172c27a6ba
Use string locking to ensure consistent representation of source string during JSON parsing. Review URL: http://codereview.chromium.org/7977001 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9424 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
4655 lines
130 KiB
C++
4655 lines
130 KiB
C++
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Review notes:
|
|
//
|
|
// - The use of macros in these inline functions may seem superfluous
|
|
// but it is absolutely needed to make sure gcc generates optimal
|
|
// code. gcc is not happy when attempting to inline too deep.
|
|
//
|
|
|
|
#ifndef V8_OBJECTS_INL_H_
|
|
#define V8_OBJECTS_INL_H_
|
|
|
|
#include "elements.h"
|
|
#include "objects.h"
|
|
#include "char-predicates-inl.h"
|
|
#include "contexts.h"
|
|
#include "conversions-inl.h"
|
|
#include "heap.h"
|
|
#include "isolate.h"
|
|
#include "property.h"
|
|
#include "spaces.h"
|
|
#include "store-buffer.h"
|
|
#include "v8memory.h"
|
|
|
|
#include "incremental-marking.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
PropertyDetails::PropertyDetails(Smi* smi) {
|
|
value_ = smi->value();
|
|
}
|
|
|
|
|
|
Smi* PropertyDetails::AsSmi() {
|
|
return Smi::FromInt(value_);
|
|
}
|
|
|
|
|
|
PropertyDetails PropertyDetails::AsDeleted() {
|
|
Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1));
|
|
return PropertyDetails(smi);
|
|
}
|
|
|
|
|
|
#define CAST_ACCESSOR(type) \
|
|
type* type::cast(Object* object) { \
|
|
ASSERT(object->Is##type()); \
|
|
return reinterpret_cast<type*>(object); \
|
|
}
|
|
|
|
|
|
#define INT_ACCESSORS(holder, name, offset) \
|
|
int holder::name() { return READ_INT_FIELD(this, offset); } \
|
|
void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
|
|
|
|
|
|
#define ACCESSORS(holder, name, type, offset) \
|
|
type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
|
|
void holder::set_##name(type* value, WriteBarrierMode mode) { \
|
|
WRITE_FIELD(this, offset, value); \
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \
|
|
}
|
|
|
|
|
|
// GC-safe accessors do not use HeapObject::GetHeap(), but access TLS instead.
|
|
#define ACCESSORS_GCSAFE(holder, name, type, offset) \
|
|
type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
|
|
void holder::set_##name(type* value, WriteBarrierMode mode) { \
|
|
WRITE_FIELD(this, offset, value); \
|
|
CONDITIONAL_WRITE_BARRIER(HEAP, this, offset, value, mode); \
|
|
}
|
|
|
|
|
|
#define SMI_ACCESSORS(holder, name, offset) \
|
|
int holder::name() { \
|
|
Object* value = READ_FIELD(this, offset); \
|
|
return Smi::cast(value)->value(); \
|
|
} \
|
|
void holder::set_##name(int value) { \
|
|
WRITE_FIELD(this, offset, Smi::FromInt(value)); \
|
|
}
|
|
|
|
|
|
#define BOOL_GETTER(holder, field, name, offset) \
|
|
bool holder::name() { \
|
|
return BooleanBit::get(field(), offset); \
|
|
} \
|
|
|
|
|
|
#define BOOL_ACCESSORS(holder, field, name, offset) \
|
|
bool holder::name() { \
|
|
return BooleanBit::get(field(), offset); \
|
|
} \
|
|
void holder::set_##name(bool value) { \
|
|
set_##field(BooleanBit::set(field(), offset, value)); \
|
|
}
|
|
|
|
|
|
bool Object::IsInstanceOf(FunctionTemplateInfo* expected) {
|
|
// There is a constraint on the object; check.
|
|
if (!this->IsJSObject()) return false;
|
|
// Fetch the constructor function of the object.
|
|
Object* cons_obj = JSObject::cast(this)->map()->constructor();
|
|
if (!cons_obj->IsJSFunction()) return false;
|
|
JSFunction* fun = JSFunction::cast(cons_obj);
|
|
// Iterate through the chain of inheriting function templates to
|
|
// see if the required one occurs.
|
|
for (Object* type = fun->shared()->function_data();
|
|
type->IsFunctionTemplateInfo();
|
|
type = FunctionTemplateInfo::cast(type)->parent_template()) {
|
|
if (type == expected) return true;
|
|
}
|
|
// Didn't find the required type in the inheritance chain.
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Object::IsSmi() {
|
|
return HAS_SMI_TAG(this);
|
|
}
|
|
|
|
|
|
bool Object::IsHeapObject() {
|
|
return Internals::HasHeapObjectTag(this);
|
|
}
|
|
|
|
|
|
bool Object::NonFailureIsHeapObject() {
|
|
ASSERT(!this->IsFailure());
|
|
return (reinterpret_cast<intptr_t>(this) & kSmiTagMask) != 0;
|
|
}
|
|
|
|
|
|
bool Object::IsHeapNumber() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == HEAP_NUMBER_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsString() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsSpecObject() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsSpecFunction() {
|
|
if (!Object::IsHeapObject()) return false;
|
|
InstanceType type = HeapObject::cast(this)->map()->instance_type();
|
|
return type == JS_FUNCTION_TYPE || type == JS_FUNCTION_PROXY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsSymbol() {
|
|
if (!this->IsHeapObject()) return false;
|
|
uint32_t type = HeapObject::cast(this)->map()->instance_type();
|
|
// Because the symbol tag is non-zero and no non-string types have the
|
|
// symbol bit set we can test for symbols with a very simple test
|
|
// operation.
|
|
STATIC_ASSERT(kSymbolTag != 0);
|
|
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
|
|
return (type & kIsSymbolMask) != 0;
|
|
}
|
|
|
|
|
|
bool Object::IsConsString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsCons();
|
|
}
|
|
|
|
|
|
bool Object::IsSlicedString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsSliced();
|
|
}
|
|
|
|
|
|
bool Object::IsSeqString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsSequential();
|
|
}
|
|
|
|
|
|
bool Object::IsSeqAsciiString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsSequential() &&
|
|
String::cast(this)->IsAsciiRepresentation();
|
|
}
|
|
|
|
|
|
bool Object::IsSeqTwoByteString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsSequential() &&
|
|
String::cast(this)->IsTwoByteRepresentation();
|
|
}
|
|
|
|
|
|
bool Object::IsExternalString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsExternal();
|
|
}
|
|
|
|
|
|
bool Object::IsExternalAsciiString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsExternal() &&
|
|
String::cast(this)->IsAsciiRepresentation();
|
|
}
|
|
|
|
|
|
bool Object::IsExternalTwoByteString() {
|
|
if (!IsString()) return false;
|
|
return StringShape(String::cast(this)).IsExternal() &&
|
|
String::cast(this)->IsTwoByteRepresentation();
|
|
}
|
|
|
|
bool Object::HasValidElements() {
|
|
// Dictionary is covered under FixedArray.
|
|
return IsFixedArray() || IsFixedDoubleArray() || IsExternalArray();
|
|
}
|
|
|
|
StringShape::StringShape(String* str)
|
|
: type_(str->map()->instance_type()) {
|
|
set_valid();
|
|
ASSERT((type_ & kIsNotStringMask) == kStringTag);
|
|
}
|
|
|
|
|
|
StringShape::StringShape(Map* map)
|
|
: type_(map->instance_type()) {
|
|
set_valid();
|
|
ASSERT((type_ & kIsNotStringMask) == kStringTag);
|
|
}
|
|
|
|
|
|
StringShape::StringShape(InstanceType t)
|
|
: type_(static_cast<uint32_t>(t)) {
|
|
set_valid();
|
|
ASSERT((type_ & kIsNotStringMask) == kStringTag);
|
|
}
|
|
|
|
|
|
bool StringShape::IsSymbol() {
|
|
ASSERT(valid());
|
|
STATIC_ASSERT(kSymbolTag != 0);
|
|
return (type_ & kIsSymbolMask) != 0;
|
|
}
|
|
|
|
|
|
bool String::IsAsciiRepresentation() {
|
|
uint32_t type = map()->instance_type();
|
|
return (type & kStringEncodingMask) == kAsciiStringTag;
|
|
}
|
|
|
|
|
|
bool String::IsTwoByteRepresentation() {
|
|
uint32_t type = map()->instance_type();
|
|
return (type & kStringEncodingMask) == kTwoByteStringTag;
|
|
}
|
|
|
|
|
|
bool String::IsAsciiRepresentationUnderneath() {
|
|
uint32_t type = map()->instance_type();
|
|
STATIC_ASSERT(kIsIndirectStringTag != 0);
|
|
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
|
|
ASSERT(IsFlat());
|
|
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
|
|
case kAsciiStringTag:
|
|
return true;
|
|
case kTwoByteStringTag:
|
|
return false;
|
|
default: // Cons or sliced string. Need to go deeper.
|
|
return GetUnderlying()->IsAsciiRepresentation();
|
|
}
|
|
}
|
|
|
|
|
|
bool String::IsTwoByteRepresentationUnderneath() {
|
|
uint32_t type = map()->instance_type();
|
|
STATIC_ASSERT(kIsIndirectStringTag != 0);
|
|
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
|
|
ASSERT(IsFlat());
|
|
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
|
|
case kAsciiStringTag:
|
|
return false;
|
|
case kTwoByteStringTag:
|
|
return true;
|
|
default: // Cons or sliced string. Need to go deeper.
|
|
return GetUnderlying()->IsTwoByteRepresentation();
|
|
}
|
|
}
|
|
|
|
|
|
bool String::HasOnlyAsciiChars() {
|
|
uint32_t type = map()->instance_type();
|
|
return (type & kStringEncodingMask) == kAsciiStringTag ||
|
|
(type & kAsciiDataHintMask) == kAsciiDataHintTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsCons() {
|
|
return (type_ & kStringRepresentationMask) == kConsStringTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsSliced() {
|
|
return (type_ & kStringRepresentationMask) == kSlicedStringTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsIndirect() {
|
|
return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsExternal() {
|
|
return (type_ & kStringRepresentationMask) == kExternalStringTag;
|
|
}
|
|
|
|
|
|
bool StringShape::IsSequential() {
|
|
return (type_ & kStringRepresentationMask) == kSeqStringTag;
|
|
}
|
|
|
|
|
|
StringRepresentationTag StringShape::representation_tag() {
|
|
uint32_t tag = (type_ & kStringRepresentationMask);
|
|
return static_cast<StringRepresentationTag>(tag);
|
|
}
|
|
|
|
|
|
uint32_t StringShape::encoding_tag() {
|
|
return type_ & kStringEncodingMask;
|
|
}
|
|
|
|
|
|
uint32_t StringShape::full_representation_tag() {
|
|
return (type_ & (kStringRepresentationMask | kStringEncodingMask));
|
|
}
|
|
|
|
|
|
STATIC_CHECK((kStringRepresentationMask | kStringEncodingMask) ==
|
|
Internals::kFullStringRepresentationMask);
|
|
|
|
|
|
bool StringShape::IsSequentialAscii() {
|
|
return full_representation_tag() == (kSeqStringTag | kAsciiStringTag);
|
|
}
|
|
|
|
|
|
bool StringShape::IsSequentialTwoByte() {
|
|
return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
|
|
}
|
|
|
|
|
|
bool StringShape::IsExternalAscii() {
|
|
return full_representation_tag() == (kExternalStringTag | kAsciiStringTag);
|
|
}
|
|
|
|
|
|
bool StringShape::IsExternalTwoByte() {
|
|
return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
|
|
}
|
|
|
|
|
|
STATIC_CHECK((kExternalStringTag | kTwoByteStringTag) ==
|
|
Internals::kExternalTwoByteRepresentationTag);
|
|
|
|
|
|
uc32 FlatStringReader::Get(int index) {
|
|
ASSERT(0 <= index && index <= length_);
|
|
if (is_ascii_) {
|
|
return static_cast<const byte*>(start_)[index];
|
|
} else {
|
|
return static_cast<const uc16*>(start_)[index];
|
|
}
|
|
}
|
|
|
|
|
|
bool Object::IsNumber() {
|
|
return IsSmi() || IsHeapNumber();
|
|
}
|
|
|
|
|
|
bool Object::IsByteArray() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == BYTE_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsFreeSpace() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == FREE_SPACE_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsFiller() {
|
|
if (!Object::IsHeapObject()) return false;
|
|
InstanceType instance_type = HeapObject::cast(this)->map()->instance_type();
|
|
return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalPixelArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_PIXEL_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalArray() {
|
|
if (!Object::IsHeapObject())
|
|
return false;
|
|
InstanceType instance_type =
|
|
HeapObject::cast(this)->map()->instance_type();
|
|
return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE &&
|
|
instance_type <= LAST_EXTERNAL_ARRAY_TYPE);
|
|
}
|
|
|
|
|
|
bool Object::IsExternalByteArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_BYTE_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalUnsignedByteArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalShortArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_SHORT_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalUnsignedShortArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalIntArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_INT_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalUnsignedIntArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_UNSIGNED_INT_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalFloatArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_FLOAT_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsExternalDoubleArray() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() ==
|
|
EXTERNAL_DOUBLE_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsFailure() {
|
|
return HAS_FAILURE_TAG(this);
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsRetryAfterGC() {
|
|
return HAS_FAILURE_TAG(this)
|
|
&& Failure::cast(this)->type() == Failure::RETRY_AFTER_GC;
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsOutOfMemory() {
|
|
return HAS_FAILURE_TAG(this)
|
|
&& Failure::cast(this)->IsOutOfMemoryException();
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsException() {
|
|
return this == Failure::Exception();
|
|
}
|
|
|
|
|
|
bool MaybeObject::IsTheHole() {
|
|
return !IsFailure() && ToObjectUnchecked()->IsTheHole();
|
|
}
|
|
|
|
|
|
Failure* Failure::cast(MaybeObject* obj) {
|
|
ASSERT(HAS_FAILURE_TAG(obj));
|
|
return reinterpret_cast<Failure*>(obj);
|
|
}
|
|
|
|
|
|
bool Object::IsJSReceiver() {
|
|
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
|
|
return IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSObject() {
|
|
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
|
|
return IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSProxy() {
|
|
if (!Object::IsHeapObject()) return false;
|
|
InstanceType type = HeapObject::cast(this)->map()->instance_type();
|
|
return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSFunctionProxy() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_PROXY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSWeakMap() {
|
|
return Object::IsJSObject() &&
|
|
HeapObject::cast(this)->map()->instance_type() == JS_WEAK_MAP_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSContextExtensionObject() {
|
|
return IsHeapObject()
|
|
&& (HeapObject::cast(this)->map()->instance_type() ==
|
|
JS_CONTEXT_EXTENSION_OBJECT_TYPE);
|
|
}
|
|
|
|
|
|
bool Object::IsMap() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == MAP_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsFixedArray() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == FIXED_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsFixedDoubleArray() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() ==
|
|
FIXED_DOUBLE_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsDescriptorArray() {
|
|
return IsFixedArray();
|
|
}
|
|
|
|
|
|
bool Object::IsDeoptimizationInputData() {
|
|
// Must be a fixed array.
|
|
if (!IsFixedArray()) return false;
|
|
|
|
// There's no sure way to detect the difference between a fixed array and
|
|
// a deoptimization data array. Since this is used for asserts we can
|
|
// check that the length is zero or else the fixed size plus a multiple of
|
|
// the entry size.
|
|
int length = FixedArray::cast(this)->length();
|
|
if (length == 0) return true;
|
|
|
|
length -= DeoptimizationInputData::kFirstDeoptEntryIndex;
|
|
return length >= 0 &&
|
|
length % DeoptimizationInputData::kDeoptEntrySize == 0;
|
|
}
|
|
|
|
|
|
bool Object::IsDeoptimizationOutputData() {
|
|
if (!IsFixedArray()) return false;
|
|
// There's actually no way to see the difference between a fixed array and
|
|
// a deoptimization data array. Since this is used for asserts we can check
|
|
// that the length is plausible though.
