v8/src/heap.h
danno@chromium.org 1b89cbf817 Separate Cell and PropertyCell spaces
This makes it possible to store additional information on property cells, for example Type and optimized Code dependencies.

R=mstarzinger@chromium.org

Review URL: https://codereview.chromium.org/16631002

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15089 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-06-12 15:03:44 +00:00

3086 lines
114 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_HEAP_H_
#define V8_HEAP_H_
#include <cmath>
#include "allocation.h"
#include "assert-scope.h"
#include "globals.h"
#include "incremental-marking.h"
#include "list.h"
#include "mark-compact.h"
#include "objects-visiting.h"
#include "spaces.h"
#include "splay-tree-inl.h"
#include "store-buffer.h"
#include "v8-counters.h"
#include "v8globals.h"
namespace v8 {
namespace internal {
// Defines all the roots in Heap.
#define STRONG_ROOT_LIST(V) \
V(Map, byte_array_map, ByteArrayMap) \
V(Map, free_space_map, FreeSpaceMap) \
V(Map, one_pointer_filler_map, OnePointerFillerMap) \
V(Map, two_pointer_filler_map, TwoPointerFillerMap) \
/* Cluster the most popular ones in a few cache lines here at the top. */ \
V(Smi, store_buffer_top, StoreBufferTop) \
V(Oddball, undefined_value, UndefinedValue) \
V(Oddball, the_hole_value, TheHoleValue) \
V(Oddball, null_value, NullValue) \
V(Oddball, true_value, TrueValue) \
V(Oddball, false_value, FalseValue) \
V(Oddball, uninitialized_value, UninitializedValue) \
V(Map, cell_map, CellMap) \
V(Map, global_property_cell_map, GlobalPropertyCellMap) \
V(Map, shared_function_info_map, SharedFunctionInfoMap) \
V(Map, meta_map, MetaMap) \
V(Map, heap_number_map, HeapNumberMap) \
V(Map, native_context_map, NativeContextMap) \
V(Map, fixed_array_map, FixedArrayMap) \
V(Map, code_map, CodeMap) \
V(Map, scope_info_map, ScopeInfoMap) \
V(Map, fixed_cow_array_map, FixedCOWArrayMap) \
V(Map, fixed_double_array_map, FixedDoubleArrayMap) \
V(Object, no_interceptor_result_sentinel, NoInterceptorResultSentinel) \
V(Map, hash_table_map, HashTableMap) \
V(FixedArray, empty_fixed_array, EmptyFixedArray) \
V(ByteArray, empty_byte_array, EmptyByteArray) \
V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray) \
V(Smi, stack_limit, StackLimit) \
V(Oddball, arguments_marker, ArgumentsMarker) \
/* The first 32 roots above this line should be boring from a GC point of */ \
/* view. This means they are never in new space and never on a page that */ \
/* is being compacted. */ \
V(FixedArray, number_string_cache, NumberStringCache) \
V(Object, instanceof_cache_function, InstanceofCacheFunction) \
V(Object, instanceof_cache_map, InstanceofCacheMap) \
V(Object, instanceof_cache_answer, InstanceofCacheAnswer) \
V(FixedArray, single_character_string_cache, SingleCharacterStringCache) \
V(FixedArray, string_split_cache, StringSplitCache) \
V(FixedArray, regexp_multiple_cache, RegExpMultipleCache) \
V(Object, termination_exception, TerminationException) \
V(Smi, hash_seed, HashSeed) \
V(Map, symbol_map, SymbolMap) \
V(Map, string_map, StringMap) \
V(Map, ascii_string_map, AsciiStringMap) \
V(Map, cons_string_map, ConsStringMap) \
V(Map, cons_ascii_string_map, ConsAsciiStringMap) \
V(Map, sliced_string_map, SlicedStringMap) \
V(Map, sliced_ascii_string_map, SlicedAsciiStringMap) \
V(Map, external_string_map, ExternalStringMap) \
V(Map, \
external_string_with_one_byte_data_map, \
ExternalStringWithOneByteDataMap) \
V(Map, external_ascii_string_map, ExternalAsciiStringMap) \
V(Map, short_external_string_map, ShortExternalStringMap) \
V(Map, \
short_external_string_with_one_byte_data_map, \
ShortExternalStringWithOneByteDataMap) \
V(Map, internalized_string_map, InternalizedStringMap) \
V(Map, ascii_internalized_string_map, AsciiInternalizedStringMap) \
V(Map, cons_internalized_string_map, ConsInternalizedStringMap) \
V(Map, cons_ascii_internalized_string_map, ConsAsciiInternalizedStringMap) \
V(Map, \
external_internalized_string_map, \
ExternalInternalizedStringMap) \
V(Map, \
external_internalized_string_with_one_byte_data_map, \
ExternalInternalizedStringWithOneByteDataMap) \
V(Map, \
external_ascii_internalized_string_map, \
ExternalAsciiInternalizedStringMap) \
V(Map, \
short_external_internalized_string_map, \
ShortExternalInternalizedStringMap) \
V(Map, \
short_external_internalized_string_with_one_byte_data_map, \
ShortExternalInternalizedStringWithOneByteDataMap) \
V(Map, \
short_external_ascii_internalized_string_map, \
ShortExternalAsciiInternalizedStringMap) \
V(Map, short_external_ascii_string_map, ShortExternalAsciiStringMap) \
V(Map, undetectable_string_map, UndetectableStringMap) \
V(Map, undetectable_ascii_string_map, UndetectableAsciiStringMap) \
V(Map, external_byte_array_map, ExternalByteArrayMap) \
V(Map, external_unsigned_byte_array_map, ExternalUnsignedByteArrayMap) \
V(Map, external_short_array_map, ExternalShortArrayMap) \
V(Map, external_unsigned_short_array_map, ExternalUnsignedShortArrayMap) \
V(Map, external_int_array_map, ExternalIntArrayMap) \
V(Map, external_unsigned_int_array_map, ExternalUnsignedIntArrayMap) \
V(Map, external_float_array_map, ExternalFloatArrayMap) \
V(Map, external_double_array_map, ExternalDoubleArrayMap) \
V(Map, external_pixel_array_map, ExternalPixelArrayMap) \
V(ExternalArray, empty_external_byte_array, \
EmptyExternalByteArray) \
V(ExternalArray, empty_external_unsigned_byte_array, \
EmptyExternalUnsignedByteArray) \
V(ExternalArray, empty_external_short_array, EmptyExternalShortArray) \
V(ExternalArray, empty_external_unsigned_short_array, \
EmptyExternalUnsignedShortArray) \
V(ExternalArray, empty_external_int_array, EmptyExternalIntArray) \
V(ExternalArray, empty_external_unsigned_int_array, \
EmptyExternalUnsignedIntArray) \
V(ExternalArray, empty_external_float_array, EmptyExternalFloatArray) \
V(ExternalArray, empty_external_double_array, EmptyExternalDoubleArray) \
V(ExternalArray, empty_external_pixel_array, \
EmptyExternalPixelArray) \
V(Map, non_strict_arguments_elements_map, NonStrictArgumentsElementsMap) \
V(Map, function_context_map, FunctionContextMap) \
V(Map, catch_context_map, CatchContextMap) \
V(Map, with_context_map, WithContextMap) \
V(Map, block_context_map, BlockContextMap) \
V(Map, module_context_map, ModuleContextMap) \
V(Map, global_context_map, GlobalContextMap) \
V(Map, oddball_map, OddballMap) \
V(Map, message_object_map, JSMessageObjectMap) \
V(Map, foreign_map, ForeignMap) \
V(HeapNumber, nan_value, NanValue) \
V(HeapNumber, infinity_value, InfinityValue) \
V(HeapNumber, minus_zero_value, MinusZeroValue) \
V(Map, neander_map, NeanderMap) \
V(JSObject, message_listeners, MessageListeners) \
V(UnseededNumberDictionary, code_stubs, CodeStubs) \
V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache) \
V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache) \
V(Code, js_entry_code, JsEntryCode) \
V(Code, js_construct_entry_code, JsConstructEntryCode) \
V(FixedArray, natives_source_cache, NativesSourceCache) \
V(Object, last_script_id, LastScriptId) \
V(Script, empty_script, EmptyScript) \
V(Smi, real_stack_limit, RealStackLimit) \
V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames) \
V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \
V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset) \
V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset) \
V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset) \
V(JSObject, observation_state, ObservationState) \
V(Map, external_map, ExternalMap) \
V(Symbol, frozen_symbol, FrozenSymbol) \
V(SeededNumberDictionary, empty_slow_element_dictionary, \
EmptySlowElementDictionary)
#define ROOT_LIST(V) \
STRONG_ROOT_LIST(V) \
V(StringTable, string_table, StringTable)
#define INTERNALIZED_STRING_LIST(V) \
V(Array_string, "Array") \
V(Object_string, "Object") \
V(proto_string, "__proto__") \
V(StringImpl_string, "StringImpl") \
V(arguments_string, "arguments") \
V(Arguments_string, "Arguments") \
V(call_string, "call") \
V(apply_string, "apply") \
V(caller_string, "caller") \
V(boolean_string, "boolean") \
V(Boolean_string, "Boolean") \
V(callee_string, "callee") \
V(constructor_string, "constructor") \
V(code_string, ".code") \
V(result_string, ".result") \
V(dot_for_string, ".for.") \
V(catch_var_string, ".catch-var") \
V(empty_string, "") \
V(eval_string, "eval") \
V(function_string, "function") \
V(length_string, "length") \
V(module_string, "module") \
V(name_string, "name") \
V(native_string, "native") \
V(null_string, "null") \
V(number_string, "number") \
V(Number_string, "Number") \
V(nan_string, "NaN") \
V(RegExp_string, "RegExp") \
V(source_string, "source") \
V(global_string, "global") \
V(ignore_case_string, "ignoreCase") \
V(multiline_string, "multiline") \
V(input_string, "input") \
V(index_string, "index") \
V(last_index_string, "lastIndex") \
V(object_string, "object") \
V(payload_string, "payload") \
V(prototype_string, "prototype") \
V(string_string, "string") \
V(String_string, "String") \
V(unknown_field_string, "unknownField") \
V(symbol_string, "symbol") \
V(Symbol_string, "Symbol") \
V(Date_string, "Date") \
V(this_string, "this") \
V(to_string_string, "toString") \
V(char_at_string, "CharAt") \
V(undefined_string, "undefined") \
V(value_of_string, "valueOf") \
V(stack_string, "stack") \
V(toJSON_string, "toJSON") \
V(InitializeVarGlobal_string, "InitializeVarGlobal") \
V(InitializeConstGlobal_string, "InitializeConstGlobal") \
V(KeyedLoadElementMonomorphic_string, \
"KeyedLoadElementMonomorphic") \
V(KeyedStoreElementMonomorphic_string, \
"KeyedStoreElementMonomorphic") \
V(stack_overflow_string, "kStackOverflowBoilerplate") \
V(illegal_access_string, "illegal access") \
V(out_of_memory_string, "out-of-memory") \
V(illegal_execution_state_string, "illegal execution state") \
V(get_string, "get") \
V(set_string, "set") \
V(map_field_string, "%map") \
V(elements_field_string, "%elements") \
V(length_field_string, "%length") \
V(function_class_string, "Function") \
V(properties_field_symbol, "%properties") \
V(payload_field_symbol, "%payload") \
V(illegal_argument_string, "illegal argument") \
V(MakeReferenceError_string, "MakeReferenceError") \
V(MakeSyntaxError_string, "MakeSyntaxError") \
V(MakeTypeError_string, "MakeTypeError") \
V(invalid_lhs_in_assignment_string, "invalid_lhs_in_assignment") \
V(invalid_lhs_in_for_in_string, "invalid_lhs_in_for_in") \
V(invalid_lhs_in_postfix_op_string, "invalid_lhs_in_postfix_op") \
V(invalid_lhs_in_prefix_op_string, "invalid_lhs_in_prefix_op") \
V(illegal_return_string, "illegal_return") \
V(illegal_break_string, "illegal_break") \
V(illegal_continue_string, "illegal_continue") \
V(unknown_label_string, "unknown_label") \
V(redeclaration_string, "redeclaration") \
V(failure_string, "<failure>") \
V(space_string, " ") \
V(exec_string, "exec") \
V(zero_string, "0") \
V(global_eval_string, "GlobalEval") \
V(identity_hash_string, "v8::IdentityHash") \
V(closure_string, "(closure)") \
V(use_strict_string, "use strict") \
V(dot_string, ".") \
V(anonymous_function_string, "(anonymous function)") \
V(compare_ic_string, "==") \
V(strict_compare_ic_string, "===") \
V(infinity_string, "Infinity") \
V(minus_infinity_string, "-Infinity") \
V(hidden_stack_trace_string, "v8::hidden_stack_trace") \
V(query_colon_string, "(?:)") \
V(Generator_string, "Generator") \
V(throw_string, "throw") \
V(done_string, "done") \
V(value_string, "value") \
V(next_string, "next")
// Forward declarations.
