsConstant(root_index)) {
Handle<Object> root = isolate()->heap()->root_handle(root_index);
if (root->IsSmi()) {
return SmiConstant(Smi::cast(*root));
} else {
return HeapConstant(Handle<HeapObject>::cast(root));
}
}
compiler::Node* roots_array_start =
ExternalConstant(ExternalReference::roots_array_start(isolate()));
USE(roots_array_start);
// TODO(danno): Implement thee root-access case where the root is not constant
// and must be loaded from the root array.
UNIMPLEMENTED();
return nullptr;
}
Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes,
AllocationFlags flags,
Node* top_address,
Node* limit_address) {
Node* top = Load(MachineType::Pointer(), top_address);
Node* limit = Load(MachineType::Pointer(), limit_address);
// If there's not enough space, call the runtime.
RawMachineLabel runtime_call(RawMachineLabel::kDeferred), no_runtime_call,
merge_runtime;
raw_assembler_->Branch(
raw_assembler_->IntPtrLessThan(IntPtrSub(limit, top), size_in_bytes),
&runtime_call, &no_runtime_call);
raw_assembler_->Bind(&runtime_call);
// AllocateInTargetSpace does not use the context.
Node* context = IntPtrConstant(0);
Node* runtime_flags = SmiTag(Int32Constant(
AllocateDoubleAlignFlag::encode(false) |
AllocateTargetSpace::encode(flags & kPretenured
? AllocationSpace::OLD_SPACE
: AllocationSpace::NEW_SPACE)));
Node* runtime_result = CallRuntime(Runtime::kAllocateInTargetSpace, context,
SmiTag(size_in_bytes), runtime_flags);
raw_assembler_->Goto(&merge_runtime);
// When there is enough space, return `top' and bump it up.
raw_assembler_->Bind(&no_runtime_call);
Node* no_runtime_result = top;
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
IntPtrAdd(top, size_in_bytes));
no_runtime_result =
IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag));
raw_assembler_->Goto(&merge_runtime);
raw_assembler_->Bind(&merge_runtime);
return raw_assembler_->Phi(MachineType::PointerRepresentation(),
runtime_result, no_runtime_result);
}
Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes,
AllocationFlags flags,
Node* top_address,
Node* limit_address) {
Node* top = Load(MachineType::Pointer(), top_address);
Node* limit = Load(MachineType::Pointer(), limit_address);
Node* adjusted_size = size_in_bytes;
if (flags & kDoubleAlignment) {
// TODO(epertoso): Simd128 alignment.
RawMachineLabel aligned, not_aligned, merge;
raw_assembler_->Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)),
&not_aligned, &aligned);
raw_assembler_->Bind(&not_aligned);
Node* not_aligned_size =
IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize));
raw_assembler_->Goto(&merge);
raw_assembler_->Bind(&aligned);
raw_assembler_->Goto(&merge);
raw_assembler_->Bind(&merge);
adjusted_size = raw_assembler_->Phi(MachineType::PointerRepresentation(),
not_aligned_size, adjusted_size);
}
Node* address = AllocateRawUnaligned(adjusted_size, kNone, top, limit);
RawMachineLabel needs_filler, doesnt_need_filler, merge_address;
raw_assembler_->Branch(
raw_assembler_->IntPtrEqual(adjusted_size, size_in_bytes),
&doesnt_need_filler, &needs_filler);
raw_assembler_->Bind(&needs_filler);
// Store a filler and increase the address by kPointerSize.
// TODO(epertoso): this code assumes that we only align to kDoubleSize. Change
// it when Simd128 alignment is supported.
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top,
LoadRoot(Heap::kOnePointerFillerMapRootIndex));
Node* address_with_filler = IntPtrAdd(address, IntPtrConstant(kPointerSize));
raw_assembler_->Goto(&merge_address);
raw_assembler_->Bind(&doesnt_need_filler);
Node* address_without_filler = address;
raw_assembler_->Goto(&merge_address);
raw_assembler_->Bind(&merge_address);
address = raw_assembler_->Phi(MachineType::PointerRepresentation(),
address_with_filler, address_without_filler);
// Update the top.
