0a0fe8fb8b
Import fdlibm versions of acos, acosh, asin and asinh, which are more precise and produce the same result across platforms (we were using libm versions for asin and acos so far, where both speed and precision depended on the operating system so far). Introduce appropriate TurboFan operators for these functions and use them both for inlining and for the generic builtin. Also migrate the Math.imul and Math.fround builtins to TurboFan builtins to ensure that their behavior is always exactly the same as the inlined TurboFan version (i.e. C++ truncation semantics for double to float don't necessarily meet the JavaScript semantics). For completeness, also migrate Math.sign, which can even get some nice love in TurboFan. Drive-by-fix: Some alpha-sorting on the Math related functions, and cleanup the list of Math intrinsics that we have to export via the native context currently. BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172 TBR=rossberg@chromium.org R=franzih@chromium.org Review-Url: https://codereview.chromium.org/2116753002 Cr-Commit-Position: refs/heads/master@{#37476}
406 lines
14 KiB
C++
406 lines
14 KiB
C++
// Copyright 2016 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <limits>
|
|
|
|
#include "src/base/ieee754.h"
|
|
#include "src/base/macros.h"
|
|
#include "testing/gmock-support.h"
|
|
#include "testing/gtest-support.h"
|
|
|
|
using testing::BitEq;
|
|
using testing::IsNaN;
|
|
|
|
namespace v8 {
|
|
namespace base {
|
|
namespace ieee754 {
|
|
|
|
namespace {
|
|
|
|
double const kE = 2.718281828459045;
|
|
double const kPI = 3.141592653589793;
|
|
double const kTwo120 = 1.329227995784916e+36;
|
|
double const kInfinity = std::numeric_limits<double>::infinity();
|
|
double const kQNaN = std::numeric_limits<double>::quiet_NaN();
|
|
double const kSNaN = std::numeric_limits<double>::signaling_NaN();
|
|
|
|
} // namespace
|
|
|
|
TEST(Ieee754, Acos) {
|
|
EXPECT_THAT(acos(kInfinity), IsNaN());
|
|
EXPECT_THAT(acos(-kInfinity), IsNaN());
|
|
EXPECT_THAT(acos(kQNaN), IsNaN());
|
|
EXPECT_THAT(acos(kSNaN), IsNaN());
|
|
|
|
EXPECT_EQ(0.0, acos(1.0));
|
|
}
|
|
|
|
TEST(Ieee754, Acosh) {
|
|
// Tests for acosh for exceptional values
|
|
EXPECT_EQ(kInfinity, acosh(kInfinity));
|
|
EXPECT_THAT(acosh(-kInfinity), IsNaN());
|
|
EXPECT_THAT(acosh(kQNaN), IsNaN());
|
|
EXPECT_THAT(acosh(kSNaN), IsNaN());
|
|
EXPECT_THAT(acosh(0.9), IsNaN());
|
|
|
|
// Test basic acosh functionality
|
|
EXPECT_EQ(0.0, acosh(1.0));
|
|
// acosh(1.5) = log((sqrt(5)+3)/2), case 1 < x < 2
|
|
EXPECT_EQ(0.9624236501192069e0, acosh(1.5));
|
|
// acosh(4) = log(sqrt(15)+4), case 2 < x < 2^28
|
|
EXPECT_EQ(2.0634370688955608e0, acosh(4.0));
|
|
// acosh(2^50), case 2^28 < x
|
|
EXPECT_EQ(35.35050620855721e0, acosh(1125899906842624.0));
|
|
// acosh(most-positive-float), no overflow
|
|
EXPECT_EQ(710.4758600739439e0, acosh(1.7976931348623157e308));
|
|
}
|
|
|
|
TEST(Ieee754, Asin) {
|
|
EXPECT_THAT(asin(kInfinity), IsNaN());
|
|
EXPECT_THAT(asin(-kInfinity), IsNaN());
|