class GCTracer;
class HeapStats;
class Isolate;
class WeakObjectRetainer;
typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
Object** pointer);
class StoreBufferRebuilder {
public:
explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
: store_buffer_(store_buffer) {
}
void Callback(MemoryChunk* page, StoreBufferEvent event);
private:
StoreBuffer* store_buffer_;
// We record in this variable how full the store buffer was when we started
// iterating over the current page, finding pointers to new space. If the
// store buffer overflows again we can exempt the page from the store buffer
// by rewinding to this point instead of having to search the store buffer.
Object*** start_of_current_page_;
// The current page we are scanning in the store buffer iterator.
MemoryChunk* current_page_;
};
// A queue of objects promoted during scavenge. Each object is accompanied
// by it's size to avoid dereferencing a map pointer for scanning.
class PromotionQueue {
public:
explicit PromotionQueue(Heap* heap)
: front_(NULL),
rear_(NULL),
limit_(NULL),
emergency_stack_(0),
heap_(heap) { }
void Initialize();
void Destroy() {
ASSERT(is_empty());
delete emergency_stack_;
emergency_stack_ = NULL;
}
inline void ActivateGuardIfOnTheSamePage();
Page* GetHeadPage() {
return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
}
void SetNewLimit(Address limit) {
if (!guard_) {
return;
}
ASSERT(GetHeadPage() == Page::FromAllocationTop(limit));
limit_ = reinterpret_cast<intptr_t*>(limit);
if (limit_ <= rear_) {
return;
}
RelocateQueueHead();
}
bool is_empty() {
return (front_ == rear_) &&
(emergency_stack_ == NULL || emergency_stack_->length() == 0);
}
inline void insert(HeapObject* target, int size);
void remove(HeapObject** target, int* size) {
ASSERT(!is_empty());
if (front_ == rear_) {
Entry e = emergency_stack_->RemoveLast();
*target = e.obj_;
*size = e.size_;
return;
}
if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(front_))) {
NewSpacePage* front_page =
NewSpacePage::FromAddress(reinterpret_cast<Address>(front_));
ASSERT(!front_page->prev_page()->is_anchor());
front_ =
reinterpret_cast<intptr_t*>(front_page->prev_page()->area_end());
}
*target = reinterpret_cast<HeapObject*>(*(--front_));
*size = static_cast<int>(*(--front_));
// Assert no underflow.
SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
reinterpret_cast<Address>(front_));
}
private:
// The front of the queue is higher in the memory page chain than the rear.
intptr_t* front_;
intptr_t* rear_;
intptr_t* limit_;
bool guard_;
static const int kEntrySizeInWords = 2;
struct Entry {
Entry(HeapObject* obj, int size) : obj_(obj), size_(size) { }
HeapObject* obj_;
int size_;
};
List<Entry>* emergency_stack_;
Heap* heap_;
void RelocateQueueHead();
DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
};
typedef void (*ScavengingCallback)(Map* map,
HeapObject** slot,
HeapObject* object);
// External strings table is a place where all external strings are
// registered. We need to keep track of such strings to properly
// finalize them.
class ExternalStringTable {
public:
// Registers an external string.
inline void AddString(String* string);
inline void Iterate(ObjectVisitor* v);
// Restores internal invariant and gets rid of collected strings.
// Must be called after each Iterate() that modified the strings.
void CleanUp();
// Destroys all allocated memory.
void TearDown();
private:
ExternalStringTable() { }
friend class Heap;
inline void Verify();
inline void AddOldString(String* string);
// Notifies the table that only a prefix of the new list is valid.
inline void ShrinkNewStrings(int position);
// To speed up scavenge collections new space string are kept
// separate from old space strings.
List<Object*> new_space_strings_;
List<Object*> old_space_strings_;
Heap* heap_;
DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
};
// The stack property of an error object is implemented as a getter that
// formats the attached raw stack trace into a string. This raw stack trace
// keeps code and function objects alive until the getter is called the first
// time. To release those objects, we call the getter after each GC for
// newly tenured error objects that are kept in a list.
class ErrorObjectList {
public:
inline void Add(JSObject* object);
inline void Iterate(ObjectVisitor* v);
void TearDown();
void RemoveUnmarked(Heap* heap);
void DeferredFormatStackTrace(Isolate* isolate);
void UpdateReferences();
void UpdateReferencesInNewSpace(Heap* heap);
private:
static const int kBudgetPerGC = 16;
ErrorObjectList() : nested_(false) { }
friend class Heap;
List<Object*> list_;
bool nested_;
DISALLOW_COPY_AND_ASSIGN(ErrorObjectList);
};
enum ArrayStorageAllocationMode {
DONT_INITIALIZE_ARRAY_ELEMENTS,
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
};
class Heap {
public:
// Configure heap size before setup. Return false if the heap has been
// set up already.
bool ConfigureHeap(int max_semispace_size,
intptr_t max_old_gen_size,
intptr_t max_executable_size);
bool ConfigureHeapDefault();
// Prepares the heap, setting up memory areas that are needed in the isolate
// without actually creating any objects.
bool SetUp();
// Bootstraps the object heap with the core set of objects required to run.
// Returns whether it succeeded.
bool CreateHeapObjects();
// Destroys all memory allocated by the heap.
void TearDown();
// Set the stack limit in the roots_ array. Some architectures generate
// code that looks here, because it is faster than loading from the static
// jslimit_/real_jslimit_ variable in the StackGuard.
void SetStackLimits();
// Returns whether SetUp has been called.
bool HasBeenSetUp();
// Returns the maximum amount of memory reserved for the heap. For
// the young generation, we reserve 4 times the amount needed for a
// semi space. The young generation consists of two semi spaces and
// we reserve twice the amount needed for those in order to ensure
// that new space can be aligned to its size.
intptr_t MaxReserved() {
return 4 * reserved_semispace_size_ + max_old_generation_size_;
}
int MaxSemiSpaceSize() { return max_semispace_size_; }
int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
int InitialSemiSpaceSize() { return initial_semispace_size_; }
intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
intptr_t MaxExecutableSize() { return max_executable_size_; }
int MaxRegularSpaceAllocationSize() { return InitialSemiSpaceSize() * 3/4; }
// Returns the capacity of the heap in bytes w/o growing. Heap grows when
// more spaces are needed until it reaches the limit.
intptr_t Capacity();
// Returns the amount of memory currently committed for the heap.
intptr_t CommittedMemory();
// Returns the amount of executable memory currently committed for the heap.
intptr_t CommittedMemoryExecutable();
// Returns the amount of phyical memory currently committed for the heap.
size_t CommittedPhysicalMemory();
// Returns the available bytes in space w/o growing.
// Heap doesn't guarantee that it can allocate an object that requires
// all available bytes. Check MaxHeapObjectSize() instead.
intptr_t Available();
// Returns of size of all objects residing in the heap.
intptr_t SizeOfObjects();
// Return the starting address and a mask for the new space. And-masking an
// address with the mask will result in the start address of the new space
// for all addresses in either semispace.
Address NewSpaceStart() { return new_space_.start(); }
uintptr_t NewSpaceMask() { return new_space_.mask(); }
Address NewSpaceTop() { return new_space_.top(); }
NewSpace* new_space() { return &new_space_; }
OldSpace* old_pointer_space() { return old_pointer_space_; }
OldSpace* old_data_space() { return old_data_space_; }
OldSpace* code_space() { return code_space_; }
MapSpace* map_space() { return map_space_; }
CellSpace* cell_space() { return cell_space_; }
PropertyCellSpace* property_cell_space() {
return property_cell_space_;
}
LargeObjectSpace* lo_space() { return lo_space_; }
PagedSpace* paged_space(int idx) {
switch (idx) {
case OLD_POINTER_SPACE:
return old_pointer_space();
case OLD_DATA_SPACE:
return old_data_space();
case MAP_SPACE:
return map_space();
case CELL_SPACE:
return cell_space();
case PROPERTY_CELL_SPACE:
return property_cell_space();
case CODE_SPACE:
return code_space();
case NEW_SPACE:
case LO_SPACE:
UNREACHABLE();
}
return NULL;
}
bool always_allocate() { return always_allocate_scope_depth_ != 0; }
Address always_allocate_scope_depth_address() {
return reinterpret_cast<Address>(&always_allocate_scope_depth_);
}
bool linear_allocation() {
return linear_allocation_scope_depth_ != 0;
}
Address* NewSpaceAllocationTopAddress() {
return new_space_.allocation_top_address();
}
Address* NewSpaceAllocationLimitAddress() {
return new_space_.allocation_limit_address();
}
Address* OldPointerSpaceAllocationTopAddress() {
return old_pointer_space_->allocation_top_address();
}
Address* OldPointerSpaceAllocationLimitAddress() {
return old_pointer_space_->allocation_limit_address();
}
Address* OldDataSpaceAllocationTopAddress() {
return old_data_space_->allocation_top_address();
}
Address* OldDataSpaceAllocationLimitAddress() {
return old_data_space_->allocation_limit_address();
}
// Uncommit unused semi space.
bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
// Allocates and initializes a new JavaScript object based on a
// constructor.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateJSObject(
JSFunction* constructor,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* AllocateJSObjectWithAllocationSite(
JSFunction* constructor,
Handle<Object> allocation_site_info_payload);
MUST_USE_RESULT MaybeObject* AllocateJSGeneratorObject(
JSFunction* function);
MUST_USE_RESULT MaybeObject* AllocateJSModule(Context* context,
ScopeInfo* scope_info);
// Allocate a JSArray with no elements
MUST_USE_RESULT MaybeObject* AllocateEmptyJSArray(
ElementsKind elements_kind,
PretenureFlag pretenure = NOT_TENURED) {
return AllocateJSArrayAndStorage(elements_kind, 0, 0,
DONT_INITIALIZE_ARRAY_ELEMENTS,
pretenure);
}
inline MUST_USE_RESULT MaybeObject* AllocateEmptyJSArrayWithAllocationSite(
ElementsKind elements_kind,
Handle<Object> allocation_site_payload);
// Allocate a JSArray with a specified length but elements that are left
// uninitialized.
