v8/test/fuzzer/wasm-compile.cc
Clemens Hammacher 1bf5ac8cd9 [wasm] Extract WasmVal to own header and rename to WasmValue
This allows to reuse the class e.g. in the baseline compiler.

R=titzer@chromium.org

Change-Id: I7251af16e8c74f267834a9cefb676edf3c9f3a07
Reviewed-on: https://chromium-review.googlesource.com/570020
Reviewed-by: Ben Titzer <titzer@chromium.org>
Commit-Queue: Clemens Hammacher <clemensh@chromium.org>
Cr-Commit-Position: refs/heads/master@{#46735}
2017-07-18 13:12:56 +00:00

337 lines
10 KiB
C++

// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <algorithm>
#include "include/v8.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects.h"
#include "src/ostreams.h"
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-module-runner.h"
#include "test/fuzzer/fuzzer-support.h"
#include "test/fuzzer/wasm-fuzzer-common.h"
typedef uint8_t byte;
using namespace v8::internal;
using namespace v8::internal::wasm;
using namespace v8::internal::wasm::fuzzer;
namespace {
class DataRange {
const uint8_t* data_;
size_t size_;
public:
DataRange(const uint8_t* data, size_t size) : data_(data), size_(size) {}
size_t size() const { return size_; }
std::pair<DataRange, DataRange> split(uint32_t index) const {
return std::make_pair(DataRange(data_, index),
DataRange(data_ + index, size() - index));
}
std::pair<DataRange, DataRange> split() {
uint16_t index = get<uint16_t>();
if (size() > 0) {
index = index % size();
} else {
index = 0;
}
return split(index);
}
template <typename T>
T get() {
if (size() == 0) {
return T();
} else {
// We want to support the case where we have less than sizeof(T) bytes
// remaining in the slice. For example, if we emit an i32 constant, it's
// okay if we don't have a full four bytes available, we'll just use what
// we have. We aren't concerned about endianness because we are generating
// arbitrary expressions.
const size_t num_bytes = std::min(sizeof(T), size());
T result = T();
memcpy(&result, data_, num_bytes);
data_ += num_bytes;
size_ -= num_bytes;
return result;
}
}
};
class WasmGenerator {
template <WasmOpcode Op, ValueType... Args>
std::function<void(DataRange)> op() {
return [this](DataRange data) {
Generate<Args...>(data);
builder_->Emit(Op);
};
}
template <ValueType T>
std::function<void(DataRange)> block() {
return [this](DataRange data) {
blocks_.push_back(T);
builder_->EmitWithU8(
kExprBlock, static_cast<uint8_t>(WasmOpcodes::ValueTypeCodeFor(T)));
Generate<T>(data);
builder_->Emit(kExprEnd);
blocks_.pop_back();
};
}
template <ValueType T>
std::function<void(DataRange)> block_br() {
return [this](DataRange data) {
blocks_.push_back(T);
builder_->EmitWithU8(
kExprBlock, static_cast<uint8_t>(WasmOpcodes::ValueTypeCodeFor(T)));
const uint32_t target_block = data.get<uint32_t>() % blocks_.size();
const ValueType break_type = blocks_[target_block];
Generate(break_type, data);
builder_->EmitWithI32V(kExprBr, target_block);
builder_->Emit(kExprEnd);
blocks_.pop_back();
};
}
public:
WasmGenerator(v8::internal::wasm::WasmFunctionBuilder* fn) : builder_(fn) {}
void Generate(ValueType type, DataRange data);
