v8/test/cctest/test-strings.cc
Clemens Backes 00a341994f [cctest] Use v8_flags for accessing flag values
Avoid the deprecated FLAG_* syntax, access flag values via the
{v8_flags} struct instead.

R=mliedtke@chromium.org

Bug: v8:12887
Change-Id: I417eee6311fadef9b60043cfc9a42926859c7ab9
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3899304
Reviewed-by: Matthias Liedtke <mliedtke@chromium.org>
Commit-Queue: Matthias Liedtke <mliedtke@chromium.org>
Cr-Commit-Position: refs/heads/main@{#83247}
2022-09-16 08:22:03 +00:00

2126 lines
75 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Check that we can traverse very deep stacks of ConsStrings using
// StringCharacterStram. Check that Get(int) works on very deep stacks
// of ConsStrings. These operations may not be very fast, but they
// should be possible without getting errors due to too deep recursion.
#include <stdlib.h>
#include "include/v8-json.h"
#include "src/api/api-inl.h"
#include "src/base/platform/elapsed-timer.h"
#include "src/base/strings.h"
#include "src/execution/messages.h"
#include "src/heap/factory.h"
#include "src/heap/heap-inl.h"
#include "src/objects/objects-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-utils.h"
// Adapted from http://en.wikipedia.org/wiki/Multiply-with-carry
class MyRandomNumberGenerator {
public:
MyRandomNumberGenerator() { init(); }
void init(uint32_t seed = 0x5688C73E) {
static const uint32_t phi = 0x9E3779B9;
c = 362436;
i = kQSize - 1;
Q[0] = seed;
Q[1] = seed + phi;
Q[2] = seed + phi + phi;
for (unsigned j = 3; j < kQSize; j++) {
Q[j] = Q[j - 3] ^ Q[j - 2] ^ phi ^ j;
}
}
uint32_t next() {
uint64_t a = 18782;
uint32_t r = 0xFFFFFFFE;
i = (i + 1) & (kQSize - 1);
uint64_t t = a * Q[i] + c;
c = (t >> 32);
uint32_t x = static_cast<uint32_t>(t + c);
if (x < c) {
x++;
c++;
}
return (Q[i] = r - x);
}
uint32_t next(int max) { return next() % max; }
bool next(double threshold) {
CHECK(threshold >= 0.0 && threshold <= 1.0);
if (threshold == 1.0) return true;
if (threshold == 0.0) return false;
uint32_t value = next() % 100000;
return threshold > static_cast<double>(value) / 100000.0;
}
private:
static const uint32_t kQSize = 4096;
uint32_t Q[kQSize];
uint32_t c;
uint32_t i;
};
namespace v8 {
namespace internal {
namespace test_strings {
static const int DEEP_DEPTH = 8 * 1024;
static const int SUPER_DEEP_DEPTH = 80 * 1024;
class Resource : public v8::String::ExternalStringResource {
public:
Resource(const base::uc16* data, size_t length)
: data_(data), length_(length) {}
~Resource() override { i::DeleteArray(data_); }
const uint16_t* data() const override { return data_; }
size_t length() const override { return length_; }
private:
const base::uc16* data_;
size_t length_;
};
class OneByteResource : public v8::String::ExternalOneByteStringResource {
public:
OneByteResource(const char* data, size_t length)
: data_(data), length_(length) {}
~OneByteResource() override { i::DeleteArray(data_); }
const char* data() const override { return data_; }
size_t length() const override { return length_; }
private:
const char* data_;
size_t length_;
};
static void InitializeBuildingBlocks(Handle<String>* building_blocks,
int bb_length, bool long_blocks,
MyRandomNumberGenerator* rng) {
// A list of pointers that we don't have any interest in cleaning up.
// If they are reachable from a root then leak detection won't complain.
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
for (int i = 0; i < bb_length; i++) {
int len = rng->next(16);
int slice_head_chars = 0;
int slice_tail_chars = 0;
int slice_depth = 0;
for (int j = 0; j < 3; j++) {
if (rng->next(0.35)) slice_depth++;
}
// Must truncate something for a slice string. Loop until
// at least one end will be sliced.
while (slice_head_chars == 0 && slice_tail_chars == 0) {
slice_head_chars = rng->next(15);
slice_tail_chars = rng->next(12);
}
if (long_blocks) {
// Generate building blocks which will never be merged
len += ConsString::kMinLength + 1;
} else if (len > 14) {
len += 1234;
}
// Don't slice 0 length strings.
if (len == 0) slice_depth = 0;
int slice_length = slice_depth * (slice_head_chars + slice_tail_chars);
len += slice_length;
switch (rng->next(4)) {
case 0: {
base::uc16 buf[2000];
for (int j = 0; j < len; j++) {
buf[j] = rng->next(0x10000);
}
building_blocks[i] =
factory
->NewStringFromTwoByte(
v8::base::Vector<const base::uc16>(buf, len))
.ToHandleChecked();
for (int j = 0; j < len; j++) {
CHECK_EQ(buf[j], building_blocks[i]->Get(j));
}
break;
}
case 1: {
char buf[2000];
for (int j = 0; j < len; j++) {
buf[j] = rng->next(0x80);
}
building_blocks[i] =
factory->NewStringFromOneByte(v8::base::OneByteVector(buf, len))
.ToHandleChecked();
for (int j = 0; j < len; j++) {
CHECK_EQ(buf[j], building_blocks[i]->Get(j));
}
break;
}
case 2: {
base::uc16* buf = NewArray<base::uc16>(len);
for (int j = 0; j < len; j++) {
buf[j] = rng->next(0x10000);
}
Resource* resource = new Resource(buf, len);
building_blocks[i] = v8::Utils::OpenHandle(
*v8::String::NewExternalTwoByte(CcTest::isolate(), resource)
.ToLocalChecked());
for (int j = 0; j < len; j++) {
CHECK_EQ(buf[j], building_blocks[i]->Get(j));
}
break;
}
case 3: {
char* buf = NewArray<char>(len);
for (int j = 0; j < len; j++) {
buf[j] = rng->next(0x80);
}
OneByteResource* resource = new OneByteResource(buf, len);
building_blocks[i] = v8::Utils::OpenHandle(
*v8::String::NewExternalOneByte(CcTest::isolate(), resource)
.ToLocalChecked());
for (int j = 0; j < len; j++) {
CHECK_EQ(buf[j], building_blocks[i]->Get(j));
}
break;
}
}
for (int j = slice_depth; j > 0; j--) {
building_blocks[i] = factory->NewSubString(
building_blocks[i], slice_head_chars,
building_blocks[i]->length() - slice_tail_chars);
}
CHECK(len == building_blocks[i]->length() + slice_length);
}
}
class ConsStringStats {
public:
ConsStringStats() { Reset(); }
ConsStringStats(const ConsStringStats&) = delete;
ConsStringStats& operator=(const ConsStringStats&) = delete;
void Reset();
void VerifyEqual(const ConsStringStats& that) const;
int leaves_;
int empty_leaves_;
int chars_;
int left_traversals_;
int right_traversals_;
private:
};
void ConsStringStats::Reset() {
leaves_ = 0;
empty_leaves_ = 0;
chars_ = 0;
left_traversals_ = 0;
right_traversals_ = 0;
}
void ConsStringStats::VerifyEqual(const ConsStringStats& that) const {
CHECK_EQ(this->leaves_, that.leaves_);
CHECK_EQ(this->empty_leaves_, that.empty_leaves_);
CHECK_EQ(this->chars_, that.chars_);
CHECK_EQ(this->left_traversals_, that.left_traversals_);
CHECK_EQ(this->right_traversals_, that.right_traversals_);
}
class ConsStringGenerationData {
public:
static const int kNumberOfBuildingBlocks = 256;
explicit ConsStringGenerationData(bool long_blocks);
ConsStringGenerationData(const ConsStringGenerationData&) = delete;
ConsStringGenerationData& operator=(const ConsStringGenerationData&) = delete;
void Reset();
inline Handle<String> block(int offset);
inline Handle<String> block(uint32_t offset);
// Input variables.
double early_termination_threshold_;
double leftness_;
double rightness_;
double empty_leaf_threshold_;
int max_leaves_;
// Cached data.
Handle<String> building_blocks_[kNumberOfBuildingBlocks];
String empty_string_;
MyRandomNumberGenerator rng_;
// Stats.