MUST_USE_RESULT MaybeObject* AllocateJSArrayAndStorage(
ElementsKind elements_kind,
int length,
int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* AllocateJSArrayAndStorageWithAllocationSite(
ElementsKind elements_kind,
int length,
int capacity,
Handle<Object> allocation_site_payload,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
MUST_USE_RESULT MaybeObject* AllocateJSArrayStorage(
JSArray* array,
int length,
int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
// Allocate a JSArray with no elements
MUST_USE_RESULT MaybeObject* AllocateJSArrayWithElements(
FixedArrayBase* array_base,
ElementsKind elements_kind,
int length,
PretenureFlag pretenure = NOT_TENURED);
// Allocates and initializes a new global object based on a constructor.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateGlobalObject(JSFunction* constructor);
// Returns a deep copy of the JavaScript object.
// Properties and elements are copied too.
// Returns failure if allocation failed.
MUST_USE_RESULT MaybeObject* CopyJSObject(JSObject* source);
MUST_USE_RESULT MaybeObject* CopyJSObjectWithAllocationSite(JSObject* source);
// Allocates the function prototype.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateFunctionPrototype(JSFunction* function);
// Allocates a JS ArrayBuffer object.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateJSArrayBuffer();
// Allocates a Harmony proxy or function proxy.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateJSProxy(Object* handler,
Object* prototype);
MUST_USE_RESULT MaybeObject* AllocateJSFunctionProxy(Object* handler,
Object* call_trap,
Object* construct_trap,
Object* prototype);
// Reinitialize a JSReceiver into an (empty) JS object of respective type and
// size, but keeping the original prototype. The receiver must have at least
// the size of the new object. The object is reinitialized and behaves as an
// object that has been freshly allocated.
// Returns failure if an error occured, otherwise object.
MUST_USE_RESULT MaybeObject* ReinitializeJSReceiver(JSReceiver* object,
InstanceType type,
int size);
// Reinitialize an JSGlobalProxy based on a constructor. The object
// must have the same size as objects allocated using the
// constructor. The object is reinitialized and behaves as an
// object that has been freshly allocated using the constructor.
MUST_USE_RESULT MaybeObject* ReinitializeJSGlobalProxy(
JSFunction* constructor, JSGlobalProxy* global);
// Allocates and initializes a new JavaScript object based on a map.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateJSObjectFromMap(
Map* map, PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* AllocateJSObjectFromMapWithAllocationSite(
Map* map, Handle<Object> allocation_site_info_payload);
// Allocates a heap object based on the map.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this function does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* Allocate(Map* map, AllocationSpace space);
MUST_USE_RESULT MaybeObject* AllocateWithAllocationSite(Map* map,
AllocationSpace space, Handle<Object> allocation_site_info_payload);
// Allocates a JS Map in the heap.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this function does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateMap(
InstanceType instance_type,
int instance_size,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
// Allocates a partial map for bootstrapping.
MUST_USE_RESULT MaybeObject* AllocatePartialMap(InstanceType instance_type,
int instance_size);
// Allocate a map for the specified function
MUST_USE_RESULT MaybeObject* AllocateInitialMap(JSFunction* fun);
// Allocates an empty code cache.
MUST_USE_RESULT MaybeObject* AllocateCodeCache();
// Allocates a serialized scope info.
MUST_USE_RESULT MaybeObject* AllocateScopeInfo(int length);
// Allocates an External object for v8's external API.
MUST_USE_RESULT MaybeObject* AllocateExternal(void* value);
// Allocates an empty PolymorphicCodeCache.
MUST_USE_RESULT MaybeObject* AllocatePolymorphicCodeCache();
// Allocates a pre-tenured empty AccessorPair.
MUST_USE_RESULT MaybeObject* AllocateAccessorPair();
// Allocates an empty TypeFeedbackInfo.
MUST_USE_RESULT MaybeObject* AllocateTypeFeedbackInfo();
// Allocates an AliasedArgumentsEntry.
MUST_USE_RESULT MaybeObject* AllocateAliasedArgumentsEntry(int slot);
// Clear the Instanceof cache (used when a prototype changes).
inline void ClearInstanceofCache();
// For use during bootup.
void RepairFreeListsAfterBoot();
// Allocates and fully initializes a String. There are two String
// encodings: ASCII and two byte. One should choose between the three string
// allocation functions based on the encoding of the string buffer used to
// initialized the string.
// - ...FromAscii initializes the string from a buffer that is ASCII
// encoded (it does not check that the buffer is ASCII encoded) and the
// result will be ASCII encoded.
// - ...FromUTF8 initializes the string from a buffer that is UTF-8
// encoded. If the characters are all single-byte characters, the
// result will be ASCII encoded, otherwise it will converted to two
// byte.
// - ...FromTwoByte initializes the string from a buffer that is two-byte
// encoded. If the characters are all single-byte characters, the
// result will be converted to ASCII, otherwise it will be left as
// two-byte.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateStringFromOneByte(
Vector<const uint8_t> str,
PretenureFlag pretenure = NOT_TENURED);
// TODO(dcarney): remove this function.
MUST_USE_RESULT inline MaybeObject* AllocateStringFromOneByte(
Vector<const char> str,
PretenureFlag pretenure = NOT_TENURED) {
return AllocateStringFromOneByte(Vector<const uint8_t>::cast(str),
pretenure);
}
MUST_USE_RESULT inline MaybeObject* AllocateStringFromUtf8(
Vector<const char> str,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* AllocateStringFromUtf8Slow(
Vector<const char> str,
int non_ascii_start,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* AllocateStringFromTwoByte(
Vector<const uc16> str,
PretenureFlag pretenure = NOT_TENURED);
// Allocates an internalized string in old space based on the character
// stream. Returns Failure::RetryAfterGC(requested_bytes, space) if the
// allocation failed.
// Please note this function does not perform a garbage collection.
MUST_USE_RESULT inline MaybeObject* AllocateInternalizedStringFromUtf8(
Vector<const char> str,
int chars,
uint32_t hash_field);
MUST_USE_RESULT inline MaybeObject* AllocateOneByteInternalizedString(
Vector<const uint8_t> str,
uint32_t hash_field);
MUST_USE_RESULT inline MaybeObject* AllocateTwoByteInternalizedString(
Vector<const uc16> str,
uint32_t hash_field);
template<typename T>
static inline bool IsOneByte(T t, int chars);
template<typename T>
MUST_USE_RESULT inline MaybeObject* AllocateInternalizedStringImpl(
T t, int chars, uint32_t hash_field);
template<bool is_one_byte, typename T>
MUST_USE_RESULT MaybeObject* AllocateInternalizedStringImpl(
T t, int chars, uint32_t hash_field);
// Allocates and partially initializes a String. There are two String
// encodings: ASCII and two byte. These functions allocate a string of the
// given length and set its map and length fields. The characters of the
// string are uninitialized.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateRawOneByteString(
int length,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* AllocateRawTwoByteString(
int length,
PretenureFlag pretenure = NOT_TENURED);
// Computes a single character string where the character has code.
// A cache is used for ASCII codes.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed. Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* LookupSingleCharacterStringFromCode(
uint16_t code);
// Allocate a byte array of the specified length
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateByteArray(int length,
PretenureFlag pretenure);
// Allocate a non-tenured byte array of the specified length
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateByteArray(int length);
// Allocates an external array of the specified length and type.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateExternalArray(
int length,
ExternalArrayType array_type,
void* external_pointer,
PretenureFlag pretenure);
// Allocate a symbol in old space.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateSymbol();
// Allocate a tenured simple cell.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateCell(Object* value);
// Allocate a tenured JS global property cell.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateJSGlobalPropertyCell(Object* value);
// Allocate Box.
MUST_USE_RESULT MaybeObject* AllocateBox(Object* value,
PretenureFlag pretenure);
// Allocates a fixed array initialized with undefined values
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateFixedArray(int length,
PretenureFlag pretenure);
// Allocates a fixed array initialized with undefined values
MUST_USE_RESULT MaybeObject* AllocateFixedArray(int length);
// Allocates an uninitialized fixed array. It must be filled by the caller.
//
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateUninitializedFixedArray(int length);
// Move len elements within a given array from src_index index to dst_index
// index.
void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
// Make a copy of src and return it. Returns
// Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
MUST_USE_RESULT inline MaybeObject* CopyFixedArray(FixedArray* src);
// Make a copy of src, set the map, and return the copy. Returns
// Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
MUST_USE_RESULT MaybeObject* CopyFixedArrayWithMap(FixedArray* src, Map* map);
// Make a copy of src and return it. Returns
// Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
MUST_USE_RESULT inline MaybeObject* CopyFixedDoubleArray(
FixedDoubleArray* src);
// Make a copy of src, set the map, and return the copy. Returns
// Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
MUST_USE_RESULT MaybeObject* CopyFixedDoubleArrayWithMap(
FixedDoubleArray* src, Map* map);
// Allocates a fixed array initialized with the hole values.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateFixedArrayWithHoles(
int length,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* AllocateRawFixedDoubleArray(
int length,
PretenureFlag pretenure);
// Allocates a fixed double array with uninitialized values. Returns
// Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateUninitializedFixedDoubleArray(
int length,
PretenureFlag pretenure = NOT_TENURED);
// Allocates a fixed double array with hole values. Returns
// Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateFixedDoubleArrayWithHoles(
int length,
PretenureFlag pretenure = NOT_TENURED);
// AllocateHashTable is identical to AllocateFixedArray except
// that the resulting object has hash_table_map as map.
MUST_USE_RESULT MaybeObject* AllocateHashTable(
int length, PretenureFlag pretenure = NOT_TENURED);
// Allocate a native (but otherwise uninitialized) context.
MUST_USE_RESULT MaybeObject* AllocateNativeContext();
// Allocate a global context.
MUST_USE_RESULT MaybeObject* AllocateGlobalContext(JSFunction* function,
ScopeInfo* scope_info);
// Allocate a module context.
MUST_USE_RESULT MaybeObject* AllocateModuleContext(ScopeInfo* scope_info);
// Allocate a function context.
MUST_USE_RESULT MaybeObject* AllocateFunctionContext(int length,
JSFunction* function);
// Allocate a catch context.
MUST_USE_RESULT MaybeObject* AllocateCatchContext(JSFunction* function,
Context* previous,
String* name,
Object* thrown_object);
// Allocate a 'with' context.
MUST_USE_RESULT MaybeObject* AllocateWithContext(JSFunction* function,
Context* previous,
JSObject* extension);
// Allocate a block context.
MUST_USE_RESULT MaybeObject* AllocateBlockContext(JSFunction* function,
Context* previous,
ScopeInfo* info);
// Allocates a new utility object in the old generation.