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
IntPtrAdd(top, adjusted_size));
return address;
}
Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) {
bool const new_space = !(flags & kPretenured);
Node* top_address = ExternalConstant(
new_space
? ExternalReference::new_space_allocation_top_address(isolate())
: ExternalReference::old_space_allocation_top_address(isolate()));
Node* limit_address = ExternalConstant(
new_space
? ExternalReference::new_space_allocation_limit_address(isolate())
: ExternalReference::old_space_allocation_limit_address(isolate()));
#ifdef V8_HOST_ARCH_32_BIT
if (flags & kDoubleAlignment) {
return AllocateRawAligned(IntPtrConstant(size_in_bytes), flags, top_address,
limit_address);
}
#endif
return AllocateRawUnaligned(IntPtrConstant(size_in_bytes), flags, top_address,
limit_address);
}
Node* CodeStubAssembler::Load(MachineType rep, Node* base) {
return raw_assembler_->Load(rep, base);
}
Node* CodeStubAssembler::Load(MachineType rep, Node* base, Node* index) {
return raw_assembler_->Load(rep, base, index);
}
Node* CodeStubAssembler::Store(MachineRepresentation rep, Node* base,
Node* value) {
return raw_assembler_->Store(rep, base, value, kFullWriteBarrier);
}
Node* CodeStubAssembler::Store(MachineRepresentation rep, Node* base,
Node* index, Node* value) {
return raw_assembler_->Store(rep, base, index, value, kFullWriteBarrier);
}
Node* CodeStubAssembler::StoreNoWriteBarrier(MachineRepresentation rep,
Node* base, Node* value) {
return raw_assembler_->Store(rep, base, value, kNoWriteBarrier);
}
Node* CodeStubAssembler::StoreNoWriteBarrier(MachineRepresentation rep,
Node* base, Node* index,
Node* value) {
return raw_assembler_->Store(rep, base, index, value, kNoWriteBarrier);
}
Node* CodeStubAssembler::Projection(int index, Node* value) {
return raw_assembler_->Projection(index, value);
}
Node* CodeStubAssembler::LoadMap(Node* object) {
return LoadObjectField(object, HeapObject::kMapOffset);
}
Node* CodeStubAssembler::LoadInstanceType(Node* object) {
return LoadMapInstanceType(LoadMap(object));
}
Node* CodeStubAssembler::BitFieldDecode(Node* word32, uint32_t shift,
uint32_t mask) {
return raw_assembler_->Word32Shr(
raw_assembler_->Word32And(word32, raw_assembler_->Int32Constant(mask)),
raw_assembler_->Int32Constant(shift));
}
void CodeStubAssembler::BranchIf(Node* condition, Label* if_true,
Label* if_false) {
Label if_condition_true(this), if_condition_false(this);
Branch(condition, &if_condition_true, &if_condition_false);
Bind(&if_condition_true);
Goto(if_true);
Bind(&if_condition_false);
Goto(if_false);
}
void CodeStubAssembler::BranchIfInt32LessThan(Node* a, Node* b, Label* if_true,
Label* if_false) {
Label if_lessthan(this), if_notlessthan(this);
Branch(Int32LessThan(a, b), &if_lessthan, &if_notlessthan);
Bind(&if_lessthan);
Goto(if_true);
Bind(&if_notlessthan);
Goto(if_false);
}
void CodeStubAssembler::BranchIfSmiLessThan(Node* a, Node* b, Label* if_true,
Label* if_false) {
Label if_lessthan(this), if_notlessthan(this);
Branch(SmiLessThan(a, b), &if_lessthan, &if_notlessthan);
Bind(&if_lessthan);
Goto(if_true);
Bind(&if_notlessthan);
Goto(if_false);
}
void CodeStubAssembler::BranchIfSmiLessThanOrEqual(Node* a, Node* b,