ConsStringStats stats_;
int early_terminations_;
};
ConsStringGenerationData::ConsStringGenerationData(bool long_blocks) {
rng_.init();
InitializeBuildingBlocks(building_blocks_, kNumberOfBuildingBlocks,
long_blocks, &rng_);
empty_string_ = ReadOnlyRoots(CcTest::heap()).empty_string();
Reset();
}
Handle<String> ConsStringGenerationData::block(uint32_t offset) {
return building_blocks_[offset % kNumberOfBuildingBlocks];
}
Handle<String> ConsStringGenerationData::block(int offset) {
CHECK_GE(offset, 0);
return building_blocks_[offset % kNumberOfBuildingBlocks];
}
void ConsStringGenerationData::Reset() {
early_termination_threshold_ = 0.01;
leftness_ = 0.75;
rightness_ = 0.75;
empty_leaf_threshold_ = 0.02;
max_leaves_ = 1000;
stats_.Reset();
early_terminations_ = 0;
rng_.init();
}
void AccumulateStats(ConsString cons_string, ConsStringStats* stats) {
int left_length = cons_string.first().length();
int right_length = cons_string.second().length();
CHECK(cons_string.length() == left_length + right_length);
// Check left side.
bool left_is_cons = cons_string.first().IsConsString();
if (left_is_cons) {
stats->left_traversals_++;
AccumulateStats(ConsString::cast(cons_string.first()), stats);
} else {
CHECK_NE(left_length, 0);
stats->leaves_++;
stats->chars_ += left_length;
}
// Check right side.
if (cons_string.second().IsConsString()) {
stats->right_traversals_++;
AccumulateStats(ConsString::cast(cons_string.second()), stats);
} else {
if (right_length == 0) {
stats->empty_leaves_++;
CHECK(!left_is_cons);
}
stats->leaves_++;
stats->chars_ += right_length;
}
}
void AccumulateStats(Handle<String> cons_string, ConsStringStats* stats) {
DisallowGarbageCollection no_gc;
if (cons_string->IsConsString()) {
return AccumulateStats(ConsString::cast(*cons_string), stats);
}
// This string got flattened by gc.
stats->chars_ += cons_string->length();
}
void AccumulateStatsWithOperator(ConsString cons_string,
ConsStringStats* stats) {
ConsStringIterator iter(cons_string);
int offset;
for (String string = iter.Next(&offset); !string.is_null();
string = iter.Next(&offset)) {
// Accumulate stats.
CHECK_EQ(0, offset);
stats->leaves_++;
stats->chars_ += string.length();
}
}
void VerifyConsString(Handle<String> root, ConsStringGenerationData* data) {
// Verify basic data.
CHECK(root->IsConsString());
CHECK_EQ(root->length(), data->stats_.chars_);
// Recursive verify.
ConsStringStats stats;
AccumulateStats(ConsString::cast(*root), &stats);
stats.VerifyEqual(data->stats_);
// Iteratively verify.
stats.Reset();
AccumulateStatsWithOperator(ConsString::cast(*root), &stats);
// Don't see these. Must copy over.
stats.empty_leaves_ = data->stats_.empty_leaves_;
stats.left_traversals_ = data->stats_.left_traversals_;
stats.right_traversals_ = data->stats_.right_traversals_;
// Adjust total leaves to compensate.
stats.leaves_ += stats.empty_leaves_;
stats.VerifyEqual(data->stats_);
}
static Handle<String> ConstructRandomString(ConsStringGenerationData* data,
unsigned max_recursion) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
// Compute termination characteristics.
bool terminate = false;
bool flat = data->rng_.next(data->empty_leaf_threshold_);
bool terminate_early = data->rng_.next(data->early_termination_threshold_);
if (terminate_early) data->early_terminations_++;
// The obvious condition.
terminate |= max_recursion == 0;
// Flat cons string terminate by definition.
terminate |= flat;
// Cap for max leaves.
terminate |= data->stats_.leaves_ >= data->max_leaves_;
// Roll the dice.
terminate |= terminate_early;
// Compute termination characteristics for each side.
bool terminate_left = terminate || !data->rng_.next(data->leftness_);
bool terminate_right = terminate || !data->rng_.next(data->rightness_);
// Generate left string.
Handle<String> left;
if (terminate_left) {
left = data->block(data->rng_.next());
data->stats_.leaves_++;
data->stats_.chars_ += left->length();
} else {
data->stats_.left_traversals_++;
}
// Generate right string.
Handle<String> right;
if (terminate_right) {
right = data->block(data->rng_.next());
data->stats_.leaves_++;
data->stats_.chars_ += right->length();
} else {
data->stats_.right_traversals_++;
}
// Generate the necessary sub-nodes recursively.
if (!terminate_right) {
// Need to balance generation fairly.
if (!terminate_left && data->rng_.next(0.5)) {
left = ConstructRandomString(data, max_recursion - 1);
}
right = ConstructRandomString(data, max_recursion - 1);
}
if (!terminate_left && left.is_null()) {
left = ConstructRandomString(data, max_recursion - 1);
}
// Build the cons string.
Handle<String> root = factory->NewConsString(left, right).ToHandleChecked();
CHECK(root->IsConsString() && !root->IsFlat());
// Special work needed for flat string.
if (flat) {
data->stats_.empty_leaves_++;
String::Flatten(isolate, root);
CHECK(root->IsConsString() && root->IsFlat());
}
return root;
}
static Handle<String> ConstructLeft(ConsStringGenerationData* data, int depth) {
Factory* factory = CcTest::i_isolate()->factory();
Handle<String> answer = factory->NewStringFromStaticChars("");
data->stats_.leaves_++;
for (int i = 0; i < depth; i++) {
Handle<String> block = data->block(i);
Handle<String> next =
factory->NewConsString(answer, block).ToHandleChecked();
if (next->IsConsString()) data->stats_.leaves_++;
data->stats_.chars_ += block->length();
answer = next;
}
data->stats_.left_traversals_ = data->stats_.leaves_ - 2;
return answer;
}
static Handle<String> ConstructRight(ConsStringGenerationData* data,
int depth) {
Factory* factory = CcTest::i_isolate()->factory();
Handle<String> answer = factory->NewStringFromStaticChars("");
data->stats_.leaves_++;
for (int i = depth - 1; i >= 0; i--) {
Handle<String> block = data->block(i);
Handle<String> next =
factory->NewConsString(block, answer).ToHandleChecked();
if (next->IsConsString()) data->stats_.leaves_++;
data->stats_.chars_ += block->length();
answer = next;
}
data->stats_.right_traversals_ = data->stats_.leaves_ - 2;
return answer;
}
static Handle<String> ConstructBalancedHelper(ConsStringGenerationData* data,
int from, int to) {
Factory* factory = CcTest::i_isolate()->factory();
CHECK(to > from);
if (to - from == 1) {
data->stats_.chars_ += data->block(from)->length();
return data->block(from);
}
if (to - from == 2) {
data->stats_.chars_ += data->block(from)->length();
data->stats_.chars_ += data->block(from + 1)->length();
return factory->NewConsString(data->block(from), data->block(from + 1))
.ToHandleChecked();
}
Handle<String> part1 =
ConstructBalancedHelper(data, from, from + ((to - from) / 2));
Handle<String> part2 =
ConstructBalancedHelper(data, from + ((to - from) / 2), to);
if (part1->IsConsString()) data->stats_.left_traversals_++;
if (part2->IsConsString()) data->stats_.right_traversals_++;
return factory->NewConsString(part1, part2).ToHandleChecked();
}
static Handle<String> ConstructBalanced(ConsStringGenerationData* data,
int depth = DEEP_DEPTH) {
Handle<String> string = ConstructBalancedHelper(data, 0, depth);
data->stats_.leaves_ =
data->stats_.left_traversals_ + data->stats_.right_traversals_ + 2;
return string;
}
static void Traverse(Handle<String> s1, Handle<String> s2) {
int i = 0;
StringCharacterStream character_stream_1(*s1);
StringCharacterStream character_stream_2(*s2);
while (character_stream_1.HasMore()) {
CHECK(character_stream_2.HasMore());
uint16_t c = character_stream_1.GetNext();
CHECK_EQ(c, character_stream_2.GetNext());
i++;
}
CHECK(!character_stream_1.HasMore());
CHECK(!character_stream_2.HasMore());
CHECK_EQ(s1->length(), i);
CHECK_EQ(s2->length(), i);
}
static void TraverseFirst(Handle<String> s1, Handle<String> s2, int chars) {
int i = 0;
StringCharacterStream character_stream_1(*s1);
StringCharacterStream character_stream_2(*s2);
while (character_stream_1.HasMore() && i < chars) {
CHECK(character_stream_2.HasMore());
uint16_t c = character_stream_1.GetNext();
CHECK_EQ(c, character_stream_2.GetNext());
i++;
}
s1->Get(s1->length() - 1);
s2->Get(s2->length() - 1);
}
TEST(Traverse) {
printf("TestTraverse\n");
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
ConsStringGenerationData data(false);
Handle<String> flat = ConstructBalanced(&data);
String::Flatten(isolate, flat);
Handle<String> left_asymmetric = ConstructLeft(&data, DEEP_DEPTH);
Handle<String> right_asymmetric = ConstructRight(&data, DEEP_DEPTH);
Handle<String> symmetric = ConstructBalanced(&data);
printf("1\n");
Traverse(flat, symmetric);
printf("2\n");
Traverse(flat, left_asymmetric);
printf("3\n");
Traverse(flat, right_asymmetric);
printf("4\n");
Handle<String> left_deep_asymmetric = ConstructLeft(&data, SUPER_DEEP_DEPTH);
Handle<String> right_deep_asymmetric =
ConstructRight(&data, SUPER_DEEP_DEPTH);
printf("5\n");
TraverseFirst(left_asymmetric, left_deep_asymmetric, 1050);
printf("6\n");
TraverseFirst(left_asymmetric, right_deep_asymmetric, 65536);
printf("7\n");
String::Flatten(isolate, left_asymmetric);
printf("10\n");
Traverse(flat, left_asymmetric);
printf("11\n");
String::Flatten(isolate, right_asymmetric);
printf("12\n");
Traverse(flat, right_asymmetric);
printf("14\n");
String::Flatten(isolate, symmetric);
printf("15\n");
Traverse(flat, symmetric);
printf("16\n");
String::Flatten(isolate, left_deep_asymmetric);
printf("18\n");
}
TEST(ConsStringWithEmptyFirstFlatten) {
printf("ConsStringWithEmptyFirstFlatten\n");
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
i::Handle<i::String> initial_fst =
isolate->factory()->NewStringFromAsciiChecked("fst012345");
i::Handle<i::String> initial_snd =
isolate->factory()->NewStringFromAsciiChecked("snd012345");
i::Handle<i::String> str = isolate->factory()
->NewConsString(initial_fst, initial_snd)
.ToHandleChecked();
CHECK(str->IsConsString());
auto cons = i::Handle<i::ConsString>::cast(str);
const int initial_length = cons->length();
// set_first / set_second does not update the length (which the heap verifier
// checks), so we need to ensure the length stays the same.