MUST_USE_RESULT MaybeObject* AllocateStruct(InstanceType type);
// Allocates a function initialized with a shared part.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateFunction(
Map* function_map,
SharedFunctionInfo* shared,
Object* prototype,
PretenureFlag pretenure = TENURED);
// Arguments object size.
static const int kArgumentsObjectSize =
JSObject::kHeaderSize + 2 * kPointerSize;
// Strict mode arguments has no callee so it is smaller.
static const int kArgumentsObjectSizeStrict =
JSObject::kHeaderSize + 1 * kPointerSize;
// Indicies for direct access into argument objects.
static const int kArgumentsLengthIndex = 0;
// callee is only valid in non-strict mode.
static const int kArgumentsCalleeIndex = 1;
// Allocates an arguments object - optionally with an elements array.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateArgumentsObject(
Object* callee, int length);
// Same as NewNumberFromDouble, but may return a preallocated/immutable
// number object (e.g., minus_zero_value_, nan_value_)
MUST_USE_RESULT MaybeObject* NumberFromDouble(
double value, PretenureFlag pretenure = NOT_TENURED);
// Allocated a HeapNumber from value.
MUST_USE_RESULT MaybeObject* AllocateHeapNumber(
double value,
PretenureFlag pretenure);
// pretenure = NOT_TENURED
MUST_USE_RESULT MaybeObject* AllocateHeapNumber(double value);
// Converts an int into either a Smi or a HeapNumber object.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT inline MaybeObject* NumberFromInt32(
int32_t value, PretenureFlag pretenure = NOT_TENURED);
// Converts an int into either a Smi or a HeapNumber object.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT inline MaybeObject* NumberFromUint32(
uint32_t value, PretenureFlag pretenure = NOT_TENURED);
// Allocates a new foreign object.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateForeign(
Address address, PretenureFlag pretenure = NOT_TENURED);
// Allocates a new SharedFunctionInfo object.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateSharedFunctionInfo(Object* name);
// Allocates a new JSMessageObject object.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note that this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateJSMessageObject(
String* type,
JSArray* arguments,
int start_position,
int end_position,
Object* script,
Object* stack_trace,
Object* stack_frames);
// Allocates a new cons string object.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateConsString(String* first,
String* second);
// Allocates a new sub string object which is a substring of an underlying
// string buffer stretching from the index start (inclusive) to the index
// end (exclusive).
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateSubString(
String* buffer,
int start,
int end,
PretenureFlag pretenure = NOT_TENURED);
// Allocate a new external string object, which is backed by a string
// resource that resides outside the V8 heap.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* AllocateExternalStringFromAscii(
const ExternalAsciiString::Resource* resource);
MUST_USE_RESULT MaybeObject* AllocateExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource);
// Finalizes an external string by deleting the associated external
// data and clearing the resource pointer.
inline void FinalizeExternalString(String* string);
// Allocates an uninitialized object. The memory is non-executable if the
// hardware and OS allow.
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this function does not perform a garbage collection.
MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes,
AllocationSpace space,
AllocationSpace retry_space);
// Initialize a filler object to keep the ability to iterate over the heap
// when shortening objects.
void CreateFillerObjectAt(Address addr, int size);
// Makes a new native code object
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed. On success, the pointer to the Code object is stored in the
// self_reference. This allows generated code to reference its own Code
// object by containing this pointer.
// Please note this function does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* CreateCode(const CodeDesc& desc,
Code::Flags flags,
Handle<Object> self_reference,
bool immovable = false,
bool crankshafted = false);
MUST_USE_RESULT MaybeObject* CopyCode(Code* code);
// Copy the code and scope info part of the code object, but insert
// the provided data as the relocation information.
MUST_USE_RESULT MaybeObject* CopyCode(Code* code, Vector<byte> reloc_info);
// Finds the internalized copy for string in the string table.
// If not found, a new string is added to the table and returned.
// Returns Failure::RetryAfterGC(requested_bytes, space) if allocation
// failed.
// Please note this function does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* InternalizeUtf8String(Vector<const char> str);
MUST_USE_RESULT MaybeObject* InternalizeUtf8String(const char* str) {
return InternalizeUtf8String(CStrVector(str));
}
MUST_USE_RESULT MaybeObject* InternalizeOneByteString(
Vector<const uint8_t> str);
MUST_USE_RESULT MaybeObject* InternalizeTwoByteString(Vector<const uc16> str);
MUST_USE_RESULT MaybeObject* InternalizeString(String* str);
MUST_USE_RESULT MaybeObject* InternalizeOneByteString(
Handle<SeqOneByteString> string, int from, int length);
bool InternalizeStringIfExists(String* str, String** result);
bool InternalizeTwoCharsStringIfExists(String* str, String** result);
// Compute the matching internalized string map for a string if possible.
// NULL is returned if string is in new space or not flattened.
Map* InternalizedStringMapForString(String* str);
// Tries to flatten a string before compare operation.
//
// Returns a failure in case it was decided that flattening was
// necessary and failed. Note, if flattening is not necessary the
// string might stay non-flat even when not a failure is returned.
//
// Please note this function does not perform a garbage collection.
MUST_USE_RESULT inline MaybeObject* PrepareForCompare(String* str);
// Converts the given boolean condition to JavaScript boolean value.
inline Object* ToBoolean(bool condition);
// Code that should be run before and after each GC. Includes some
// reporting/verification activities when compiled with DEBUG set.
void GarbageCollectionPrologue();
void GarbageCollectionEpilogue();
// Performs garbage collection operation.
// Returns whether there is a chance that another major GC could
// collect more garbage.
bool CollectGarbage(AllocationSpace space,
GarbageCollector collector,
const char* gc_reason,
const char* collector_reason);
// Performs garbage collection operation.
// Returns whether there is a chance that another major GC could
// collect more garbage.
inline bool CollectGarbage(AllocationSpace space,
const char* gc_reason = NULL);
static const int kNoGCFlags = 0;
static const int kSweepPreciselyMask = 1;
static const int kReduceMemoryFootprintMask = 2;
static const int kAbortIncrementalMarkingMask = 4;
// Making the heap iterable requires us to sweep precisely and abort any
// incremental marking as well.
static const int kMakeHeapIterableMask =
kSweepPreciselyMask | kAbortIncrementalMarkingMask;
// Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is
// non-zero, then the slower precise sweeper is used, which leaves the heap
// in a state where we can iterate over the heap visiting all objects.
void CollectAllGarbage(int flags, const char* gc_reason = NULL);
// Last hope GC, should try to squeeze as much as possible.
void CollectAllAvailableGarbage(const char* gc_reason = NULL);
// Check whether the heap is currently iterable.
bool IsHeapIterable();
// Ensure that we have swept all spaces in such a way that we can iterate
// over all objects. May cause a GC.
void EnsureHeapIsIterable();
// Notify the heap that a context has been disposed.
int NotifyContextDisposed() {
flush_monomorphic_ics_ = true;
return ++contexts_disposed_;
}
// Utility to invoke the scavenger. This is needed in test code to
// ensure correct callback for weak global handles.
void PerformScavenge();
inline void increment_scan_on_scavenge_pages() {
scan_on_scavenge_pages_++;
if (FLAG_gc_verbose) {
PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
}
}
inline void decrement_scan_on_scavenge_pages() {
scan_on_scavenge_pages_--;
if (FLAG_gc_verbose) {
PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
}
}
PromotionQueue* promotion_queue() { return &promotion_queue_; }
#ifdef DEBUG
// Utility used with flag gc-greedy.
void GarbageCollectionGreedyCheck();
#endif
void AddGCPrologueCallback(
GCPrologueCallback callback, GCType gc_type_filter);
void RemoveGCPrologueCallback(GCPrologueCallback callback);
void AddGCEpilogueCallback(
GCEpilogueCallback callback, GCType gc_type_filter);
void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
void SetGlobalGCPrologueCallback(GCCallback callback) {
ASSERT((callback == NULL) ^ (global_gc_prologue_callback_ == NULL));
global_gc_prologue_callback_ = callback;
}
void SetGlobalGCEpilogueCallback(GCCallback callback) {
ASSERT((callback == NULL) ^ (global_gc_epilogue_callback_ == NULL));
global_gc_epilogue_callback_ = callback;
}
// Heap root getters. We have versions with and without type::cast() here.
// You can't use type::cast during GC because the assert fails.
// TODO(1490): Try removing the unchecked accessors, now that GC marking does
// not corrupt the map.
#define ROOT_ACCESSOR(type, name, camel_name) \
type* name() { \
return type::cast(roots_[k##camel_name##RootIndex]); \
} \
type* raw_unchecked_##name() { \
return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]); \
}
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
// Utility type maps
#define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
Map* name##_map() { \
return Map::cast(roots_[k##Name##MapRootIndex]); \
}
STRUCT_LIST(STRUCT_MAP_ACCESSOR)
#undef STRUCT_MAP_ACCESSOR
#define STRING_ACCESSOR(name, str) String* name() { \
return String::cast(roots_[k##name##RootIndex]); \
}
INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
#undef STRING_ACCESSOR
// The hidden_string is special because it is the empty string, but does
// not match the empty string.
String* hidden_string() { return hidden_string_; }
void set_native_contexts_list(Object* object) {
native_contexts_list_ = object;
}
Object* native_contexts_list() { return native_contexts_list_; }
void set_array_buffers_list(Object* object) {
array_buffers_list_ = object;
}
Object* array_buffers_list() { return array_buffers_list_; }
// Number of mark-sweeps.
unsigned int ms_count() { return ms_count_; }
// Iterates over all roots in the heap.
void IterateRoots(ObjectVisitor* v, VisitMode mode);
// Iterates over all strong roots in the heap.
void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
// Iterates over all the other roots in the heap.
void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
// Iterate pointers to from semispace of new space found in memory interval
// from start to end.
void IterateAndMarkPointersToFromSpace(Address start,
Address end,
ObjectSlotCallback callback);
// Returns whether the object resides in new space.
inline bool InNewSpace(Object* object);
inline bool InNewSpace(Address address);
inline bool InNewSpacePage(Address address);
inline bool InFromSpace(Object* object);
inline bool InToSpace(Object* object);
// Returns whether the object resides in old pointer space.
inline bool InOldPointerSpace(Address address);
inline bool InOldPointerSpace(Object* object);
// Returns whether the object resides in old data space.
inline bool InOldDataSpace(Address address);
inline bool InOldDataSpace(Object* object);
// Checks whether an address/object in the heap (including auxiliary
// area and unused area).
bool Contains(Address addr);
bool Contains(HeapObject* value);
// Checks whether an address/object in a space.
// Currently used by tests, serialization and heap verification only.
bool InSpace(Address addr, AllocationSpace space);
bool InSpace(HeapObject* value, AllocationSpace space);
// Finds out which space an object should get promoted to based on its type.
inline OldSpace* TargetSpace(HeapObject* object);
inline AllocationSpace TargetSpaceId(InstanceType type);
// Sets the stub_cache_ (only used when expanding the dictionary).
void public_set_code_stubs(UnseededNumberDictionary* value) {
roots_[kCodeStubsRootIndex] = value;
}
// Support for computing object sizes for old objects during GCs. Returns
// a function that is guaranteed to be safe for computing object sizes in
// the current GC phase.
HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
return gc_safe_size_of_old_object_;
}
// Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) {
roots_[kNonMonomorphicCacheRootIndex] = value;
}
void public_set_empty_script(Script* script) {
roots_[kEmptyScriptRootIndex] = script;
}
void public_set_store_buffer_top(Address* top) {
roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
}
// Update the next script id.
inline void SetLastScriptId(Object* last_script_id);
// Generated code can embed this address to get access to the roots.
