c487aba74c
Up until now we used int32_t for NodeId, but that was not ideal because negative values are invalid for NodeId and we use it as an array index for example in the NodeMarker class, where C++ compilers on x64 have to generate code that does proper sign extension for the indices, which is completely unnecessary. R=svenpanne@chromium.org Review URL: https://codereview.chromium.org/1178403004 Cr-Commit-Position: refs/heads/master@{#28997}
256 lines
6.1 KiB
C++
256 lines
6.1 KiB
C++
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/bit-vector.h"
|
|
#include "src/compiler/control-equivalence.h"
|
|
#include "src/compiler/graph-visualizer.h"
|
|
#include "src/compiler/node-properties.h"
|
|
#include "src/zone-containers.h"
|
|
#include "test/unittests/compiler/graph-unittest.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace compiler {
|
|
|
|
#define ASSERT_EQUIVALENCE(...) \
|
|
do { \
|
|
Node* __n[] = {__VA_ARGS__}; \
|
|
ASSERT_TRUE(IsEquivalenceClass(arraysize(__n), __n)); \
|
|
} while (false)
|
|
|
|
class ControlEquivalenceTest : public GraphTest {
|
|
public:
|
|
ControlEquivalenceTest() : all_nodes_(zone()), classes_(zone()) {
|
|
Store(graph()->start());
|
|
}
|
|
|
|
protected:
|
|
void ComputeEquivalence(Node* node) {
|
|
graph()->SetEnd(graph()->NewNode(common()->End(1), node));
|
|
if (FLAG_trace_turbo) {
|
|
OFStream os(stdout);
|
|
os << AsDOT(*graph());
|
|
}
|
|
ControlEquivalence equivalence(zone(), graph());
|
|
equivalence.Run(node);
|
|
classes_.resize(graph()->NodeCount());
|
|
for (Node* node : all_nodes_) {
|
|
classes_[node->id()] = equivalence.ClassOf(node);
|
|
}
|
|
}
|
|
|
|
bool IsEquivalenceClass(size_t length, Node** nodes) {
|
|
BitVector in_class(static_cast<int>(graph()->NodeCount()), zone());
|
|
size_t expected_class = classes_[nodes[0]->id()];
|
|
for (size_t i = 0; i < length; ++i) {
|
|
in_class.Add(nodes[i]->id());
|
|
}
|
|
for (Node* node : all_nodes_) {
|
|
if (in_class.Contains(node->id())) {
|
|
if (classes_[node->id()] != expected_class) return false;
|
|
} else {
|
|
if (classes_[node->id()] == expected_class) return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Node* Value() { return NumberConstant(0.0); }
|
|
|
|
Node* Branch(Node* control) {
|
|
return Store(graph()->NewNode(common()->Branch(), Value(), control));
|
|
}
|
|
|
|
Node* IfTrue(Node* control) {
|
|
return Store(graph()->NewNode(common()->IfTrue(), control));
|
|
}
|
|
|
|
Node* IfFalse(Node* control) {
|
|
return Store(graph()->NewNode(common()->IfFalse(), control));
|
|
}
|
|
|
|
Node* Merge2(Node* control1, Node* control2) {
|
|
return Store(graph()->NewNode(common()->Merge(2), control1, control2));
|
|
}
|
|
|
|
Node* Loop2(Node* control) {
|
|
return Store(graph()->NewNode(common()->Loop(2), control, control));
|
|
}
|
|
|
|
Node* End(Node* control) {
|
|
return Store(graph()->NewNode(common()->End(1), control));
|
|
}
|
|
|
|
private:
|
|
Node* Store(Node* node) {
|
|
all_nodes_.push_back(node);
|
|
return node;
|
|
}
|
|
|
|
ZoneVector<Node*> all_nodes_;
|
|
ZoneVector<size_t> classes_;
|
|
};
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Test cases.