|
|
if (FixedArray::cast(this)->length() % 2 != 0) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Object::IsContext() {
|
|
if (Object::IsHeapObject()) {
|
|
Map* map = HeapObject::cast(this)->map();
|
|
Heap* heap = map->GetHeap();
|
|
return (map == heap->function_context_map() ||
|
|
map == heap->catch_context_map() ||
|
|
map == heap->with_context_map() ||
|
|
map == heap->global_context_map() ||
|
|
map == heap->block_context_map());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Object::IsGlobalContext() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map() ==
|
|
HeapObject::cast(this)->GetHeap()->global_context_map();
|
|
}
|
|
|
|
|
|
bool Object::IsSerializedScopeInfo() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map() ==
|
|
HeapObject::cast(this)->GetHeap()->serialized_scope_info_map();
|
|
}
|
|
|
|
|
|
bool Object::IsJSFunction() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_TYPE;
|
|
}
|
|
|
|
|
|
template <> inline bool Is<JSFunction>(Object* obj) {
|
|
return obj->IsJSFunction();
|
|
}
|
|
|
|
|
|
bool Object::IsCode() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == CODE_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsOddball() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == ODDBALL_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSGlobalPropertyCell() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type()
|
|
== JS_GLOBAL_PROPERTY_CELL_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsSharedFunctionInfo() {
|
|
return Object::IsHeapObject() &&
|
|
(HeapObject::cast(this)->map()->instance_type() ==
|
|
SHARED_FUNCTION_INFO_TYPE);
|
|
}
|
|
|
|
|
|
bool Object::IsJSValue() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == JS_VALUE_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSMessageObject() {
|
|
return Object::IsHeapObject()
|
|
&& (HeapObject::cast(this)->map()->instance_type() ==
|
|
JS_MESSAGE_OBJECT_TYPE);
|
|
}
|
|
|
|
|
|
bool Object::IsStringWrapper() {
|
|
return IsJSValue() && JSValue::cast(this)->value()->IsString();
|
|
}
|
|
|
|
|
|
bool Object::IsForeign() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == FOREIGN_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsBoolean() {
|
|
return IsOddball() &&
|
|
((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
|
|
}
|
|
|
|
|
|
bool Object::IsJSArray() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == JS_ARRAY_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSRegExp() {
|
|
return Object::IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->instance_type() == JS_REGEXP_TYPE;
|
|
}
|
|
|
|
|
|
template <> inline bool Is<JSArray>(Object* obj) {
|
|
return obj->IsJSArray();
|
|
}
|
|
|
|
|
|
bool Object::IsHashTable() {
|
|
return Object::IsHeapObject() &&
|
|
HeapObject::cast(this)->map() ==
|
|
HeapObject::cast(this)->GetHeap()->hash_table_map();
|
|
}
|
|
|
|
|
|
bool Object::IsDictionary() {
|
|
return IsHashTable() &&
|
|
this != HeapObject::cast(this)->GetHeap()->symbol_table();
|
|
}
|
|
|
|
|
|
bool Object::IsSymbolTable() {
|
|
return IsHashTable() && this ==
|
|
HeapObject::cast(this)->GetHeap()->raw_unchecked_symbol_table();
|
|
}
|
|
|
|
|
|
bool Object::IsJSFunctionResultCache() {
|
|
if (!IsFixedArray()) return false;
|
|
FixedArray* self = FixedArray::cast(this);
|
|
int length = self->length();
|
|
if (length < JSFunctionResultCache::kEntriesIndex) return false;
|
|
if ((length - JSFunctionResultCache::kEntriesIndex)
|
|
% JSFunctionResultCache::kEntrySize != 0) {
|
|
return false;
|
|
}
|
|
#ifdef DEBUG
|
|
reinterpret_cast<JSFunctionResultCache*>(this)->JSFunctionResultCacheVerify();
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Object::IsNormalizedMapCache() {
|
|
if (!IsFixedArray()) return false;
|
|
if (FixedArray::cast(this)->length() != NormalizedMapCache::kEntries) {
|
|
return false;
|
|
}
|
|
#ifdef DEBUG
|
|
reinterpret_cast<NormalizedMapCache*>(this)->NormalizedMapCacheVerify();
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Object::IsCompilationCacheTable() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsCodeCacheHashTable() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsPolymorphicCodeCacheHashTable() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsMapCache() {
|
|
return IsHashTable();
|
|
}
|
|
|
|
|
|
bool Object::IsPrimitive() {
|
|
return IsOddball() || IsNumber() || IsString();
|
|
}
|
|
|
|
|
|
bool Object::IsJSGlobalProxy() {
|
|
bool result = IsHeapObject() &&
|
|
(HeapObject::cast(this)->map()->instance_type() ==
|
|
JS_GLOBAL_PROXY_TYPE);
|
|
ASSERT(!result || IsAccessCheckNeeded());
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Object::IsGlobalObject() {
|
|
if (!IsHeapObject()) return false;
|
|
|
|
InstanceType type = HeapObject::cast(this)->map()->instance_type();
|
|
return type == JS_GLOBAL_OBJECT_TYPE ||
|
|
type == JS_BUILTINS_OBJECT_TYPE;
|
|
}
|
|
|
|
|
|
bool Object::IsJSGlobalObject() {
|
|
return IsHeapObject() &&
|
|
(HeapObject::cast(this)->map()->instance_type() ==
|
|
JS_GLOBAL_OBJECT_TYPE);
|
|
}
|
|
|
|
|
|
bool Object::IsJSBuiltinsObject() {
|
|
return IsHeapObject() &&
|
|
(HeapObject::cast(this)->map()->instance_type() ==
|
|
JS_BUILTINS_OBJECT_TYPE);
|
|
}
|
|
|
|
|
|
bool Object::IsUndetectableObject() {
|
|
return IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->is_undetectable();
|
|
}
|
|
|
|
|
|
bool Object::IsAccessCheckNeeded() {
|
|
return IsHeapObject()
|
|
&& HeapObject::cast(this)->map()->is_access_check_needed();
|
|
}
|
|
|
|
|
|
bool Object::IsStruct() {
|
|
if (!IsHeapObject()) return false;
|
|
switch (HeapObject::cast(this)->map()->instance_type()) {
|
|
#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
|
|
STRUCT_LIST(MAKE_STRUCT_CASE)
|
|
#undef MAKE_STRUCT_CASE
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
|
|
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
|
|
bool Object::Is##Name() { \
|
|
return Object::IsHeapObject() \
|
|
&& HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
|
|
}
|
|
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
|
|
#undef MAKE_STRUCT_PREDICATE
|
|
|
|
|
|
bool Object::IsUndefined() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined;
|
|
}
|
|
|
|
|
|
bool Object::IsNull() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull;
|
|
}
|
|
|
|
|
|
bool Object::IsTheHole() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole;
|
|
}
|
|
|
|
|
|
bool Object::IsTrue() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue;
|
|
}
|
|
|
|
|
|
bool Object::IsFalse() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse;
|
|
}
|
|
|
|
|
|
bool Object::IsArgumentsMarker() {
|
|
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker;
|
|
}
|
|
|
|
|
|
double Object::Number() {
|
|
ASSERT(IsNumber());
|
|
return IsSmi()
|
|
? static_cast<double>(reinterpret_cast<Smi*>(this)->value())
|
|
: reinterpret_cast<HeapNumber*>(this)->value();
|
|
}
|
|
|
|
|
|
MaybeObject* Object::ToSmi() {
|
|
if (IsSmi()) return this;
|
|
if (IsHeapNumber()) {
|
|
double value = HeapNumber::cast(this)->value();
|
|
int int_value = FastD2I(value);
|
|
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
|
|
return Smi::FromInt(int_value);
|
|
}
|
|
}
|
|
return Failure::Exception();
|
|
}
|
|
|
|
|
|
bool Object::HasSpecificClassOf(String* name) {
|
|
return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetElement(uint32_t index) {
|
|
// GetElement can trigger a getter which can cause allocation.
|
|
// This was not always the case. This ASSERT is here to catch
|
|
// leftover incorrect uses.
|
|
ASSERT(HEAP->IsAllocationAllowed());
|
|
return GetElementWithReceiver(this, index);
|
|
}
|
|
|
|
|
|
Object* Object::GetElementNoExceptionThrown(uint32_t index) {
|
|
MaybeObject* maybe = GetElementWithReceiver(this, index);
|
|
ASSERT(!maybe->IsFailure());
|
|
Object* result = NULL; // Initialization to please compiler.
|
|
maybe->ToObject(&result);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetProperty(String* key) {
|
|
PropertyAttributes attributes;
|
|
return GetPropertyWithReceiver(this, key, &attributes);
|
|
}
|
|
|
|
|
|
MaybeObject* Object::GetProperty(String* key, PropertyAttributes* attributes) {
|
|
return GetPropertyWithReceiver(this, key, attributes);
|
|
}
|
|
|
|
|
|
#define FIELD_ADDR(p, offset) \
|
|
(reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
|
|
|
|
#define READ_FIELD(p, offset) \
|
|
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define WRITE_BARRIER(heap, object, offset, value) \
|
|
heap->incremental_marking()->RecordWrite( \
|
|
object, HeapObject::RawField(object, offset), value); \
|
|
if (heap->InNewSpace(value)) { \
|
|
heap->RecordWrite(object->address(), offset); \
|
|
}
|
|
|
|
#define CONDITIONAL_WRITE_BARRIER(heap, object, offset, value, mode) \
|
|
if (mode == UPDATE_WRITE_BARRIER) { \
|
|
heap->incremental_marking()->RecordWrite( \
|
|
object, HeapObject::RawField(object, offset), value); \
|
|
if (heap->InNewSpace(value)) { \
|
|
heap->RecordWrite(object->address(), offset); \
|
|
} \
|
|
}
|
|
|
|
#ifndef V8_TARGET_ARCH_MIPS
|
|
#define READ_DOUBLE_FIELD(p, offset) \
|
|
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)))
|
|
#else // V8_TARGET_ARCH_MIPS
|
|
// Prevent gcc from using load-double (mips ldc1) on (possibly)
|
|
// non-64-bit aligned HeapNumber::value.
|
|
static inline double read_double_field(void* p, int offset) {
|
|
union conversion {
|
|
double d;
|
|
uint32_t u[2];
|
|
} c;
|
|
c.u[0] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)));
|
|
c.u[1] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4)));
|
|
return c.d;
|
|
}
|
|
#define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset)
|
|
#endif // V8_TARGET_ARCH_MIPS
|
|
|
|
#ifndef V8_TARGET_ARCH_MIPS
|
|
#define WRITE_DOUBLE_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value)
|
|
#else // V8_TARGET_ARCH_MIPS
|
|
// Prevent gcc from using store-double (mips sdc1) on (possibly)
|
|
// non-64-bit aligned HeapNumber::value.
|
|
static inline void write_double_field(void* p, int offset,
|
|
double value) {
|
|
union conversion {
|
|
double d;
|
|
uint32_t u[2];
|
|
} c;
|
|
c.d = value;
|
|
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) = c.u[0];
|
|
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))) = c.u[1];
|
|
}
|
|
#define WRITE_DOUBLE_FIELD(p, offset, value) \
|
|
write_double_field(p, offset, value)
|
|
#endif // V8_TARGET_ARCH_MIPS
|
|
|
|
|
|
#define READ_INT_FIELD(p, offset) \
|
|
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_INT_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_INTPTR_FIELD(p, offset) \
|
|
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_INTPTR_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_UINT32_FIELD(p, offset) \
|
|
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_UINT32_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_SHORT_FIELD(p, offset) \
|
|
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_SHORT_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
#define READ_BYTE_FIELD(p, offset) \
|
|
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)))
|
|
|
|
#define WRITE_BYTE_FIELD(p, offset, value) \
|
|
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
|
|
|
|
|
|
Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
|
|
return &READ_FIELD(obj, byte_offset);
|
|
}
|
|
|
|
|
|
int Smi::value() {
|
|
return Internals::SmiValue(this);
|
|
}
|
|
|
|
|
|
Smi* Smi::FromInt(int value) {
|
|
ASSERT(Smi::IsValid(value));
|
|
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
intptr_t tagged_value =
|
|
(static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
|
|
return reinterpret_cast<Smi*>(tagged_value);
|
|
}
|
|
|
|
|
|
Smi* Smi::FromIntptr(intptr_t value) {
|
|
ASSERT(Smi::IsValid(value));
|
|
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
|
|
}
|
|
|
|
|
|
Failure::Type Failure::type() const {
|
|
return static_cast<Type>(value() & kFailureTypeTagMask);
|
|
}
|
|
|
|
|
|
bool Failure::IsInternalError() const {
|
|
return type() == INTERNAL_ERROR;
|
|
}
|
|
|
|
|
|
bool Failure::IsOutOfMemoryException() const {
|
|
return type() == OUT_OF_MEMORY_EXCEPTION;
|
|
}
|
|
|
|
|
|
AllocationSpace Failure::allocation_space() const {
|
|
ASSERT_EQ(RETRY_AFTER_GC, type());
|
|
return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize)
|
|
& kSpaceTagMask);
|
|
}
|
|
|
|
|
|
Failure* Failure::InternalError() {
|
|
return Construct(INTERNAL_ERROR);
|
|
}
|
|
|
|
|
|
Failure* Failure::Exception() {
|
|
return Construct(EXCEPTION);
|
|
}
|
|
|
|
|
|
Failure* Failure::OutOfMemoryException() {
|
|
return Construct(OUT_OF_MEMORY_EXCEPTION);
|
|
}
|
|
|
|
|
|
intptr_t Failure::value() const {
|
|
return static_cast<intptr_t>(
|
|
reinterpret_cast<uintptr_t>(this) >> kFailureTagSize);
|
|
}
|
|
|
|
|
|
Failure* Failure::RetryAfterGC() {
|
|
return RetryAfterGC(NEW_SPACE);
|
|
}
|
|
|
|
|
|
Failure* Failure::RetryAfterGC(AllocationSpace space) {
|
|
ASSERT((space & ~kSpaceTagMask) == 0);
|
|
return Construct(RETRY_AFTER_GC, space);
|
|
}
|
|
|
|
|
|
Failure* Failure::Construct(Type type, intptr_t value) {
|
|
uintptr_t info =
|
|
(static_cast<uintptr_t>(value) << kFailureTypeTagSize) | type;
|
|
ASSERT(((info << kFailureTagSize) >> kFailureTagSize) == info);
|
|
return reinterpret_cast<Failure*>((info << kFailureTagSize) | kFailureTag);
|
|
}
|
|
|
|
|
|
bool Smi::IsValid(intptr_t value) {
|
|
#ifdef DEBUG
|
|
bool in_range = (value >= kMinValue) && (value <= kMaxValue);
|
|
#endif
|
|
|
|
#ifdef V8_TARGET_ARCH_X64
|
|
// To be representable as a long smi, the value must be a 32-bit integer.
|
|
bool result = (value == static_cast<int32_t>(value));
|
|
#else
|
|
// To be representable as an tagged small integer, the two
|
|
// most-significant bits of 'value' must be either 00 or 11 due to
|
|
// sign-extension. To check this we add 01 to the two
|
|
// most-significant bits, and check if the most-significant bit is 0
|
|
//
|
|
// CAUTION: The original code below:
|
|
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
|
|
// may lead to incorrect results according to the C language spec, and
|
|
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
|
|
// compiler may produce undefined results in case of signed integer
|
|
// overflow. The computation must be done w/ unsigned ints.
|
|
bool result = (static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U);
|
|
#endif
|
|
ASSERT(result == in_range);
|
|
return result;
|
|
}
|
|
|
|
|
|
MapWord MapWord::FromMap(Map* map) {
|
|
return MapWord(reinterpret_cast<uintptr_t>(map));
|
|
}
|
|
|
|
|
|
Map* MapWord::ToMap() {
|
|
return reinterpret_cast<Map*>(value_);
|
|
}
|
|
|
|
|
|
bool MapWord::IsForwardingAddress() {
|
|
return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
|
|
}
|
|
|
|
|
|
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
|
|
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
|
|
return MapWord(reinterpret_cast<uintptr_t>(raw));
|
|
}
|
|
|
|
|
|
HeapObject* MapWord::ToForwardingAddress() {
|
|
ASSERT(IsForwardingAddress());
|
|
return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
void HeapObject::VerifyObjectField(int offset) {
|
|
VerifyPointer(READ_FIELD(this, offset));
|
|
}
|
|
|
|
void HeapObject::VerifySmiField(int offset) {
|
|
ASSERT(READ_FIELD(this, offset)->IsSmi());
|
|
}
|
|
#endif
|
|
|
|
|
|
Heap* HeapObject::GetHeap() {
|
|
Heap* heap =
|
|
MemoryChunk::FromAddress(reinterpret_cast<Address>(this))->heap();
|
|
ASSERT(heap != NULL);
|
|
ASSERT(heap->isolate() == Isolate::Current());
|
|
return heap;
|
|
}
|
|
|
|
|
|
Isolate* HeapObject::GetIsolate() {
|
|
return GetHeap()->isolate();
|
|
}
|
|
|
|
|
|
Map* HeapObject::map() {
|
|
return map_word().ToMap();
|
|
}
|
|
|
|
|
|
void HeapObject::set_map(Map* value) {
|
|
set_map_word(MapWord::FromMap(value));
|
|
if (value != NULL) {
|
|
// TODO(1600) We are passing NULL as a slot because maps can never be on
|
|
// evacuation candidate.
|
|
value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value);
|
|
}
|
|
}
|
|
|
|
|
|
MapWord HeapObject::map_word() {
|
|
return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset)));
|
|
}
|
|
|
|
|
|
void HeapObject::set_map_word(MapWord map_word) {
|
|
// WRITE_FIELD does not invoke write barrier, but there is no need
|
|
// here.
|
|
WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
|
|
}
|
|
|
|
|
|
HeapObject* HeapObject::FromAddress(Address address) {
|
|
ASSERT_TAG_ALIGNED(address);
|
|
return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
|
|
}
|
|
|
|
|
|
Address HeapObject::address() {
|
|
return reinterpret_cast<Address>(this) - kHeapObjectTag;
|
|
}
|
|
|
|
|
|
int HeapObject::Size() {
|
|
return SizeFromMap(map());
|
|
}
|
|
|
|
|
|
void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
|
|
v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
|
|
reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
|
|
}
|
|
|
|
|
|
void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
|
|
v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
|
|
}
|
|
|
|
|
|
double HeapNumber::value() {
|
|
return READ_DOUBLE_FIELD(this, kValueOffset);
|
|
}
|
|
|
|
|
|
void HeapNumber::set_value(double value) {
|
|
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
|
|
}
|
|
|
|
|
|
int HeapNumber::get_exponent() {
|
|
return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
|
|
kExponentShift) - kExponentBias;
|
|
}
|
|
|
|
|
|
int HeapNumber::get_sign() {
|
|
return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
|
|
}
|
|
|
|
|
|
ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
|
|
|
|
|
|
FixedArrayBase* JSObject::elements() {
|
|
Object* array = READ_FIELD(this, kElementsOffset);
|
|
ASSERT(array->HasValidElements());
|
|
return static_cast<FixedArrayBase*>(array);
|
|
}
|
|
|
|
void JSObject::ValidateSmiOnlyElements() {
|
|
#if DEBUG
|
|
if (FLAG_smi_only_arrays &&
|
|
map()->elements_kind() == FAST_SMI_ONLY_ELEMENTS) {
|
|
Heap* heap = GetHeap();
|
|
// Don't use elements, since integrity checks will fail if there
|
|
// are filler pointers in the array.
|
|
FixedArray* fixed_array =
|
|
reinterpret_cast<FixedArray*>(READ_FIELD(this, kElementsOffset));
|
|
Map* map = fixed_array->map();
|
|
// Arrays that have been shifted in place can't be verified.