Object** roots_array_start() { return roots_; }
Address* store_buffer_top_address() {
return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
}
// Get address of native contexts list for serialization support.
Object** native_contexts_list_address() {
return &native_contexts_list_;
}
#ifdef VERIFY_HEAP
// Verify the heap is in its normal state before or after a GC.
void Verify();
bool weak_embedded_maps_verification_enabled() {
return no_weak_embedded_maps_verification_scope_depth_ == 0;
}
#endif
#ifdef DEBUG
void Print();
void PrintHandles();
void OldPointerSpaceCheckStoreBuffer();
void MapSpaceCheckStoreBuffer();
void LargeObjectSpaceCheckStoreBuffer();
// Report heap statistics.
void ReportHeapStatistics(const char* title);
void ReportCodeStatistics(const char* title);
#endif
// Zapping is needed for verify heap, and always done in debug builds.
static inline bool ShouldZapGarbage() {
#ifdef DEBUG
return true;
#else
#ifdef VERIFY_HEAP
return FLAG_verify_heap;
#else
return false;
#endif
#endif
}
// Fill in bogus values in from space
void ZapFromSpace();
// Print short heap statistics.
void PrintShortHeapStatistics();
// Makes a new internalized string object
// Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
// failed.
// Please note this function does not perform a garbage collection.
MUST_USE_RESULT MaybeObject* CreateInternalizedString(
const char* str, int length, int hash);
MUST_USE_RESULT MaybeObject* CreateInternalizedString(String* str);
// Write barrier support for address[offset] = o.
INLINE(void RecordWrite(Address address, int offset));
// Write barrier support for address[start : start + len[ = o.
INLINE(void RecordWrites(Address address, int start, int len));
// Given an address occupied by a live code object, return that object.
Object* FindCodeObject(Address a);
enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
inline HeapState gc_state() { return gc_state_; }
inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
#ifdef DEBUG
bool disallow_allocation_failure() {
return disallow_allocation_failure_;
}
void TracePathToObjectFrom(Object* target, Object* root);
void TracePathToObject(Object* target);
void TracePathToGlobal();
#endif
// Callback function passed to Heap::Iterate etc. Copies an object if
// necessary, the object might be promoted to an old space. The caller must
// ensure the precondition that the object is (a) a heap object and (b) in
// the heap's from space.
static inline void ScavengePointer(HeapObject** p);
static inline void ScavengeObject(HeapObject** p, HeapObject* object);
// Commits from space if it is uncommitted.
void EnsureFromSpaceIsCommitted();
// Support for partial snapshots. After calling this we have a linear
// space to write objects in each space.
void ReserveSpace(int *sizes, Address* addresses);
//
// Support for the API.
//
bool CreateApiObjects();
// Attempt to find the number in a small cache. If we finds it, return
// the string representation of the number. Otherwise return undefined.
Object* GetNumberStringCache(Object* number);
// Update the cache with a new number-string pair.
void SetNumberStringCache(Object* number, String* str);
// Adjusts the amount of registered external memory.
// Returns the adjusted value.
inline intptr_t AdjustAmountOfExternalAllocatedMemory(
intptr_t change_in_bytes);
// Allocate uninitialized fixed array.
MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int length);
MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int length,
PretenureFlag pretenure);
// Predicate that governs global pre-tenuring decisions based on observed
// promotion rates of previous collections.
inline bool ShouldGloballyPretenure() {
return FLAG_pretenuring && new_space_high_promotion_mode_active_;
}
// This is only needed for testing high promotion mode.
void SetNewSpaceHighPromotionModeActive(bool mode) {
new_space_high_promotion_mode_active_ = mode;
}
inline PretenureFlag GetPretenureMode() {
return new_space_high_promotion_mode_active_ ? TENURED : NOT_TENURED;
}
inline Address* NewSpaceHighPromotionModeActiveAddress() {
return reinterpret_cast<Address*>(&new_space_high_promotion_mode_active_);
}
inline intptr_t PromotedTotalSize() {
return PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
}
inline intptr_t OldGenerationSpaceAvailable() {
return old_generation_allocation_limit_ - PromotedTotalSize();
}
inline intptr_t OldGenerationCapacityAvailable() {
return max_old_generation_size_ - PromotedTotalSize();
}
static const intptr_t kMinimumOldGenerationAllocationLimit =
8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
intptr_t OldGenerationAllocationLimit(intptr_t old_gen_size) {
const int divisor = FLAG_stress_compaction ? 10 :
new_space_high_promotion_mode_active_ ? 1 : 3;
intptr_t limit =
Max(old_gen_size + old_gen_size / divisor,
kMinimumOldGenerationAllocationLimit);
limit += new_space_.Capacity();
// TODO(hpayer): Can be removed when when pretenuring is supported for all
// allocation sites.
if (IsHighSurvivalRate() && IsStableOrIncreasingSurvivalTrend()) {
limit *= 2;
}
intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2;
return Min(limit, halfway_to_the_max);
}
// Implements the corresponding V8 API function.
bool IdleNotification(int hint);
// Declare all the root indices.
enum RootListIndex {
#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
#undef ROOT_INDEX_DECLARATION
#define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
#undef STRING_DECLARATION
// Utility type maps
#define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
STRUCT_LIST(DECLARE_STRUCT_MAP)
#undef DECLARE_STRUCT_MAP
kStringTableRootIndex,
kStrongRootListLength = kStringTableRootIndex,
kRootListLength
};
STATIC_CHECK(kUndefinedValueRootIndex == Internals::kUndefinedValueRootIndex);
STATIC_CHECK(kNullValueRootIndex == Internals::kNullValueRootIndex);
STATIC_CHECK(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
STATIC_CHECK(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
STATIC_CHECK(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
// Generated code can embed direct references to non-writable roots if
// they are in new space.
static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
MUST_USE_RESULT MaybeObject* NumberToString(
Object* number, bool check_number_string_cache = true,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* Uint32ToString(
uint32_t value, bool check_number_string_cache = true);
Map* MapForExternalArrayType(ExternalArrayType array_type);
RootListIndex RootIndexForExternalArrayType(
ExternalArrayType array_type);
RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind);
ExternalArray* EmptyExternalArrayForMap(Map* map);
void RecordStats(HeapStats* stats, bool take_snapshot = false);
// Copy block of memory from src to dst. Size of block should be aligned
// by pointer size.
static inline void CopyBlock(Address dst, Address src, int byte_size);
// Optimized version of memmove for blocks with pointer size aligned sizes and
// pointer size aligned addresses.
static inline void MoveBlock(Address dst, Address src, int byte_size);
// Check new space expansion criteria and expand semispaces if it was hit.
void CheckNewSpaceExpansionCriteria();
inline void IncrementYoungSurvivorsCounter(int survived) {
ASSERT(survived >= 0);
young_survivors_after_last_gc_ = survived;
survived_since_last_expansion_ += survived;
}
inline bool NextGCIsLikelyToBeFull() {
if (FLAG_gc_global) return true;
if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
intptr_t adjusted_allocation_limit =
old_generation_allocation_limit_ - new_space_.Capacity();
if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
return false;
}
void UpdateNewSpaceReferencesInExternalStringTable(
ExternalStringTableUpdaterCallback updater_func);
void UpdateReferencesInExternalStringTable(
ExternalStringTableUpdaterCallback updater_func);
void ProcessWeakReferences(WeakObjectRetainer* retainer);
void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
// Helper function that governs the promotion policy from new space to
// old. If the object's old address lies below the new space's age
// mark or if we've already filled the bottom 1/16th of the to space,
// we try to promote this object.
inline bool ShouldBePromoted(Address old_address, int object_size);
int MaxObjectSizeInNewSpace() { return kMaxObjectSizeInNewSpace; }
void ClearJSFunctionResultCaches();
void ClearNormalizedMapCaches();
GCTracer* tracer() { return tracer_; }
// Returns the size of objects residing in non new spaces.
intptr_t PromotedSpaceSizeOfObjects();
double total_regexp_code_generated() { return total_regexp_code_generated_; }
void IncreaseTotalRegexpCodeGenerated(int size) {
total_regexp_code_generated_ += size;
}
// Returns maximum GC pause.
double get_max_gc_pause() { return max_gc_pause_; }
// Returns maximum size of objects alive after GC.
intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
// Returns minimal interval between two subsequent collections.
double get_min_in_mutator() { return min_in_mutator_; }
// TODO(hpayer): remove, should be handled by GCTracer
void AddMarkingTime(double marking_time) {
marking_time_ += marking_time;
}
double marking_time() const {
return marking_time_;
}
// TODO(hpayer): remove, should be handled by GCTracer
void AddSweepingTime(double sweeping_time) {
sweeping_time_ += sweeping_time;
}
double sweeping_time() const {
return sweeping_time_;
}
MarkCompactCollector* mark_compact_collector() {
return &mark_compact_collector_;
}
StoreBuffer* store_buffer() {
return &store_buffer_;
}
Marking* marking() {
return &marking_;
}
IncrementalMarking* incremental_marking() {
return &incremental_marking_;
}
bool IsSweepingComplete() {
return !mark_compact_collector()->IsConcurrentSweepingInProgress() &&
old_data_space()->IsLazySweepingComplete() &&
old_pointer_space()->IsLazySweepingComplete();
}
bool AdvanceSweepers(int step_size) {
ASSERT(!FLAG_parallel_sweeping && !FLAG_concurrent_sweeping);
bool sweeping_complete = old_data_space()->AdvanceSweeper(step_size);
sweeping_complete &= old_pointer_space()->AdvanceSweeper(step_size);
return sweeping_complete;
}
bool EnsureSweepersProgressed(int step_size) {
bool sweeping_complete = old_data_space()->EnsureSweeperProgress(step_size);
sweeping_complete &= old_pointer_space()->EnsureSweeperProgress(step_size);
return sweeping_complete;
}
ExternalStringTable* external_string_table() {
return &external_string_table_;
}
ErrorObjectList* error_object_list() {
return &error_object_list_;
}
// Returns the current sweep generation.
int sweep_generation() {
return sweep_generation_;
}
inline Isolate* isolate();
void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
void CallGCEpilogueCallbacks(GCType gc_type);
inline bool OldGenerationAllocationLimitReached();
inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
}
void QueueMemoryChunkForFree(MemoryChunk* chunk);
void FreeQueuedChunks();
// Completely clear the Instanceof cache (to stop it keeping objects alive
// around a GC).
inline void CompletelyClearInstanceofCache();
// The roots that have an index less than this are always in old space.
static const int kOldSpaceRoots = 0x20;
uint32_t HashSeed() {
uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
ASSERT(FLAG_randomize_hashes || seed == 0);
return seed;
}
void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
ASSERT(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
}
void SetConstructStubDeoptPCOffset(int pc_offset) {
ASSERT(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
}
void SetGetterStubDeoptPCOffset(int pc_offset) {
ASSERT(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
}
void SetSetterStubDeoptPCOffset(int pc_offset) {
ASSERT(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
}
// For post mortem debugging.
void RememberUnmappedPage(Address page, bool compacted);
// Global inline caching age: it is incremented on some GCs after context
// disposal. We use it to flush inline caches.