i::Handle<i::String> new_fst = isolate->factory()->empty_string();
i::Handle<i::String> new_snd =
isolate->factory()->NewStringFromAsciiChecked("snd012345012345678");
cons->set_first(*new_fst);
cons->set_second(*new_snd);
CHECK(!cons->IsFlat(GetPtrComprCageBase(*cons)));
CHECK_EQ(initial_length, new_fst->length() + new_snd->length());
CHECK_EQ(initial_length, cons->length());
// Make sure Flatten doesn't alloc a new string.
DisallowGarbageCollection no_alloc;
i::Handle<i::String> flat = i::String::Flatten(isolate, cons);
CHECK(flat->IsFlat());
CHECK_EQ(initial_length, flat->length());
}
static void VerifyCharacterStream(String flat_string, String cons_string) {
// Do not want to test ConString traversal on flat string.
CHECK(flat_string.IsFlat() && !flat_string.IsConsString());
CHECK(cons_string.IsConsString());
// TODO(dcarney) Test stream reset as well.
int length = flat_string.length();
// Iterate start search in multiple places in the string.
int outer_iterations = length > 20 ? 20 : length;
for (int j = 0; j <= outer_iterations; j++) {
int offset = length * j / outer_iterations;
if (offset < 0) offset = 0;
// Want to test the offset == length case.
if (offset > length) offset = length;
StringCharacterStream flat_stream(flat_string, offset);
StringCharacterStream cons_stream(cons_string, offset);
for (int i = offset; i < length; i++) {
uint16_t c = flat_string.Get(i);
CHECK(flat_stream.HasMore());
CHECK(cons_stream.HasMore());
CHECK_EQ(c, flat_stream.GetNext());
CHECK_EQ(c, cons_stream.GetNext());
}
CHECK(!flat_stream.HasMore());
CHECK(!cons_stream.HasMore());
}
}
static inline void PrintStats(const ConsStringGenerationData& data) {
#ifdef DEBUG
printf("%s: [%u], %s: [%u], %s: [%u], %s: [%u], %s: [%u], %s: [%u]\n",
"leaves", data.stats_.leaves_, "empty", data.stats_.empty_leaves_,
"chars", data.stats_.chars_, "lefts", data.stats_.left_traversals_,
"rights", data.stats_.right_traversals_, "early_terminations",
data.early_terminations_);
#endif
}
template <typename BuildString>
void TestStringCharacterStream(BuildString build, int test_cases) {
v8_flags.gc_global = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope outer_scope(isolate);
ConsStringGenerationData data(true);
for (int i = 0; i < test_cases; i++) {
printf("%d\n", i);
HandleScope inner_scope(isolate);
AlwaysAllocateScopeForTesting always_allocate(isolate->heap());
// Build flat version of cons string.
Handle<String> flat_string = build(i, &data);
ConsStringStats flat_string_stats;
AccumulateStats(flat_string, &flat_string_stats);
// Flatten string.
String::Flatten(isolate, flat_string);
// Build unflattened version of cons string to test.
Handle<String> cons_string = build(i, &data);
ConsStringStats cons_string_stats;
AccumulateStats(cons_string, &cons_string_stats);
DisallowGarbageCollection no_gc;
PrintStats(data);
// Full verify of cons string.
cons_string_stats.VerifyEqual(flat_string_stats);
cons_string_stats.VerifyEqual(data.stats_);
VerifyConsString(cons_string, &data);
String flat_string_ptr = flat_string->IsConsString()
? ConsString::cast(*flat_string).first()
: *flat_string;
VerifyCharacterStream(flat_string_ptr, *cons_string);
}
}
static const int kCharacterStreamNonRandomCases = 8;
static Handle<String> BuildEdgeCaseConsString(int test_case,
ConsStringGenerationData* data) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
data->Reset();
switch (test_case) {
case 0:
return ConstructBalanced(data, 71);
case 1:
return ConstructLeft(data, 71);
case 2:
return ConstructRight(data, 71);
case 3:
return ConstructLeft(data, 10);
case 4:
return ConstructRight(data, 10);
case 5:
// 2 element balanced tree.
data->stats_.chars_ += data->block(0)->length();
data->stats_.chars_ += data->block(1)->length();
data->stats_.leaves_ += 2;
return factory->NewConsString(data->block(0), data->block(1))
.ToHandleChecked();
case 6:
// Simple flattened tree.
data->stats_.chars_ += data->block(0)->length();
data->stats_.chars_ += data->block(1)->length();
data->stats_.leaves_ += 2;
data->stats_.empty_leaves_ += 1;
{
Handle<String> string =
factory->NewConsString(data->block(0), data->block(1))
.ToHandleChecked();
String::Flatten(isolate, string);
return string;
}
case 7:
// Left node flattened.
data->stats_.chars_ += data->block(0)->length();
data->stats_.chars_ += data->block(1)->length();
data->stats_.chars_ += data->block(2)->length();
data->stats_.leaves_ += 3;
data->stats_.empty_leaves_ += 1;
data->stats_.left_traversals_ += 1;
{
Handle<String> left =
factory->NewConsString(data->block(0), data->block(1))
.ToHandleChecked();
String::Flatten(isolate, left);
return factory->NewConsString(left, data->block(2)).ToHandleChecked();
}
case 8:
// Left node and right node flattened.
data->stats_.chars_ += data->block(0)->length();
data->stats_.chars_ += data->block(1)->length();
data->stats_.chars_ += data->block(2)->length();
data->stats_.chars_ += data->block(3)->length();
data->stats_.leaves_ += 4;
data->stats_.empty_leaves_ += 2;
data->stats_.left_traversals_ += 1;
data->stats_.right_traversals_ += 1;
{
Handle<String> left =
factory->NewConsString(data->block(0), data->block(1))
.ToHandleChecked();
String::Flatten(isolate, left);
Handle<String> right =
factory->NewConsString(data->block(2), data->block(2))
.ToHandleChecked();
String::Flatten(isolate, right);
return factory->NewConsString(left, right).ToHandleChecked();
}
}
UNREACHABLE();
}
TEST(StringCharacterStreamEdgeCases) {
printf("TestStringCharacterStreamEdgeCases\n");
TestStringCharacterStream(BuildEdgeCaseConsString,
kCharacterStreamNonRandomCases);
}
static const int kBalances = 3;
static const int kTreeLengths = 4;
static const int kEmptyLeaves = 4;
static const int kUniqueRandomParameters =
kBalances * kTreeLengths * kEmptyLeaves;
static void InitializeGenerationData(int test_case,
ConsStringGenerationData* data) {
// Clear the settings and reinit the rng.
data->Reset();
// Spin up the rng to a known location that is unique per test.
static const int kPerTestJump = 501;
for (int j = 0; j < test_case * kPerTestJump; j++) {
data->rng_.next();
}
// Choose balanced, left or right heavy trees.
switch (test_case % kBalances) {
case 0:
// Nothing to do. Already balanced.
break;
case 1:
// Left balanced.
data->leftness_ = 0.90;
data->rightness_ = 0.15;
break;
case 2:
// Right balanced.
data->leftness_ = 0.15;
data->rightness_ = 0.90;
break;
default:
UNREACHABLE();
}
// Must remove the influence of the above decision.
test_case /= kBalances;
// Choose tree length.
switch (test_case % kTreeLengths) {
case 0:
data->max_leaves_ = 16;
data->early_termination_threshold_ = 0.2;
break;
case 1:
data->max_leaves_ = 50;
data->early_termination_threshold_ = 0.05;
break;
case 2:
data->max_leaves_ = 500;
data->early_termination_threshold_ = 0.03;
break;
case 3:
data->max_leaves_ = 5000;
data->early_termination_threshold_ = 0.001;
break;
default:
UNREACHABLE();
}
// Must remove the influence of the above decision.
test_case /= kTreeLengths;
// Choose how much we allow empty nodes, including not at all.