|
|
if (map != heap->raw_unchecked_one_pointer_filler_map() &&
|
|
map != heap->raw_unchecked_two_pointer_filler_map() &&
|
|
map != heap->free_space_map()) {
|
|
for (int i = 0; i < fixed_array->length(); i++) {
|
|
Object* current = fixed_array->get(i);
|
|
ASSERT(current->IsSmi() || current == heap->the_hole_value());
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureCanContainNonSmiElements() {
|
|
#if DEBUG
|
|
ValidateSmiOnlyElements();
|
|
#endif
|
|
if (FLAG_smi_only_arrays &&
|
|
(map()->elements_kind() == FAST_SMI_ONLY_ELEMENTS)) {
|
|
Object* obj;
|
|
MaybeObject* maybe_obj = GetElementsTransitionMap(FAST_ELEMENTS);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
set_map(Map::cast(obj));
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureCanContainElements(Object** objects,
|
|
uint32_t count) {
|
|
if (FLAG_smi_only_arrays &&
|
|
map()->elements_kind() == FAST_SMI_ONLY_ELEMENTS) {
|
|
for (uint32_t i = 0; i < count; ++i) {
|
|
Object* current = *objects++;
|
|
if (!current->IsSmi() && current != GetHeap()->the_hole_value()) {
|
|
return EnsureCanContainNonSmiElements();
|
|
}
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureCanContainElements(FixedArray* elements) {
|
|
if (FLAG_smi_only_arrays) {
|
|
Object** objects = reinterpret_cast<Object**>(
|
|
FIELD_ADDR(elements, elements->OffsetOfElementAt(0)));
|
|
return EnsureCanContainElements(objects, elements->length());
|
|
} else {
|
|
return this;
|
|
}
|
|
}
|
|
|
|
|
|
void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) {
|
|
ASSERT((map()->has_fast_elements() ||
|
|
map()->has_fast_smi_only_elements()) ==
|
|
(value->map() == GetHeap()->fixed_array_map() ||
|
|
value->map() == GetHeap()->fixed_cow_array_map()));
|
|
ASSERT(map()->has_fast_double_elements() ==
|
|
value->IsFixedDoubleArray());
|
|
ASSERT(value->HasValidElements());
|
|
#ifdef DEBUG
|
|
ValidateSmiOnlyElements();
|
|
#endif
|
|
WRITE_FIELD(this, kElementsOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode);
|
|
}
|
|
|
|
|
|
void JSObject::initialize_properties() {
|
|
ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
|
|
WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array());
|
|
}
|
|
|
|
|
|
void JSObject::initialize_elements() {
|
|
ASSERT(map()->has_fast_elements() || map()->has_fast_smi_only_elements());
|
|
ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
|
|
WRITE_FIELD(this, kElementsOffset, GetHeap()->empty_fixed_array());
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::ResetElements() {
|
|
Object* obj;
|
|
ElementsKind elements_kind = FLAG_smi_only_arrays
|
|
? FAST_SMI_ONLY_ELEMENTS
|
|
: FAST_ELEMENTS;
|
|
MaybeObject* maybe_obj = GetElementsTransitionMap(elements_kind);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
set_map(Map::cast(obj));
|
|
initialize_elements();
|
|
return this;
|
|
}
|
|
|
|
|
|
ACCESSORS(Oddball, to_string, String, kToStringOffset)
|
|
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
|
|
|
|
|
|
byte Oddball::kind() {
|
|
return Smi::cast(READ_FIELD(this, kKindOffset))->value();
|
|
}
|
|
|
|
|
|
void Oddball::set_kind(byte value) {
|
|
WRITE_FIELD(this, kKindOffset, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
Object* JSGlobalPropertyCell::value() {
|
|
return READ_FIELD(this, kValueOffset);
|
|
}
|
|
|
|
|
|
void JSGlobalPropertyCell::set_value(Object* val, WriteBarrierMode ignored) {
|
|
// The write barrier is not used for global property cells.
|
|
ASSERT(!val->IsJSGlobalPropertyCell());
|
|
WRITE_FIELD(this, kValueOffset, val);
|
|
GetHeap()->incremental_marking()->RecordWrite(
|
|
this, HeapObject::RawField(this, kValueOffset), val);
|
|
}
|
|
|
|
|
|
int JSObject::GetHeaderSize() {
|
|
InstanceType type = map()->instance_type();
|
|
// Check for the most common kind of JavaScript object before
|
|
// falling into the generic switch. This speeds up the internal
|
|
// field operations considerably on average.
|
|
if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize;
|
|
switch (type) {
|
|
case JS_GLOBAL_PROXY_TYPE:
|
|
return JSGlobalProxy::kSize;
|
|
case JS_GLOBAL_OBJECT_TYPE:
|
|
return JSGlobalObject::kSize;
|
|
case JS_BUILTINS_OBJECT_TYPE:
|
|
return JSBuiltinsObject::kSize;
|
|
case JS_FUNCTION_TYPE:
|
|
return JSFunction::kSize;
|
|
case JS_VALUE_TYPE:
|
|
return JSValue::kSize;
|
|
case JS_ARRAY_TYPE:
|
|
return JSValue::kSize;
|
|
case JS_WEAK_MAP_TYPE:
|
|
return JSWeakMap::kSize;
|
|
case JS_REGEXP_TYPE:
|
|
return JSValue::kSize;
|
|
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
|
|
return JSObject::kHeaderSize;
|
|
case JS_MESSAGE_OBJECT_TYPE:
|
|
return JSMessageObject::kSize;
|
|
default:
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int JSObject::GetInternalFieldCount() {
|
|
ASSERT(1 << kPointerSizeLog2 == kPointerSize);
|
|
// Make sure to adjust for the number of in-object properties. These
|
|
// properties do contribute to the size, but are not internal fields.
|
|
return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) -
|
|
map()->inobject_properties();
|
|
}
|
|
|
|
|
|
int JSObject::GetInternalFieldOffset(int index) {
|
|
ASSERT(index < GetInternalFieldCount() && index >= 0);
|
|
return GetHeaderSize() + (kPointerSize * index);
|
|
}
|
|
|
|
|
|
Object* JSObject::GetInternalField(int index) {
|
|
ASSERT(index < GetInternalFieldCount() && index >= 0);
|
|
// Internal objects do follow immediately after the header, whereas in-object
|
|
// properties are at the end of the object. Therefore there is no need
|
|
// to adjust the index here.
|
|
return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
|
|
}
|
|
|
|
|
|
void JSObject::SetInternalField(int index, Object* value) {
|
|
ASSERT(index < GetInternalFieldCount() && index >= 0);
|
|
// Internal objects do follow immediately after the header, whereas in-object
|
|
// properties are at the end of the object. Therefore there is no need
|
|
// to adjust the index here.
|
|
int offset = GetHeaderSize() + (kPointerSize * index);
|
|
WRITE_FIELD(this, offset, value);
|
|
WRITE_BARRIER(GetHeap(), this, offset, value);
|
|
}
|
|
|
|
|
|
// Access fast-case object properties at index. The use of these routines
|
|
// is needed to correctly distinguish between properties stored in-object and
|
|
// properties stored in the properties array.
|
|
Object* JSObject::FastPropertyAt(int index) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
if (index < 0) {
|
|
int offset = map()->instance_size() + (index * kPointerSize);
|
|
return READ_FIELD(this, offset);
|
|
} else {
|
|
ASSERT(index < properties()->length());
|
|
return properties()->get(index);
|
|
}
|
|
}
|
|
|
|
|
|
Object* JSObject::FastPropertyAtPut(int index, Object* value) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
if (index < 0) {
|
|
int offset = map()->instance_size() + (index * kPointerSize);
|
|
WRITE_FIELD(this, offset, value);
|
|
WRITE_BARRIER(GetHeap(), this, offset, value);
|
|
} else {
|
|
ASSERT(index < properties()->length());
|
|
properties()->set(index, value);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
int JSObject::GetInObjectPropertyOffset(int index) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
ASSERT(index < 0);
|
|
return map()->instance_size() + (index * kPointerSize);
|
|
}
|
|
|
|
|
|
Object* JSObject::InObjectPropertyAt(int index) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
ASSERT(index < 0);
|
|
int offset = map()->instance_size() + (index * kPointerSize);
|
|
return READ_FIELD(this, offset);
|
|
}
|
|
|
|
|
|
Object* JSObject::InObjectPropertyAtPut(int index,
|
|
Object* value,
|
|
WriteBarrierMode mode) {
|
|
// Adjust for the number of properties stored in the object.
|
|
index -= map()->inobject_properties();
|
|
ASSERT(index < 0);
|
|
int offset = map()->instance_size() + (index * kPointerSize);
|
|
WRITE_FIELD(this, offset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
|
|
return value;
|
|
}
|
|
|
|
|
|
|
|
void JSObject::InitializeBody(Map* map,
|
|
Object* pre_allocated_value,
|
|
Object* filler_value) {
|
|
ASSERT(!filler_value->IsHeapObject() ||
|
|
!GetHeap()->InNewSpace(filler_value));
|
|
ASSERT(!pre_allocated_value->IsHeapObject() ||
|
|
!GetHeap()->InNewSpace(pre_allocated_value));
|
|
int size = map->instance_size();
|
|
int offset = kHeaderSize;
|
|
if (filler_value != pre_allocated_value) {
|
|
int pre_allocated = map->pre_allocated_property_fields();
|
|
ASSERT(pre_allocated * kPointerSize + kHeaderSize <= size);
|
|
for (int i = 0; i < pre_allocated; i++) {
|
|
WRITE_FIELD(this, offset, pre_allocated_value);
|
|
offset += kPointerSize;
|
|
}
|
|
}
|
|
while (offset < size) {
|
|
WRITE_FIELD(this, offset, filler_value);
|
|
offset += kPointerSize;
|
|
}
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastProperties() {
|
|
return !properties()->IsDictionary();
|
|
}
|
|
|
|
|
|
int JSObject::MaxFastProperties() {
|
|
// Allow extra fast properties if the object has more than
|
|
// kMaxFastProperties in-object properties. When this is the case,
|
|
// it is very unlikely that the object is being used as a dictionary
|
|
// and there is a good chance that allowing more map transitions
|
|
// will be worth it.
|
|
return Max(map()->inobject_properties(), kMaxFastProperties);
|
|
}
|
|
|
|
|
|
void Struct::InitializeBody(int object_size) {
|
|
Object* value = GetHeap()->undefined_value();
|
|
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
|
|
WRITE_FIELD(this, offset, value);
|
|
}
|
|
}
|
|
|
|
|
|
bool Object::ToArrayIndex(uint32_t* index) {
|
|
if (IsSmi()) {
|
|
int value = Smi::cast(this)->value();
|
|
if (value < 0) return false;
|
|
*index = value;
|
|
return true;
|
|
}
|
|
if (IsHeapNumber()) {
|
|
double value = HeapNumber::cast(this)->value();
|
|
uint32_t uint_value = static_cast<uint32_t>(value);
|
|
if (value == static_cast<double>(uint_value)) {
|
|
*index = uint_value;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
|
|
if (!this->IsJSValue()) return false;
|
|
|
|
JSValue* js_value = JSValue::cast(this);
|
|
if (!js_value->value()->IsString()) return false;
|
|
|
|
String* str = String::cast(js_value->value());
|
|
if (index >= (uint32_t)str->length()) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
FixedArrayBase* FixedArrayBase::cast(Object* object) {
|
|
ASSERT(object->IsFixedArray() || object->IsFixedDoubleArray());
|
|
return reinterpret_cast<FixedArrayBase*>(object);
|
|
}
|
|
|
|
|
|
Object* FixedArray::get(int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
return READ_FIELD(this, kHeaderSize + index * kPointerSize);
|
|
}
|
|
|
|
|
|
void FixedArray::set(int index, Smi* value) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(this, offset, value);
|
|
}
|
|
|
|
|
|
void FixedArray::set(int index, Object* value) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(this, offset, value);
|
|
WRITE_BARRIER(GetHeap(), this, offset, value);
|
|
}
|
|
|
|
|
|
inline bool FixedDoubleArray::is_the_hole_nan(double value) {
|
|
return BitCast<uint64_t, double>(value) == kHoleNanInt64;
|
|
}
|
|
|
|
|
|
inline double FixedDoubleArray::hole_nan_as_double() {
|
|
return BitCast<double, uint64_t>(kHoleNanInt64);
|
|
}
|
|
|
|
|
|
inline double FixedDoubleArray::canonical_not_the_hole_nan_as_double() {
|
|
ASSERT(BitCast<uint64_t>(OS::nan_value()) != kHoleNanInt64);
|
|
ASSERT((BitCast<uint64_t>(OS::nan_value()) >> 32) != kHoleNanUpper32);
|
|
return OS::nan_value();
|
|
}
|
|
|
|
|
|
double FixedDoubleArray::get_scalar(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map() &&
|
|
map() != HEAP->fixed_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
double result = READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize);
|
|
ASSERT(!is_the_hole_nan(result));
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* FixedDoubleArray::get(int index) {
|
|
if (is_the_hole(index)) {
|
|
return GetHeap()->the_hole_value();
|
|
} else {
|
|
return GetHeap()->NumberFromDouble(get_scalar(index));
|
|
}
|
|
}
|
|
|
|
|
|
void FixedDoubleArray::set(int index, double value) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map() &&
|
|
map() != HEAP->fixed_array_map());
|
|
int offset = kHeaderSize + index * kDoubleSize;
|
|
if (isnan(value)) value = canonical_not_the_hole_nan_as_double();
|
|
WRITE_DOUBLE_FIELD(this, offset, value);
|
|
}
|
|
|
|
|
|
void FixedDoubleArray::set_the_hole(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map() &&
|
|
map() != HEAP->fixed_array_map());
|
|
int offset = kHeaderSize + index * kDoubleSize;
|
|
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
|
|
}
|
|
|
|
|
|
bool FixedDoubleArray::is_the_hole(int index) {
|
|
int offset = kHeaderSize + index * kDoubleSize;
|
|
return is_the_hole_nan(READ_DOUBLE_FIELD(this, offset));
|
|
}
|
|
|
|
|
|
void FixedDoubleArray::Initialize(FixedDoubleArray* from) {
|
|
int old_length = from->length();
|
|
ASSERT(old_length < length());
|
|
if (old_length * kDoubleSize >= OS::kMinComplexMemCopy) {
|
|
OS::MemCopy(FIELD_ADDR(this, kHeaderSize),
|
|
FIELD_ADDR(from, kHeaderSize),
|
|
old_length * kDoubleSize);
|
|
} else {
|
|
for (int i = 0; i < old_length; ++i) {
|
|
set(i, from->get_scalar(i));
|
|
}
|
|
}
|
|
int offset = kHeaderSize + old_length * kDoubleSize;
|
|
for (int current = from->length(); current < length(); ++current) {
|
|
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
|
|
offset += kDoubleSize;
|
|
}
|
|
}
|
|
|
|
|
|
void FixedDoubleArray::Initialize(FixedArray* from) {
|
|
int old_length = from->length();
|
|
ASSERT(old_length <= length());
|
|
for (int i = 0; i < old_length; i++) {
|
|
Object* hole_or_object = from->get(i);
|
|
if (hole_or_object->IsTheHole()) {
|
|
set_the_hole(i);
|
|
} else {
|
|
set(i, hole_or_object->Number());
|
|
}
|
|
}
|
|
int offset = kHeaderSize + old_length * kDoubleSize;
|
|
for (int current = from->length(); current < length(); ++current) {
|
|
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
|
|
offset += kDoubleSize;
|
|
}
|
|
}
|
|
|
|
|
|
void FixedDoubleArray::Initialize(NumberDictionary* from) {
|
|
int offset = kHeaderSize;
|
|
for (int current = 0; current < length(); ++current) {
|
|
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
|
|
offset += kDoubleSize;
|
|
}
|
|
for (int i = 0; i < from->Capacity(); i++) {
|
|
Object* key = from->KeyAt(i);
|
|
if (key->IsNumber()) {
|
|
uint32_t entry = static_cast<uint32_t>(key->Number());
|
|
set(entry, from->ValueAt(i)->Number());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
WriteBarrierMode HeapObject::GetWriteBarrierMode(const AssertNoAllocation&) {
|
|
Heap* heap = GetHeap();
|
|
if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER;
|
|
if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER;
|
|
return UPDATE_WRITE_BARRIER;
|
|
}
|
|
|
|
|
|
void FixedArray::set(int index,
|
|
Object* value,
|
|
WriteBarrierMode mode) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(this, offset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
|
|
}
|
|
|
|
|
|
void FixedArray::fast_set(FixedArray* array, int index, Object* value) {
|
|
ASSERT(array->map() != HEAP->raw_unchecked_fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < array->length());
|
|
ASSERT(!HEAP->InNewSpace(value));
|
|
WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
|
|
array->GetHeap()->incremental_marking()->RecordWrite(
|
|
array,
|
|
HeapObject::RawField(array, kHeaderSize + index * kPointerSize),
|
|
value);
|
|
}
|
|
|
|
|
|
void FixedArray::set_undefined(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
set_undefined(GetHeap(), index);
|
|
}
|
|
|
|
|
|
void FixedArray::set_undefined(Heap* heap, int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(!heap->InNewSpace(heap->undefined_value()));
|
|
WRITE_FIELD(this, kHeaderSize + index * kPointerSize,
|
|
heap->undefined_value());
|
|
}
|
|
|
|
|
|
void FixedArray::set_null(int index) {
|
|
set_null(GetHeap(), index);
|
|
}
|
|
|
|
|
|
void FixedArray::set_null(Heap* heap, int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(!heap->InNewSpace(heap->null_value()));
|
|
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
|
|
}
|
|
|
|
|
|
void FixedArray::set_the_hole(int index) {
|
|
ASSERT(map() != HEAP->fixed_cow_array_map());
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(!HEAP->InNewSpace(HEAP->the_hole_value()));
|
|
WRITE_FIELD(this,
|
|
kHeaderSize + index * kPointerSize,
|
|
GetHeap()->the_hole_value());
|
|
}
|
|
|
|
|
|
void FixedArray::set_unchecked(int index, Smi* value) {
|
|
ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(this, offset, value);
|
|
}
|
|
|
|
|
|
void FixedArray::set_unchecked(Heap* heap,
|
|
int index,
|
|
Object* value,
|
|
WriteBarrierMode mode) {
|
|
int offset = kHeaderSize + index * kPointerSize;
|
|
WRITE_FIELD(this, offset, value);
|
|
CONDITIONAL_WRITE_BARRIER(heap, this, offset, value, mode);
|
|
}
|
|
|
|
|
|
void FixedArray::set_null_unchecked(Heap* heap, int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
ASSERT(!HEAP->InNewSpace(heap->null_value()));
|
|
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
|
|
}
|
|
|
|
|
|
Object** FixedArray::data_start() {
|
|
return HeapObject::RawField(this, kHeaderSize);
|
|
}
|
|
|
|
|
|
bool DescriptorArray::IsEmpty() {
|
|
ASSERT(this->IsSmi() ||
|
|
this->length() > kFirstIndex ||
|
|
this == HEAP->empty_descriptor_array());
|
|
return this->IsSmi() || length() <= kFirstIndex;
|
|
}
|
|
|
|
|
|
int DescriptorArray::bit_field3_storage() {
|
|
Object* storage = READ_FIELD(this, kBitField3StorageOffset);
|
|
return Smi::cast(storage)->value();
|
|
}
|
|
|
|
void DescriptorArray::set_bit_field3_storage(int value) {
|
|
ASSERT(!IsEmpty());
|
|
WRITE_FIELD(this, kBitField3StorageOffset, Smi::FromInt(value));
|
|
}
|
|
|
|
|
|
void DescriptorArray::fast_swap(FixedArray* array, int first, int second) {
|
|
Object* tmp = array->get(first);
|
|
fast_set(array, first, array->get(second));
|
|
fast_set(array, second, tmp);
|
|
}
|
|
|
|
|
|
int DescriptorArray::Search(String* name) {
|
|
SLOW_ASSERT(IsSortedNoDuplicates());
|
|
|
|
// Check for empty descriptor array.