Label* if_true,
Label* if_false) {
Label if_lessthanorequal(this), if_notlessthanorequal(this);
Branch(SmiLessThanOrEqual(a, b), &if_lessthanorequal, &if_notlessthanorequal);
Bind(&if_lessthanorequal);
Goto(if_true);
Bind(&if_notlessthanorequal);
Goto(if_false);
}
void CodeStubAssembler::BranchIfFloat64Equal(Node* a, Node* b, Label* if_true,
Label* if_false) {
Label if_equal(this), if_notequal(this);
Branch(Float64Equal(a, b), &if_equal, &if_notequal);
Bind(&if_equal);
Goto(if_true);
Bind(&if_notequal);
Goto(if_false);
}
void CodeStubAssembler::BranchIfFloat64LessThan(Node* a, Node* b,
Label* if_true,
Label* if_false) {
Label if_lessthan(this), if_notlessthan(this);
Branch(Float64LessThan(a, b), &if_lessthan, &if_notlessthan);
Bind(&if_lessthan);
Goto(if_true);
Bind(&if_notlessthan);
Goto(if_false);
}
void CodeStubAssembler::BranchIfFloat64LessThanOrEqual(Node* a, Node* b,
Label* if_true,
Label* if_false) {
Label if_lessthanorequal(this), if_notlessthanorequal(this);
Branch(Float64LessThanOrEqual(a, b), &if_lessthanorequal,
&if_notlessthanorequal);
Bind(&if_lessthanorequal);
Goto(if_true);
Bind(&if_notlessthanorequal);
Goto(if_false);
}
void CodeStubAssembler::BranchIfFloat64GreaterThan(Node* a, Node* b,
Label* if_true,
Label* if_false) {
Label if_greaterthan(this), if_notgreaterthan(this);
Branch(Float64GreaterThan(a, b), &if_greaterthan, &if_notgreaterthan);
Bind(&if_greaterthan);
Goto(if_true);
Bind(&if_notgreaterthan);
Goto(if_false);
}
void CodeStubAssembler::BranchIfFloat64GreaterThanOrEqual(Node* a, Node* b,
Label* if_true,
Label* if_false) {
Label if_greaterthanorequal(this), if_notgreaterthanorequal(this);
Branch(Float64GreaterThanOrEqual(a, b), &if_greaterthanorequal,
&if_notgreaterthanorequal);
Bind(&if_greaterthanorequal);
Goto(if_true);
Bind(&if_notgreaterthanorequal);
Goto(if_false);
}
void CodeStubAssembler::BranchIfWord32Equal(Node* a, Node* b, Label* if_true,
Label* if_false) {
Label if_equal(this), if_notequal(this);
Branch(Word32Equal(a, b), &if_equal, &if_notequal);
Bind(&if_equal);
Goto(if_true);
Bind(&if_notequal);
Goto(if_false);
}
Node* CodeStubAssembler::CallN(CallDescriptor* descriptor, Node* code_target,
Node** args) {
CallPrologue();
Node* return_value = raw_assembler_->CallN(descriptor, code_target, args);
CallEpilogue();
return return_value;
}
Node* CodeStubAssembler::TailCallN(CallDescriptor* descriptor,
Node* code_target, Node** args) {
return raw_assembler_->TailCallN(descriptor, code_target, args);
}
Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
Node* context) {
CallPrologue();
Node* return_value = raw_assembler_->CallRuntime0(function_id, context);
CallEpilogue();
return return_value;
}
Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
Node* context, Node* arg1) {
CallPrologue();
Node* return_value = raw_assembler_->CallRuntime1(function_id, arg1, context);
CallEpilogue();
return return_value;
}
Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
Node* context, Node* arg1, Node* arg2) {
CallPrologue();
Node* return_value =
raw_assembler_->CallRuntime2(function_id, arg1, arg2, context);
CallEpilogue();
return return_value;
}
Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