data->empty_leaf_threshold_ =
0.03 * static_cast<double>(test_case % kEmptyLeaves);
}
static Handle<String> BuildRandomConsString(int test_case,
ConsStringGenerationData* data) {
InitializeGenerationData(test_case, data);
return ConstructRandomString(data, 200);
}
TEST(StringCharacterStreamRandom) {
printf("StringCharacterStreamRandom\n");
TestStringCharacterStream(BuildRandomConsString, kUniqueRandomParameters * 7);
}
static const int kDeepOneByteDepth = 100000;
TEST(DeepOneByte) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
char* foo = NewArray<char>(kDeepOneByteDepth);
for (int i = 0; i < kDeepOneByteDepth; i++) {
foo[i] = "foo "[i % 4];
}
Handle<String> string = factory
->NewStringFromOneByte(v8::base::OneByteVector(
foo, kDeepOneByteDepth))
.ToHandleChecked();
Handle<String> foo_string = factory->NewStringFromStaticChars("foo");
for (int i = 0; i < kDeepOneByteDepth; i += 10) {
string = factory->NewConsString(string, foo_string).ToHandleChecked();
}
Handle<String> flat_string =
factory->NewConsString(string, foo_string).ToHandleChecked();
String::Flatten(isolate, flat_string);
for (int i = 0; i < 500; i++) {
TraverseFirst(flat_string, string, kDeepOneByteDepth);
}
DeleteArray<char>(foo);
}
TEST(Utf8Conversion) {
// Smoke test for converting strings to utf-8.
CcTest::InitializeVM();
v8::HandleScope handle_scope(CcTest::isolate());
// A simple one-byte string
const char* one_byte_string = "abcdef12345";
int len = v8::String::NewFromUtf8(CcTest::isolate(), one_byte_string,
v8::NewStringType::kNormal,
static_cast<int>(strlen(one_byte_string)))
.ToLocalChecked()
->Utf8Length(CcTest::isolate());
CHECK_EQ(strlen(one_byte_string), len);
// A mixed one-byte and two-byte string
// U+02E4 -> CB A4
// U+0064 -> 64
// U+12E4 -> E1 8B A4
// U+0030 -> 30
// U+3045 -> E3 81 85
const uint16_t mixed_string[] = {0x02E4, 0x0064, 0x12E4, 0x0030, 0x3045};
// The characters we expect to be output
const unsigned char as_utf8[11] = {0xCB, 0xA4, 0x64, 0xE1, 0x8B, 0xA4,
0x30, 0xE3, 0x81, 0x85, 0x00};
// The number of bytes expected to be written for each length
const int lengths[12] = {0, 0, 2, 3, 3, 3, 6, 7, 7, 7, 10, 11};
const int char_lengths[12] = {0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5};
v8::Local<v8::String> mixed =
v8::String::NewFromTwoByte(CcTest::isolate(), mixed_string,
v8::NewStringType::kNormal, 5)
.ToLocalChecked();
CHECK_EQ(10, mixed->Utf8Length(CcTest::isolate()));
// Try encoding the string with all capacities
char buffer[11];
const char kNoChar = static_cast<char>(-1);
for (int i = 0; i <= 11; i++) {
// Clear the buffer before reusing it
for (int j = 0; j < 11; j++) buffer[j] = kNoChar;
int chars_written;
int written =
mixed->WriteUtf8(CcTest::isolate(), buffer, i, &chars_written);
CHECK_EQ(lengths[i], written);
CHECK_EQ(char_lengths[i], chars_written);
// Check that the contents are correct
for (int j = 0; j < lengths[i]; j++)
CHECK_EQ(as_utf8[j], static_cast<unsigned char>(buffer[j]));
// Check that the rest of the buffer hasn't been touched
for (int j = lengths[i]; j < 11; j++) CHECK_EQ(kNoChar, buffer[j]);
}
}
TEST(Utf8ConversionPerf) {
// Smoke test for converting strings to utf-8.
LocalContext context;
v8::HandleScope handle_scope(CcTest::isolate());
v8::Local<v8::String> ascii_string =
CompileRun("'abc'.repeat(1E6)").As<v8::String>();
v8::Local<v8::String> one_byte_string =
CompileRun("'\\u0255\\u0254\\u0253'.repeat(1E6)").As<v8::String>();
v8::Local<v8::String> two_byte_string =
CompileRun("'\\u2255\\u2254\\u2253'.repeat(1E6)").As<v8::String>();
v8::Local<v8::String> surrogate_string =
CompileRun("'\\u{12345}\\u2244'.repeat(1E6)").As<v8::String>();
int size = 1E7;
char* buffer = new char[4 * size];
{
v8::base::ElapsedTimer timer;
timer.Start();
ascii_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr);
printf("ascii string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
ascii_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr);
printf("ascii string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
ascii_string->WriteUtf8(CcTest::isolate(), buffer, 4 * size, nullptr);
printf("ascii string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
one_byte_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr);
printf("one byte string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
one_byte_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr);
printf("one byte string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
one_byte_string->WriteUtf8(CcTest::isolate(), buffer, 4 * size, nullptr);
printf("one byte string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
two_byte_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr);
printf("two byte string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
two_byte_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr);
printf("two byte string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
two_byte_string->WriteUtf8(CcTest::isolate(), buffer, 4 * size, nullptr);
printf("two byte string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
surrogate_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr);
printf("surrogate string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
surrogate_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr);
printf("surrogate string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
{
v8::base::ElapsedTimer timer;
timer.Start();
surrogate_string->WriteUtf8(CcTest::isolate(), buffer, 4 * size, nullptr);
printf("surrogate string %0.3f\n", timer.Elapsed().InMillisecondsF());
timer.Stop();
}
delete[] buffer;
}
TEST(ExternalShortStringAdd) {
LocalContext context;
v8::HandleScope handle_scope(CcTest::isolate());
// Make sure we cover all always-flat lengths and at least one above.
static const int kMaxLength = 20;
CHECK_GT(kMaxLength, i::ConsString::kMinLength);
// Allocate two JavaScript arrays for holding short strings.
v8::Local<v8::Array> one_byte_external_strings =
v8::Array::New(CcTest::isolate(), kMaxLength + 1);
v8::Local<v8::Array> non_one_byte_external_strings =
v8::Array::New(CcTest::isolate(), kMaxLength + 1);
// Generate short one-byte and two-byte external strings.
for (int i = 0; i <= kMaxLength; i++) {
char* one_byte = NewArray<char>(i + 1);
for (int j = 0; j < i; j++) {
one_byte[j] = 'a';
}
// Terminating '\0' is left out on purpose. It is not required for external
// string data.
OneByteResource* one_byte_resource = new OneByteResource(one_byte, i);
v8::Local<v8::String> one_byte_external_string =
v8::String::NewExternalOneByte(CcTest::isolate(), one_byte_resource)
.ToLocalChecked();
one_byte_external_strings
->Set(context.local(), v8::Integer::New(CcTest::isolate(), i),
one_byte_external_string)
.FromJust();
base::uc16* non_one_byte = NewArray<base::uc16>(i + 1);
for (int j = 0; j < i; j++) {
non_one_byte[j] = 0x1234;
}
// Terminating '\0' is left out on purpose. It is not required for external
// string data.
Resource* resource = new Resource(non_one_byte, i);
v8::Local<v8::String> non_one_byte_external_string =
v8::String::NewExternalTwoByte(CcTest::isolate(), resource)
.ToLocalChecked();
non_one_byte_external_strings
->Set(context.local(), v8::Integer::New(CcTest::isolate(), i),
non_one_byte_external_string)
.FromJust();
}
// Add the arrays with the short external strings in the global object.
v8::Local<v8::Object> global = context->Global();
global
->Set(context.local(), v8_str("external_one_byte"),
one_byte_external_strings)
.FromJust();
global
->Set(context.local(), v8_str("external_non_one_byte"),
non_one_byte_external_strings)
.FromJust();
global
->Set(context.local(), v8_str("max_length"),
v8::Integer::New(CcTest::isolate(), kMaxLength))
.FromJust();
// Add short external one-byte and two-byte strings checking the result.