|
|
int nof = number_of_descriptors();
|
|
if (nof == 0) return kNotFound;
|
|
|
|
// Fast case: do linear search for small arrays.
|
|
const int kMaxElementsForLinearSearch = 8;
|
|
if (StringShape(name).IsSymbol() && nof < kMaxElementsForLinearSearch) {
|
|
return LinearSearch(name, nof);
|
|
}
|
|
|
|
// Slow case: perform binary search.
|
|
return BinarySearch(name, 0, nof - 1);
|
|
}
|
|
|
|
|
|
int DescriptorArray::SearchWithCache(String* name) {
|
|
int number = GetIsolate()->descriptor_lookup_cache()->Lookup(this, name);
|
|
if (number == DescriptorLookupCache::kAbsent) {
|
|
number = Search(name);
|
|
GetIsolate()->descriptor_lookup_cache()->Update(this, name, number);
|
|
}
|
|
return number;
|
|
}
|
|
|
|
|
|
String* DescriptorArray::GetKey(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
return String::cast(get(ToKeyIndex(descriptor_number)));
|
|
}
|
|
|
|
|
|
Object* DescriptorArray::GetValue(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
return GetContentArray()->get(ToValueIndex(descriptor_number));
|
|
}
|
|
|
|
|
|
Smi* DescriptorArray::GetDetails(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
return Smi::cast(GetContentArray()->get(ToDetailsIndex(descriptor_number)));
|
|
}
|
|
|
|
|
|
PropertyType DescriptorArray::GetType(int descriptor_number) {
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
return PropertyDetails(GetDetails(descriptor_number)).type();
|
|
}
|
|
|
|
|
|
int DescriptorArray::GetFieldIndex(int descriptor_number) {
|
|
return Descriptor::IndexFromValue(GetValue(descriptor_number));
|
|
}
|
|
|
|
|
|
JSFunction* DescriptorArray::GetConstantFunction(int descriptor_number) {
|
|
return JSFunction::cast(GetValue(descriptor_number));
|
|
}
|
|
|
|
|
|
Object* DescriptorArray::GetCallbacksObject(int descriptor_number) {
|
|
ASSERT(GetType(descriptor_number) == CALLBACKS);
|
|
return GetValue(descriptor_number);
|
|
}
|
|
|
|
|
|
AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) {
|
|
ASSERT(GetType(descriptor_number) == CALLBACKS);
|
|
Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number));
|
|
return reinterpret_cast<AccessorDescriptor*>(p->address());
|
|
}
|
|
|
|
|
|
bool DescriptorArray::IsProperty(int descriptor_number) {
|
|
return GetType(descriptor_number) < FIRST_PHANTOM_PROPERTY_TYPE;
|
|
}
|
|
|
|
|
|
bool DescriptorArray::IsTransition(int descriptor_number) {
|
|
PropertyType t = GetType(descriptor_number);
|
|
return t == MAP_TRANSITION || t == CONSTANT_TRANSITION ||
|
|
t == ELEMENTS_TRANSITION;
|
|
}
|
|
|
|
|
|
bool DescriptorArray::IsNullDescriptor(int descriptor_number) {
|
|
return GetType(descriptor_number) == NULL_DESCRIPTOR;
|
|
}
|
|
|
|
|
|
bool DescriptorArray::IsDontEnum(int descriptor_number) {
|
|
return PropertyDetails(GetDetails(descriptor_number)).IsDontEnum();
|
|
}
|
|
|
|
|
|
void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
|
|
desc->Init(GetKey(descriptor_number),
|
|
GetValue(descriptor_number),
|
|
PropertyDetails(GetDetails(descriptor_number)));
|
|
}
|
|
|
|
|
|
void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
|
|
// Range check.
|
|
ASSERT(descriptor_number < number_of_descriptors());
|
|
|
|
// Make sure none of the elements in desc are in new space.
|
|
ASSERT(!HEAP->InNewSpace(desc->GetKey()));
|
|
ASSERT(!HEAP->InNewSpace(desc->GetValue()));
|
|
|
|
fast_set(this, ToKeyIndex(descriptor_number), desc->GetKey());
|
|
FixedArray* content_array = GetContentArray();
|
|
fast_set(content_array, ToValueIndex(descriptor_number), desc->GetValue());
|
|
fast_set(content_array, ToDetailsIndex(descriptor_number),
|
|
desc->GetDetails().AsSmi());
|
|
}
|
|
|
|
|
|
void DescriptorArray::CopyFrom(int index, DescriptorArray* src, int src_index) {
|
|
Descriptor desc;
|
|
src->Get(src_index, &desc);
|
|
Set(index, &desc);
|
|
}
|
|
|
|
|
|
void DescriptorArray::Swap(int first, int second) {
|
|
fast_swap(this, ToKeyIndex(first), ToKeyIndex(second));
|
|
FixedArray* content_array = GetContentArray();
|
|
fast_swap(content_array, ToValueIndex(first), ToValueIndex(second));
|
|
fast_swap(content_array, ToDetailsIndex(first), ToDetailsIndex(second));
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
int HashTable<Shape, Key>::ComputeCapacity(int at_least_space_for) {
|
|
const int kMinCapacity = 32;
|
|
int capacity = RoundUpToPowerOf2(at_least_space_for * 2);
|
|
if (capacity < kMinCapacity) {
|
|
capacity = kMinCapacity; // Guarantee min capacity.
|
|
}
|
|
return capacity;
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
int HashTable<Shape, Key>::FindEntry(Key key) {
|
|
return FindEntry(GetIsolate(), key);
|
|
}
|
|
|
|
|
|
// Find entry for key otherwise return kNotFound.
|
|
template<typename Shape, typename Key>
|
|
int HashTable<Shape, Key>::FindEntry(Isolate* isolate, Key key) {
|
|
uint32_t capacity = Capacity();
|
|
uint32_t entry = FirstProbe(Shape::Hash(key), capacity);
|
|
uint32_t count = 1;
|
|
// EnsureCapacity will guarantee the hash table is never full.
|
|
while (true) {
|
|
Object* element = KeyAt(entry);
|
|
if (element == isolate->heap()->undefined_value()) break; // Empty entry.
|
|
if (element != isolate->heap()->null_value() &&
|
|
Shape::IsMatch(key, element)) return entry;
|
|
entry = NextProbe(entry, count++, capacity);
|
|
}
|
|
return kNotFound;
|
|
}
|
|
|
|
|
|
bool NumberDictionary::requires_slow_elements() {
|
|
Object* max_index_object = get(kMaxNumberKeyIndex);
|
|
if (!max_index_object->IsSmi()) return false;
|
|
return 0 !=
|
|
(Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
|
|
}
|
|
|
|
uint32_t NumberDictionary::max_number_key() {
|
|
ASSERT(!requires_slow_elements());
|
|
Object* max_index_object = get(kMaxNumberKeyIndex);
|
|
if (!max_index_object->IsSmi()) return 0;
|
|
uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
|
|
return value >> kRequiresSlowElementsTagSize;
|
|
}
|
|
|
|
void NumberDictionary::set_requires_slow_elements() {
|
|
set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
|
|
}
|
|
|
|
|
|
// ------------------------------------
|
|
// Cast operations
|
|
|
|
|
|
CAST_ACCESSOR(FixedArray)
|
|
CAST_ACCESSOR(FixedDoubleArray)
|
|
CAST_ACCESSOR(DescriptorArray)
|
|
CAST_ACCESSOR(DeoptimizationInputData)
|
|
CAST_ACCESSOR(DeoptimizationOutputData)
|
|
CAST_ACCESSOR(SymbolTable)
|
|
CAST_ACCESSOR(JSFunctionResultCache)
|
|
CAST_ACCESSOR(NormalizedMapCache)
|
|
CAST_ACCESSOR(CompilationCacheTable)
|
|
CAST_ACCESSOR(CodeCacheHashTable)
|
|
CAST_ACCESSOR(PolymorphicCodeCacheHashTable)
|
|
CAST_ACCESSOR(MapCache)
|
|
CAST_ACCESSOR(String)
|
|
CAST_ACCESSOR(SeqString)
|
|
CAST_ACCESSOR(SeqAsciiString)
|
|
CAST_ACCESSOR(SeqTwoByteString)
|
|
CAST_ACCESSOR(SlicedString)
|
|
CAST_ACCESSOR(ConsString)
|
|
CAST_ACCESSOR(ExternalString)
|
|
CAST_ACCESSOR(ExternalAsciiString)
|
|
CAST_ACCESSOR(ExternalTwoByteString)
|
|
CAST_ACCESSOR(JSReceiver)
|
|
CAST_ACCESSOR(JSObject)
|
|
CAST_ACCESSOR(Smi)
|
|
CAST_ACCESSOR(HeapObject)
|
|
CAST_ACCESSOR(HeapNumber)
|
|
CAST_ACCESSOR(Oddball)
|
|
CAST_ACCESSOR(JSGlobalPropertyCell)
|
|
CAST_ACCESSOR(SharedFunctionInfo)
|
|
CAST_ACCESSOR(Map)
|
|
CAST_ACCESSOR(JSFunction)
|
|
CAST_ACCESSOR(GlobalObject)
|
|
CAST_ACCESSOR(JSGlobalProxy)
|
|
CAST_ACCESSOR(JSGlobalObject)
|
|
CAST_ACCESSOR(JSBuiltinsObject)
|
|
CAST_ACCESSOR(Code)
|
|
CAST_ACCESSOR(JSArray)
|
|
CAST_ACCESSOR(JSRegExp)
|
|
CAST_ACCESSOR(JSProxy)
|
|
CAST_ACCESSOR(JSFunctionProxy)
|
|
CAST_ACCESSOR(JSWeakMap)
|
|
CAST_ACCESSOR(Foreign)
|
|
CAST_ACCESSOR(ByteArray)
|
|
CAST_ACCESSOR(FreeSpace)
|
|
CAST_ACCESSOR(ExternalArray)
|
|
CAST_ACCESSOR(ExternalByteArray)
|
|
CAST_ACCESSOR(ExternalUnsignedByteArray)
|
|
CAST_ACCESSOR(ExternalShortArray)
|
|
CAST_ACCESSOR(ExternalUnsignedShortArray)
|
|
CAST_ACCESSOR(ExternalIntArray)
|
|
CAST_ACCESSOR(ExternalUnsignedIntArray)
|
|
CAST_ACCESSOR(ExternalFloatArray)
|
|
CAST_ACCESSOR(ExternalDoubleArray)
|
|
CAST_ACCESSOR(ExternalPixelArray)
|
|
CAST_ACCESSOR(Struct)
|
|
|
|
|
|
#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
|
|
STRUCT_LIST(MAKE_STRUCT_CAST)
|
|
#undef MAKE_STRUCT_CAST
|
|
|
|
|
|
template <typename Shape, typename Key>
|
|
HashTable<Shape, Key>* HashTable<Shape, Key>::cast(Object* obj) {
|
|
ASSERT(obj->IsHashTable());
|
|
return reinterpret_cast<HashTable*>(obj);
|
|
}
|
|
|
|
|
|
SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
|
|
SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
|
|
|
|
SMI_ACCESSORS(String, length, kLengthOffset)
|
|
|
|
|
|
uint32_t String::hash_field() {
|
|
return READ_UINT32_FIELD(this, kHashFieldOffset);
|
|
}
|
|
|
|
|
|
void String::set_hash_field(uint32_t value) {
|
|
WRITE_UINT32_FIELD(this, kHashFieldOffset, value);
|
|
#if V8_HOST_ARCH_64_BIT
|
|
WRITE_UINT32_FIELD(this, kHashFieldOffset + kIntSize, 0);
|
|
#endif
|
|
}
|
|
|
|
|
|
bool String::Equals(String* other) {
|
|
if (other == this) return true;
|
|
if (StringShape(this).IsSymbol() && StringShape(other).IsSymbol()) {
|
|
return false;
|
|
}
|
|
return SlowEquals(other);
|
|
}
|
|
|
|
|
|
MaybeObject* String::TryFlatten(PretenureFlag pretenure) {
|
|
if (!StringShape(this).IsCons()) return this;
|
|
ConsString* cons = ConsString::cast(this);
|
|
if (cons->IsFlat()) return cons->first();
|
|
return SlowTryFlatten(pretenure);
|
|
}
|
|
|
|
|
|
String* String::TryFlattenGetString(PretenureFlag pretenure) {
|
|
MaybeObject* flat = TryFlatten(pretenure);
|
|
Object* successfully_flattened;
|
|
if (!flat->ToObject(&successfully_flattened)) return this;
|
|
return String::cast(successfully_flattened);
|
|
}
|
|
|
|
|
|
uint16_t String::Get(int index) {
|
|
ASSERT(index >= 0 && index < length());
|
|
switch (StringShape(this).full_representation_tag()) {
|
|
case kSeqStringTag | kAsciiStringTag:
|
|
return SeqAsciiString::cast(this)->SeqAsciiStringGet(index);
|
|
case kSeqStringTag | kTwoByteStringTag:
|
|
return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
|
|
case kConsStringTag | kAsciiStringTag:
|
|
case kConsStringTag | kTwoByteStringTag:
|
|
return ConsString::cast(this)->ConsStringGet(index);
|
|
case kExternalStringTag | kAsciiStringTag:
|
|
return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index);
|
|
case kExternalStringTag | kTwoByteStringTag:
|
|
return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
|
|
case kSlicedStringTag | kAsciiStringTag:
|
|
case kSlicedStringTag | kTwoByteStringTag:
|
|
return SlicedString::cast(this)->SlicedStringGet(index);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
void String::Set(int index, uint16_t value) {
|
|
ASSERT(index >= 0 && index < length());
|
|
ASSERT(StringShape(this).IsSequential());
|
|
|
|
return this->IsAsciiRepresentation()
|
|
? SeqAsciiString::cast(this)->SeqAsciiStringSet(index, value)
|
|
: SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
|
|
}
|
|
|
|
|
|
bool String::IsFlat() {
|
|
if (!StringShape(this).IsCons()) return true;
|
|
return ConsString::cast(this)->second()->length() == 0;
|
|
}
|
|
|
|
|
|
String* String::GetUnderlying() {
|
|
// Giving direct access to underlying string only makes sense if the
|
|
// wrapping string is already flattened.