template <ValueType T>
void Generate(DataRange data);
template <ValueType T1, ValueType T2, ValueType... Ts>
void Generate(DataRange data) {
const auto parts = data.split();
Generate<T1>(parts.first);
Generate<T2, Ts...>(parts.second);
}
private:
v8::internal::wasm::WasmFunctionBuilder* builder_;
std::vector<ValueType> blocks_;
};
template <>
void WasmGenerator::Generate<kWasmI32>(DataRange data) {
if (data.size() <= sizeof(uint32_t)) {
builder_->EmitI32Const(data.get<uint32_t>());
} else {
const std::function<void(DataRange)> alternates[] = {
op<kExprI32Eqz, kWasmI32>(), //
op<kExprI32Eq, kWasmI32, kWasmI32>(),
op<kExprI32Ne, kWasmI32, kWasmI32>(),
op<kExprI32LtS, kWasmI32, kWasmI32>(),
op<kExprI32LtU, kWasmI32, kWasmI32>(),
op<kExprI32GeS, kWasmI32, kWasmI32>(),
op<kExprI32GeU, kWasmI32, kWasmI32>(),
op<kExprI64Eqz, kWasmI64>(), //
op<kExprI64Eq, kWasmI64, kWasmI64>(),
op<kExprI64Ne, kWasmI64, kWasmI64>(),
op<kExprI64LtS, kWasmI64, kWasmI64>(),
op<kExprI64LtU, kWasmI64, kWasmI64>(),
op<kExprI64GeS, kWasmI64, kWasmI64>(),
op<kExprI64GeU, kWasmI64, kWasmI64>(),
op<kExprF32Eq, kWasmF32, kWasmF32>(),
op<kExprF32Ne, kWasmF32, kWasmF32>(),
op<kExprF32Lt, kWasmF32, kWasmF32>(),
op<kExprF32Ge, kWasmF32, kWasmF32>(),
op<kExprF64Eq, kWasmF64, kWasmF64>(),
op<kExprF64Ne, kWasmF64, kWasmF64>(),
op<kExprF64Lt, kWasmF64, kWasmF64>(),
op<kExprF64Ge, kWasmF64, kWasmF64>(),
op<kExprI32Add, kWasmI32, kWasmI32>(),
op<kExprI32Sub, kWasmI32, kWasmI32>(),
op<kExprI32Mul, kWasmI32, kWasmI32>(),
op<kExprI32DivS, kWasmI32, kWasmI32>(),
op<kExprI32DivU, kWasmI32, kWasmI32>(),
op<kExprI32RemS, kWasmI32, kWasmI32>(),
op<kExprI32RemU, kWasmI32, kWasmI32>(),
op<kExprI32And, kWasmI32, kWasmI32>(),
op<kExprI32Ior, kWasmI32, kWasmI32>(),
op<kExprI32Xor, kWasmI32, kWasmI32>(),
op<kExprI32Shl, kWasmI32, kWasmI32>(),
op<kExprI32ShrU, kWasmI32, kWasmI32>(),
op<kExprI32ShrS, kWasmI32, kWasmI32>(),
op<kExprI32Ror, kWasmI32, kWasmI32>(),
op<kExprI32Rol, kWasmI32, kWasmI32>(),
op<kExprI32Clz, kWasmI32>(), //
op<kExprI32Ctz, kWasmI32>(), //
op<kExprI32Popcnt, kWasmI32>(),
op<kExprI32ConvertI64, kWasmI64>(), //
op<kExprI32SConvertF32, kWasmF32>(),
op<kExprI32UConvertF32, kWasmF32>(),
op<kExprI32SConvertF64, kWasmF64>(),
op<kExprI32UConvertF64, kWasmF64>(),
op<kExprI32ReinterpretF32, kWasmF32>(),
block<kWasmI32>(),
block_br<kWasmI32>()};
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
"Too many alternates. Replace with a bigger type if needed.");
const auto which = data.get<uint8_t>();
alternates[which % arraysize(alternates)](data);
}
}
template <>
void WasmGenerator::Generate<kWasmI64>(DataRange data) {
if (data.size() <= sizeof(uint64_t)) {
builder_->EmitI64Const(data.get<int64_t>());
} else {
const std::function<void(DataRange)> alternates[] = {
op<kExprI64Add, kWasmI64, kWasmI64>(),
op<kExprI64Sub, kWasmI64, kWasmI64>(),
op<kExprI64Mul, kWasmI64, kWasmI64>(),
op<kExprI64DivS, kWasmI64, kWasmI64>(),
op<kExprI64DivU, kWasmI64, kWasmI64>(),
op<kExprI64RemS, kWasmI64, kWasmI64>(),
op<kExprI64RemU, kWasmI64, kWasmI64>(),
op<kExprI64And, kWasmI64, kWasmI64>(),
op<kExprI64Ior, kWasmI64, kWasmI64>(),