static const char* source =
"function test() {"
" var one_byte_chars = 'aaaaaaaaaaaaaaaaaaaa';"
" var non_one_byte_chars = "
"'\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1"
"234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\"
"u1234';"
" if (one_byte_chars.length != max_length) return 1;"
" if (non_one_byte_chars.length != max_length) return 2;"
" var one_byte = Array(max_length + 1);"
" var non_one_byte = Array(max_length + 1);"
" for (var i = 0; i <= max_length; i++) {"
" one_byte[i] = one_byte_chars.substring(0, i);"
" non_one_byte[i] = non_one_byte_chars.substring(0, i);"
" };"
" for (var i = 0; i <= max_length; i++) {"
" if (one_byte[i] != external_one_byte[i]) return 3;"
" if (non_one_byte[i] != external_non_one_byte[i]) return 4;"
" for (var j = 0; j < i; j++) {"
" if (external_one_byte[i] !="
" (external_one_byte[j] + external_one_byte[i - j])) return "
"5;"
" if (external_non_one_byte[i] !="
" (external_non_one_byte[j] + external_non_one_byte[i - "
"j])) return 6;"
" if (non_one_byte[i] != (non_one_byte[j] + non_one_byte[i - "
"j])) return 7;"
" if (one_byte[i] != (one_byte[j] + one_byte[i - j])) return 8;"
" if (one_byte[i] != (external_one_byte[j] + one_byte[i - j])) "
"return 9;"
" if (one_byte[i] != (one_byte[j] + external_one_byte[i - j])) "
"return 10;"
" if (non_one_byte[i] !="
" (external_non_one_byte[j] + non_one_byte[i - j])) return "
"11;"
" if (non_one_byte[i] !="
" (non_one_byte[j] + external_non_one_byte[i - j])) return "
"12;"
" }"
" }"
" return 0;"
"};"
"test()";
CHECK_EQ(0, CompileRun(source)->Int32Value(context.local()).FromJust());
}
TEST(ReplaceInvalidUtf8) {
LocalContext context;
v8::HandleScope handle_scope(CcTest::isolate());
v8::Local<v8::String> string = CompileRun("'ab\\ud800cd'").As<v8::String>();
char buffer[7];
memset(buffer, 0, 7);
int chars_written = 0;
int size = string->WriteUtf8(CcTest::isolate(), buffer, 7, &chars_written,
v8::String::REPLACE_INVALID_UTF8);
CHECK_EQ(7, size);
CHECK_EQ(5, chars_written);
CHECK_EQ(0, memcmp("\x61\x62\xef\xbf\xbd\x63\x64", buffer, 7));
memset(buffer, 0, 7);
chars_written = 0;
size = string->WriteUtf8(CcTest::isolate(), buffer, 6, &chars_written,
v8::String::REPLACE_INVALID_UTF8);
CHECK_EQ(6, size);
CHECK_EQ(4, chars_written);
CHECK_EQ(0, memcmp("\x61\x62\xef\xbf\xbd\x63", buffer, 6));
}
TEST(JSONStringifySliceMadeExternal) {
if (!v8_flags.string_slices) return;
CcTest::InitializeVM();
// Create a sliced string from a one-byte string. The latter is turned
// into a two-byte external string. Check that JSON.stringify works.
v8::HandleScope handle_scope(CcTest::isolate());
v8::Local<v8::String> underlying =
CompileRun(
"var underlying = 'abcdefghijklmnopqrstuvwxyz';"
"underlying")
->ToString(CcTest::isolate()->GetCurrentContext())
.ToLocalChecked();
v8::Local<v8::String> slice =
CompileRun(
"var slice = '';"
"slice = underlying.slice(1);"
"slice")
->ToString(CcTest::isolate()->GetCurrentContext())
.ToLocalChecked();
CHECK(v8::Utils::OpenHandle(*slice)->IsSlicedString());
CHECK(v8::Utils::OpenHandle(*underlying)->IsSeqOneByteString());
int length = underlying->Length();
base::uc16* two_byte = NewArray<base::uc16>(length + 1);
underlying->Write(CcTest::isolate(), two_byte);
Resource* resource = new Resource(two_byte, length);
CHECK(underlying->MakeExternal(resource));
CHECK(v8::Utils::OpenHandle(*slice)->IsSlicedString());
CHECK(v8::Utils::OpenHandle(*underlying)->IsExternalTwoByteString());
CHECK_EQ(0,
strcmp("\"bcdefghijklmnopqrstuvwxyz\"",
*v8::String::Utf8Value(CcTest::isolate(),
CompileRun("JSON.stringify(slice)"))));
}
TEST(JSONStringifyWellFormed) {
CcTest::InitializeVM();
v8::HandleScope handle_scope(CcTest::isolate());
v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
// Test some leading surrogates (U+D800 to U+DBFF).
{ // U+D800
CHECK_EQ(
0, strcmp("\"\\ud800\"", *v8::String::Utf8Value(
CcTest::isolate(),
CompileRun("JSON.stringify('\\uD800')"))));
v8::Local<v8::String> json = v8_str("\"\\ud800\"");
v8::Local<v8::Value> parsed =
v8::JSON::Parse(context, json).ToLocalChecked();
CHECK(v8::JSON::Stringify(context, parsed)
.ToLocalChecked()
->Equals(context, json)
.FromJust());
}
{ // U+DAAA
CHECK_EQ(
0, strcmp("\"\\udaaa\"", *v8::String::Utf8Value(
CcTest::isolate(),
CompileRun("JSON.stringify('\\uDAAA')"))));
v8::Local<v8::String> json = v8_str("\"\\udaaa\"");
v8::Local<v8::Value> parsed =
v8::JSON::Parse(context, json).ToLocalChecked();
CHECK(v8::JSON::Stringify(context, parsed)
.ToLocalChecked()
->Equals(context, json)
.FromJust());
}
{ // U+DBFF
CHECK_EQ(
0, strcmp("\"\\udbff\"", *v8::String::Utf8Value(
CcTest::isolate(),
CompileRun("JSON.stringify('\\uDBFF')"))));
v8::Local<v8::String> json = v8_str("\"\\udbff\"");
v8::Local<v8::Value> parsed =
v8::JSON::Parse(context, json).ToLocalChecked();
CHECK(v8::JSON::Stringify(context, parsed)
.ToLocalChecked()
->Equals(context, json)
.FromJust());
}
// Test some trailing surrogates (U+DC00 to U+DFFF).
{ // U+DC00
CHECK_EQ(
0, strcmp("\"\\udc00\"", *v8::String::Utf8Value(
CcTest::isolate(),
CompileRun("JSON.stringify('\\uDC00')"))));
v8::Local<v8::String> json = v8_str("\"\\udc00\"");
v8::Local<v8::Value> parsed =
v8::JSON::Parse(context, json).ToLocalChecked();
CHECK(v8::JSON::Stringify(context, parsed)
.ToLocalChecked()
->Equals(context, json)
.FromJust());
}
{ // U+DDDD
CHECK_EQ(
0, strcmp("\"\\udddd\"", *v8::String::Utf8Value(
CcTest::isolate(),
CompileRun("JSON.stringify('\\uDDDD')"))));
v8::Local<v8::String> json = v8_str("\"\\udddd\"");
v8::Local<v8::Value> parsed =
v8::JSON::Parse(context, json).ToLocalChecked();
CHECK(v8::JSON::Stringify(context, parsed)
.ToLocalChecked()
->Equals(context, json)
.FromJust());
}
{ // U+DFFF
CHECK_EQ(
0, strcmp("\"\\udfff\"", *v8::String::Utf8Value(
CcTest::isolate(),
CompileRun("JSON.stringify('\\uDFFF')"))));
v8::Local<v8::String> json = v8_str("\"\\udfff\"");
v8::Local<v8::Value> parsed =
v8::JSON::Parse(context, json).ToLocalChecked();
CHECK(v8::JSON::Stringify(context, parsed)
.ToLocalChecked()
->Equals(context, json)
.FromJust());
}
}
TEST(CachedHashOverflow) {
CcTest::InitializeVM();
// We incorrectly allowed strings to be tagged as array indices even if their
// values didn't fit in the hash field.
// See http://code.google.com/p/v8/issues/detail?id=728
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope handle_scope(CcTest::isolate());
// Lines must be executed sequentially. Combining them into one script
// makes the bug go away.
const char* lines[] = {"var x = [];", "x[4] = 42;", "var s = \"1073741828\";",
"x[s];", "x[s] = 37;", "x[4];",
"x[s];"};
Handle<Smi> fortytwo(Smi::FromInt(42), isolate);
Handle<Smi> thirtyseven(Smi::FromInt(37), isolate);
Handle<Object> results[] = {
isolate->factory()->undefined_value(),
fortytwo,
isolate->factory()->undefined_value(),
isolate->factory()->undefined_value(),
thirtyseven,
fortytwo,
thirtyseven // Bug yielded 42 here.
};
v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
for (size_t i = 0; i < arraysize(lines); i++) {
const char* line = lines[i];
printf("%s\n", line);
v8::Local<v8::Value> result =
v8::Script::Compile(
context,
v8::String::NewFromUtf8(CcTest::isolate(), line).ToLocalChecked())
.ToLocalChecked()
->Run(context)
.ToLocalChecked();
CHECK_EQ(results[i]->IsUndefined(CcTest::i_isolate()),
result->IsUndefined());
CHECK_EQ(results[i]->IsNumber(), result->IsNumber());
if (result->IsNumber()) {
int32_t value = 0;
CHECK(results[i]->ToInt32(&value));
CHECK_EQ(value, result->ToInt32(context).ToLocalChecked()->Value());
}
}
}
TEST(SliceFromCons) {
if (!v8_flags.string_slices) return;
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
Handle<String> string =
factory->NewStringFromStaticChars("parentparentparent");
Handle<String> parent =
factory->NewConsString(string, string).ToHandleChecked();
CHECK(parent->IsConsString());
CHECK(!parent->IsFlat());
Handle<String> slice = factory->NewSubString(parent, 1, 25);
// After slicing, the original string becomes a flat cons.