|
|
ASSERT(this->IsFlat());
|
|
ASSERT(StringShape(this).IsIndirect());
|
|
STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset);
|
|
const int kUnderlyingOffset = SlicedString::kParentOffset;
|
|
return String::cast(READ_FIELD(this, kUnderlyingOffset));
|
|
}
|
|
|
|
|
|
uint16_t SeqAsciiString::SeqAsciiStringGet(int index) {
|
|
ASSERT(index >= 0 && index < length());
|
|
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
|
|
}
|
|
|
|
|
|
void SeqAsciiString::SeqAsciiStringSet(int index, uint16_t value) {
|
|
ASSERT(index >= 0 && index < length() && value <= kMaxAsciiCharCode);
|
|
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
|
|
static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
Address SeqAsciiString::GetCharsAddress() {
|
|
return FIELD_ADDR(this, kHeaderSize);
|
|
}
|
|
|
|
|
|
char* SeqAsciiString::GetChars() {
|
|
return reinterpret_cast<char*>(GetCharsAddress());
|
|
}
|
|
|
|
|
|
Address SeqTwoByteString::GetCharsAddress() {
|
|
return FIELD_ADDR(this, kHeaderSize);
|
|
}
|
|
|
|
|
|
uc16* SeqTwoByteString::GetChars() {
|
|
return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
|
|
}
|
|
|
|
|
|
uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
|
|
ASSERT(index >= 0 && index < length());
|
|
return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize);
|
|
}
|
|
|
|
|
|
void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
|
|
ASSERT(index >= 0 && index < length());
|
|
WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value);
|
|
}
|
|
|
|
|
|
int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
|
|
return SizeFor(length());
|
|
}
|
|
|
|
|
|
int SeqAsciiString::SeqAsciiStringSize(InstanceType instance_type) {
|
|
return SizeFor(length());
|
|
}
|
|
|
|
|
|
String* SlicedString::parent() {
|
|
return String::cast(READ_FIELD(this, kParentOffset));
|
|
}
|
|
|
|
|
|
void SlicedString::set_parent(String* parent) {
|
|
ASSERT(parent->IsSeqString() || parent->IsExternalString());
|
|
WRITE_FIELD(this, kParentOffset, parent);
|
|
}
|
|
|
|
|
|
SMI_ACCESSORS(SlicedString, offset, kOffsetOffset)
|
|
|
|
|
|
String* ConsString::first() {
|
|
return String::cast(READ_FIELD(this, kFirstOffset));
|
|
}
|
|
|
|
|
|
Object* ConsString::unchecked_first() {
|
|
return READ_FIELD(this, kFirstOffset);
|
|
}
|
|
|
|
|
|
void ConsString::set_first(String* value, WriteBarrierMode mode) {
|
|
WRITE_FIELD(this, kFirstOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, value, mode);
|
|
}
|
|
|
|
|
|
String* ConsString::second() {
|
|
return String::cast(READ_FIELD(this, kSecondOffset));
|
|
}
|
|
|
|
|
|
Object* ConsString::unchecked_second() {
|
|
return READ_FIELD(this, kSecondOffset);
|
|
}
|
|
|
|
|
|
void ConsString::set_second(String* value, WriteBarrierMode mode) {
|
|
WRITE_FIELD(this, kSecondOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, value, mode);
|
|
}
|
|
|
|
|
|
const ExternalAsciiString::Resource* ExternalAsciiString::resource() {
|
|
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
|
|
}
|
|
|
|
|
|
void ExternalAsciiString::set_resource(
|
|
const ExternalAsciiString::Resource* resource) {
|
|
*reinterpret_cast<const Resource**>(
|
|
FIELD_ADDR(this, kResourceOffset)) = resource;
|
|
}
|
|
|
|
|
|
const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
|
|
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
|
|
}
|
|
|
|
|
|
void ExternalTwoByteString::set_resource(
|
|
const ExternalTwoByteString::Resource* resource) {
|
|
*reinterpret_cast<const Resource**>(
|
|
FIELD_ADDR(this, kResourceOffset)) = resource;
|
|
}
|
|
|
|
|
|
void JSFunctionResultCache::MakeZeroSize() {
|
|
set_finger_index(kEntriesIndex);
|
|
set_size(kEntriesIndex);
|
|
}
|
|
|
|
|
|
void JSFunctionResultCache::Clear() {
|
|
int cache_size = size();
|
|
Object** entries_start = RawField(this, OffsetOfElementAt(kEntriesIndex));
|
|
MemsetPointer(entries_start,
|
|
GetHeap()->the_hole_value(),
|
|
cache_size - kEntriesIndex);
|
|
MakeZeroSize();
|
|
}
|
|
|
|
|
|
int JSFunctionResultCache::size() {
|
|
return Smi::cast(get(kCacheSizeIndex))->value();
|
|
}
|
|
|
|
|
|
void JSFunctionResultCache::set_size(int size) {
|
|
set(kCacheSizeIndex, Smi::FromInt(size));
|
|
}
|
|
|
|
|
|
int JSFunctionResultCache::finger_index() {
|
|
return Smi::cast(get(kFingerIndex))->value();
|
|
}
|
|
|
|
|
|
void JSFunctionResultCache::set_finger_index(int finger_index) {
|
|
set(kFingerIndex, Smi::FromInt(finger_index));
|
|
}
|
|
|
|
|
|
byte ByteArray::get(int index) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
|
|
}
|
|
|
|
|
|
void ByteArray::set(int index, byte value) {
|
|
ASSERT(index >= 0 && index < this->length());
|
|
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
|
|
}
|
|
|
|
|
|
int ByteArray::get_int(int index) {
|
|
ASSERT(index >= 0 && (index * kIntSize) < this->length());
|
|
return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
|
|
}
|
|
|
|
|
|
ByteArray* ByteArray::FromDataStartAddress(Address address) {
|
|
ASSERT_TAG_ALIGNED(address);
|
|
return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
|
|
}
|
|
|
|
|
|
Address ByteArray::GetDataStartAddress() {
|
|
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
|
|
}
|
|
|
|
|
|
uint8_t* ExternalPixelArray::external_pixel_pointer() {
|
|
return reinterpret_cast<uint8_t*>(external_pointer());
|
|
}
|
|
|
|
|
|
uint8_t ExternalPixelArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint8_t* ptr = external_pixel_pointer();
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalPixelArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalPixelArray::set(int index, uint8_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint8_t* ptr = external_pixel_pointer();
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
void* ExternalArray::external_pointer() {
|
|
intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
|
|
return reinterpret_cast<void*>(ptr);
|
|
}
|
|
|
|
|
|
void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) {
|
|
intptr_t ptr = reinterpret_cast<intptr_t>(value);
|
|
WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
|
|
}
|
|
|
|
|
|
int8_t ExternalByteArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int8_t* ptr = static_cast<int8_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalByteArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalByteArray::set(int index, int8_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int8_t* ptr = static_cast<int8_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
uint8_t ExternalUnsignedByteArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedByteArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalUnsignedByteArray::set(int index, uint8_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
int16_t ExternalShortArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int16_t* ptr = static_cast<int16_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalShortArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalShortArray::set(int index, int16_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int16_t* ptr = static_cast<int16_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
uint16_t ExternalUnsignedShortArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedShortArray::get(int index) {
|
|
return Smi::FromInt(static_cast<int>(get_scalar(index)));
|
|
}
|
|
|
|
|
|
void ExternalUnsignedShortArray::set(int index, uint16_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
int32_t ExternalIntArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int32_t* ptr = static_cast<int32_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalIntArray::get(int index) {
|
|
return GetHeap()->NumberFromInt32(get_scalar(index));
|
|
}
|
|
|
|
|
|
void ExternalIntArray::set(int index, int32_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
int32_t* ptr = static_cast<int32_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
uint32_t ExternalUnsignedIntArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalUnsignedIntArray::get(int index) {
|
|
return GetHeap()->NumberFromUint32(get_scalar(index));
|
|
}
|
|
|
|
|
|
void ExternalUnsignedIntArray::set(int index, uint32_t value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
float ExternalFloatArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
float* ptr = static_cast<float*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalFloatArray::get(int index) {
|
|
return GetHeap()->NumberFromDouble(get_scalar(index));
|
|
}
|
|
|
|
|
|
void ExternalFloatArray::set(int index, float value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
float* ptr = static_cast<float*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
double ExternalDoubleArray::get_scalar(int index) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
double* ptr = static_cast<double*>(external_pointer());
|
|
return ptr[index];
|
|
}
|
|
|
|
|
|
MaybeObject* ExternalDoubleArray::get(int index) {
|
|
return GetHeap()->NumberFromDouble(get_scalar(index));
|
|
}
|
|
|
|
|
|
void ExternalDoubleArray::set(int index, double value) {
|
|
ASSERT((index >= 0) && (index < this->length()));
|
|
double* ptr = static_cast<double*>(external_pointer());
|
|
ptr[index] = value;
|
|
}
|
|
|
|
|
|
int Map::visitor_id() {
|
|
return READ_BYTE_FIELD(this, kVisitorIdOffset);
|
|
}
|
|
|
|
|
|
void Map::set_visitor_id(int id) {
|
|
ASSERT(0 <= id && id < 256);
|
|
WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id));
|
|
}
|
|
|
|
|
|
int Map::instance_size() {
|
|
return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2;
|
|
}
|
|
|
|
|
|
int Map::inobject_properties() {
|
|
return READ_BYTE_FIELD(this, kInObjectPropertiesOffset);
|
|
}
|
|
|
|
|
|
int Map::pre_allocated_property_fields() {
|
|
return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset);
|
|
}
|
|
|
|
|
|
int HeapObject::SizeFromMap(Map* map) {
|
|
int instance_size = map->instance_size();
|
|
if (instance_size != kVariableSizeSentinel) return instance_size;
|
|
// We can ignore the "symbol" bit becase it is only set for symbols
|
|
// and implies a string type.
|
|
int instance_type = static_cast<int>(map->instance_type()) & ~kIsSymbolMask;
|
|
// Only inline the most frequent cases.
|
|
if (instance_type == FIXED_ARRAY_TYPE) {
|
|
return FixedArray::BodyDescriptor::SizeOf(map, this);
|
|
}
|
|
if (instance_type == ASCII_STRING_TYPE) {
|
|
return SeqAsciiString::SizeFor(
|
|
reinterpret_cast<SeqAsciiString*>(this)->length());
|
|
}
|
|
if (instance_type == BYTE_ARRAY_TYPE) {
|
|
return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
|
|
}
|
|
if (instance_type == FREE_SPACE_TYPE) {
|
|
return reinterpret_cast<FreeSpace*>(this)->size();
|
|
}
|
|
if (instance_type == STRING_TYPE) {
|
|
return SeqTwoByteString::SizeFor(
|
|
reinterpret_cast<SeqTwoByteString*>(this)->length());
|
|
}
|
|
if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
|
|
return FixedDoubleArray::SizeFor(
|
|
reinterpret_cast<FixedDoubleArray*>(this)->length());
|
|
}
|
|
ASSERT(instance_type == CODE_TYPE);
|
|
return reinterpret_cast<Code*>(this)->CodeSize();
|
|
}
|
|
|
|
|
|
void Map::set_instance_size(int value) {
|
|
ASSERT_EQ(0, value & (kPointerSize - 1));
|
|
value >>= kPointerSizeLog2;
|
|
ASSERT(0 <= value && value < 256);
|
|
WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
void Map::set_inobject_properties(int value) {
|
|
ASSERT(0 <= value && value < 256);
|
|
WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
void Map::set_pre_allocated_property_fields(int value) {
|
|
ASSERT(0 <= value && value < 256);
|
|
WRITE_BYTE_FIELD(this,
|
|
kPreAllocatedPropertyFieldsOffset,
|
|
static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
InstanceType Map::instance_type() {
|
|
return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
|
|
}
|
|
|
|
|
|
void Map::set_instance_type(InstanceType value) {
|
|
WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
|
|
}
|
|
|
|
|
|
int Map::unused_property_fields() {
|
|
return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
|
|
}
|
|
|
|
|
|
void Map::set_unused_property_fields(int value) {
|
|
WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
|
|
}
|
|
|
|
|
|
byte Map::bit_field() {
|
|
return READ_BYTE_FIELD(this, kBitFieldOffset);
|
|
}
|
|
|
|
|
|
void Map::set_bit_field(byte value) {
|
|
WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
|
|
}
|
|
|
|
|
|
byte Map::bit_field2() {
|
|
return READ_BYTE_FIELD(this, kBitField2Offset);
|
|
}
|
|
|
|
|
|
void Map::set_bit_field2(byte value) {
|
|
WRITE_BYTE_FIELD(this, kBitField2Offset, value);
|
|
}
|
|
|
|
|
|
void Map::set_non_instance_prototype(bool value) {
|
|
if (value) {
|
|
set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
|
|
} else {
|
|
set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
|
|
}
|
|
}
|
|
|
|
|
|
bool Map::has_non_instance_prototype() {
|
|
return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_function_with_prototype(bool value) {
|
|
if (value) {
|
|
set_bit_field2(bit_field2() | (1 << kFunctionWithPrototype));
|
|
} else {
|
|
set_bit_field2(bit_field2() & ~(1 << kFunctionWithPrototype));
|
|
}
|
|
}
|
|
|
|
|
|
bool Map::function_with_prototype() {
|
|
return ((1 << kFunctionWithPrototype) & bit_field2()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_is_access_check_needed(bool access_check_needed) {
|
|
if (access_check_needed) {
|
|
set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
|
|
} else {
|
|
set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
|
|
}
|
|
}
|
|
|
|
|
|
bool Map::is_access_check_needed() {
|
|
return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_is_extensible(bool value) {
|
|
if (value) {
|
|
set_bit_field2(bit_field2() | (1 << kIsExtensible));
|
|
} else {
|
|
set_bit_field2(bit_field2() & ~(1 << kIsExtensible));
|
|
}
|
|
}
|
|
|
|
bool Map::is_extensible() {
|
|
return ((1 << kIsExtensible) & bit_field2()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_attached_to_shared_function_info(bool value) {
|
|
if (value) {
|
|
set_bit_field2(bit_field2() | (1 << kAttachedToSharedFunctionInfo));
|
|
} else {
|
|
set_bit_field2(bit_field2() & ~(1 << kAttachedToSharedFunctionInfo));
|
|
}
|
|
}
|
|
|
|
bool Map::attached_to_shared_function_info() {
|
|
return ((1 << kAttachedToSharedFunctionInfo) & bit_field2()) != 0;
|
|
}
|
|
|
|
|
|
void Map::set_is_shared(bool value) {
|
|
if (value) {
|
|
set_bit_field3(bit_field3() | (1 << kIsShared));
|
|
} else {
|
|
set_bit_field3(bit_field3() & ~(1 << kIsShared));
|
|
}
|
|
}
|
|
|
|
bool Map::is_shared() {
|
|
return ((1 << kIsShared) & bit_field3()) != 0;
|
|
}
|
|
|
|
|
|
JSFunction* Map::unchecked_constructor() {
|
|
return reinterpret_cast<JSFunction*>(READ_FIELD(this, kConstructorOffset));
|
|
}
|
|
|
|
|
|
Code::Flags Code::flags() {
|
|
return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
|
|
}
|
|
|
|
|
|
void Code::set_flags(Code::Flags flags) {
|
|
STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1);
|
|
// Make sure that all call stubs have an arguments count.
|
|
ASSERT((ExtractKindFromFlags(flags) != CALL_IC &&
|
|
ExtractKindFromFlags(flags) != KEYED_CALL_IC) ||
|
|
ExtractArgumentsCountFromFlags(flags) >= 0);
|
|
WRITE_INT_FIELD(this, kFlagsOffset, flags);
|
|
}
|
|
|
|
|
|
Code::Kind Code::kind() {
|
|
return ExtractKindFromFlags(flags());
|
|
}
|
|
|
|
|
|
InlineCacheState Code::ic_state() {
|
|
InlineCacheState result = ExtractICStateFromFlags(flags());
|
|
// Only allow uninitialized or debugger states for non-IC code
|
|
// objects. This is used in the debugger to determine whether or not
|
|
// a call to code object has been replaced with a debug break call.
|
|
ASSERT(is_inline_cache_stub() ||
|
|
result == UNINITIALIZED ||
|
|
result == DEBUG_BREAK ||
|
|
result == DEBUG_PREPARE_STEP_IN);
|
|
return result;
|
|
}
|
|
|
|
|
|
Code::ExtraICState Code::extra_ic_state() {
|
|
ASSERT(is_inline_cache_stub());
|
|
return ExtractExtraICStateFromFlags(flags());
|
|
}
|
|
|
|
|
|
PropertyType Code::type() {
|
|
return ExtractTypeFromFlags(flags());
|
|
}
|
|
|
|
|
|
int Code::arguments_count() {
|
|
ASSERT(is_call_stub() || is_keyed_call_stub() || kind() == STUB);
|
|
return ExtractArgumentsCountFromFlags(flags());
|
|
}
|
|
|
|
|
|
int Code::major_key() {
|
|
ASSERT(kind() == STUB ||
|
|
kind() == UNARY_OP_IC ||
|
|
kind() == BINARY_OP_IC ||
|
|
kind() == COMPARE_IC ||
|
|
kind() == TO_BOOLEAN_IC);
|
|
return READ_BYTE_FIELD(this, kStubMajorKeyOffset);
|
|
}
|
|
|
|
|
|
void Code::set_major_key(int major) {
|
|
ASSERT(kind() == STUB ||
|
|
kind() == UNARY_OP_IC ||
|
|
kind() == BINARY_OP_IC ||
|
|
kind() == COMPARE_IC ||
|
|
kind() == TO_BOOLEAN_IC);
|
|
ASSERT(0 <= major && major < 256);
|
|
WRITE_BYTE_FIELD(this, kStubMajorKeyOffset, major);
|
|
}
|
|
|
|
|
|
bool Code::optimizable() {
|
|
ASSERT(kind() == FUNCTION);
|
|
return READ_BYTE_FIELD(this, kOptimizableOffset) == 1;
|
|
}
|
|
|
|
|
|
void Code::set_optimizable(bool value) {
|
|
ASSERT(kind() == FUNCTION);
|
|
WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0);
|
|
}
|
|
|
|
|
|
bool Code::has_deoptimization_support() {
|
|
ASSERT(kind() == FUNCTION);
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
return FullCodeFlagsHasDeoptimizationSupportField::decode(flags);
|
|
}
|
|
|
|
|
|
void Code::set_has_deoptimization_support(bool value) {
|
|
ASSERT(kind() == FUNCTION);
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value);
|
|
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
|
|
}
|
|
|
|
|
|
bool Code::has_debug_break_slots() {
|
|
ASSERT(kind() == FUNCTION);
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
return FullCodeFlagsHasDebugBreakSlotsField::decode(flags);
|
|
}
|
|
|
|
|
|
void Code::set_has_debug_break_slots(bool value) {
|
|
ASSERT(kind() == FUNCTION);
|
|
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
|
|
flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value);
|
|
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
|
|
}
|
|
|
|
|
|
int Code::allow_osr_at_loop_nesting_level() {
|
|
ASSERT(kind() == FUNCTION);
|
|
return READ_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset);
|
|
}
|
|
|
|
|
|
void Code::set_allow_osr_at_loop_nesting_level(int level) {
|
|
ASSERT(kind() == FUNCTION);
|
|
ASSERT(level >= 0 && level <= kMaxLoopNestingMarker);
|
|
WRITE_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset, level);
|
|
}
|
|
|
|
|
|
unsigned Code::stack_slots() {
|
|
ASSERT(kind() == OPTIMIZED_FUNCTION);
|
|
return READ_UINT32_FIELD(this, kStackSlotsOffset);
|
|
}
|
|
|
|
|
|
void Code::set_stack_slots(unsigned slots) {
|
|
ASSERT(kind() == OPTIMIZED_FUNCTION);
|
|
WRITE_UINT32_FIELD(this, kStackSlotsOffset, slots);
|
|
}
|
|
|
|
|
|
unsigned Code::safepoint_table_offset() {
|
|
ASSERT(kind() == OPTIMIZED_FUNCTION);
|
|
return READ_UINT32_FIELD(this, kSafepointTableOffsetOffset);
|
|
}
|
|
|
|
|
|
void Code::set_safepoint_table_offset(unsigned offset) {
|
|
ASSERT(kind() == OPTIMIZED_FUNCTION);
|
|
ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
|
|
WRITE_UINT32_FIELD(this, kSafepointTableOffsetOffset, offset);
|
|
}
|
|
|
|
|
|
unsigned Code::stack_check_table_offset() {
|
|
ASSERT(kind() == FUNCTION);
|
|
return READ_UINT32_FIELD(this, kStackCheckTableOffsetOffset);
|
|
}
|
|
|
|
|
|
void Code::set_stack_check_table_offset(unsigned offset) {
|
|
ASSERT(kind() == FUNCTION);
|
|
ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
|
|
WRITE_UINT32_FIELD(this, kStackCheckTableOffsetOffset, offset);
|
|
}
|
|
|
|
|
|
CheckType Code::check_type() {
|
|
ASSERT(is_call_stub() || is_keyed_call_stub());
|
|
byte type = READ_BYTE_FIELD(this, kCheckTypeOffset);
|
|
return static_cast<CheckType>(type);
|
|
}
|
|
|
|
|
|
void Code::set_check_type(CheckType value) {
|
|
ASSERT(is_call_stub() || is_keyed_call_stub());
|
|
WRITE_BYTE_FIELD(this, kCheckTypeOffset, value);
|
|
}
|
|
|
|
|
|
byte Code::unary_op_type() {
|
|
ASSERT(is_unary_op_stub());
|
|
return READ_BYTE_FIELD(this, kUnaryOpTypeOffset);
|
|
}
|
|
|
|
|
|
void Code::set_unary_op_type(byte value) {
|
|
ASSERT(is_unary_op_stub());
|
|
WRITE_BYTE_FIELD(this, kUnaryOpTypeOffset, value);
|
|
}
|
|
|
|
|
|
byte Code::binary_op_type() {
|
|
ASSERT(is_binary_op_stub());
|
|
return READ_BYTE_FIELD(this, kBinaryOpTypeOffset);
|
|
}
|
|
|
|
|
|
void Code::set_binary_op_type(byte value) {
|
|
ASSERT(is_binary_op_stub());
|
|
WRITE_BYTE_FIELD(this, kBinaryOpTypeOffset, value);
|
|
}
|
|
|
|
|
|
byte Code::binary_op_result_type() {
|
|
ASSERT(is_binary_op_stub());
|
|
return READ_BYTE_FIELD(this, kBinaryOpReturnTypeOffset);
|
|
}
|
|
|
|
|
|
void Code::set_binary_op_result_type(byte value) {
|
|
ASSERT(is_binary_op_stub());
|
|
WRITE_BYTE_FIELD(this, kBinaryOpReturnTypeOffset, value);
|
|
}
|
|
|
|
|
|
byte Code::compare_state() {
|
|
ASSERT(is_compare_ic_stub());
|
|
return READ_BYTE_FIELD(this, kCompareStateOffset);
|
|
}
|
|
|
|
|
|
void Code::set_compare_state(byte value) {
|
|
ASSERT(is_compare_ic_stub());
|
|
WRITE_BYTE_FIELD(this, kCompareStateOffset, value);
|
|
}
|
|
|
|
|
|
byte Code::to_boolean_state() {
|
|
ASSERT(is_to_boolean_ic_stub());
|
|
return READ_BYTE_FIELD(this, kToBooleanTypeOffset);
|
|
}
|
|
|
|
|
|
void Code::set_to_boolean_state(byte value) {
|
|
ASSERT(is_to_boolean_ic_stub());
|
|
WRITE_BYTE_FIELD(this, kToBooleanTypeOffset, value);
|
|
}
|
|
|
|
bool Code::is_inline_cache_stub() {
|
|
Kind kind = this->kind();
|
|
return kind >= FIRST_IC_KIND && kind <= LAST_IC_KIND;
|
|
}
|
|
|
|
|
|
Code::Flags Code::ComputeFlags(Kind kind,
|
|
InlineCacheState ic_state,
|
|
ExtraICState extra_ic_state,
|
|
PropertyType type,
|
|
int argc,
|
|
InlineCacheHolderFlag holder) {
|
|
// Extra IC state is only allowed for call IC stubs or for store IC
|
|
// stubs.