|
EXPECT_THAT(asin(kQNaN), IsNaN());
|
|
EXPECT_THAT(asin(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(asin(0.0), BitEq(0.0));
|
|
EXPECT_THAT(asin(-0.0), BitEq(-0.0));
|
|
}
|
|
|
|
TEST(Ieee754, Asinh) {
|
|
// Tests for asinh for exceptional values
|
|
EXPECT_EQ(kInfinity, asinh(kInfinity));
|
|
EXPECT_EQ(-kInfinity, asinh(-kInfinity));
|
|
EXPECT_THAT(asin(kQNaN), IsNaN());
|
|
EXPECT_THAT(asin(kSNaN), IsNaN());
|
|
|
|
// Test basic asinh functionality
|
|
EXPECT_THAT(asinh(0.0), BitEq(0.0));
|
|
EXPECT_THAT(asinh(-0.0), BitEq(-0.0));
|
|
// asinh(2^-29) = 2^-29, case |x| < 2^-28, where acosh(x) = x
|
|
EXPECT_EQ(1.862645149230957e-9, asinh(1.862645149230957e-9));
|
|
// asinh(-2^-29) = -2^-29, case |x| < 2^-28, where acosh(x) = x
|
|
EXPECT_EQ(-1.862645149230957e-9, asinh(-1.862645149230957e-9));
|
|
// asinh(2^-28), case 2 > |x| >= 2^-28
|
|
EXPECT_EQ(3.725290298461914e-9, asinh(3.725290298461914e-9));
|
|
// asinh(-2^-28), case 2 > |x| >= 2^-28
|
|
EXPECT_EQ(-3.725290298461914e-9, asinh(-3.725290298461914e-9));
|
|
// asinh(1), case 2 > |x| > 2^-28
|
|
EXPECT_EQ(0.881373587019543e0, asinh(1.0));
|
|
// asinh(-1), case 2 > |x| > 2^-28
|
|
EXPECT_EQ(-0.881373587019543e0, asinh(-1.0));
|
|
// asinh(5), case 2^28 > |x| > 2
|
|
EXPECT_EQ(2.3124383412727525e0, asinh(5.0));
|
|
// asinh(-5), case 2^28 > |x| > 2
|
|
EXPECT_EQ(-2.3124383412727525e0, asinh(-5.0));
|
|
// asinh(2^28), case 2^28 > |x|
|
|
EXPECT_EQ(20.101268236238415e0, asinh(268435456.0));
|
|
// asinh(-2^28), case 2^28 > |x|
|
|
EXPECT_EQ(-20.101268236238415e0, asinh(-268435456.0));
|
|
// asinh(<most-positive-float>), no overflow
|
|
EXPECT_EQ(710.4758600739439e0, asinh(1.7976931348623157e308));
|
|
// asinh(-<most-positive-float>), no overflow
|
|
EXPECT_EQ(-710.4758600739439e0, asinh(-1.7976931348623157e308));
|
|
}
|
|
|
|
TEST(Ieee754, Atan) {
|
|
EXPECT_THAT(atan(kQNaN), IsNaN());
|
|
EXPECT_THAT(atan(kSNaN), IsNaN());
|
|
EXPECT_THAT(atan(-0.0), BitEq(-0.0));
|
|
EXPECT_THAT(atan(0.0), BitEq(0.0));
|
|
EXPECT_DOUBLE_EQ(1.5707963267948966, atan(kInfinity));
|
|
EXPECT_DOUBLE_EQ(-1.5707963267948966, atan(-kInfinity));
|
|
}
|
|
|
|
TEST(Ieee754, Atan2) {
|
|
EXPECT_THAT(atan2(kQNaN, kQNaN), IsNaN());
|
|
EXPECT_THAT(atan2(kQNaN, kSNaN), IsNaN());
|
|
EXPECT_THAT(atan2(kSNaN, kQNaN), IsNaN());
|
|
EXPECT_THAT(atan2(kSNaN, kSNaN), IsNaN());
|
|
EXPECT_DOUBLE_EQ(0.7853981633974483, atan2(kInfinity, kInfinity));
|
|
EXPECT_DOUBLE_EQ(2.356194490192345, atan2(kInfinity, -kInfinity));
|
|
EXPECT_DOUBLE_EQ(-0.7853981633974483, atan2(-kInfinity, kInfinity));
|
|
EXPECT_DOUBLE_EQ(-2.356194490192345, atan2(-kInfinity, -kInfinity));
|
|
}
|
|
|
|
TEST(Ieee754, Atanh) {
|
|
EXPECT_THAT(atanh(kQNaN), IsNaN());
|
|
EXPECT_THAT(atanh(kSNaN), IsNaN());
|
|
EXPECT_THAT(atanh(kInfinity), IsNaN());
|
|
EXPECT_EQ(kInfinity, atanh(1));
|
|
EXPECT_EQ(-kInfinity, atanh(-1));
|
|
EXPECT_DOUBLE_EQ(0.54930614433405478, atanh(0.5));
|
|
}
|
|
|
|
TEST(Ieee754, Cos) {
|
|
// Test values mentioned in the EcmaScript spec.