CHECK(parent->IsFlat());
CHECK(slice->IsSlicedString());
CHECK_EQ(
SlicedString::cast(*slice).parent(),
// Parent could have been short-circuited.
parent->IsConsString() ? ConsString::cast(*parent).first() : *parent);
CHECK(SlicedString::cast(*slice).parent().IsSeqString());
CHECK(slice->IsFlat());
}
class OneByteVectorResource : public v8::String::ExternalOneByteStringResource {
public:
explicit OneByteVectorResource(v8::base::Vector<const char> vector)
: data_(vector) {}
~OneByteVectorResource() override = default;
size_t length() const override { return data_.length(); }
const char* data() const override { return data_.begin(); }
private:
v8::base::Vector<const char> data_;
};
TEST(InternalizeExternal) {
v8_flags.stress_incremental_marking = false;
CcTest::InitializeVM();
i::Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
// This won't leak; the external string mechanism will call Dispose() on it.
OneByteVectorResource* resource =
new OneByteVectorResource(v8::base::Vector<const char>("prop-1234", 9));
{
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::String> ext_string =
v8::String::NewExternalOneByte(CcTest::isolate(), resource)
.ToLocalChecked();
Handle<String> string = v8::Utils::OpenHandle(*ext_string);
CHECK(string->IsExternalString());
CHECK(!string->IsInternalizedString());
CHECK(!i::Heap::InYoungGeneration(*string));
CHECK_EQ(isolate->string_table()->TryStringToIndexOrLookupExisting(
isolate, string->ptr()),
Smi::FromInt(ResultSentinel::kNotFound).ptr());
factory->InternalizeName(string);
CHECK(string->IsExternalString());
CHECK(string->IsInternalizedString());
CHECK(!i::Heap::InYoungGeneration(*string));
}
CcTest::CollectGarbage(i::OLD_SPACE);
CcTest::CollectGarbage(i::OLD_SPACE);
}
TEST(SliceFromExternal) {
if (!v8_flags.string_slices) return;
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
OneByteVectorResource resource(
v8::base::Vector<const char>("abcdefghijklmnopqrstuvwxyz", 26));
Handle<String> string =
factory->NewExternalStringFromOneByte(&resource).ToHandleChecked();
CHECK(string->IsExternalString());
Handle<String> slice = factory->NewSubString(string, 1, 25);
CHECK(slice->IsSlicedString());
CHECK(string->IsExternalString());
CHECK_EQ(SlicedString::cast(*slice).parent(), *string);
CHECK(SlicedString::cast(*slice).parent().IsExternalString());
CHECK(slice->IsFlat());
// This avoids the GC from trying to free stack allocated resources.
i::Handle<i::ExternalOneByteString>::cast(string)->SetResource(
CcTest::i_isolate(), nullptr);
}
TEST(TrivialSlice) {
// This tests whether a slice that contains the entire parent string
// actually creates a new string (it should not).
if (!v8_flags.string_slices) return;
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> result;
Handle<String> string;
const char* init = "var str = 'abcdefghijklmnopqrstuvwxyz';";
const char* check = "str.slice(0,26)";
const char* crosscheck = "str.slice(1,25)";
CompileRun(init);
result = CompileRun(check);
CHECK(result->IsString());
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(!string->IsSlicedString());
string = factory->NewSubString(string, 0, 26);
CHECK(!string->IsSlicedString());
result = CompileRun(crosscheck);
CHECK(result->IsString());
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(string->IsSlicedString());
CHECK_EQ(0, strcmp("bcdefghijklmnopqrstuvwxy", string->ToCString().get()));
}
TEST(SliceFromSlice) {
// This tests whether a slice that contains the entire parent string
// actually creates a new string (it should not).
if (!v8_flags.string_slices) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> result;
Handle<String> string;
const char* init = "var str = 'abcdefghijklmnopqrstuvwxyz';";
const char* slice = "var slice = ''; slice = str.slice(1,-1); slice";
const char* slice_from_slice = "slice.slice(1,-1);";
CompileRun(init);
result = CompileRun(slice);
CHECK(result->IsString());
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(string->IsSlicedString());
CHECK(SlicedString::cast(*string).parent().IsSeqString());
CHECK_EQ(0, strcmp("bcdefghijklmnopqrstuvwxy", string->ToCString().get()));
result = CompileRun(slice_from_slice);
CHECK(result->IsString());
string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(string->IsSlicedString());
CHECK(SlicedString::cast(*string).parent().IsSeqString());
CHECK_EQ(0, strcmp("cdefghijklmnopqrstuvwx", string->ToCString().get()));
}
UNINITIALIZED_TEST(OneByteArrayJoin) {
v8::Isolate::CreateParams create_params;
// Set heap limits.
create_params.constraints.set_max_young_generation_size_in_bytes(3 * MB);
#ifdef DEBUG
create_params.constraints.set_max_old_generation_size_in_bytes(20 * MB);
#else
create_params.constraints.set_max_old_generation_size_in_bytes(7 * MB);
#endif
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
isolate->Enter();
{
// String s is made of 2^17 = 131072 'c' characters and a is an array
// starting with 'bad', followed by 2^14 times the string s. That means the
// total length of the concatenated strings is 2^31 + 3. So on 32bit systems
// summing the lengths of the strings (as Smis) overflows and wraps.
LocalContext context(isolate);
v8::HandleScope scope(isolate);
v8::TryCatch try_catch(isolate);
CHECK(CompileRun("var two_14 = Math.pow(2, 14);"
"var two_17 = Math.pow(2, 17);"
"var s = Array(two_17 + 1).join('c');"
"var a = ['bad'];"
"for (var i = 1; i <= two_14; i++) a.push(s);"
"a.join("
");")
.IsEmpty());
CHECK(try_catch.HasCaught());
}
isolate->Exit();
isolate->Dispose();
} // namespace
namespace {
int* global_use_counts = nullptr;
void MockUseCounterCallback(v8::Isolate* isolate,
v8::Isolate::UseCounterFeature feature) {
++global_use_counts[feature];
}
} // namespace
TEST(CountBreakIterator) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
LocalContext context;
int use_counts[v8::Isolate::kUseCounterFeatureCount] = {};
global_use_counts = use_counts;
CcTest::isolate()->SetUseCounterCallback(MockUseCounterCallback);
CHECK_EQ(0, use_counts[v8::Isolate::kBreakIterator]);
v8::Local<v8::Value> result = CompileRun(
"(function() {"
" if (!this.Intl) return 0;"
" var iterator = Intl.v8BreakIterator(['en']);"
" iterator.adoptText('Now is the time');"
" iterator.next();"
" return iterator.next();"
"})();");
CHECK(result->IsNumber());
int uses =
result->ToInt32(context.local()).ToLocalChecked()->Value() == 0 ? 0 : 1;
CHECK_EQ(uses, use_counts[v8::Isolate::kBreakIterator]);
// Make sure GC cleans up the break iterator, so we don't get a memory leak
// reported by ASAN.
CcTest::isolate()->LowMemoryNotification();
}
TEST(StringReplaceAtomTwoByteResult) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
LocalContext context;
v8::Local<v8::Value> result = CompileRun(
"var subject = 'one_byte~only~string~'; "
"var replace = '\x80'; "
"subject.replace(/~/g, replace); ");
CHECK(result->IsString());
Handle<String> string = v8::Utils::OpenHandle(v8::String::Cast(*result));
CHECK(string->IsTwoByteRepresentation());
v8::Local<v8::String> expected = v8_str("one_byte\x80only\x80string\x80");
CHECK(expected->Equals(context.local(), result).FromJust());
}
TEST(IsAscii) {
CHECK(String::IsAscii(static_cast<char*>(nullptr), 0));
CHECK(String::IsOneByte(static_cast<base::uc16*>(nullptr), 0));
}
template <typename Op, bool return_first>
static uint16_t ConvertLatin1(uint16_t c) {
uint32_t result[Op::kMaxWidth];
int chars;
chars = Op::Convert(c, 0, result, nullptr);
if (chars == 0) return 0;
CHECK_LE(chars, static_cast<int>(sizeof(result)));
if (!return_first && chars > 1) {
return 0;
}
return result[0];
}
#ifndef V8_INTL_SUPPORT
static void CheckCanonicalEquivalence(uint16_t c, uint16_t test) {
uint16_t expect = ConvertLatin1<unibrow::Ecma262UnCanonicalize, true>(c);
if (expect > unibrow::Latin1::kMaxChar || expect == 0) expect = c;
CHECK_EQ(expect, test);
}
TEST(Latin1IgnoreCase) {
for (uint16_t c = unibrow::Latin1::kMaxChar + 1; c != 0; c++) {
uint16_t lower = ConvertLatin1<unibrow::ToLowercase, false>(c);
uint16_t upper = ConvertLatin1<unibrow::ToUppercase, false>(c);
uint16_t test = unibrow::Latin1::TryConvertToLatin1(c);
// Filter out all character whose upper is not their lower or vice versa.