Node* context, Node* arg1, Node* arg2,
Node* arg3) {
CallPrologue();
Node* return_value =
raw_assembler_->CallRuntime3(function_id, arg1, arg2, arg3, context);
CallEpilogue();
return return_value;
}
Node* CodeStubAssembler::CallRuntime(Runtime::FunctionId function_id,
Node* context, Node* arg1, Node* arg2,
Node* arg3, Node* arg4) {
CallPrologue();
Node* return_value = raw_assembler_->CallRuntime4(function_id, arg1, arg2,
arg3, arg4, context);
CallEpilogue();
return return_value;
}
Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
Node* context) {
return raw_assembler_->TailCallRuntime0(function_id, context);
}
Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
Node* context, Node* arg1) {
return raw_assembler_->TailCallRuntime1(function_id, arg1, context);
}
Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
Node* context, Node* arg1,
Node* arg2) {
return raw_assembler_->TailCallRuntime2(function_id, arg1, arg2, context);
}
Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
Node* context, Node* arg1, Node* arg2,
Node* arg3) {
return raw_assembler_->TailCallRuntime3(function_id, arg1, arg2, arg3,
context);
}
Node* CodeStubAssembler::TailCallRuntime(Runtime::FunctionId function_id,
Node* context, Node* arg1, Node* arg2,
Node* arg3, Node* arg4) {
return raw_assembler_->TailCallRuntime4(function_id, arg1, arg2, arg3, arg4,
context);
}
Node* CodeStubAssembler::CallStub(Callable const& callable, Node* context,
Node* arg1, size_t result_size) {
Node* target = HeapConstant(callable.code());
return CallStub(callable.descriptor(), target, context, arg1, result_size);
}
Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
Node* target, Node* context, Node* arg1,
size_t result_size) {
CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kNoFlags, Operator::kNoProperties,
MachineType::AnyTagged(), result_size);
Node** args = zone()->NewArray<Node*>(2);
args[0] = arg1;
args[1] = context;
return CallN(call_descriptor, target, args);
}
Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
Node* target, Node* context, Node* arg1,
Node* arg2, size_t result_size) {
CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kNoFlags, Operator::kNoProperties,
MachineType::AnyTagged(), result_size);
Node** args = zone()->NewArray<Node*>(3);
args[0] = arg1;
args[1] = arg2;
args[2] = context;
return CallN(call_descriptor, target, args);
}
Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
Node* target, Node* context, Node* arg1,
Node* arg2, Node* arg3, size_t result_size) {
CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kNoFlags, Operator::kNoProperties,
MachineType::AnyTagged(), result_size);
Node** args = zone()->NewArray<Node*>(4);
args[0] = arg1;
args[1] = arg2;
args[2] = arg3;
args[3] = context;
return CallN(call_descriptor, target, args);
}
Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
Node* target, Node* context, Node* arg1,
Node* arg2, Node* arg3, Node* arg4,
size_t result_size) {
CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kNoFlags, Operator::kNoProperties,
MachineType::AnyTagged(), result_size);
Node** args = zone()->NewArray<Node*>(5);
args[0] = arg1;
args[1] = arg2;
args[2] = arg3;
args[3] = arg4;
args[4] = context;
return CallN(call_descriptor, target, args);