|
|
EXPECT_THAT(cos(kQNaN), IsNaN());
|
|
EXPECT_THAT(cos(kSNaN), IsNaN());
|
|
EXPECT_THAT(cos(kInfinity), IsNaN());
|
|
EXPECT_THAT(cos(-kInfinity), IsNaN());
|
|
|
|
// Tests for cos for |x| < pi/4
|
|
EXPECT_EQ(1.0, 1 / cos(-0.0));
|
|
EXPECT_EQ(1.0, 1 / cos(0.0));
|
|
// cos(x) = 1 for |x| < 2^-27
|
|
EXPECT_EQ(1, cos(2.3283064365386963e-10));
|
|
EXPECT_EQ(1, cos(-2.3283064365386963e-10));
|
|
// Test KERNELCOS for |x| < 0.3.
|
|
// cos(pi/20) = sqrt(sqrt(2)*sqrt(sqrt(5)+5)+4)/2^(3/2)
|
|
EXPECT_EQ(0.9876883405951378, cos(0.15707963267948966));
|
|
// Test KERNELCOS for x ~= 0.78125
|
|
EXPECT_EQ(0.7100335477927638, cos(0.7812504768371582));
|
|
EXPECT_EQ(0.7100338835660797, cos(0.78125));
|
|
// Test KERNELCOS for |x| > 0.3.
|
|
// cos(pi/8) = sqrt(sqrt(2)+1)/2^(3/4)
|
|
EXPECT_EQ(0.9238795325112867, cos(0.39269908169872414));
|
|
// Test KERNELTAN for |x| < 0.67434.
|
|
EXPECT_EQ(0.9238795325112867, cos(-0.39269908169872414));
|
|
|
|
// Tests for cos.
|
|
EXPECT_EQ(1, cos(3.725290298461914e-9));
|
|
// Cover different code paths in KERNELCOS.
|
|
EXPECT_EQ(0.9689124217106447, cos(0.25));
|
|
EXPECT_EQ(0.8775825618903728, cos(0.5));
|
|
EXPECT_EQ(0.7073882691671998, cos(0.785));
|
|
// Test that cos(Math.PI/2) != 0 since Math.PI is not exact.
|
|
EXPECT_EQ(6.123233995736766e-17, cos(1.5707963267948966));
|
|
// Test cos for various phases.
|
|
EXPECT_EQ(0.7071067811865474, cos(7.0 / 4 * kPI));
|
|
EXPECT_EQ(0.7071067811865477, cos(9.0 / 4 * kPI));
|
|
EXPECT_EQ(-0.7071067811865467, cos(11.0 / 4 * kPI));
|
|
EXPECT_EQ(-0.7071067811865471, cos(13.0 / 4 * kPI));
|
|
EXPECT_EQ(0.9367521275331447, cos(1000000.0));
|
|
EXPECT_EQ(-3.435757038074824e-12, cos(1048575.0 / 2 * kPI));
|
|
|
|
// Test Hayne-Panek reduction.
|
|
EXPECT_EQ(-0.9258790228548379e0, cos(kTwo120));
|
|
EXPECT_EQ(-0.9258790228548379e0, cos(-kTwo120));
|
|
}
|
|
|
|
TEST(Ieee754, Cosh) {
|
|
// Test values mentioned in the EcmaScript spec.
|
|
EXPECT_THAT(cosh(kQNaN), IsNaN());
|
|
EXPECT_THAT(cosh(kSNaN), IsNaN());
|
|
EXPECT_THAT(cosh(kInfinity), kInfinity);
|
|
EXPECT_THAT(cosh(-kInfinity), kInfinity);
|
|
EXPECT_EQ(1, cosh(0.0));
|
|
EXPECT_EQ(1, cosh(-0.0));
|
|
}
|
|
|
|
TEST(Ieee754, Exp) {
|
|
EXPECT_THAT(exp(kQNaN), IsNaN());
|
|
EXPECT_THAT(exp(kSNaN), IsNaN());
|
|
EXPECT_EQ(0.0, exp(-kInfinity));
|
|
EXPECT_EQ(0.0, exp(-1000));
|
|
EXPECT_EQ(0.0, exp(-745.1332191019412));
|
|
EXPECT_EQ(2.2250738585072626e-308, exp(-708.39641853226408));
|
|
EXPECT_EQ(3.307553003638408e-308, exp(-708.0));
|
|
EXPECT_EQ(4.9406564584124654e-324, exp(-7.45133219101941108420e+02));
|
|
EXPECT_EQ(0.36787944117144233, exp(-1.0));
|
|
EXPECT_EQ(1.0, exp(-0.0));
|
|
EXPECT_EQ(1.0, exp(0.0));
|
|
EXPECT_EQ(1.0, exp(2.2250738585072014e-308));
|
|
|
|
// Test that exp(x) is monotonic near 1.
