v8/tools/gcmole
Dominik Inführ 17cba4f0f0 [heap] Safepointing with an atomic state
To improve performance of parking, keep the thread state in an atomic
variable instead of protecting it with a mutex.

However the mutex was used e.g. to force Unpark() to block while the
safepoint operation was still running. Therefore the safepoint algorithm
has to change as well.

Park() and Unpark() use CAS operation to transition the state.
Safepoint() uses a relaxed load for checking whether a safepoint was
requested. Since Safepoint(), Park() and Unpark() all have a slow path,
there is no need for busy-waiting on the main thread.

We need two more ThreadStates:
* SafepointRequested: This state is set by GlobalSafepoint to force
    Running threads into the slow path on Safepoint() and Park(). This
    state also replaces the separate atomic<bool> safepoint_requested_
    field we used before.
* ParkedSafepoint: This state is set by GlobalSafepoint as well to force
    parked threads into the slow path on Unpark().

When stopping all threads, GlobalSafepoint transitions states from
Running --> SafepointRequested and Parked --> ParkedSafepoint to force
the slow path for all three methods. After performing the transition
for each thread we know the exact number of Running threads and wait
until each of them either reached a safepoint or parked itself.

Design doc: https://docs.google.com/document/d/1p9klWyqT_AScAnK_PdHZTcNhZGzoBiYWPkUciIh2C58/edit?usp=sharing

Bug: chromium:1177144, v8:10315
Change-Id: I8697da915c7d18e2fb941f1bedf6181226408feb
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2704075
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Maya Lekova <mslekova@chromium.org>
Commit-Queue: Dominik Inführ <dinfuehr@chromium.org>
Cr-Commit-Position: refs/heads/master@{#73089}
2021-03-01 08:41:12 +00:00
..
bootstrap.sh [tools] Fix whitespace 2021-02-03 15:42:11 +00:00
BUILD.gn [gcmole] Re-write gcmole runner in Python 2020-11-18 11:19:39 +00:00
gcmole-test.cc [tools] Add DisableGCMole scope 2021-01-12 12:59:39 +00:00
gcmole-tools.tar.gz.sha1 [tools] Add DisableGCMole scope 2021-01-12 12:59:39 +00:00
gcmole.cc [tools] Add DisableGCMole scope 2021-01-12 12:59:39 +00:00
GCMOLE.gn [gcmole] Fix traversing virtual methods 2019-08-29 15:14:58 +00:00
gcmole.py [heap] Safepointing with an atomic state 2021-03-01 08:41:12 +00:00
ignored_files [gcmole] Enable use-after-free detection 2020-06-24 09:29:31 +00:00
Makefile [gcmole] Update bootstrap script for static linkage. 2019-03-15 12:53:51 +00:00
package.sh [tools] Add DisableGCMole scope 2021-01-12 12:59:39 +00:00
README [tools] Add DisableGCMole scope 2021-01-12 12:59:39 +00:00
run-gcmole.py [gcmole] Python conversion followup 2020-11-26 09:40:45 +00:00
suspects.whitelist [gcmole] Whitelist entry for frames.cc 2020-05-18 14:06:20 +00:00
test-expectations.txt [tools] Add DisableGCMole scope 2021-01-12 12:59:39 +00:00

DESCRIPTION -------------------------------------------------------------------

gcmole is a simple static analysis tool used to find possible evaluation order 
dependent GC-unsafe places in the V8 codebase and "stale" pointers to the heap
(ones whose addresses got invalidated by the GC).

For example the following code is GC-unsafe:

    Handle<Object> Foo();  // Assume Foo can trigger a GC.
    void Bar(Object, Object);

    Handle<Object> baz;
    baz->Qux(*Foo());  // (a)
    Bar(*Foo(), *baz); // (b)

Both in cases (a) and (b) compiler is free to evaluate call arguments (that 
includes receiver) in any order. That means it can dereference baz before 
calling to Foo and save a raw pointer to a heap object in the register or 
on the stack.

In terms of the AST analysis that gcmole does, it warns about places in the
code which result in 2 subtrees, the order of execution of which is undefined
by C++, one of which causes a GC and the other dereferences a Handle to a raw
Object (or its subclasses).