}
Node* CodeStubAssembler::CallStub(const CallInterfaceDescriptor& descriptor,
Node* target, Node* context, Node* arg1,
Node* arg2, Node* arg3, Node* arg4,
Node* arg5, size_t result_size) {
CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kNoFlags, Operator::kNoProperties,
MachineType::AnyTagged(), result_size);
Node** args = zone()->NewArray<Node*>(6);
args[0] = arg1;
args[1] = arg2;
args[2] = arg3;
args[3] = arg4;
args[4] = arg5;
args[5] = context;
return CallN(call_descriptor, target, args);
}
Node* CodeStubAssembler::TailCallStub(Callable const& callable, Node* context,
Node* arg1, Node* arg2,
size_t result_size) {
Node* target = HeapConstant(callable.code());
return TailCallStub(callable.descriptor(), target, context, arg1, arg2,
result_size);
}
Node* CodeStubAssembler::TailCallStub(const CallInterfaceDescriptor& descriptor,
Node* target, Node* context, Node* arg1,
Node* arg2, size_t result_size) {
CallDescriptor* call_descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kSupportsTailCalls, Operator::kNoProperties,
MachineType::AnyTagged(), result_size);
Node** args = zone()->NewArray<Node*>(3);
args[0] = arg1;
args[1] = arg2;
args[2] = context;
return raw_assembler_->TailCallN(call_descriptor, target, args);
}
Node* CodeStubAssembler::TailCall(
const CallInterfaceDescriptor& interface_descriptor, Node* code_target,
Node** args, size_t result_size) {
CallDescriptor* descriptor = Linkage::GetStubCallDescriptor(
isolate(), zone(), interface_descriptor,
interface_descriptor.GetStackParameterCount(),
CallDescriptor::kSupportsTailCalls, Operator::kNoProperties,
MachineType::AnyTagged(), result_size);
return raw_assembler_->TailCallN(descriptor, code_target, args);
}
void CodeStubAssembler::Goto(CodeStubAssembler::Label* label) {
label->MergeVariables();
raw_assembler_->Goto(label->label_);
}
void CodeStubAssembler::Branch(Node* condition,
CodeStubAssembler::Label* true_label,
CodeStubAssembler::Label* false_label) {
true_label->MergeVariables();
false_label->MergeVariables();
return raw_assembler_->Branch(condition, true_label->label_,
false_label->label_);
}
void CodeStubAssembler::Switch(Node* index, Label* default_label,
int32_t* case_values, Label** case_labels,
size_t case_count) {
RawMachineLabel** labels =
new (zone()->New(sizeof(RawMachineLabel*) * case_count))
RawMachineLabel*[case_count];
for (size_t i = 0; i < case_count; ++i) {
labels[i] = case_labels[i]->label_;
case_labels[i]->MergeVariables();
default_label->MergeVariables();
}
return raw_assembler_->Switch(index, default_label->label_, case_values,
labels, case_count);
}
// RawMachineAssembler delegate helpers:
Isolate* CodeStubAssembler::isolate() const {
return raw_assembler_->isolate();
}
Factory* CodeStubAssembler::factory() const { return isolate()->factory(); }
Graph* CodeStubAssembler::graph() const { return raw_assembler_->graph(); }
Zone* CodeStubAssembler::zone() const { return raw_assembler_->zone(); }
// The core implementation of Variable is stored through an indirection so
// that it can outlive the often block-scoped Variable declarations. This is
// needed to ensure that variable binding and merging through phis can
// properly be verified.