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Empty1) {
|
|
Node* start = graph()->start();
|
|
ComputeEquivalence(start);
|
|
|
|
ASSERT_EQUIVALENCE(start);
|
|
}
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Empty2) {
|
|
Node* start = graph()->start();
|
|
Node* end = End(start);
|
|
ComputeEquivalence(end);
|
|
|
|
ASSERT_EQUIVALENCE(start, end);
|
|
}
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Diamond1) {
|
|
Node* start = graph()->start();
|
|
Node* b = Branch(start);
|
|
Node* t = IfTrue(b);
|
|
Node* f = IfFalse(b);
|
|
Node* m = Merge2(t, f);
|
|
ComputeEquivalence(m);
|
|
|
|
ASSERT_EQUIVALENCE(b, m, start);
|
|
ASSERT_EQUIVALENCE(f);
|
|
ASSERT_EQUIVALENCE(t);
|
|
}
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Diamond2) {
|
|
Node* start = graph()->start();
|
|
Node* b1 = Branch(start);
|
|
Node* t1 = IfTrue(b1);
|
|
Node* f1 = IfFalse(b1);
|
|
Node* b2 = Branch(f1);
|
|
Node* t2 = IfTrue(b2);
|
|
Node* f2 = IfFalse(b2);
|
|
Node* m2 = Merge2(t2, f2);
|
|
Node* m1 = Merge2(t1, m2);
|
|
ComputeEquivalence(m1);
|
|
|
|
ASSERT_EQUIVALENCE(b1, m1, start);
|
|
ASSERT_EQUIVALENCE(t1);
|
|
ASSERT_EQUIVALENCE(f1, b2, m2);
|
|
ASSERT_EQUIVALENCE(t2);
|
|
ASSERT_EQUIVALENCE(f2);
|
|
}
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Diamond3) {
|
|
Node* start = graph()->start();
|
|
Node* b1 = Branch(start);
|
|
Node* t1 = IfTrue(b1);
|
|
Node* f1 = IfFalse(b1);
|
|
Node* m1 = Merge2(t1, f1);
|
|
Node* b2 = Branch(m1);
|
|
Node* t2 = IfTrue(b2);
|
|
Node* f2 = IfFalse(b2);
|
|
Node* m2 = Merge2(t2, f2);
|
|
ComputeEquivalence(m2);
|
|
|
|
ASSERT_EQUIVALENCE(b1, m1, b2, m2, start);
|
|
ASSERT_EQUIVALENCE(t1);
|
|
ASSERT_EQUIVALENCE(f1);
|
|
ASSERT_EQUIVALENCE(t2);
|
|
ASSERT_EQUIVALENCE(f2);
|
|
}
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Switch1) {
|
|
Node* start = graph()->start();
|
|
Node* b1 = Branch(start);
|
|
Node* t1 = IfTrue(b1);
|
|
Node* f1 = IfFalse(b1);
|
|
Node* b2 = Branch(f1);
|
|
Node* t2 = IfTrue(b2);
|
|
Node* f2 = IfFalse(b2);
|
|
Node* b3 = Branch(f2);
|
|
Node* t3 = IfTrue(b3);
|
|
Node* f3 = IfFalse(b3);
|
|
Node* m1 = Merge2(t1, t2);
|
|
Node* m2 = Merge2(m1, t3);
|
|
Node* m3 = Merge2(m2, f3);
|
|
ComputeEquivalence(m3);
|
|
|
|
ASSERT_EQUIVALENCE(b1, m3, start);
|
|
ASSERT_EQUIVALENCE(t1);
|
|
ASSERT_EQUIVALENCE(f1, b2);
|
|
ASSERT_EQUIVALENCE(t2);
|
|
ASSERT_EQUIVALENCE(f2, b3);
|
|
ASSERT_EQUIVALENCE(t3);
|
|
ASSERT_EQUIVALENCE(f3);
|
|
ASSERT_EQUIVALENCE(m1);
|
|
ASSERT_EQUIVALENCE(m2);
|
|
}
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Loop1) {
|
|
Node* start = graph()->start();
|
|
Node* l = Loop2(start);
|
|
l->ReplaceInput(1, l);
|
|
ComputeEquivalence(l);
|
|
|
|
ASSERT_EQUIVALENCE(start);
|
|
ASSERT_EQUIVALENCE(l);
|
|
}
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Loop2) {
|
|
Node* start = graph()->start();
|
|
Node* l = Loop2(start);
|
|
Node* b = Branch(l);
|
|
Node* t = IfTrue(b);
|
|
Node* f = IfFalse(b);
|
|
l->ReplaceInput(1, t);
|
|
ComputeEquivalence(f);
|
|
|
|
ASSERT_EQUIVALENCE(f, start);
|
|
ASSERT_EQUIVALENCE(t);
|
|
ASSERT_EQUIVALENCE(l, b);
|
|
}
|
|
|
|
|
|
TEST_F(ControlEquivalenceTest, Irreducible) {
|
|
Node* start = graph()->start();
|
|
Node* b1 = Branch(start);
|
|
Node* t1 = IfTrue(b1);
|
|
Node* f1 = IfFalse(b1);
|
|
Node* lp = Loop2(f1);
|
|
Node* m1 = Merge2(t1, lp);
|
|
Node* b2 = Branch(m1);
|
|
Node* t2 = IfTrue(b2);
|
|
Node* f2 = IfFalse(b2);
|
|
Node* m2 = Merge2(t2, f2);
|
|
Node* b3 = Branch(m2);
|
|
Node* t3 = IfTrue(b3);
|
|
Node* f3 = IfFalse(b3);
|
|
lp->ReplaceInput(1, f3);
|
|
ComputeEquivalence(t3);
|
|
|
|
ASSERT_EQUIVALENCE(b1, t3, start);
|
|
ASSERT_EQUIVALENCE(t1);
|
|
ASSERT_EQUIVALENCE(f1);
|
|
ASSERT_EQUIVALENCE(m1, b2, m2, b3);
|
|
ASSERT_EQUIVALENCE(t2);
|
|
ASSERT_EQUIVALENCE(f2);
|
|
ASSERT_EQUIVALENCE(f3);
|
|
ASSERT_EQUIVALENCE(lp);
|
|
}
|
|
|
|
|
|
} // namespace compiler
|
|
} // namespace internal
|
|
} // namespace v8
|