op<kExprI64Xor, kWasmI64, kWasmI64>(),
op<kExprI64Shl, kWasmI64, kWasmI64>(),
op<kExprI64ShrU, kWasmI64, kWasmI64>(),
op<kExprI64ShrS, kWasmI64, kWasmI64>(),
op<kExprI64Ror, kWasmI64, kWasmI64>(),
op<kExprI64Rol, kWasmI64, kWasmI64>(),
op<kExprI64Clz, kWasmI64>(),
op<kExprI64Ctz, kWasmI64>(),
op<kExprI64Popcnt, kWasmI64>(),
block<kWasmI64>(),
block_br<kWasmI64>()};
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
"Too many alternates. Replace with a bigger type if needed.");
const auto which = data.get<uint8_t>();
alternates[which % arraysize(alternates)](data);
}
}
template <>
void WasmGenerator::Generate<kWasmF32>(DataRange data) {
if (data.size() <= sizeof(float)) {
builder_->EmitF32Const(data.get<float>());
} else {
const std::function<void(DataRange)> alternates[] = {
op<kExprF32Add, kWasmF32, kWasmF32>(),
op<kExprF32Sub, kWasmF32, kWasmF32>(),
op<kExprF32Mul, kWasmF32, kWasmF32>(),
block<kWasmF32>(), block_br<kWasmF32>()};
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
"Too many alternates. Replace with a bigger type if needed.");
const auto which = data.get<uint8_t>();
alternates[which % arraysize(alternates)](data);
}
}
template <>
void WasmGenerator::Generate<kWasmF64>(DataRange data) {
if (data.size() <= sizeof(double)) {
builder_->EmitF64Const(data.get<double>());
} else {
const std::function<void(DataRange)> alternates[] = {
op<kExprF64Add, kWasmF64, kWasmF64>(),
op<kExprF64Sub, kWasmF64, kWasmF64>(),
op<kExprF64Mul, kWasmF64, kWasmF64>(),
block<kWasmF64>(), block_br<kWasmF64>()};
static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
"Too many alternates. Replace with a bigger type if needed.");
const auto which = data.get<uint8_t>();
alternates[which % arraysize(alternates)](data);
}
}
void WasmGenerator::Generate(ValueType type, DataRange data) {
switch (type) {
case kWasmI32:
return Generate<kWasmI32>(data);
case kWasmI64:
return Generate<kWasmI64>(data);
case kWasmF32:
return Generate<kWasmF32>(data);
case kWasmF64:
return Generate<kWasmF64>(data);
default:
UNREACHABLE();
}
}
}
class WasmCompileFuzzer : public WasmExecutionFuzzer {
virtual bool GenerateModule(
Isolate* isolate, Zone* zone, const uint8_t* data, size_t size,
ZoneBuffer& buffer, int32_t& num_args,
std::unique_ptr<WasmValue[]>& interpreter_args,
std::unique_ptr<Handle<Object>[]>& compiler_args) override {
TestSignatures sigs;
WasmModuleBuilder builder(zone);
v8::internal::wasm::WasmFunctionBuilder* f =
builder.AddFunction(sigs.i_iii());
WasmGenerator gen(f);
gen.Generate<kWasmI32>(DataRange(data, static_cast<uint32_t>(size)));
uint8_t end_opcode = kExprEnd;
f->EmitCode(&end_opcode, 1);
builder.AddExport(v8::internal::CStrVector("main"), f);
builder.WriteTo(buffer);
num_args = 3;
interpreter_args.reset(
new WasmValue[3]{WasmValue(1), WasmValue(2), WasmValue(3)});
compiler_args.reset(new Handle<Object>[3]{
handle(Smi::FromInt(1), isolate), handle(Smi::FromInt(1), isolate),
handle(Smi::FromInt(1), isolate)});
return true;
}
};
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
return WasmCompileFuzzer().FuzzWasmModule(data, size);
}