|
|
ASSERT(extra_ic_state == kNoExtraICState ||
|
|
kind == CALL_IC ||
|
|
kind == STORE_IC ||
|
|
kind == KEYED_STORE_IC);
|
|
// Compute the bit mask.
|
|
int bits = KindField::encode(kind)
|
|
| ICStateField::encode(ic_state)
|
|
| TypeField::encode(type)
|
|
| ExtraICStateField::encode(extra_ic_state)
|
|
| (argc << kArgumentsCountShift)
|
|
| CacheHolderField::encode(holder);
|
|
return static_cast<Flags>(bits);
|
|
}
|
|
|
|
|
|
Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
|
|
PropertyType type,
|
|
ExtraICState extra_ic_state,
|
|
InlineCacheHolderFlag holder,
|
|
int argc) {
|
|
return ComputeFlags(kind, MONOMORPHIC, extra_ic_state, type, argc, holder);
|
|
}
|
|
|
|
|
|
Code::Kind Code::ExtractKindFromFlags(Flags flags) {
|
|
return KindField::decode(flags);
|
|
}
|
|
|
|
|
|
InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
|
|
return ICStateField::decode(flags);
|
|
}
|
|
|
|
|
|
Code::ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) {
|
|
return ExtraICStateField::decode(flags);
|
|
}
|
|
|
|
|
|
PropertyType Code::ExtractTypeFromFlags(Flags flags) {
|
|
return TypeField::decode(flags);
|
|
}
|
|
|
|
|
|
int Code::ExtractArgumentsCountFromFlags(Flags flags) {
|
|
return (flags & kArgumentsCountMask) >> kArgumentsCountShift;
|
|
}
|
|
|
|
|
|
InlineCacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) {
|
|
return CacheHolderField::decode(flags);
|
|
}
|
|
|
|
|
|
Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
|
|
int bits = flags & ~TypeField::kMask;
|
|
return static_cast<Flags>(bits);
|
|
}
|
|
|
|
|
|
Code* Code::GetCodeFromTargetAddress(Address address) {
|
|
HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
|
|
// GetCodeFromTargetAddress might be called when marking objects during mark
|
|
// sweep. reinterpret_cast is therefore used instead of the more appropriate
|
|
// Code::cast. Code::cast does not work when the object's map is
|
|
// marked.
|
|
Code* result = reinterpret_cast<Code*>(code);
|
|
return result;
|
|
}
|
|
|
|
|
|
Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
|
|
return HeapObject::
|
|
FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize);
|
|
}
|
|
|
|
|
|
Object* Map::prototype() {
|
|
return READ_FIELD(this, kPrototypeOffset);
|
|
}
|
|
|
|
|
|
void Map::set_prototype(Object* value, WriteBarrierMode mode) {
|
|
ASSERT(value->IsNull() || value->IsJSReceiver());
|
|
WRITE_FIELD(this, kPrototypeOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode);
|
|
}
|
|
|
|
|
|
DescriptorArray* Map::instance_descriptors() {
|
|
Object* object = READ_FIELD(this, kInstanceDescriptorsOrBitField3Offset);
|
|
if (object->IsSmi()) {
|
|
return HEAP->empty_descriptor_array();
|
|
} else {
|
|
return DescriptorArray::cast(object);
|
|
}
|
|
}
|
|
|
|
|
|
void Map::init_instance_descriptors() {
|
|
WRITE_FIELD(this, kInstanceDescriptorsOrBitField3Offset, Smi::FromInt(0));
|
|
}
|
|
|
|
|
|
void Map::clear_instance_descriptors() {
|
|
Object* object = READ_FIELD(this,
|
|
kInstanceDescriptorsOrBitField3Offset);
|
|
if (!object->IsSmi()) {
|
|
WRITE_FIELD(
|
|
this,
|
|
kInstanceDescriptorsOrBitField3Offset,
|
|
Smi::FromInt(DescriptorArray::cast(object)->bit_field3_storage()));
|
|
}
|
|
}
|
|
|
|
|
|
void Map::set_instance_descriptors(DescriptorArray* value,
|
|
WriteBarrierMode mode) {
|
|
Object* object = READ_FIELD(this,
|
|
kInstanceDescriptorsOrBitField3Offset);
|
|
Heap* heap = GetHeap();
|
|
if (value == heap->empty_descriptor_array()) {
|
|
clear_instance_descriptors();
|
|
return;
|
|
} else {
|
|
if (object->IsSmi()) {
|
|
value->set_bit_field3_storage(Smi::cast(object)->value());
|
|
} else {
|
|
value->set_bit_field3_storage(
|
|
DescriptorArray::cast(object)->bit_field3_storage());
|
|
}
|
|
}
|
|
ASSERT(!is_shared());
|
|
WRITE_FIELD(this, kInstanceDescriptorsOrBitField3Offset, value);
|
|
CONDITIONAL_WRITE_BARRIER(
|
|
heap, this, kInstanceDescriptorsOrBitField3Offset, value, mode);
|
|
}
|
|
|
|
|
|
int Map::bit_field3() {
|
|
Object* object = READ_FIELD(this,
|
|
kInstanceDescriptorsOrBitField3Offset);
|
|
if (object->IsSmi()) {
|
|
return Smi::cast(object)->value();
|
|
} else {
|
|
return DescriptorArray::cast(object)->bit_field3_storage();
|
|
}
|
|
}
|
|
|
|
|
|
void Map::set_bit_field3(int value) {
|
|
ASSERT(Smi::IsValid(value));
|
|
Object* object = READ_FIELD(this,
|
|
kInstanceDescriptorsOrBitField3Offset);
|
|
if (object->IsSmi()) {
|
|
WRITE_FIELD(this,
|
|
kInstanceDescriptorsOrBitField3Offset,
|
|
Smi::FromInt(value));
|
|
} else {
|
|
DescriptorArray::cast(object)->set_bit_field3_storage(value);
|
|
}
|
|
}
|
|
|
|
|
|
FixedArray* Map::unchecked_prototype_transitions() {
|
|
return reinterpret_cast<FixedArray*>(
|
|
READ_FIELD(this, kPrototypeTransitionsOffset));
|
|
}
|
|
|
|
|
|
ACCESSORS(Map, code_cache, Object, kCodeCacheOffset)
|
|
ACCESSORS(Map, prototype_transitions, FixedArray, kPrototypeTransitionsOffset)
|
|
ACCESSORS(Map, constructor, Object, kConstructorOffset)
|
|
|
|
ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
|
|
ACCESSORS(JSFunction, literals, FixedArray, kLiteralsOffset)
|
|
ACCESSORS(JSFunction,
|
|
next_function_link,
|
|
Object,
|
|
kNextFunctionLinkOffset)
|
|
|
|
ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset)
|
|
ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset)
|
|
ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset)
|
|
|
|
ACCESSORS(JSGlobalProxy, context, Object, kContextOffset)
|
|
|
|
ACCESSORS(AccessorInfo, getter, Object, kGetterOffset)
|
|
ACCESSORS(AccessorInfo, setter, Object, kSetterOffset)
|
|
ACCESSORS(AccessorInfo, data, Object, kDataOffset)
|
|
ACCESSORS(AccessorInfo, name, Object, kNameOffset)
|
|
ACCESSORS(AccessorInfo, flag, Smi, kFlagOffset)
|
|
|
|
ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
|
|
ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
|
|
ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
|
|
|
|
ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
|
|
ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
|
|
ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
|
|
ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
|
|
ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
|
|
ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
|
|
|
|
ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
|
|
ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
|
|
|
|
ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
|
|
ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
|
|
|
|
ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
|
|
ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
|
|
ACCESSORS(FunctionTemplateInfo, property_accessors, Object,
|
|
kPropertyAccessorsOffset)
|
|
ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
|
|
kPrototypeTemplateOffset)
|
|
ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
|
|
ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
|
|
kNamedPropertyHandlerOffset)
|
|
ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
|
|
kIndexedPropertyHandlerOffset)
|
|
ACCESSORS(FunctionTemplateInfo, instance_template, Object,
|
|
kInstanceTemplateOffset)
|
|
ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
|
|
ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
|
|
ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
|
|
kInstanceCallHandlerOffset)
|
|
ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
|
|
kAccessCheckInfoOffset)
|
|
ACCESSORS(FunctionTemplateInfo, flag, Smi, kFlagOffset)
|
|
|
|
ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
|
|
ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
|
|
kInternalFieldCountOffset)
|
|
|
|
ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset)
|
|
ACCESSORS(SignatureInfo, args, Object, kArgsOffset)
|
|
|
|
ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
|
|
|
|
ACCESSORS(Script, source, Object, kSourceOffset)
|
|
ACCESSORS(Script, name, Object, kNameOffset)
|
|
ACCESSORS(Script, id, Object, kIdOffset)
|
|
ACCESSORS(Script, line_offset, Smi, kLineOffsetOffset)
|
|
ACCESSORS(Script, column_offset, Smi, kColumnOffsetOffset)
|
|
ACCESSORS(Script, data, Object, kDataOffset)
|
|
ACCESSORS(Script, context_data, Object, kContextOffset)
|
|
ACCESSORS(Script, wrapper, Foreign, kWrapperOffset)
|
|
ACCESSORS(Script, type, Smi, kTypeOffset)
|
|
ACCESSORS(Script, compilation_type, Smi, kCompilationTypeOffset)
|
|
ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
|
|
ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset)
|
|
ACCESSORS(Script, eval_from_instructions_offset, Smi,
|
|
kEvalFrominstructionsOffsetOffset)
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
|
|
ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex)
|
|
ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex)
|
|
ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
|
|
|
|
ACCESSORS(BreakPointInfo, code_position, Smi, kCodePositionIndex)
|
|
ACCESSORS(BreakPointInfo, source_position, Smi, kSourcePositionIndex)
|
|
ACCESSORS(BreakPointInfo, statement_position, Smi, kStatementPositionIndex)
|
|
ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
|
|
#endif
|
|
|
|
ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
|
|
ACCESSORS_GCSAFE(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset)
|
|
ACCESSORS_GCSAFE(SharedFunctionInfo, initial_map, Object, kInitialMapOffset)
|
|
ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
|
|
kInstanceClassNameOffset)
|
|
ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset)
|
|
ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
|
|
ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
|
|
ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset)
|
|
ACCESSORS(SharedFunctionInfo, this_property_assignments, Object,
|
|
kThisPropertyAssignmentsOffset)
|
|
|
|
BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
|
|
kHiddenPrototypeBit)
|
|
BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
|
|
BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
|
|
kNeedsAccessCheckBit)
|
|
BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype,
|
|
kReadOnlyPrototypeBit)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
|
|
kIsExpressionBit)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
|
|
kIsTopLevelBit)
|
|
BOOL_GETTER(SharedFunctionInfo,
|
|
compiler_hints,
|
|
has_only_simple_this_property_assignments,
|
|
kHasOnlySimpleThisPropertyAssignments)
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
allows_lazy_compilation,
|
|
kAllowLazyCompilation)
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
uses_arguments,
|
|
kUsesArguments)
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
has_duplicate_parameters,
|
|
kHasDuplicateParameters)
|
|
|
|
|
|
#if V8_HOST_ARCH_32_BIT
|
|
SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count,
|
|
kFormalParameterCountOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
|
|
kExpectedNofPropertiesOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type,
|
|
kStartPositionAndTypeOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, function_token_position,
|
|
kFunctionTokenPositionOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, compiler_hints,
|
|
kCompilerHintsOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, this_property_assignments_count,
|
|
kThisPropertyAssignmentsCountOffset)
|
|
SMI_ACCESSORS(SharedFunctionInfo, opt_count, kOptCountOffset)
|
|
#else
|
|
|
|
#define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \
|
|
STATIC_ASSERT(holder::offset % kPointerSize == 0); \
|
|
int holder::name() { \
|
|
int value = READ_INT_FIELD(this, offset); \
|
|
ASSERT(kHeapObjectTag == 1); \
|
|
ASSERT((value & kHeapObjectTag) == 0); \
|
|
return value >> 1; \
|
|
} \
|
|
void holder::set_##name(int value) { \
|
|
ASSERT(kHeapObjectTag == 1); \
|
|
ASSERT((value & 0xC0000000) == 0xC0000000 || \
|
|
(value & 0xC0000000) == 0x000000000); \
|
|
WRITE_INT_FIELD(this, \
|
|
offset, \
|
|
(value << 1) & ~kHeapObjectTag); \
|
|
}
|
|
|
|
#define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \
|
|
STATIC_ASSERT(holder::offset % kPointerSize == kIntSize); \
|
|
INT_ACCESSORS(holder, name, offset)
|
|
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
|
|
formal_parameter_count,
|
|
kFormalParameterCountOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
|
|
expected_nof_properties,
|
|
kExpectedNofPropertiesOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
|
|
start_position_and_type,
|
|
kStartPositionAndTypeOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
|
|
function_token_position,
|
|
kFunctionTokenPositionOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
|
|
compiler_hints,
|
|
kCompilerHintsOffset)
|
|
|
|
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
|
|
this_property_assignments_count,
|
|
kThisPropertyAssignmentsCountOffset)
|
|
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, opt_count, kOptCountOffset)
|
|
#endif
|
|
|
|
|
|
int SharedFunctionInfo::construction_count() {
|
|
return READ_BYTE_FIELD(this, kConstructionCountOffset);
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_construction_count(int value) {
|
|
ASSERT(0 <= value && value < 256);
|
|
WRITE_BYTE_FIELD(this, kConstructionCountOffset, static_cast<byte>(value));
|
|
}
|
|
|
|
|
|
BOOL_ACCESSORS(SharedFunctionInfo,
|
|
compiler_hints,
|
|
live_objects_may_exist,
|
|
kLiveObjectsMayExist)
|
|
|
|
|
|
bool SharedFunctionInfo::IsInobjectSlackTrackingInProgress() {
|
|
return initial_map() != HEAP->undefined_value();
|
|
}
|
|
|
|
|
|
BOOL_GETTER(SharedFunctionInfo,
|
|
compiler_hints,
|
|
optimization_disabled,
|
|
kOptimizationDisabled)
|
|
|
|
|
|
void SharedFunctionInfo::set_optimization_disabled(bool disable) {
|
|
set_compiler_hints(BooleanBit::set(compiler_hints(),
|
|
kOptimizationDisabled,
|
|
disable));
|
|
// If disabling optimizations we reflect that in the code object so
|
|
// it will not be counted as optimizable code.