if (lower == 0 && upper == 0) {
CheckCanonicalEquivalence(c, test);
continue;
}
if (lower > unibrow::Latin1::kMaxChar &&
upper > unibrow::Latin1::kMaxChar) {
CheckCanonicalEquivalence(c, test);
continue;
}
if (lower == 0 && upper != 0) {
lower = ConvertLatin1<unibrow::ToLowercase, false>(upper);
}
if (upper == 0 && lower != c) {
upper = ConvertLatin1<unibrow::ToUppercase, false>(lower);
}
if (lower > unibrow::Latin1::kMaxChar &&
upper > unibrow::Latin1::kMaxChar) {
CheckCanonicalEquivalence(c, test);
continue;
}
if (upper != c && lower != c) {
CheckCanonicalEquivalence(c, test);
continue;
}
CHECK_EQ(std::min(upper, lower), test);
}
}
#endif
class DummyResource : public v8::String::ExternalStringResource {
public:
const uint16_t* data() const override { return nullptr; }
size_t length() const override { return 1 << 30; }
};
class DummyOneByteResource : public v8::String::ExternalOneByteStringResource {
public:
const char* data() const override { return nullptr; }
size_t length() const override { return 1 << 30; }
};
TEST(InvalidExternalString) {
CcTest::InitializeVM();
LocalContext context;
Isolate* isolate = CcTest::i_isolate();
{
HandleScope scope(isolate);
DummyOneByteResource r;
CHECK(isolate->factory()->NewExternalStringFromOneByte(&r).is_null());
CHECK(isolate->has_pending_exception());
isolate->clear_pending_exception();
}
{
HandleScope scope(isolate);
DummyResource r;
CHECK(isolate->factory()->NewExternalStringFromTwoByte(&r).is_null());
CHECK(isolate->has_pending_exception());
isolate->clear_pending_exception();
}
}
#define INVALID_STRING_TEST(FUN, TYPE) \
TEST(StringOOM##FUN) { \
CcTest::InitializeVM(); \
LocalContext context; \
Isolate* isolate = CcTest::i_isolate(); \
static_assert(String::kMaxLength < kMaxInt); \
static const int invalid = String::kMaxLength + 1; \
HandleScope scope(isolate); \
v8::base::Vector<TYPE> dummy = v8::base::Vector<TYPE>::New(invalid); \
memset(dummy.begin(), 0x0, dummy.length() * sizeof(TYPE)); \
CHECK(isolate->factory() \
->FUN(v8::base::Vector<const TYPE>::cast(dummy)) \
.is_null()); \
memset(dummy.begin(), 0x20, dummy.length() * sizeof(TYPE)); \
CHECK(isolate->has_pending_exception()); \
isolate->clear_pending_exception(); \
dummy.Dispose(); \
}
INVALID_STRING_TEST(NewStringFromUtf8, char)
INVALID_STRING_TEST(NewStringFromOneByte, uint8_t)
#undef INVALID_STRING_TEST
TEST(FormatMessage) {
CcTest::InitializeVM();
LocalContext context;
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Handle<String> arg0 = isolate->factory()->NewStringFromAsciiChecked("arg0");
Handle<String> arg1 = isolate->factory()->NewStringFromAsciiChecked("arg1");
Handle<String> arg2 = isolate->factory()->NewStringFromAsciiChecked("arg2");
Handle<String> result =
MessageFormatter::Format(isolate, MessageTemplate::kPropertyNotFunction,
arg0, arg1, arg2)
.ToHandleChecked();
Handle<String> expected = isolate->factory()->NewStringFromAsciiChecked(
"'arg0' returned for property 'arg1' of object 'arg2' is not a function");
CHECK(String::Equals(isolate, result, expected));
}
TEST(Regress609831) {
CcTest::InitializeVM();
LocalContext context;
Isolate* isolate = CcTest::i_isolate();
{
HandleScope scope(isolate);
v8::Local<v8::Value> result = CompileRun(
"String.fromCharCode(32, 32, 32, 32, 32, "
"32, 32, 32, 32, 32, 32, 32, 32, 32, 32, "
"32, 32, 32, 32, 32, 32, 32, 32, 32, 32)");
CHECK(v8::Utils::OpenHandle(*result)->IsSeqOneByteString());
}
{
HandleScope scope(isolate);
v8::Local<v8::Value> result = CompileRun(
"String.fromCharCode(432, 432, 432, 432, 432, "
"432, 432, 432, 432, 432, 432, 432, 432, 432, "
"432, 432, 432, 432, 432, 432, 432, 432, 432)");
CHECK(v8::Utils::OpenHandle(*result)->IsSeqTwoByteString());
}
}
TEST(ExternalStringIndexOf) {
CcTest::InitializeVM();
LocalContext context;
v8::HandleScope scope(CcTest::isolate());
const char* raw_string = "abcdefghijklmnopqrstuvwxyz";
v8::Local<v8::String> string =
v8::String::NewExternalOneByte(CcTest::isolate(),
new StaticOneByteResource(raw_string))
.ToLocalChecked();
v8::Local<v8::Object> global = context->Global();
global->Set(context.local(), v8_str("external"), string).FromJust();
char source[] = "external.indexOf('%')";
for (size_t i = 0; i < strlen(raw_string); i++) {
source[18] = raw_string[i];
int result_position = static_cast<int>(i);
CHECK_EQ(result_position,
CompileRun(source)->Int32Value(context.local()).FromJust());
}
CHECK_EQ(-1,
CompileRun("external.indexOf('abcdefghijklmnopqrstuvwxyz%%%%%%')")
->Int32Value(context.local())
.FromJust());
CHECK_EQ(1, CompileRun("external.indexOf('', 1)")
->Int32Value(context.local())
.FromJust());
CHECK_EQ(-1, CompileRun("external.indexOf('a', 1)")
->Int32Value(context.local())
.FromJust());
CHECK_EQ(-1, CompileRun("external.indexOf('$')")
->Int32Value(context.local())
.FromJust());
}
namespace {
struct IndexData {
const char* string;
bool is_array_index;
uint32_t array_index;
bool is_integer_index;
size_t integer_index;
};
void TestString(i::Isolate* isolate, const IndexData& data) {
Handle<String> s = isolate->factory()->NewStringFromAsciiChecked(data.string);
if (data.is_array_index) {
uint32_t index;
CHECK(s->AsArrayIndex(&index));
CHECK_EQ(data.array_index, index);
}
if (data.is_integer_index) {
size_t index;
CHECK(s->AsIntegerIndex(&index));
CHECK_EQ(data.integer_index, index);
CHECK(String::IsIntegerIndex(s->EnsureRawHash()));
CHECK(s->HasHashCode());
}
if (!s->HasHashCode()) s->EnsureHash();
CHECK(s->HasHashCode());
if (!data.is_integer_index) {
CHECK(String::IsHash(s->raw_hash_field()));
}
}
} // namespace
TEST(HashArrayIndexStrings) {
CcTest::InitializeVM();
LocalContext context;
v8::HandleScope scope(CcTest::isolate());
i::Isolate* isolate = CcTest::i_isolate();
CHECK_EQ(Name::HashBits::decode(
StringHasher::MakeArrayIndexHash(0 /* value */, 1 /* length */)),
isolate->factory()->zero_string()->hash());
CHECK_EQ(Name::HashBits::decode(
StringHasher::MakeArrayIndexHash(1 /* value */, 1 /* length */)),
isolate->factory()->one_string()->hash());
IndexData tests[] = {
{"", false, 0, false, 0},
{"123no", false, 0, false, 0},
{"12345", true, 12345, true, 12345},
{"12345678", true, 12345678, true, 12345678},
{"4294967294", true, 4294967294u, true, 4294967294u},
#if V8_TARGET_ARCH_32_BIT
{"4294967295", false, 0, false, 0}, // Valid length but not index.
{"4294967296", false, 0, false, 0},
{"9007199254740991", false, 0, false, 0},
#else
{"4294967295", false, 0, true, 4294967295u},
{"4294967296", false, 0, true, 4294967296ull},
{"9007199254740991", false, 0, true, 9007199254740991ull},
#endif
{"9007199254740992", false, 0, false, 0},
{"18446744073709551615", false, 0, false, 0},
{"18446744073709551616", false, 0, false, 0}
};
for (int i = 0, n = arraysize(tests); i < n; i++) {
TestString(isolate, tests[i]);
}
}
TEST(StringEquals) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
auto foo_str = v8::String::NewFromUtf8Literal(isolate, "foo");
auto bar_str = v8::String::NewFromUtf8Literal(isolate, "bar");
auto foo_str2 = v8::String::NewFromUtf8Literal(isolate, "foo");
uint16_t* two_byte_source = AsciiToTwoByteString("foo");
auto foo_two_byte_str =
v8::String::NewFromTwoByte(isolate, two_byte_source).ToLocalChecked();
i::DeleteArray(two_byte_source);
CHECK(foo_str->StringEquals(foo_str));
CHECK(!foo_str->StringEquals(bar_str));
CHECK(foo_str->StringEquals(foo_str2));
CHECK(foo_str->StringEquals(foo_two_byte_str));
CHECK(!bar_str->StringEquals(foo_str2));
}
class OneByteStringResource : public v8::String::ExternalOneByteStringResource {
public:
// Takes ownership of |data|.