class CodeStubAssembler::Variable::Impl : public ZoneObject {
public:
explicit Impl(MachineRepresentation rep) : value_(nullptr), rep_(rep) {}
Node* value_;
MachineRepresentation rep_;
};
CodeStubAssembler::Variable::Variable(CodeStubAssembler* assembler,
MachineRepresentation rep)
: impl_(new (assembler->zone()) Impl(rep)) {
assembler->variables_.push_back(impl_);
}
void CodeStubAssembler::Variable::Bind(Node* value) { impl_->value_ = value; }
Node* CodeStubAssembler::Variable::value() const {
DCHECK_NOT_NULL(impl_->value_);
return impl_->value_;
}
MachineRepresentation CodeStubAssembler::Variable::rep() const {
return impl_->rep_;
}
bool CodeStubAssembler::Variable::IsBound() const {
return impl_->value_ != nullptr;
}
CodeStubAssembler::Label::Label(CodeStubAssembler* assembler,
int merged_value_count,
CodeStubAssembler::Variable** merged_variables,
CodeStubAssembler::Label::Type type)
: bound_(false), merge_count_(0), assembler_(assembler), label_(nullptr) {
void* buffer = assembler->zone()->New(sizeof(RawMachineLabel));
label_ = new (buffer)
RawMachineLabel(type == kDeferred ? RawMachineLabel::kDeferred
: RawMachineLabel::kNonDeferred);
for (int i = 0; i < merged_value_count; ++i) {
variable_phis_[merged_variables[i]->impl_] = nullptr;
}
}
void CodeStubAssembler::Label::MergeVariables() {
++merge_count_;
for (auto var : assembler_->variables_) {
size_t count = 0;
Node* node = var->value_;
if (node != nullptr) {
auto i = variable_merges_.find(var);
if (i != variable_merges_.end()) {
i->second.push_back(node);
count = i->second.size();
} else {
count = 1;
variable_merges_[var] = std::vector<Node*>(1, node);
}
}
// If the following asserts, then you've jumped to a label without a bound
// variable along that path that expects to merge its value into a phi.
DCHECK(variable_phis_.find(var) == variable_phis_.end() ||
count == merge_count_);
USE(count);
// If the label is already bound, we already know the set of variables to
// merge and phi nodes have already been created.
if (bound_) {
auto phi = variable_phis_.find(var);
if (phi != variable_phis_.end()) {
DCHECK_NOT_NULL(phi->second);
assembler_->raw_assembler_->AppendPhiInput(phi->second, node);
} else {
auto i = variable_merges_.find(var);
if (i != variable_merges_.end()) {
// If the following assert fires, then you've declared a variable that
// has the same bound value along all paths up until the point you
// bound this label, but then later merged a path with a new value for
// the variable after the label bind (it's not possible to add phis to
// the bound label after the fact, just make sure to list the variable
// in the label's constructor's list of merged variables).
DCHECK(find_if(i->second.begin(), i->second.end(),
[node](Node* e) -> bool { return node != e; }) ==
i->second.end());
}
}
}
}
}
void CodeStubAssembler::Label::Bind() {
DCHECK(!bound_);
assembler_->raw_assembler_->Bind(label_);
// Make sure that all variables that have changed along any path up to this
// point are marked as merge variables.
for (auto var : assembler_->variables_) {
Node* shared_value = nullptr;
auto i = variable_merges_.find(var);
if (i != variable_merges_.end()) {
for (auto value : i->second) {
DCHECK(value != nullptr);
if (value != shared_value) {
if (shared_value == nullptr) {
shared_value = value;
} else {
variable_phis_[var] = nullptr;
}
}
}
}
}
for (auto var : variable_phis_) {
CodeStubAssembler::Variable::Impl* var_impl = var.first;
auto i = variable_merges_.find(var_impl);
// If the following assert fires, then a variable that has been marked as
// being merged at the label--either by explicitly marking it so in the
// label constructor or by having seen different bound values at branches
// into the label--doesn't have a bound value along all of the paths that
// have been merged into the label up to this point.
DCHECK(i != variable_merges_.end() && i->second.size() == merge_count_);
Node* phi = assembler_->raw_assembler_->Phi(
var.first->rep_, static_cast<int>(merge_count_), &(i->second[0]));
variable_phis_[var_impl] = phi;
}
// Bind all variables to a merge phi, the common value along all paths or
// null.
for (auto var : assembler_->variables_) {
auto i = variable_phis_.find(var);
if (i != variable_phis_.end()) {
var->value_ = i->second;
} else {
auto j = variable_merges_.find(var);
if (j != variable_merges_.end() && j->second.size() == merge_count_) {
var->value_ = j->second.back();
} else {
var->value_ = nullptr;
}
}
}
bound_ = true;
}
} // namespace compiler
} // namespace internal
} // namespace v8