int global_ic_age() {
return global_ic_age_;
}
void AgeInlineCaches() {
global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
}
bool flush_monomorphic_ics() { return flush_monomorphic_ics_; }
intptr_t amount_of_external_allocated_memory() {
return amount_of_external_allocated_memory_;
}
// ObjectStats are kept in two arrays, counts and sizes. Related stats are
// stored in a contiguous linear buffer. Stats groups are stored one after
// another.
enum {
FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
FIRST_FIXED_ARRAY_SUB_TYPE =
FIRST_CODE_KIND_SUB_TYPE + Code::LAST_CODE_KIND + 1,
OBJECT_STATS_COUNT =
FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1
};
void RecordObjectStats(InstanceType type, int sub_type, size_t size) {
ASSERT(type <= LAST_TYPE);
if (sub_type < 0) {
object_counts_[type]++;
object_sizes_[type] += size;
} else {
if (type == CODE_TYPE) {
ASSERT(sub_type <= Code::LAST_CODE_KIND);
object_counts_[FIRST_CODE_KIND_SUB_TYPE + sub_type]++;
object_sizes_[FIRST_CODE_KIND_SUB_TYPE + sub_type] += size;
} else if (type == FIXED_ARRAY_TYPE) {
ASSERT(sub_type <= LAST_FIXED_ARRAY_SUB_TYPE);
object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + sub_type]++;
object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + sub_type] += size;
}
}
}
void CheckpointObjectStats();
// We don't use a ScopedLock here since we want to lock the heap
// only when FLAG_parallel_recompilation is true.
class RelocationLock {
public:
explicit RelocationLock(Heap* heap);
~RelocationLock() {
if (FLAG_parallel_recompilation) {
#ifdef DEBUG
heap_->relocation_mutex_locked_by_optimizer_thread_ = false;
#endif // DEBUG
heap_->relocation_mutex_->Unlock();
}
}
#ifdef DEBUG
static bool IsLockedByOptimizerThread(Heap* heap) {
return heap->relocation_mutex_locked_by_optimizer_thread_;
}
#endif // DEBUG
private:
Heap* heap_;
};
private:
Heap();
// This can be calculated directly from a pointer to the heap; however, it is
// more expedient to get at the isolate directly from within Heap methods.
Isolate* isolate_;
Object* roots_[kRootListLength];
intptr_t code_range_size_;
int reserved_semispace_size_;
int max_semispace_size_;
int initial_semispace_size_;
intptr_t max_old_generation_size_;
intptr_t max_executable_size_;
// For keeping track of how much data has survived
// scavenge since last new space expansion.
int survived_since_last_expansion_;
// For keeping track on when to flush RegExp code.
int sweep_generation_;
int always_allocate_scope_depth_;
int linear_allocation_scope_depth_;
// For keeping track of context disposals.
int contexts_disposed_;
int global_ic_age_;
bool flush_monomorphic_ics_;
int scan_on_scavenge_pages_;
#if defined(V8_TARGET_ARCH_X64)
static const int kMaxObjectSizeInNewSpace = 1024*KB;
#else
static const int kMaxObjectSizeInNewSpace = 512*KB;
#endif
NewSpace new_space_;
OldSpace* old_pointer_space_;
OldSpace* old_data_space_;
OldSpace* code_space_;
MapSpace* map_space_;
CellSpace* cell_space_;
PropertyCellSpace* property_cell_space_;
LargeObjectSpace* lo_space_;
HeapState gc_state_;
int gc_post_processing_depth_;
// Returns the amount of external memory registered since last global gc.
intptr_t PromotedExternalMemorySize();
unsigned int ms_count_; // how many mark-sweep collections happened
unsigned int gc_count_; // how many gc happened
// For post mortem debugging.
static const int kRememberedUnmappedPages = 128;
int remembered_unmapped_pages_index_;
Address remembered_unmapped_pages_[kRememberedUnmappedPages];
// Total length of the strings we failed to flatten since the last GC.
int unflattened_strings_length_;
#define ROOT_ACCESSOR(type, name, camel_name) \
inline void set_##name(type* value) { \
/* The deserializer makes use of the fact that these common roots are */ \
/* never in new space and never on a page that is being compacted. */ \
ASSERT(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
roots_[k##camel_name##RootIndex] = value; \
}
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
#ifdef DEBUG
// If the --gc-interval flag is set to a positive value, this
// variable holds the value indicating the number of allocations
// remain until the next failure and garbage collection.
int allocation_timeout_;
// Do we expect to be able to handle allocation failure at this
// time?
bool disallow_allocation_failure_;
#endif // DEBUG
// Indicates that the new space should be kept small due to high promotion
// rates caused by the mutator allocating a lot of long-lived objects.
// TODO(hpayer): change to bool if no longer accessed from generated code
intptr_t new_space_high_promotion_mode_active_;
// Limit that triggers a global GC on the next (normally caused) GC. This
// is checked when we have already decided to do a GC to help determine
// which collector to invoke, before expanding a paged space in the old
// generation and on every allocation in large object space.
intptr_t old_generation_allocation_limit_;
// Used to adjust the limits that control the timing of the next GC.
intptr_t size_of_old_gen_at_last_old_space_gc_;
// Limit on the amount of externally allocated memory allowed
// between global GCs. If reached a global GC is forced.
intptr_t external_allocation_limit_;
// The amount of external memory registered through the API kept alive
// by global handles
intptr_t amount_of_external_allocated_memory_;
// Caches the amount of external memory registered at the last global gc.
intptr_t amount_of_external_allocated_memory_at_last_global_gc_;
// Indicates that an allocation has failed in the old generation since the
// last GC.
bool old_gen_exhausted_;
Object* native_contexts_list_;
Object* array_buffers_list_;
StoreBufferRebuilder store_buffer_rebuilder_;
struct StringTypeTable {
InstanceType type;
int size;
RootListIndex index;
};
struct ConstantStringTable {
const char* contents;
RootListIndex index;
};
struct StructTable {
InstanceType type;
int size;
RootListIndex index;
};
static const StringTypeTable string_type_table[];
static const ConstantStringTable constant_string_table[];
static const StructTable struct_table[];
// The special hidden string which is an empty string, but does not match
// any string when looked up in properties.
String* hidden_string_;
// GC callback function, called before and after mark-compact GC.
// Allocations in the callback function are disallowed.
struct GCPrologueCallbackPair {
GCPrologueCallbackPair(GCPrologueCallback callback, GCType gc_type)
: callback(callback), gc_type(gc_type) {
}
bool operator==(const GCPrologueCallbackPair& pair) const {
return pair.callback == callback;
}
GCPrologueCallback callback;
GCType gc_type;
};
List<GCPrologueCallbackPair> gc_prologue_callbacks_;
struct GCEpilogueCallbackPair {
GCEpilogueCallbackPair(GCEpilogueCallback callback, GCType gc_type)
: callback(callback), gc_type(gc_type) {
}
bool operator==(const GCEpilogueCallbackPair& pair) const {
return pair.callback == callback;
}
GCEpilogueCallback callback;
GCType gc_type;
};
List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
GCCallback global_gc_prologue_callback_;
GCCallback global_gc_epilogue_callback_;
// Support for computing object sizes during GC.
HeapObjectCallback gc_safe_size_of_old_object_;
static int GcSafeSizeOfOldObject(HeapObject* object);
// Update the GC state. Called from the mark-compact collector.
void MarkMapPointersAsEncoded(bool encoded) {
ASSERT(!encoded);
gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject;
}
// Checks whether a global GC is necessary
GarbageCollector SelectGarbageCollector(AllocationSpace space,
const char** reason);
// Performs garbage collection
// Returns whether there is a chance another major GC could
// collect more garbage.
bool PerformGarbageCollection(GarbageCollector collector,
GCTracer* tracer);
inline void UpdateOldSpaceLimits();
// Allocate an uninitialized object in map space. The behavior is identical
// to Heap::AllocateRaw(size_in_bytes, MAP_SPACE), except that (a) it doesn't
// have to test the allocation space argument and (b) can reduce code size
// (since both AllocateRaw and AllocateRawMap are inlined).
MUST_USE_RESULT inline MaybeObject* AllocateRawMap();
// Allocate an uninitialized object in the simple cell space.
MUST_USE_RESULT inline MaybeObject* AllocateRawCell();
// Allocate an uninitialized object in the global property cell space.
MUST_USE_RESULT inline MaybeObject* AllocateRawJSGlobalPropertyCell();
// Initializes a JSObject based on its map.
void InitializeJSObjectFromMap(JSObject* obj,
FixedArray* properties,
Map* map);
bool CreateInitialMaps();
bool CreateInitialObjects();
// These five Create*EntryStub functions are here and forced to not be inlined
// because of a gcc-4.4 bug that assigns wrong vtable entries.
NO_INLINE(void CreateJSEntryStub());
NO_INLINE(void CreateJSConstructEntryStub());
void CreateFixedStubs();
MUST_USE_RESULT MaybeObject* CreateOddball(const char* to_string,
Object* to_number,
byte kind);
// Allocate a JSArray with no elements
MUST_USE_RESULT MaybeObject* AllocateJSArray(
ElementsKind elements_kind,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeObject* AllocateJSArrayWithAllocationSite(
ElementsKind elements_kind,
Handle<Object> allocation_site_info_payload);
// Allocate empty fixed array.
MUST_USE_RESULT MaybeObject* AllocateEmptyFixedArray();
// Allocate empty external array of given type.
MUST_USE_RESULT MaybeObject* AllocateEmptyExternalArray(
ExternalArrayType array_type);
// Allocate empty fixed double array.
MUST_USE_RESULT MaybeObject* AllocateEmptyFixedDoubleArray();
// Performs a minor collection in new generation.
void Scavenge();
static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
Heap* heap,
Object** pointer);
Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
static void ScavengeStoreBufferCallback(Heap* heap,
MemoryChunk* page,
StoreBufferEvent event);
// Performs a major collection in the whole heap.
void MarkCompact(GCTracer* tracer);
// Code to be run before and after mark-compact.
void MarkCompactPrologue();
void ProcessNativeContexts(WeakObjectRetainer* retainer, bool record_slots);
void ProcessArrayBuffers(WeakObjectRetainer* retainer, bool record_slots);
// Record statistics before and after garbage collection.
void ReportStatisticsBeforeGC();
void ReportStatisticsAfterGC();
// Slow part of scavenge object.
static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
// Initializes a function with a shared part and prototype.
// Note: this code was factored out of AllocateFunction such that
// other parts of the VM could use it. Specifically, a function that creates
// instances of type JS_FUNCTION_TYPE benefit from the use of this function.
// Please note this does not perform a garbage collection.
inline void InitializeFunction(
JSFunction* function,
SharedFunctionInfo* shared,
Object* prototype);
// Total RegExp code ever generated
double total_regexp_code_generated_;
GCTracer* tracer_;
// Allocates a small number to string cache.
