v8/src/v8.cc

302 lines
9.6 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "assembler.h"
#include "isolate.h"
#include "elements.h"
#include "bootstrapper.h"
#include "debug.h"
#include "deoptimizer.h"
#include "frames.h"
#include "heap-profiler.h"
#include "hydrogen.h"
#include "lithium-allocator.h"
#include "objects.h"
#include "once.h"
#include "platform.h"
#include "sampler.h"
#include "runtime-profiler.h"
#include "serialize.h"
#include "store-buffer.h"
namespace v8 {
namespace internal {
V8_DECLARE_ONCE(init_once);
List<CallCompletedCallback>* V8::call_completed_callbacks_ = NULL;
v8::ArrayBuffer::Allocator* V8::array_buffer_allocator_ = NULL;
static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER;
static EntropySource entropy_source;
bool V8::Initialize(Deserializer* des) {
InitializeOncePerProcess();
// The current thread may not yet had entered an isolate to run.
// Note the Isolate::Current() may be non-null because for various
// initialization purposes an initializing thread may be assigned an isolate
// but not actually enter it.
if (i::Isolate::CurrentPerIsolateThreadData() == NULL) {
i::Isolate::EnterDefaultIsolate();
}
ASSERT(i::Isolate::CurrentPerIsolateThreadData() != NULL);
ASSERT(i::Isolate::CurrentPerIsolateThreadData()->thread_id().Equals(
i::ThreadId::Current()));
ASSERT(i::Isolate::CurrentPerIsolateThreadData()->isolate() ==
i::Isolate::Current());
Isolate* isolate = Isolate::Current();
if (isolate->IsDead()) return false;
if (isolate->IsInitialized()) return true;
return isolate->Init(des);
}
void V8::TearDown() {
Isolate* isolate = Isolate::Current();
ASSERT(isolate->IsDefaultIsolate());
if (!isolate->IsInitialized()) return;
// The isolate has to be torn down before clearing the LOperand
// caches so that the optimizing compiler thread (if running)
// doesn't see an inconsistent view of the lithium instructions.
isolate->TearDown();
delete isolate;
ElementsAccessor::TearDown();
LOperand::TearDownCaches();
ExternalReference::TearDownMathExpData();
RegisteredExtension::UnregisterAll();
Isolate::GlobalTearDown();
delete call_completed_callbacks_;
call_completed_callbacks_ = NULL;
Sampler::TearDown();
}
static void seed_random(uint32_t* state) {
for (int i = 0; i < 2; ++i) {
if (FLAG_random_seed != 0) {
state[i] = FLAG_random_seed;
} else if (entropy_source != NULL) {
uint32_t val;
LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
entropy_source(reinterpret_cast<unsigned char*>(&val), sizeof(uint32_t));
state[i] = val;
} else {
state[i] = random();
}
}
}
// Random number generator using George Marsaglia's MWC algorithm.
static uint32_t random_base(uint32_t* state) {
// Initialize seed using the system random().
// No non-zero seed will ever become zero again.
if (state[0] == 0) seed_random(state);
// Mix the bits. Never replaces state[i] with 0 if it is nonzero.
state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16);
state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16);
return (state[0] << 14) + (state[1] & 0x3FFFF);
}
void V8::SetEntropySource(EntropySource source) {
entropy_source = source;
}
void V8::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver resolver) {
StackFrame::SetReturnAddressLocationResolver(resolver);
}
// Used by JavaScript APIs
uint32_t V8::Random(Context* context) {
ASSERT(context->IsNativeContext());
ByteArray* seed = context->random_seed();
return random_base(reinterpret_cast<uint32_t*>(seed->GetDataStartAddress()));
}
// Used internally by the JIT and memory allocator for security
// purposes. So, we keep a different state to prevent informations
// leaks that could be used in an exploit.
uint32_t V8::RandomPrivate(Isolate* isolate) {
return random_base(isolate->private_random_seed());
}
void V8::AddCallCompletedCallback(CallCompletedCallback callback) {
if (call_completed_callbacks_ == NULL) { // Lazy init.