|
|
if ((code()->kind() == Code::FUNCTION) && disable) {
|
|
code()->set_optimizable(false);
|
|
}
|
|
}
|
|
|
|
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, strict_mode,
|
|
kStrictModeFunction)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints,
|
|
name_should_print_as_anonymous,
|
|
kNameShouldPrintAsAnonymous)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction)
|
|
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous)
|
|
|
|
ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset)
|
|
ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset)
|
|
|
|
ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset)
|
|
|
|
bool Script::HasValidSource() {
|
|
Object* src = this->source();
|
|
if (!src->IsString()) return true;
|
|
String* src_str = String::cast(src);
|
|
if (!StringShape(src_str).IsExternal()) return true;
|
|
if (src_str->IsAsciiRepresentation()) {
|
|
return ExternalAsciiString::cast(src)->resource() != NULL;
|
|
} else if (src_str->IsTwoByteRepresentation()) {
|
|
return ExternalTwoByteString::cast(src)->resource() != NULL;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::DontAdaptArguments() {
|
|
ASSERT(code()->kind() == Code::BUILTIN);
|
|
set_formal_parameter_count(kDontAdaptArgumentsSentinel);
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::start_position() {
|
|
return start_position_and_type() >> kStartPositionShift;
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_start_position(int start_position) {
|
|
set_start_position_and_type((start_position << kStartPositionShift)
|
|
| (start_position_and_type() & ~kStartPositionMask));
|
|
}
|
|
|
|
|
|
Code* SharedFunctionInfo::code() {
|
|
return Code::cast(READ_FIELD(this, kCodeOffset));
|
|
}
|
|
|
|
|
|
Code* SharedFunctionInfo::unchecked_code() {
|
|
return reinterpret_cast<Code*>(READ_FIELD(this, kCodeOffset));
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
|
|
WRITE_FIELD(this, kCodeOffset, value);
|
|
CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode);
|
|
}
|
|
|
|
|
|
SerializedScopeInfo* SharedFunctionInfo::scope_info() {
|
|
return reinterpret_cast<SerializedScopeInfo*>(
|
|
READ_FIELD(this, kScopeInfoOffset));
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_scope_info(SerializedScopeInfo* value,
|
|
WriteBarrierMode mode) {
|
|
WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value));
|
|
CONDITIONAL_WRITE_BARRIER(GetHeap(),
|
|
this,
|
|
kScopeInfoOffset,
|
|
reinterpret_cast<Object*>(value),
|
|
mode);
|
|
}
|
|
|
|
|
|
Smi* SharedFunctionInfo::deopt_counter() {
|
|
return reinterpret_cast<Smi*>(READ_FIELD(this, kDeoptCounterOffset));
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_deopt_counter(Smi* value) {
|
|
WRITE_FIELD(this, kDeoptCounterOffset, value);
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::is_compiled() {
|
|
return code() !=
|
|
Isolate::Current()->builtins()->builtin(Builtins::kLazyCompile);
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::IsApiFunction() {
|
|
return function_data()->IsFunctionTemplateInfo();
|
|
}
|
|
|
|
|
|
FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() {
|
|
ASSERT(IsApiFunction());
|
|
return FunctionTemplateInfo::cast(function_data());
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::HasBuiltinFunctionId() {
|
|
return function_data()->IsSmi();
|
|
}
|
|
|
|
|
|
BuiltinFunctionId SharedFunctionInfo::builtin_function_id() {
|
|
ASSERT(HasBuiltinFunctionId());
|
|
return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value());
|
|
}
|
|
|
|
|
|
int SharedFunctionInfo::code_age() {
|
|
return (compiler_hints() >> kCodeAgeShift) & kCodeAgeMask;
|
|
}
|
|
|
|
|
|
void SharedFunctionInfo::set_code_age(int code_age) {
|
|
set_compiler_hints(compiler_hints() |
|
|
((code_age & kCodeAgeMask) << kCodeAgeShift));
|
|
}
|
|
|
|
|
|
bool SharedFunctionInfo::has_deoptimization_support() {
|
|
Code* code = this->code();
|
|
return code->kind() == Code::FUNCTION && code->has_deoptimization_support();
|
|
}
|
|
|
|
|
|
bool JSFunction::IsBuiltin() {
|
|
return context()->global()->IsJSBuiltinsObject();
|
|
}
|
|
|
|
|
|
bool JSFunction::NeedsArgumentsAdaption() {
|
|
return shared()->formal_parameter_count() !=
|
|
SharedFunctionInfo::kDontAdaptArgumentsSentinel;
|
|
}
|
|
|
|
|
|
bool JSFunction::IsOptimized() {
|
|
return code()->kind() == Code::OPTIMIZED_FUNCTION;
|
|
}
|
|
|
|
|
|
bool JSFunction::IsOptimizable() {
|
|
return code()->kind() == Code::FUNCTION && code()->optimizable();
|
|
}
|
|
|
|
|
|
bool JSFunction::IsMarkedForLazyRecompilation() {
|
|
return code() == GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile);
|
|
}
|
|
|
|
|
|
Code* JSFunction::code() {
|
|
return Code::cast(unchecked_code());
|
|
}
|
|
|
|
|
|
Code* JSFunction::unchecked_code() {
|
|
return reinterpret_cast<Code*>(
|
|
Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset)));
|
|
}
|
|
|
|
|
|
void JSFunction::set_code(Code* value) {
|
|
ASSERT(!HEAP->InNewSpace(value));
|
|
Address entry = value->entry();
|
|
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
|
|
GetHeap()->incremental_marking()->RecordWriteOfCodeEntry(
|
|
this,
|
|
HeapObject::RawField(this, kCodeEntryOffset),
|
|
value);
|
|
}
|
|
|
|
|
|
void JSFunction::ReplaceCode(Code* code) {
|
|
bool was_optimized = IsOptimized();
|
|
bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION;
|
|
|
|
set_code(code);
|
|
|
|
// Add/remove the function from the list of optimized functions for this
|
|
// context based on the state change.
|
|
if (!was_optimized && is_optimized) {
|
|
context()->global_context()->AddOptimizedFunction(this);
|
|
}
|
|
if (was_optimized && !is_optimized) {
|
|
context()->global_context()->RemoveOptimizedFunction(this);
|
|
}
|
|
}
|
|
|
|
|
|
Context* JSFunction::context() {
|
|
return Context::cast(READ_FIELD(this, kContextOffset));
|
|
}
|
|
|
|
|
|
Object* JSFunction::unchecked_context() {
|
|
return READ_FIELD(this, kContextOffset);
|
|
}
|
|
|
|
|
|
SharedFunctionInfo* JSFunction::unchecked_shared() {
|
|
return reinterpret_cast<SharedFunctionInfo*>(
|
|
READ_FIELD(this, kSharedFunctionInfoOffset));
|
|
}
|
|
|
|
|
|
void JSFunction::set_context(Object* value) {
|
|
ASSERT(value->IsUndefined() || value->IsContext());
|
|
WRITE_FIELD(this, kContextOffset, value);
|
|
WRITE_BARRIER(GetHeap(), this, kContextOffset, value);
|
|
}
|
|
|
|
ACCESSORS(JSFunction, prototype_or_initial_map, Object,
|
|
kPrototypeOrInitialMapOffset)
|
|
|
|
|
|
Map* JSFunction::initial_map() {
|
|
return Map::cast(prototype_or_initial_map());
|
|
}
|
|
|
|
|
|
void JSFunction::set_initial_map(Map* value) {
|
|
set_prototype_or_initial_map(value);
|
|
}
|
|
|
|
|
|
bool JSFunction::has_initial_map() {
|
|
return prototype_or_initial_map()->IsMap();
|
|
}
|
|
|
|
|
|
bool JSFunction::has_instance_prototype() {
|
|
return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
|
|
}
|
|
|
|
|
|
bool JSFunction::has_prototype() {
|
|
return map()->has_non_instance_prototype() || has_instance_prototype();
|
|
}
|
|
|
|
|
|
Object* JSFunction::instance_prototype() {
|
|
ASSERT(has_instance_prototype());
|
|
if (has_initial_map()) return initial_map()->prototype();
|
|
// When there is no initial map and the prototype is a JSObject, the
|
|
// initial map field is used for the prototype field.
|
|
return prototype_or_initial_map();
|
|
}
|
|
|
|
|
|
Object* JSFunction::prototype() {
|
|
ASSERT(has_prototype());
|
|
// If the function's prototype property has been set to a non-JSObject
|
|
// value, that value is stored in the constructor field of the map.
|
|
if (map()->has_non_instance_prototype()) return map()->constructor();
|
|
return instance_prototype();
|
|
}
|
|
|
|
bool JSFunction::should_have_prototype() {
|
|
return map()->function_with_prototype();
|
|
}
|
|
|
|
|
|
bool JSFunction::is_compiled() {
|
|
return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
|
|
}
|
|
|
|
|
|
int JSFunction::NumberOfLiterals() {
|
|
return literals()->length();
|
|
}
|
|
|
|
|
|
Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) {
|
|
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
|
|
return READ_FIELD(this, OffsetOfFunctionWithId(id));
|
|
}
|
|
|
|
|
|
void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id,
|
|
Object* value) {
|
|
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
|
|
WRITE_FIELD(this, OffsetOfFunctionWithId(id), value);
|
|
WRITE_BARRIER(GetHeap(), this, OffsetOfFunctionWithId(id), value);
|
|
}
|
|
|
|
|
|
Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) {
|
|
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
|
|
return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id)));
|
|
}
|
|
|
|
|
|
void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id,
|
|
Code* value) {
|
|
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
|
|
WRITE_FIELD(this, OffsetOfCodeWithId(id), value);
|
|
ASSERT(!HEAP->InNewSpace(value));
|
|
}
|
|
|
|
|
|
ACCESSORS(JSProxy, handler, Object, kHandlerOffset)
|
|
ACCESSORS(JSProxy, hash, Object, kHashOffset)
|
|
ACCESSORS(JSFunctionProxy, call_trap, Object, kCallTrapOffset)
|
|
ACCESSORS(JSFunctionProxy, construct_trap, Object, kConstructTrapOffset)
|
|
|
|
|
|
void JSProxy::InitializeBody(int object_size, Object* value) {
|
|
ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value));
|
|
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
|
|
WRITE_FIELD(this, offset, value);
|
|
}
|
|
}
|
|
|
|
|
|
ACCESSORS(JSWeakMap, table, ObjectHashTable, kTableOffset)
|
|
ACCESSORS_GCSAFE(JSWeakMap, next, Object, kNextOffset)
|
|
|
|
|
|
ObjectHashTable* JSWeakMap::unchecked_table() {
|
|
return reinterpret_cast<ObjectHashTable*>(READ_FIELD(this, kTableOffset));
|
|
}
|
|
|
|
|
|
Address Foreign::address() {
|
|
return AddressFrom<Address>(READ_INTPTR_FIELD(this, kAddressOffset));
|
|
}
|
|
|
|
|
|
void Foreign::set_address(Address value) {
|
|
WRITE_INTPTR_FIELD(this, kAddressOffset, OffsetFrom(value));
|
|
}
|
|
|
|
|
|
ACCESSORS(JSValue, value, Object, kValueOffset)
|
|
|
|
|
|
JSValue* JSValue::cast(Object* obj) {
|
|
ASSERT(obj->IsJSValue());
|
|
ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize);
|
|
return reinterpret_cast<JSValue*>(obj);
|
|
}
|
|
|
|
|
|
ACCESSORS(JSMessageObject, type, String, kTypeOffset)
|
|
ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset)
|
|
ACCESSORS(JSMessageObject, script, Object, kScriptOffset)
|
|
ACCESSORS(JSMessageObject, stack_trace, Object, kStackTraceOffset)
|
|
ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset)
|
|
SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset)
|
|
SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset)
|
|
|
|
|
|
JSMessageObject* JSMessageObject::cast(Object* obj) {
|
|
ASSERT(obj->IsJSMessageObject());
|
|
ASSERT(HeapObject::cast(obj)->Size() == JSMessageObject::kSize);
|
|
return reinterpret_cast<JSMessageObject*>(obj);
|
|
}
|
|
|
|
|
|
INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
|
|
ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset)
|
|
ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset)
|
|
ACCESSORS(Code, next_code_flushing_candidate,
|
|
Object, kNextCodeFlushingCandidateOffset)
|
|
|
|
|
|
byte* Code::instruction_start() {
|
|
return FIELD_ADDR(this, kHeaderSize);
|
|
}
|
|
|
|
|
|
byte* Code::instruction_end() {
|
|
return instruction_start() + instruction_size();
|
|
}
|
|
|
|
|
|
int Code::body_size() {
|
|
return RoundUp(instruction_size(), kObjectAlignment);
|
|
}
|
|
|
|
|
|
FixedArray* Code::unchecked_deoptimization_data() {
|
|
return reinterpret_cast<FixedArray*>(
|
|
READ_FIELD(this, kDeoptimizationDataOffset));
|
|
}
|
|
|
|
|
|
ByteArray* Code::unchecked_relocation_info() {
|
|
return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
|
|
}
|
|
|
|
|
|
byte* Code::relocation_start() {
|
|
return unchecked_relocation_info()->GetDataStartAddress();
|
|
}
|
|
|
|
|
|
int Code::relocation_size() {
|
|
return unchecked_relocation_info()->length();
|
|
}
|
|
|
|
|
|
byte* Code::entry() {
|
|
return instruction_start();
|
|
}
|
|
|
|
|
|
bool Code::contains(byte* inner_pointer) {
|
|
return (address() <= inner_pointer) && (inner_pointer <= address() + Size());
|
|
}
|
|
|
|
|
|
ACCESSORS(JSArray, length, Object, kLengthOffset)
|
|
|
|
|
|
ACCESSORS(JSRegExp, data, Object, kDataOffset)
|
|
|
|
|
|
JSRegExp::Type JSRegExp::TypeTag() {
|
|
Object* data = this->data();
|
|
if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
|
|
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
|
|
return static_cast<JSRegExp::Type>(smi->value());
|
|
}
|
|
|
|
|
|
JSRegExp::Type JSRegExp::TypeTagUnchecked() {
|
|
Smi* smi = Smi::cast(DataAtUnchecked(kTagIndex));
|
|
return static_cast<JSRegExp::Type>(smi->value());
|
|
}
|
|
|
|
|
|
int JSRegExp::CaptureCount() {
|
|
switch (TypeTag()) {
|
|
case ATOM:
|
|
return 0;
|
|
case IRREGEXP:
|
|
return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
|
|
default:
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
|
|
JSRegExp::Flags JSRegExp::GetFlags() {
|
|
ASSERT(this->data()->IsFixedArray());
|
|
Object* data = this->data();
|
|
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
|
|
return Flags(smi->value());
|
|
}
|
|
|
|
|
|
String* JSRegExp::Pattern() {
|
|
ASSERT(this->data()->IsFixedArray());
|
|
Object* data = this->data();
|
|
String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex));
|
|
return pattern;
|
|
}
|
|
|
|
|
|
Object* JSRegExp::DataAt(int index) {
|
|
ASSERT(TypeTag() != NOT_COMPILED);
|
|
return FixedArray::cast(data())->get(index);
|
|
}
|
|
|
|
|
|
Object* JSRegExp::DataAtUnchecked(int index) {
|
|
FixedArray* fa = reinterpret_cast<FixedArray*>(data());
|
|
int offset = FixedArray::kHeaderSize + index * kPointerSize;
|
|
return READ_FIELD(fa, offset);
|
|
}
|
|
|
|
|
|
void JSRegExp::SetDataAt(int index, Object* value) {
|
|
ASSERT(TypeTag() != NOT_COMPILED);
|
|
ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
|
|
FixedArray::cast(data())->set(index, value);
|
|
}
|
|
|
|
|
|
void JSRegExp::SetDataAtUnchecked(int index, Object* value, Heap* heap) {
|
|
ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
|
|
FixedArray* fa = reinterpret_cast<FixedArray*>(data());
|
|
if (value->IsSmi()) {
|
|
fa->set_unchecked(index, Smi::cast(value));
|
|
} else {
|
|
// We only do this during GC, so we don't need to notify the write barrier.
|
|
fa->set_unchecked(heap, index, value, SKIP_WRITE_BARRIER);
|
|
}
|
|
}
|
|
|
|
|
|
ElementsKind JSObject::GetElementsKind() {
|
|
ElementsKind kind = map()->elements_kind();
|
|
#if DEBUG
|
|
FixedArrayBase* fixed_array =
|
|
reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset));
|
|
Map* map = fixed_array->map();
|
|
ASSERT(((kind == FAST_ELEMENTS || kind == FAST_SMI_ONLY_ELEMENTS) &&
|
|
(map == GetHeap()->fixed_array_map() ||
|
|
map == GetHeap()->fixed_cow_array_map())) ||
|
|
(kind == FAST_DOUBLE_ELEMENTS &&
|
|
fixed_array->IsFixedDoubleArray()) ||
|
|
(kind == DICTIONARY_ELEMENTS &&
|
|
fixed_array->IsFixedArray() &&
|
|
fixed_array->IsDictionary()) ||
|
|
(kind > DICTIONARY_ELEMENTS));
|
|
#endif
|
|
return kind;
|
|
}
|
|
|
|
|
|
ElementsAccessor* JSObject::GetElementsAccessor() {
|
|
return ElementsAccessor::ForKind(GetElementsKind());
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastElements() {
|
|
return GetElementsKind() == FAST_ELEMENTS;
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastSmiOnlyElements() {
|
|
return GetElementsKind() == FAST_SMI_ONLY_ELEMENTS;
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastTypeElements() {
|
|
ElementsKind elements_kind = GetElementsKind();
|
|
return elements_kind == FAST_SMI_ONLY_ELEMENTS ||
|
|
elements_kind == FAST_ELEMENTS;
|
|
}
|
|
|
|
|
|
bool JSObject::HasFastDoubleElements() {
|
|
return GetElementsKind() == FAST_DOUBLE_ELEMENTS;
|
|
}
|
|
|
|
|
|
bool JSObject::HasDictionaryElements() {
|
|
return GetElementsKind() == DICTIONARY_ELEMENTS;
|
|
}
|
|
|
|
|
|
bool JSObject::HasNonStrictArgumentsElements() {
|
|
return GetElementsKind() == NON_STRICT_ARGUMENTS_ELEMENTS;
|
|
}
|
|
|
|
|
|
bool JSObject::HasExternalArrayElements() {
|
|
HeapObject* array = elements();
|
|
ASSERT(array != NULL);
|
|
return array->IsExternalArray();
|
|
}
|
|
|
|
|
|
#define EXTERNAL_ELEMENTS_CHECK(name, type) \
|
|
bool JSObject::HasExternal##name##Elements() { \
|
|
HeapObject* array = elements(); \
|
|
ASSERT(array != NULL); \
|
|
if (!array->IsHeapObject()) \
|
|
return false; \
|
|
return array->map()->instance_type() == type; \
|
|
}
|
|
|
|
|
|
EXTERNAL_ELEMENTS_CHECK(Byte, EXTERNAL_BYTE_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(UnsignedByte, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Short, EXTERNAL_SHORT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(UnsignedShort,
|
|
EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Int, EXTERNAL_INT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(UnsignedInt,
|
|
EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Float,
|
|
EXTERNAL_FLOAT_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Double,
|
|
EXTERNAL_DOUBLE_ARRAY_TYPE)
|
|
EXTERNAL_ELEMENTS_CHECK(Pixel, EXTERNAL_PIXEL_ARRAY_TYPE)
|
|
|
|
|
|
bool JSObject::HasNamedInterceptor() {
|
|
return map()->has_named_interceptor();
|
|
}
|
|
|
|
|
|
bool JSObject::HasIndexedInterceptor() {
|
|
return map()->has_indexed_interceptor();
|
|
}
|
|
|
|
|
|
bool JSObject::AllowsSetElementsLength() {
|
|
bool result = elements()->IsFixedArray() ||
|
|
elements()->IsFixedDoubleArray();
|
|
ASSERT(result == !HasExternalArrayElements());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::EnsureWritableFastElements() {
|
|
ASSERT(HasFastTypeElements());
|
|
FixedArray* elems = FixedArray::cast(elements());
|
|
Isolate* isolate = GetIsolate();
|
|
if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems;
|
|
Object* writable_elems;
|
|
{ MaybeObject* maybe_writable_elems = isolate->heap()->CopyFixedArrayWithMap(
|
|
elems, isolate->heap()->fixed_array_map());
|
|
if (!maybe_writable_elems->ToObject(&writable_elems)) {
|
|
return maybe_writable_elems;
|
|
}
|
|
}
|
|
set_elements(FixedArray::cast(writable_elems));
|
|
isolate->counters()->cow_arrays_converted()->Increment();
|
|
return writable_elems;
|
|
}
|
|
|
|
|
|
StringDictionary* JSObject::property_dictionary() {
|
|
ASSERT(!HasFastProperties());
|
|
return StringDictionary::cast(properties());
|
|
}
|
|
|
|
|
|
NumberDictionary* JSObject::element_dictionary() {
|
|
ASSERT(HasDictionaryElements());
|
|
return NumberDictionary::cast(elements());
|
|
}
|
|
|
|
|
|
bool String::IsHashFieldComputed(uint32_t field) {
|
|
return (field & kHashNotComputedMask) == 0;
|
|
}
|
|
|
|
|
|
bool String::HasHashCode() {
|
|
return IsHashFieldComputed(hash_field());
|
|
}
|
|
|
|
|
|
uint32_t String::Hash() {
|
|
// Fast case: has hash code already been computed?