MUST_USE_RESULT MaybeObject* AllocateInitialNumberStringCache();
// Creates and installs the full-sized number string cache.
void AllocateFullSizeNumberStringCache();
// Get the length of the number to string cache based on the max semispace
// size.
int FullSizeNumberStringCacheLength();
// Flush the number to string cache.
void FlushNumberStringCache();
void UpdateSurvivalRateTrend(int start_new_space_size);
enum SurvivalRateTrend { INCREASING, STABLE, DECREASING, FLUCTUATING };
static const int kYoungSurvivalRateHighThreshold = 90;
static const int kYoungSurvivalRateLowThreshold = 10;
static const int kYoungSurvivalRateAllowedDeviation = 15;
int young_survivors_after_last_gc_;
int high_survival_rate_period_length_;
int low_survival_rate_period_length_;
double survival_rate_;
SurvivalRateTrend previous_survival_rate_trend_;
SurvivalRateTrend survival_rate_trend_;
void set_survival_rate_trend(SurvivalRateTrend survival_rate_trend) {
ASSERT(survival_rate_trend != FLUCTUATING);
previous_survival_rate_trend_ = survival_rate_trend_;
survival_rate_trend_ = survival_rate_trend;
}
SurvivalRateTrend survival_rate_trend() {
if (survival_rate_trend_ == STABLE) {
return STABLE;
} else if (previous_survival_rate_trend_ == STABLE) {
return survival_rate_trend_;
} else if (survival_rate_trend_ != previous_survival_rate_trend_) {
return FLUCTUATING;
} else {
return survival_rate_trend_;
}
}
bool IsStableOrIncreasingSurvivalTrend() {
switch (survival_rate_trend()) {
case STABLE:
case INCREASING:
return true;
default:
return false;
}
}
bool IsStableOrDecreasingSurvivalTrend() {
switch (survival_rate_trend()) {
case STABLE:
case DECREASING:
return true;
default:
return false;
}
}
bool IsIncreasingSurvivalTrend() {
return survival_rate_trend() == INCREASING;
}
bool IsHighSurvivalRate() {
return high_survival_rate_period_length_ > 0;
}
bool IsLowSurvivalRate() {
return low_survival_rate_period_length_ > 0;
}
void SelectScavengingVisitorsTable();
void StartIdleRound() {
mark_sweeps_since_idle_round_started_ = 0;
ms_count_at_last_idle_notification_ = ms_count_;
}
void FinishIdleRound() {
mark_sweeps_since_idle_round_started_ = kMaxMarkSweepsInIdleRound;
scavenges_since_last_idle_round_ = 0;
}
bool EnoughGarbageSinceLastIdleRound() {
return (scavenges_since_last_idle_round_ >= kIdleScavengeThreshold);
}
// Estimates how many milliseconds a Mark-Sweep would take to complete.
// In idle notification handler we assume that this function will return:
// - a number less than 10 for small heaps, which are less than 8Mb.
// - a number greater than 10 for large heaps, which are greater than 32Mb.
int TimeMarkSweepWouldTakeInMs() {
// Rough estimate of how many megabytes of heap can be processed in 1 ms.
static const int kMbPerMs = 2;
int heap_size_mb = static_cast<int>(SizeOfObjects() / MB);
return heap_size_mb / kMbPerMs;
}
// Returns true if no more GC work is left.
bool IdleGlobalGC();
void AdvanceIdleIncrementalMarking(intptr_t step_size);
void ClearObjectStats(bool clear_last_time_stats = false);
static const int kInitialStringTableSize = 2048;
static const int kInitialEvalCacheSize = 64;
static const int kInitialNumberStringCacheSize = 256;
// Object counts and used memory by InstanceType
size_t object_counts_[OBJECT_STATS_COUNT];
size_t object_counts_last_time_[OBJECT_STATS_COUNT];
size_t object_sizes_[OBJECT_STATS_COUNT];
size_t object_sizes_last_time_[OBJECT_STATS_COUNT];
// Maximum GC pause.
double max_gc_pause_;
// Total time spent in GC.
double total_gc_time_ms_;
// Maximum size of objects alive after GC.
intptr_t max_alive_after_gc_;
// Minimal interval between two subsequent collections.
double min_in_mutator_;
// Size of objects alive after last GC.
intptr_t alive_after_last_gc_;
double last_gc_end_timestamp_;
// Cumulative GC time spent in marking
double marking_time_;
// Cumulative GC time spent in sweeping
double sweeping_time_;
MarkCompactCollector mark_compact_collector_;
StoreBuffer store_buffer_;
Marking marking_;
IncrementalMarking incremental_marking_;
int number_idle_notifications_;
unsigned int last_idle_notification_gc_count_;
bool last_idle_notification_gc_count_init_;
int mark_sweeps_since_idle_round_started_;
int ms_count_at_last_idle_notification_;
unsigned int gc_count_at_last_idle_gc_;
int scavenges_since_last_idle_round_;
// If the --deopt_every_n_garbage_collections flag is set to a positive value,
// this variable holds the number of garbage collections since the last
// deoptimization triggered by garbage collection.
int gcs_since_last_deopt_;
#ifdef VERIFY_HEAP
int no_weak_embedded_maps_verification_scope_depth_;
#endif
static const int kMaxMarkSweepsInIdleRound = 7;
static const int kIdleScavengeThreshold = 5;
// Shared state read by the scavenge collector and set by ScavengeObject.
PromotionQueue promotion_queue_;
// Flag is set when the heap has been configured. The heap can be repeatedly
// configured through the API until it is set up.
bool configured_;
ExternalStringTable external_string_table_;
ErrorObjectList error_object_list_;
VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
MemoryChunk* chunks_queued_for_free_;
Mutex* relocation_mutex_;
#ifdef DEBUG
bool relocation_mutex_locked_by_optimizer_thread_;
#endif // DEBUG;
friend class Factory;
friend class GCTracer;
friend class DisallowAllocationFailure;
friend class AlwaysAllocateScope;
friend class Page;
friend class Isolate;
friend class MarkCompactCollector;
friend class MarkCompactMarkingVisitor;
friend class MapCompact;
#ifdef VERIFY_HEAP
friend class NoWeakEmbeddedMapsVerificationScope;
#endif
DISALLOW_COPY_AND_ASSIGN(Heap);
};
class HeapStats {
public:
static const int kStartMarker = 0xDECADE00;
static const int kEndMarker = 0xDECADE01;
int* start_marker; // 0
int* new_space_size; // 1
int* new_space_capacity; // 2
intptr_t* old_pointer_space_size; // 3
intptr_t* old_pointer_space_capacity; // 4
intptr_t* old_data_space_size; // 5
intptr_t* old_data_space_capacity; // 6
intptr_t* code_space_size; // 7
intptr_t* code_space_capacity; // 8
intptr_t* map_space_size; // 9
intptr_t* map_space_capacity; // 10
intptr_t* cell_space_size; // 11
intptr_t* cell_space_capacity; // 12
intptr_t* lo_space_size; // 13
int* global_handle_count; // 14
int* weak_global_handle_count; // 15
int* pending_global_handle_count; // 16
int* near_death_global_handle_count; // 17
int* free_global_handle_count; // 18
intptr_t* memory_allocator_size; // 19
intptr_t* memory_allocator_capacity; // 20
int* objects_per_type; // 21
int* size_per_type; // 22
int* os_error; // 23
int* end_marker; // 24
intptr_t* property_cell_space_size; // 25
intptr_t* property_cell_space_capacity; // 26
};
class DisallowAllocationFailure {
public:
inline DisallowAllocationFailure();
inline ~DisallowAllocationFailure();
#ifdef DEBUG
private:
bool old_state_;
#endif
};
class AlwaysAllocateScope {
public:
inline AlwaysAllocateScope();
inline ~AlwaysAllocateScope();
private:
// Implicitly disable artificial allocation failures.
DisallowAllocationFailure disallow_allocation_failure_;
};
#ifdef VERIFY_HEAP
class NoWeakEmbeddedMapsVerificationScope {
public:
inline NoWeakEmbeddedMapsVerificationScope();
inline ~NoWeakEmbeddedMapsVerificationScope();
};
#endif
// Visitor class to verify interior pointers in spaces that do not contain
// or care about intergenerational references. All heap object pointers have to
// point into the heap to a location that has a map pointer at its first word.
// Caveat: Heap::Contains is an approximation because it can return true for
// objects in a heap space but above the allocation pointer.
class VerifyPointersVisitor: public ObjectVisitor {
public:
inline void VisitPointers(Object** start, Object** end);
};
// Space iterator for iterating over all spaces of the heap. Returns each space
// in turn, and null when it is done.
class AllSpaces BASE_EMBEDDED {
public:
explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
Space* next();
private:
Heap* heap_;
int counter_;
};
// Space iterator for iterating over all old spaces of the heap: Old pointer
// space, old data space and code space. Returns each space in turn, and null
// when it is done.
class OldSpaces BASE_EMBEDDED {
public:
explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
OldSpace* next();
private:
Heap* heap_;
int counter_;
};
// Space iterator for iterating over all the paged spaces of the heap: Map
// space, old pointer space, old data space, code space and cell space. Returns
// each space in turn, and null when it is done.
class PagedSpaces BASE_EMBEDDED {
public:
explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
PagedSpace* next();
private:
Heap* heap_;
int counter_;
};
// Space iterator for iterating over all spaces of the heap.
// For each space an object iterator is provided. The deallocation of the
// returned object iterators is handled by the space iterator.
class SpaceIterator : public Malloced {
public:
explicit SpaceIterator(Heap* heap);
SpaceIterator(Heap* heap, HeapObjectCallback size_func);
virtual ~SpaceIterator();
bool has_next();
ObjectIterator* next();
private:
ObjectIterator* CreateIterator();
Heap* heap_;
int current_space_; // from enum AllocationSpace.
ObjectIterator* iterator_; // object iterator for the current space.
HeapObjectCallback size_func_;
};
// A HeapIterator provides iteration over the whole heap. It
// aggregates the specific iterators for the different spaces as
// these can only iterate over one space only.
//
// HeapIterator can skip free list nodes (that is, de-allocated heap
// objects that still remain in the heap). As implementation of free
// nodes filtering uses GC marks, it can't be used during MS/MC GC
// phases. Also, it is forbidden to interrupt iteration in this mode,
// as this will leave heap objects marked (and thus, unusable).
class HeapObjectsFilter;
class HeapIterator BASE_EMBEDDED {
public:
enum HeapObjectsFiltering {
kNoFiltering,
kFilterUnreachable
};
explicit HeapIterator(Heap* heap);
HeapIterator(Heap* heap, HeapObjectsFiltering filtering);
~HeapIterator();
HeapObject* next();
void reset();
private:
// Perform the initialization.
void Init();
// Perform all necessary shutdown (destruction) work.
void Shutdown();
HeapObject* NextObject();
Heap* heap_;
HeapObjectsFiltering filtering_;
HeapObjectsFilter* filter_;
// Space iterator for iterating all the spaces.
SpaceIterator* space_iterator_;
// Object iterator for the space currently being iterated.
ObjectIterator* object_iterator_;
};
// Cache for mapping (map, property name) into field offset.
// Cleared at startup and prior to mark sweep collection.
class KeyedLookupCache {
public:
// Lookup field offset for (map, name). If absent, -1 is returned.
int Lookup(Map* map, Name* name);
// Update an element in the cache.
void Update(Map* map, Name* name, int field_offset);
// Clear the cache.
void Clear();
static const int kLength = 256;
static const int kCapacityMask = kLength - 1;
static const int kMapHashShift = 5;
static const int kHashMask = -4; // Zero the last two bits.
static const int kEntriesPerBucket = 4;
static const int kNotFound = -1;
// kEntriesPerBucket should be a power of 2.
STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
private:
KeyedLookupCache() {
for (int i = 0; i < kLength; ++i) {
keys_[i].map = NULL;
keys_[i].name = NULL;
field_offsets_[i] = kNotFound;
}
}
static inline int Hash(Map* map, Name* name);
// Get the address of the keys and field_offsets arrays. Used in
// generated code to perform cache lookups.
Address keys_address() {
return reinterpret_cast<Address>(&keys_);
}
Address field_offsets_address() {
return reinterpret_cast<Address>(&field_offsets_);
}
struct Key {
Map* map;
Name* name;
};
Key keys_[kLength];
int field_offsets_[kLength];
friend class ExternalReference;
friend class Isolate;
DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
};
// Cache for mapping (map, property name) into descriptor index.
// The cache contains both positive and negative results.
// Descriptor index equals kNotFound means the property is absent.
// Cleared at startup and prior to any gc.
class DescriptorLookupCache {
public:
// Lookup descriptor index for (map, name).
// If absent, kAbsent is returned.
int Lookup(Map* source, Name* name) {
if (!name->IsUniqueName()) return kAbsent;
int index = Hash(source, name);
Key& key = keys_[index];
if ((key.source == source) && (key.name == name)) return results_[index];
return kAbsent;
}
// Update an element in the cache.
void Update(Map* source, Name* name, int result) {
ASSERT(result != kAbsent);
if (name->IsUniqueName()) {
int index = Hash(source, name);
Key& key = keys_[index];
key.source = source;
key.name = name;
results_[index] = result;
}
}
// Clear the cache.
void Clear();
static const int kAbsent = -2;
private:
DescriptorLookupCache() {
for (int i = 0; i < kLength; ++i) {
keys_[i].source = NULL;
keys_[i].name = NULL;
results_[i] = kAbsent;
}
}
static int Hash(Object* source, Name* name) {
// Uses only lower 32 bits if pointers are larger.
uint32_t source_hash =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source))
>> kPointerSizeLog2;
uint32_t name_hash =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name))
>> kPointerSizeLog2;
return (source_hash ^ name_hash) % kLength;
}
static const int kLength = 64;
struct Key {
Map* source;
Name* name;
};
Key keys_[kLength];
int results_[kLength];
friend class Isolate;
DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
};
// GCTracer collects and prints ONE line after each garbage collector
// invocation IFF --trace_gc is used.
class GCTracer BASE_EMBEDDED {
public:
class Scope BASE_EMBEDDED {
public:
enum ScopeId {
EXTERNAL,
MC_MARK,
MC_SWEEP,
MC_SWEEP_NEWSPACE,
MC_EVACUATE_PAGES,
MC_UPDATE_NEW_TO_NEW_POINTERS,
MC_UPDATE_ROOT_TO_NEW_POINTERS,
MC_UPDATE_OLD_TO_NEW_POINTERS,
MC_UPDATE_POINTERS_TO_EVACUATED,
MC_UPDATE_POINTERS_BETWEEN_EVACUATED,
MC_UPDATE_MISC_POINTERS,
MC_WEAKMAP_PROCESS,
MC_WEAKMAP_CLEAR,
MC_FLUSH_CODE,
kNumberOfScopes
};
Scope(GCTracer* tracer, ScopeId scope)
: tracer_(tracer),
scope_(scope) {
start_time_ = OS::TimeCurrentMillis();
}
~Scope() {
ASSERT(scope_ < kNumberOfScopes); // scope_ is unsigned.
tracer_->scopes_[scope_] += OS::TimeCurrentMillis() - start_time_;
}
private:
GCTracer* tracer_;
ScopeId scope_;
double start_time_;
};
explicit GCTracer(Heap* heap,
const char* gc_reason,
const char* collector_reason);
~GCTracer();
// Sets the collector.
void set_collector(GarbageCollector collector) { collector_ = collector; }
// Sets the GC count.
void set_gc_count(unsigned int count) { gc_count_ = count; }
// Sets the full GC count.
void set_full_gc_count(int count) { full_gc_count_ = count; }
void increment_promoted_objects_size(int object_size) {
promoted_objects_size_ += object_size;
}
void increment_nodes_died_in_new_space() {
nodes_died_in_new_space_++;
}
void increment_nodes_copied_in_new_space() {
nodes_copied_in_new_space_++;
}
void increment_nodes_promoted() {
nodes_promoted_++;
}
private:
// Returns a string matching the collector.
const char* CollectorString();
// Returns size of object in heap (in MB).
inline double SizeOfHeapObjects();
// Timestamp set in the constructor.
double start_time_;
// Size of objects in heap set in constructor.
intptr_t start_object_size_;
// Size of memory allocated from OS set in constructor.
intptr_t start_memory_size_;
// Type of collector.
GarbageCollector collector_;
// A count (including this one, e.g. the first collection is 1) of the
// number of garbage collections.
unsigned int gc_count_;
// A count (including this one) of the number of full garbage collections.
int full_gc_count_;
// Amounts of time spent in different scopes during GC.
double scopes_[Scope::kNumberOfScopes];
// Total amount of space either wasted or contained in one of free lists
// before the current GC.
intptr_t in_free_list_or_wasted_before_gc_;
// Difference between space used in the heap at the beginning of the current
// collection and the end of the previous collection.
intptr_t allocated_since_last_gc_;
// Amount of time spent in mutator that is time elapsed between end of the
// previous collection and the beginning of the current one.
double spent_in_mutator_;
// Size of objects promoted during the current collection.
intptr_t promoted_objects_size_;
// Number of died nodes in the new space.
int nodes_died_in_new_space_;
// Number of copied nodes to the new space.
int nodes_copied_in_new_space_;
// Number of promoted nodes to the old space.
int nodes_promoted_;
// Incremental marking steps counters.
int steps_count_;
double steps_took_;
double longest_step_;
int steps_count_since_last_gc_;
double steps_took_since_last_gc_;
Heap* heap_;
const char* gc_reason_;
const char* collector_reason_;
};
class RegExpResultsCache {
public:
enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
// Attempt to retrieve a cached result. On failure, 0 is returned as a Smi.
// On success, the returned result is guaranteed to be a COW-array.
static Object* Lookup(Heap* heap,
String* key_string,
Object* key_pattern,
ResultsCacheType type);
// Attempt to add value_array to the cache specified by type. On success,
// value_array is turned into a COW-array.
static void Enter(Heap* heap,
String* key_string,
Object* key_pattern,
FixedArray* value_array,
ResultsCacheType type);
static void Clear(FixedArray* cache);
static const int kRegExpResultsCacheSize = 0x100;
private:
static const int kArrayEntriesPerCacheEntry = 4;
static const int kStringOffset = 0;
static const int kPatternOffset = 1;
static const int kArrayOffset = 2;
};
class TranscendentalCache {
public:
enum Type {ACOS, ASIN, ATAN, COS, EXP, LOG, SIN, TAN, kNumberOfCaches};
static const int kTranscendentalTypeBits = 3;
STATIC_ASSERT((1 << kTranscendentalTypeBits) >= kNumberOfCaches);
// Returns a heap number with f(input), where f is a math function specified
// by the 'type' argument.
MUST_USE_RESULT inline MaybeObject* Get(Type type, double input);
// The cache contains raw Object pointers. This method disposes of
// them before a garbage collection.
void Clear();
private:
class SubCache {
static const int kCacheSize = 512;
explicit SubCache(Type t);
MUST_USE_RESULT inline MaybeObject* Get(double input);
inline double Calculate(double input);
struct Element {
uint32_t in[2];
Object* output;
};
union Converter {
double dbl;
uint32_t integers[2];
};
inline static int Hash(const Converter& c) {
uint32_t hash = (c.integers[0] ^ c.integers[1]);
hash ^= static_cast<int32_t>(hash) >> 16;
hash ^= static_cast<int32_t>(hash) >> 8;
return (hash & (kCacheSize - 1));
}
Element elements_[kCacheSize];
Type type_;
Isolate* isolate_;
// Allow access to the caches_ array as an ExternalReference.
friend class ExternalReference;
// Inline implementation of the cache.
friend class TranscendentalCacheStub;
// For evaluating value.
friend class TranscendentalCache;
DISALLOW_COPY_AND_ASSIGN(SubCache);
};
TranscendentalCache() {
for (int i = 0; i < kNumberOfCaches; ++i) caches_[i] = NULL;
}
// Used to create an external reference.
inline Address cache_array_address();
// Instantiation
friend class Isolate;
// Inline implementation of the caching.
friend class TranscendentalCacheStub;
// Allow access to the caches_ array as an ExternalReference.
friend class ExternalReference;
SubCache* caches_[kNumberOfCaches];
DISALLOW_COPY_AND_ASSIGN(TranscendentalCache);
};
// Abstract base class for checking whether a weak object should be retained.
class WeakObjectRetainer {
public:
virtual ~WeakObjectRetainer() {}
// Return whether this object should be retained. If NULL is returned the
// object has no references. Otherwise the address of the retained object
// should be returned as in some GC situations the object has been moved.
virtual Object* RetainAs(Object* object) = 0;
};
// Intrusive object marking uses least significant bit of
// heap object's map word to mark objects.
// Normally all map words have least significant bit set
// because they contain tagged map pointer.
// If the bit is not set object is marked.
// All objects should be unmarked before resuming
// JavaScript execution.
class IntrusiveMarking {
public:
static bool IsMarked(HeapObject* object) {
return (object->map_word().ToRawValue() & kNotMarkedBit) == 0;
}
static void ClearMark(HeapObject* object) {
uintptr_t map_word = object->map_word().ToRawValue();
object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit));
ASSERT(!IsMarked(object));
}
static void SetMark(HeapObject* object) {
uintptr_t map_word = object->map_word().ToRawValue();
object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit));
ASSERT(IsMarked(object));
}
static Map* MapOfMarkedObject(HeapObject* object) {
uintptr_t map_word = object->map_word().ToRawValue();
return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap();
}
static int SizeOfMarkedObject(HeapObject* object) {
return object->SizeFromMap(MapOfMarkedObject(object));
}
private:
static const uintptr_t kNotMarkedBit = 0x1;
STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0);
};
#ifdef DEBUG
// Helper class for tracing paths to a search target Object from all roots.
// The TracePathFrom() method can be used to trace paths from a specific
// object to the search target object.
class PathTracer : public ObjectVisitor {
public:
enum WhatToFind {
FIND_ALL, // Will find all matches.
FIND_FIRST // Will stop the search after first match.
};
// For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
// after the first match. If FIND_ALL is specified, then tracing will be
// done for all matches.
PathTracer(Object* search_target,
WhatToFind what_to_find,
VisitMode visit_mode)
: search_target_(search_target),
found_target_(false),
found_target_in_trace_(false),
what_to_find_(what_to_find),
visit_mode_(visit_mode),
object_stack_(20),
no_allocation() {}
virtual void VisitPointers(Object** start, Object** end);
void Reset();
void TracePathFrom(Object** root);
bool found() const { return found_target_; }
static Object* const kAnyGlobalObject;
protected:
class MarkVisitor;
class UnmarkVisitor;
void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
virtual void ProcessResults();
// Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
static const int kMarkTag = 2;
Object* search_target_;
bool found_target_;
bool found_target_in_trace_;
WhatToFind what_to_find_;
VisitMode visit_mode_;
List<Object*> object_stack_;
DisallowHeapAllocation no_allocation; // i.e. no gc allowed.
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
};
#endif // DEBUG
} } // namespace v8::internal
#endif // V8_HEAP_H_