call_completed_callbacks_ = new List<CallCompletedCallback>();
}
for (int i = 0; i < call_completed_callbacks_->length(); i++) {
if (callback == call_completed_callbacks_->at(i)) return;
}
call_completed_callbacks_->Add(callback);
}
void V8::RemoveCallCompletedCallback(CallCompletedCallback callback) {
if (call_completed_callbacks_ == NULL) return;
for (int i = 0; i < call_completed_callbacks_->length(); i++) {
if (callback == call_completed_callbacks_->at(i)) {
call_completed_callbacks_->Remove(i);
}
}
}
void V8::FireCallCompletedCallback(Isolate* isolate) {
bool has_call_completed_callbacks = call_completed_callbacks_ != NULL;
bool observer_delivery_pending =
FLAG_harmony_observation && isolate->observer_delivery_pending();
if (!has_call_completed_callbacks && !observer_delivery_pending) return;
HandleScopeImplementer* handle_scope_implementer =
isolate->handle_scope_implementer();
if (!handle_scope_implementer->CallDepthIsZero()) return;
// Fire callbacks. Increase call depth to prevent recursive callbacks.
handle_scope_implementer->IncrementCallDepth();
if (observer_delivery_pending) {
JSObject::DeliverChangeRecords(isolate);
}
if (has_call_completed_callbacks) {
for (int i = 0; i < call_completed_callbacks_->length(); i++) {
call_completed_callbacks_->at(i)();
}
}
handle_scope_implementer->DecrementCallDepth();
}
// Use a union type to avoid type-aliasing optimizations in GCC.
typedef union {
double double_value;
uint64_t uint64_t_value;
} double_int_union;
Object* V8::FillHeapNumberWithRandom(Object* heap_number,
Context* context) {
double_int_union r;
uint64_t random_bits = Random(context);
// Convert 32 random bits to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
static const double binary_million = 1048576.0;
r.double_value = binary_million;
r.uint64_t_value |= random_bits;
r.double_value -= binary_million;
HeapNumber::cast(heap_number)->set_value(r.double_value);
return heap_number;
}
void V8::InitializeOncePerProcessImpl() {
FlagList::EnforceFlagImplications();
if (FLAG_stress_compaction) {
FLAG_force_marking_deque_overflows = true;
FLAG_gc_global = true;
FLAG_max_new_space_size = (1 << (kPageSizeBits - 10)) * 2;
}
if (FLAG_concurrent_recompilation &&
(FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs)) {
FLAG_concurrent_recompilation = false;
PrintF("Concurrent recompilation has been disabled for tracing.\n");
}
if (FLAG_sweeper_threads <= 0) {
if (FLAG_concurrent_sweeping) {
FLAG_sweeper_threads = SystemThreadManager::
NumberOfParallelSystemThreads(
SystemThreadManager::CONCURRENT_SWEEPING);
} else if (FLAG_parallel_sweeping) {
FLAG_sweeper_threads = SystemThreadManager::
NumberOfParallelSystemThreads(
SystemThreadManager::PARALLEL_SWEEPING);
}
if (FLAG_sweeper_threads == 0) {
FLAG_concurrent_sweeping = false;
FLAG_parallel_sweeping = false;
}
} else if (!FLAG_concurrent_sweeping && !FLAG_parallel_sweeping) {
FLAG_sweeper_threads = 0;
}
if (FLAG_parallel_marking) {
if (FLAG_marking_threads <= 0) {
FLAG_marking_threads = SystemThreadManager::
NumberOfParallelSystemThreads(
SystemThreadManager::PARALLEL_MARKING);
}
if (FLAG_marking_threads == 0) {
FLAG_parallel_marking = false;
}
} else {
FLAG_marking_threads = 0;
}
if (FLAG_concurrent_recompilation &&
SystemThreadManager::NumberOfParallelSystemThreads(
SystemThreadManager::PARALLEL_RECOMPILATION) == 0) {
FLAG_concurrent_recompilation = false;
}
OS::SetUp();
Sampler::SetUp();
CPU::SetUp();
OS::PostSetUp();
ElementsAccessor::InitializeOncePerProcess();
LOperand::SetUpCaches();
SetUpJSCallerSavedCodeData();
ExternalReference::SetUp();
Bootstrapper::InitializeOncePerProcess();
}
void V8::InitializeOncePerProcess() {
CallOnce(&init_once, &InitializeOncePerProcessImpl);
}
} } // namespace v8::internal