OneByteStringResource(char* data, size_t length)
: data_(data), length_(length) {}
~OneByteStringResource() override { delete[] data_; }
const char* data() const override { return data_; }
size_t length() const override { return length_; }
private:
char* data_;
size_t length_;
};
TEST(Regress876759) {
// Thin strings are used in conjunction with young gen
if (v8_flags.single_generation) return;
// We don't create ThinStrings immediately when using the forwarding table.
if (v8_flags.always_use_string_forwarding_table) return;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope handle_scope(isolate);
const int kLength = 30;
base::uc16 two_byte_buf[kLength];
char* external_one_byte_buf = new char[kLength];
for (int j = 0; j < kLength; j++) {
char c = '0' + (j % 10);
two_byte_buf[j] = c;
external_one_byte_buf[j] = c;
}
Handle<String> parent;
{
Handle<SeqTwoByteString> raw =
factory->NewRawTwoByteString(kLength).ToHandleChecked();
DisallowGarbageCollection no_gc;
CopyChars(raw->GetChars(no_gc), two_byte_buf, kLength);
parent = raw;
}
CHECK(parent->IsTwoByteRepresentation());
Handle<String> sliced = factory->NewSubString(parent, 1, 20);
CHECK(sliced->IsSlicedString());
factory->InternalizeString(parent);
CHECK(parent->IsThinString());
Handle<String> grandparent =
handle(ThinString::cast(*parent).actual(), isolate);
CHECK_EQ(*parent, SlicedString::cast(*sliced).parent());
OneByteStringResource* resource =
new OneByteStringResource(external_one_byte_buf, kLength);
grandparent->MakeExternal(resource);
// The grandparent string becomes one-byte, but the child strings are still
// two-byte.
CHECK(grandparent->IsOneByteRepresentation());
CHECK(parent->IsTwoByteRepresentation());
CHECK(sliced->IsTwoByteRepresentation());
// The *Underneath version returns the correct representation.
CHECK(String::IsOneByteRepresentationUnderneath(*sliced));
}
// Show that it is possible to internalize an external string without a copy, as
// long as it is not uncached.
TEST(InternalizeExternalString) {
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
// Create the string.
const char* raw_string = "external";
OneByteResource* resource =
new OneByteResource(i::StrDup(raw_string), strlen(raw_string));
Handle<String> string =
factory->NewExternalStringFromOneByte(resource).ToHandleChecked();
CHECK(string->IsExternalString());
// Check it is not uncached.
Handle<ExternalString> external = Handle<ExternalString>::cast(string);
CHECK(!external->is_uncached());
// Internalize succesfully, without a copy.
Handle<String> internal = factory->InternalizeString(external);
CHECK(string->IsInternalizedString());
CHECK(string.equals(internal));
}
// Show that it is possible to internalize an external string without a copy, as
// long as it is not uncached. Two byte version.
TEST(InternalizeExternalStringTwoByte) {
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
// Create the string.
const char* raw_string = "external";
Resource* resource =
new Resource(AsciiToTwoByteString(raw_string), strlen(raw_string));
Handle<String> string =
factory->NewExternalStringFromTwoByte(resource).ToHandleChecked();
CHECK(string->IsExternalString());
// Check it is not uncached.
Handle<ExternalString> external = Handle<ExternalString>::cast(string);
CHECK(!external->is_uncached());
// Internalize succesfully, without a copy.
Handle<String> internal = factory->InternalizeString(external);
CHECK(string->IsInternalizedString());
CHECK(string.equals(internal));
}
class UncachedExternalOneByteResource
: public v8::String::ExternalOneByteStringResource {
public:
explicit UncachedExternalOneByteResource(const char* data)
: data_(data), length_(strlen(data)) {}
~UncachedExternalOneByteResource() override { i::DeleteArray(data_); }
const char* data() const override { return data_; }
size_t length() const override { return length_; }
bool IsCacheable() const override { return false; }
private:
const char* data_;
size_t length_;
};
// Show that we can internalize an external uncached string, by creating a copy.
TEST(InternalizeExternalStringUncachedWithCopy) {
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
// Create the string.
const char* raw_string = "external";
UncachedExternalOneByteResource* resource =
new UncachedExternalOneByteResource(i::StrDup(raw_string));
Handle<String> string =
factory->NewExternalStringFromOneByte(resource).ToHandleChecked();
CHECK(string->IsExternalString());
// Check it is uncached.
Handle<ExternalString> external = Handle<ExternalString>::cast(string);
CHECK(external->is_uncached());
// Internalize succesfully, with a copy.
Handle<String> internal = factory->InternalizeString(external);
CHECK(!external->IsInternalizedString());
CHECK(internal->IsInternalizedString());
}
class UncachedExternalResource : public v8::String::ExternalStringResource {
public:
explicit UncachedExternalResource(const uint16_t* data)
: data_(data), length_(0) {
while (data[length_]) ++length_;
}
~UncachedExternalResource() override { i::DeleteArray(data_); }
const uint16_t* data() const override { return data_; }
size_t length() const override { return length_; }
bool IsCacheable() const override { return false; }
private:
const uint16_t* data_;
size_t length_;
};
// Show that we can internalize an external uncached string, by creating a copy.
// Two byte version.
TEST(InternalizeExternalStringUncachedWithCopyTwoByte) {
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
// Create the string.
const char* raw_string = "external";
UncachedExternalResource* resource =
new UncachedExternalResource(AsciiToTwoByteString(raw_string));
Handle<String> string =
factory->NewExternalStringFromTwoByte(resource).ToHandleChecked();
CHECK(string->IsExternalString());
// Check it is uncached.
Handle<ExternalString> external = Handle<ExternalString>::cast(string);
CHECK(external->is_uncached());
// Internalize succesfully, with a copy.
CHECK(!external->IsInternalizedString());
Handle<String> internal = factory->InternalizeString(external);
CHECK(!external->IsInternalizedString());
CHECK(internal->IsInternalizedString());
}
// Show that we cache the data pointer for internal, external and uncached
// strings with cacheable resources through MakeExternal. One byte version.
TEST(CheckCachedDataInternalExternalUncachedString) {
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
// Due to different size restrictions the string needs to be small but not too
// small. One of these restrictions is whether pointer compression is enabled.
#ifdef V8_COMPRESS_POINTERS
const char* raw_small = "small string";
#elif V8_TARGET_ARCH_32_BIT
const char* raw_small = "smol";
#else
const char* raw_small = "smalls";
#endif // V8_COMPRESS_POINTERS
Handle<String> string =
factory->InternalizeString(factory->NewStringFromAsciiChecked(raw_small));
OneByteResource* resource =
new OneByteResource(i::StrDup(raw_small), strlen(raw_small));
// Check it is external, internalized, and uncached with a cacheable resource.
string->MakeExternal(resource);
CHECK(string->IsOneByteRepresentation());
CHECK(string->IsExternalString());
CHECK(string->IsInternalizedString());
// Check that the external string is uncached, its resource is cacheable, and
// that we indeed cached it.
Handle<ExternalOneByteString> external_string =
Handle<ExternalOneByteString>::cast(string);
// If the sandbox is enabled, string objects will always be cacheable because
// they are smaller.
CHECK(V8_ENABLE_SANDBOX_BOOL || external_string->is_uncached());
CHECK(external_string->resource()->IsCacheable());
if (!V8_ENABLE_SANDBOX_BOOL) {
CHECK_NOT_NULL(external_string->resource()->cached_data());
CHECK_EQ(external_string->resource()->cached_data(),
external_string->resource()->data());
}
}
// Show that we cache the data pointer for internal, external and uncached
// strings with cacheable resources through MakeExternal. Two byte version.
TEST(CheckCachedDataInternalExternalUncachedStringTwoByte) {
CcTest::InitializeVM();
Factory* factory = CcTest::i_isolate()->factory();
v8::HandleScope scope(CcTest::isolate());
// Due to different size restrictions the string needs to be small but not too
// small. One of these restrictions is whether pointer compression is enabled.
#ifdef V8_COMPRESS_POINTERS
const char* raw_small = "small string";
#elif V8_TARGET_ARCH_32_BIT
const char* raw_small = "smol";
#else
const char* raw_small = "smalls";
#endif // V8_COMPRESS_POINTERS
Handle<String> string =
factory->InternalizeString(factory->NewStringFromAsciiChecked(raw_small));
Resource* resource =
new Resource(AsciiToTwoByteString(raw_small), strlen(raw_small));
// Check it is external, internalized, and uncached with a cacheable resource.
string->MakeExternal(resource);
CHECK(string->IsTwoByteRepresentation());
CHECK(string->IsExternalString());
CHECK(string->IsInternalizedString());
// Check that the external string is uncached, its resource is cacheable, and
// that we indeed cached it.
Handle<ExternalTwoByteString> external_string =
Handle<ExternalTwoByteString>::cast(string);
// If the sandbox is enabled, string objects will always be cacheable because
// they are smaller.
CHECK(V8_ENABLE_SANDBOX_BOOL || external_string->is_uncached());
CHECK(external_string->resource()->IsCacheable());
if (!V8_ENABLE_SANDBOX_BOOL) {
CHECK_NOT_NULL(external_string->resource()->cached_data());
CHECK_EQ(external_string->resource()->cached_data(),
external_string->resource()->data());
}
}
} // namespace test_strings
} // namespace internal
} // namespace v8