The following code triggers a stale variable warning (assuming that the Foo
function was detected as potentially allocating, as in the previous example):

    JSObject raw_obj = ...;
    Foo();
    raw_obj.Print();

Since Foo can trigger a GC, it might have moved the raw_obj. The solution is
simply to store it as a Handle.

PREREQUISITES -----------------------------------------------------------------

(1) Install Python

    $ sudo apt-get install python

(2) Get LLVM 8.0 and Clang 8.0 sources and build them.

    Follow the instructions on http://clang.llvm.org/get_started.html.

    Make sure to pass -DCMAKE_BUILD_TYPE=Release to cmake to get Release build 
    instead of a Debug one.

(3) Build gcmole Clang plugin (libgcmole.so)

    In the tools/gcmole directory execute the following command:

    $ BUILD_ROOT=<path> LLVM_SRC_ROOT=<path> CLANG_SRC_ROOT=<path> make

(*) Note that steps (2) and (3) can also be achieved by just using the included
    bootstrapping script in this directory:

    $ ./tools/gcmole/bootstrap.sh

    This will use "third_party/llvm+clang-build" as a build directory and checkout
    required sources in the "third_party" directory.

USING GCMOLE ------------------------------------------------------------------

gcmole consists of driver script written in Python and Clang plugin that does
C++ AST processing. Plugin (libgcmole.so) is expected to be in the same
folder as driver (gcmole.py).

To start analysis cd into the root of v8 checkout and execute the following
command:

CLANG_BIN=<path-to-clang-bin-folder> python tools/gcmole/gcmole.py [<arch>]

where arch should be one of architectures supported by V8 (arm, ia32, x64).

Analysis will be performed in 2 stages: 

- on the first stage driver will parse all files and build a global callgraph 
approximation to find all functions that might potentially cause GC, list
of this functions will be written into gcsuspects file.

- on the second stage driver will parse all files again and will locate all 
callsites that might be GC-unsafe based on the list of functions causing GC. 
Such places are marked with a "Possible problem with evaluation order." 
warning. Messages "Failed to resolve v8::internal::Object" are benign and 
can be ignored.

If any errors were found driver exits with non-zero status.

TESTING -----------------------------------------------------------------------

Tests are automatically run by the main python runner. Expectations are in
test-expectations.txt and need to be updated whenever the sources of the tests
in gcmole-test.cc are modified (line numbers also count).

PACKAGING ---------------------------------------------------------------------

gcmole is deployed on V8's buildbot infrastructure to run it as part of the
continuous integration. A pre-built package of gcmole together with Clang is
hosted on Google Cloud Storage for this purpose. To update this package to a
newer version, use the provided packaging script:

    $ ./tools/gcmole/package.sh

This will create a new "tools/gcmole/gcmole-tools.tar.gz" package with the
corresponding SHA1 sum suitable to be used for this purpose. It assumes that
Clang was built in "third_party/llvm+clang-build" (e.g. by the bootstrapping
script "bootstrap.sh" mentioned above).

TROUBLESHOOTING ---------------------------------------------------------------

gcmole is tighly coupled with the AST structure that Clang produces. Therefore
when upgrading to a newer Clang version, it might start producing bogus output
or completely stop outputting warnings. In such occasion, one might start the
debugging process by checking weather a new AST node type is introduced which
is currently not supported by gcmole. Insert the following code at the end of
the FunctionAnalyzer::VisitExpr method to see the unsupported AST class(es)
and the source position which generates them:

    if (expr) {
      clang::Stmt::StmtClass stmtClass = expr->getStmtClass();
      d_.Report(clang::FullSourceLoc(expr->getExprLoc(), sm_),
        d_.getCustomDiagID(clang::DiagnosticsEngine::Remark, "%0")) << stmtClass;
    }

For instance, gcmole currently doesn't support AtomicExprClass statements
introduced for atomic operations.

A convenient way to observe the AST generated by Clang is to pass the following
flags when invoking clang++

    -Xclang -ast-dump -fsyntax-only