|
|
uint32_t field = hash_field();
|
|
if (IsHashFieldComputed(field)) return field >> kHashShift;
|
|
// Slow case: compute hash code and set it.
|
|
return ComputeAndSetHash();
|
|
}
|
|
|
|
|
|
StringHasher::StringHasher(int length)
|
|
: length_(length),
|
|
raw_running_hash_(0),
|
|
array_index_(0),
|
|
is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
|
|
is_valid_(true) { }
|
|
|
|
|
|
bool StringHasher::has_trivial_hash() {
|
|
return length_ > String::kMaxHashCalcLength;
|
|
}
|
|
|
|
|
|
void StringHasher::AddCharacter(uc32 c) {
|
|
// Use the Jenkins one-at-a-time hash function to update the hash
|
|
// for the given character.
|
|
raw_running_hash_ = (raw_running_hash_ + c) * 1025;
|
|
raw_running_hash_ ^= (raw_running_hash_ >> 6);
|
|
if (is_array_index_) {
|
|
// Incremental array index computation.
|
|
unsigned digit = static_cast<unsigned>(c) - '0';
|
|
if (digit > 9 || array_index_ > 429496729U - ((digit + 2) >> 3)) {
|
|
is_array_index_ = false;
|
|
} else {
|
|
array_index_ = array_index_ * 10 + digit;
|
|
// Check for overflows or prefixed zeros (lengths > 0).
|
|
if (array_index_ == 0 && length_ > 1) {
|
|
is_array_index_ = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void StringHasher::AddCharacterNoIndex(uc32 c) {
|
|
ASSERT(!is_array_index());
|
|
raw_running_hash_ = (raw_running_hash_ + c) * 1025;
|
|
raw_running_hash_ ^= (raw_running_hash_ >> 6);
|
|
}
|
|
|
|
|
|
uint32_t StringHasher::GetHash() {
|
|
// Get the calculated raw hash value and do some more bit ops to distribute
|
|
// the hash further. Ensure that we never return zero as the hash value.
|
|
uint32_t result = raw_running_hash_;
|
|
result += (result << 3);
|
|
result ^= (result >> 11);
|
|
result += (result << 15);
|
|
if (result == 0) {
|
|
result = 27;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
template <typename schar>
|
|
uint32_t HashSequentialString(const schar* chars, int length) {
|
|
StringHasher hasher(length);
|
|
if (!hasher.has_trivial_hash()) {
|
|
int i;
|
|
for (i = 0; hasher.is_array_index() && (i < length); i++) {
|
|
hasher.AddCharacter(chars[i]);
|
|
}
|
|
for (; i < length; i++) {
|
|
hasher.AddCharacterNoIndex(chars[i]);
|
|
}
|
|
}
|
|
return hasher.GetHashField();
|
|
}
|
|
|
|
|
|
bool String::AsArrayIndex(uint32_t* index) {
|
|
uint32_t field = hash_field();
|
|
if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
|
|
return false;
|
|
}
|
|
return SlowAsArrayIndex(index);
|
|
}
|
|
|
|
|
|
Object* JSReceiver::GetPrototype() {
|
|
return HeapObject::cast(this)->map()->prototype();
|
|
}
|
|
|
|
|
|
bool JSReceiver::HasProperty(String* name) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->HasPropertyWithHandler(name);
|
|
}
|
|
return GetPropertyAttribute(name) != ABSENT;
|
|
}
|
|
|
|
|
|
bool JSReceiver::HasLocalProperty(String* name) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->HasPropertyWithHandler(name);
|
|
}
|
|
return GetLocalPropertyAttribute(name) != ABSENT;
|
|
}
|
|
|
|
|
|
PropertyAttributes JSReceiver::GetPropertyAttribute(String* key) {
|
|
return GetPropertyAttributeWithReceiver(this, key);
|
|
}
|
|
|
|
// TODO(504): this may be useful in other places too where JSGlobalProxy
|
|
// is used.
|
|
Object* JSObject::BypassGlobalProxy() {
|
|
if (IsJSGlobalProxy()) {
|
|
Object* proto = GetPrototype();
|
|
if (proto->IsNull()) return GetHeap()->undefined_value();
|
|
ASSERT(proto->IsJSGlobalObject());
|
|
return proto;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* JSReceiver::GetIdentityHash(CreationFlag flag) {
|
|
return IsJSProxy()
|
|
? JSProxy::cast(this)->GetIdentityHash(flag)
|
|
: JSObject::cast(this)->GetIdentityHash(flag);
|
|
}
|
|
|
|
|
|
bool JSObject::HasHiddenPropertiesObject() {
|
|
ASSERT(!IsJSGlobalProxy());
|
|
return GetPropertyAttributePostInterceptor(this,
|
|
GetHeap()->hidden_symbol(),
|
|
false) != ABSENT;
|
|
}
|
|
|
|
|
|
Object* JSObject::GetHiddenPropertiesObject() {
|
|
ASSERT(!IsJSGlobalProxy());
|
|
PropertyAttributes attributes;
|
|
// You can't install a getter on a property indexed by the hidden symbol,
|
|
// so we can be sure that GetLocalPropertyPostInterceptor returns a real
|
|
// object.
|
|
Object* result =
|
|
GetLocalPropertyPostInterceptor(this,
|
|
GetHeap()->hidden_symbol(),
|
|
&attributes)->ToObjectUnchecked();
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* JSObject::SetHiddenPropertiesObject(Object* hidden_obj) {
|
|
ASSERT(!IsJSGlobalProxy());
|
|
return SetPropertyPostInterceptor(GetHeap()->hidden_symbol(),
|
|
hidden_obj,
|
|
DONT_ENUM,
|
|
kNonStrictMode);
|
|
}
|
|
|
|
|
|
bool JSObject::HasHiddenProperties() {
|
|
return !GetHiddenProperties(OMIT_CREATION)->ToObjectChecked()->IsUndefined();
|
|
}
|
|
|
|
|
|
bool JSReceiver::HasElement(uint32_t index) {
|
|
if (IsJSProxy()) {
|
|
return JSProxy::cast(this)->HasElementWithHandler(index);
|
|
}
|
|
return JSObject::cast(this)->HasElementWithReceiver(this, index);
|
|
}
|
|
|
|
|
|
bool AccessorInfo::all_can_read() {
|
|
return BooleanBit::get(flag(), kAllCanReadBit);
|
|
}
|
|
|
|
|
|
void AccessorInfo::set_all_can_read(bool value) {
|
|
set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
|
|
}
|
|
|
|
|
|
bool AccessorInfo::all_can_write() {
|
|
return BooleanBit::get(flag(), kAllCanWriteBit);
|
|
}
|
|
|
|
|
|
void AccessorInfo::set_all_can_write(bool value) {
|
|
set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
|
|
}
|
|
|
|
|
|
bool AccessorInfo::prohibits_overwriting() {
|
|
return BooleanBit::get(flag(), kProhibitsOverwritingBit);
|
|
}
|
|
|
|
|
|
void AccessorInfo::set_prohibits_overwriting(bool value) {
|
|
set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value));
|
|
}
|
|
|
|
|
|
PropertyAttributes AccessorInfo::property_attributes() {
|
|
return AttributesField::decode(static_cast<uint32_t>(flag()->value()));
|
|
}
|
|
|
|
|
|
void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
|
|
set_flag(Smi::FromInt(AttributesField::update(flag()->value(), attributes)));
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void Dictionary<Shape, Key>::SetEntry(int entry,
|
|
Object* key,
|
|
Object* value) {
|
|
SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0)));
|
|
}
|
|
|
|
|
|
template<typename Shape, typename Key>
|
|
void Dictionary<Shape, Key>::SetEntry(int entry,
|
|
Object* key,
|
|
Object* value,
|
|
PropertyDetails details) {
|
|
ASSERT(!key->IsString() || details.IsDeleted() || details.index() > 0);
|
|
int index = HashTable<Shape, Key>::EntryToIndex(entry);
|
|
AssertNoAllocation no_gc;
|
|
WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc);
|
|
FixedArray::set(index, key, mode);
|
|
FixedArray::set(index+1, value, mode);
|
|
FixedArray::fast_set(this, index+2, details.AsSmi());
|
|
}
|
|
|
|
|
|
bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
|
|
ASSERT(other->IsNumber());
|
|
return key == static_cast<uint32_t>(other->Number());
|
|
}
|
|
|
|
|
|
uint32_t NumberDictionaryShape::Hash(uint32_t key) {
|
|
return ComputeIntegerHash(key);
|
|
}
|
|
|
|
|
|
uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) {
|
|
ASSERT(other->IsNumber());
|
|
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()));
|
|
}
|
|
|
|
|
|
MaybeObject* NumberDictionaryShape::AsObject(uint32_t key) {
|
|
return Isolate::Current()->heap()->NumberFromUint32(key);
|
|
}
|
|
|
|
|
|
bool StringDictionaryShape::IsMatch(String* key, Object* other) {
|
|
// We know that all entries in a hash table had their hash keys created.
|
|
// Use that knowledge to have fast failure.
|
|
if (key->Hash() != String::cast(other)->Hash()) return false;
|
|
return key->Equals(String::cast(other));
|
|
}
|
|
|
|
|
|
uint32_t StringDictionaryShape::Hash(String* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
|
|
uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) {
|
|
return String::cast(other)->Hash();
|
|
}
|
|
|
|
|
|
MaybeObject* StringDictionaryShape::AsObject(String* key) {
|
|
return key;
|
|
}
|
|
|
|
|
|
bool ObjectHashTableShape::IsMatch(JSReceiver* key, Object* other) {
|
|
return key == JSReceiver::cast(other);
|
|
}
|
|
|
|
|
|
uint32_t ObjectHashTableShape::Hash(JSReceiver* key) {
|
|
MaybeObject* maybe_hash = key->GetIdentityHash(OMIT_CREATION);
|
|
ASSERT(!maybe_hash->IsFailure());
|
|
return Smi::cast(maybe_hash->ToObjectUnchecked())->value();
|
|
}
|
|
|
|
|
|
uint32_t ObjectHashTableShape::HashForObject(JSReceiver* key, Object* other) {
|
|
MaybeObject* maybe_hash =
|
|
JSReceiver::cast(other)->GetIdentityHash(OMIT_CREATION);
|
|
ASSERT(!maybe_hash->IsFailure());
|
|
return Smi::cast(maybe_hash->ToObjectUnchecked())->value();
|
|
}
|
|
|
|
|
|
MaybeObject* ObjectHashTableShape::AsObject(JSReceiver* key) {
|
|
return key;
|
|
}
|
|
|
|
|
|
void ObjectHashTable::RemoveEntry(int entry) {
|
|
RemoveEntry(entry, GetHeap());
|
|
}
|
|
|
|
|
|
void Map::ClearCodeCache(Heap* heap) {
|
|
// No write barrier is needed since empty_fixed_array is not in new space.
|
|
// Please note this function is used during marking:
|
|
// - MarkCompactCollector::MarkUnmarkedObject
|
|
ASSERT(!heap->InNewSpace(heap->raw_unchecked_empty_fixed_array()));
|
|
WRITE_FIELD(this, kCodeCacheOffset, heap->raw_unchecked_empty_fixed_array());
|
|
}
|
|
|
|
|
|
void JSArray::EnsureSize(int required_size) {
|
|
ASSERT(HasFastTypeElements());
|
|
FixedArray* elts = FixedArray::cast(elements());
|
|
const int kArraySizeThatFitsComfortablyInNewSpace = 128;
|
|
if (elts->length() < required_size) {
|
|
// Doubling in size would be overkill, but leave some slack to avoid
|
|
// constantly growing.
|
|
Expand(required_size + (required_size >> 3));
|
|
// It's a performance benefit to keep a frequently used array in new-space.
|
|
} else if (!GetHeap()->new_space()->Contains(elts) &&
|
|
required_size < kArraySizeThatFitsComfortablyInNewSpace) {
|
|
// Expand will allocate a new backing store in new space even if the size
|
|
// we asked for isn't larger than what we had before.
|
|
Expand(required_size);
|
|
}
|
|
}
|
|
|
|
|
|
void JSArray::set_length(Smi* length) {
|
|
// Don't need a write barrier for a Smi.
|
|
set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
|
|
MaybeObject* JSArray::SetContent(FixedArray* storage) {
|
|
MaybeObject* maybe_object = EnsureCanContainElements(storage);
|
|
if (maybe_object->IsFailure()) return maybe_object;
|
|
set_length(Smi::FromInt(storage->length()));
|
|
set_elements(storage);
|
|
return this;
|
|
}
|
|
|
|
|
|
MaybeObject* FixedArray::Copy() {
|
|
if (length() == 0) return this;
|
|
return GetHeap()->CopyFixedArray(this);
|
|
}
|
|
|
|
|
|
Relocatable::Relocatable(Isolate* isolate) {
|
|
ASSERT(isolate == Isolate::Current());
|
|
isolate_ = isolate;
|
|
prev_ = isolate->relocatable_top();
|
|
isolate->set_relocatable_top(this);
|
|
}
|
|
|
|
|
|
Relocatable::~Relocatable() {
|
|
ASSERT(isolate_ == Isolate::Current());
|
|
ASSERT_EQ(isolate_->relocatable_top(), this);
|
|
isolate_->set_relocatable_top(prev_);
|
|
}
|
|
|
|
|
|
int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) {
|
|
return map->instance_size();
|
|
}
|
|
|
|
|
|
void Foreign::ForeignIterateBody(ObjectVisitor* v) {
|
|
v->VisitExternalReference(
|
|
reinterpret_cast<Address *>(FIELD_ADDR(this, kAddressOffset)));
|
|
}
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
void Foreign::ForeignIterateBody() {
|
|
StaticVisitor::VisitExternalReference(
|
|
reinterpret_cast<Address *>(FIELD_ADDR(this, kAddressOffset)));
|
|
}
|
|
|
|
|
|
void ExternalAsciiString::ExternalAsciiStringIterateBody(ObjectVisitor* v) {
|
|
typedef v8::String::ExternalAsciiStringResource Resource;
|
|
v->VisitExternalAsciiString(
|
|
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
|
|
}
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
void ExternalAsciiString::ExternalAsciiStringIterateBody() {
|
|
typedef v8::String::ExternalAsciiStringResource Resource;
|
|
StaticVisitor::VisitExternalAsciiString(
|
|
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
|
|
}
|
|
|
|
|
|
void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) {
|
|
typedef v8::String::ExternalStringResource Resource;
|
|
v->VisitExternalTwoByteString(
|
|
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
|
|
}
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
void ExternalTwoByteString::ExternalTwoByteStringIterateBody() {
|
|
typedef v8::String::ExternalStringResource Resource;
|
|
StaticVisitor::VisitExternalTwoByteString(
|
|
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
|
|
}
|
|
|
|
#define SLOT_ADDR(obj, offset) \
|
|
reinterpret_cast<Object**>((obj)->address() + offset)
|
|
|
|
template<int start_offset, int end_offset, int size>
|
|
void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody(
|
|
HeapObject* obj,
|
|
ObjectVisitor* v) {
|
|
v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, end_offset));
|
|
}
|
|
|
|
|
|
template<int start_offset>
|
|
void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj,
|
|
int object_size,
|
|
ObjectVisitor* v) {
|
|
v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, object_size));
|
|
}
|
|
|
|
#undef SLOT_ADDR
|
|
|
|
|
|
#undef CAST_ACCESSOR
|
|
#undef INT_ACCESSORS
|
|
#undef SMI_ACCESSORS
|
|
#undef ACCESSORS
|
|
#undef FIELD_ADDR
|
|
#undef READ_FIELD
|
|
#undef WRITE_FIELD
|
|
#undef WRITE_BARRIER
|
|
#undef CONDITIONAL_WRITE_BARRIER
|
|
#undef READ_MEMADDR_FIELD
|
|
#undef WRITE_MEMADDR_FIELD
|
|
#undef READ_DOUBLE_FIELD
|
|
#undef WRITE_DOUBLE_FIELD
|
|
#undef READ_INT_FIELD
|
|
#undef WRITE_INT_FIELD
|
|
#undef READ_SHORT_FIELD
|
|
#undef WRITE_SHORT_FIELD
|
|
#undef READ_BYTE_FIELD
|
|
#undef WRITE_BYTE_FIELD
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_OBJECTS_INL_H_
|