|
|
EXPECT_GE(exp(1.0), exp(0.9999999999999999));
|
|
EXPECT_LE(exp(1.0), exp(1.0000000000000002));
|
|
|
|
// Test that we produce the correctly rounded result for 1.
|
|
EXPECT_EQ(kE, exp(1.0));
|
|
|
|
EXPECT_EQ(7.38905609893065e0, exp(2.0));
|
|
EXPECT_EQ(1.7976931348622732e308, exp(7.09782712893383973096e+02));
|
|
EXPECT_EQ(2.6881171418161356e+43, exp(100.0));
|
|
EXPECT_EQ(8.218407461554972e+307, exp(709.0));
|
|
EXPECT_EQ(1.7968190737295725e308, exp(709.7822265625e0));
|
|
EXPECT_EQ(kInfinity, exp(709.7827128933841e0));
|
|
EXPECT_EQ(kInfinity, exp(710.0));
|
|
EXPECT_EQ(kInfinity, exp(1000.0));
|
|
EXPECT_EQ(kInfinity, exp(kInfinity));
|
|
}
|
|
|
|
TEST(Ieee754, Expm1) {
|
|
EXPECT_THAT(expm1(kQNaN), IsNaN());
|
|
EXPECT_THAT(expm1(kSNaN), IsNaN());
|
|
EXPECT_EQ(-1.0, expm1(-kInfinity));
|
|
EXPECT_EQ(kInfinity, expm1(kInfinity));
|
|
EXPECT_EQ(0.0, expm1(-0.0));
|
|
EXPECT_EQ(0.0, expm1(0.0));
|
|
EXPECT_EQ(1.718281828459045, expm1(1.0));
|
|
EXPECT_EQ(2.6881171418161356e+43, expm1(100.0));
|
|
EXPECT_EQ(8.218407461554972e+307, expm1(709.0));
|
|
EXPECT_EQ(kInfinity, expm1(710.0));
|
|
}
|
|
|
|
TEST(Ieee754, Log) {
|
|
EXPECT_THAT(log(kQNaN), IsNaN());
|
|
EXPECT_THAT(log(kSNaN), IsNaN());
|
|
EXPECT_THAT(log(-kInfinity), IsNaN());
|
|
EXPECT_THAT(log(-1.0), IsNaN());
|
|
EXPECT_EQ(-kInfinity, log(-0.0));
|
|
EXPECT_EQ(-kInfinity, log(0.0));
|
|
EXPECT_EQ(0.0, log(1.0));
|
|
EXPECT_EQ(kInfinity, log(kInfinity));
|
|
|
|
// Test that log(E) produces the correctly rounded result.
|
|
EXPECT_EQ(1.0, log(kE));
|
|
}
|
|
|
|
TEST(Ieee754, Log1p) {
|
|
EXPECT_THAT(log1p(kQNaN), IsNaN());
|
|
EXPECT_THAT(log1p(kSNaN), IsNaN());
|
|
EXPECT_THAT(log1p(-kInfinity), IsNaN());
|
|
EXPECT_EQ(-kInfinity, log1p(-1.0));
|
|
EXPECT_EQ(0.0, log1p(0.0));
|
|
EXPECT_EQ(-0.0, log1p(-0.0));
|
|
EXPECT_EQ(kInfinity, log1p(kInfinity));
|
|
EXPECT_EQ(6.9756137364252422e-03, log1p(0.007));
|
|
EXPECT_EQ(709.782712893384, log1p(1.7976931348623157e308));
|
|
EXPECT_EQ(2.7755575615628914e-17, log1p(2.7755575615628914e-17));
|
|
EXPECT_EQ(9.313225741817976e-10, log1p(9.313225746154785e-10));
|
|
EXPECT_EQ(-0.2876820724517809, log1p(-0.25));
|
|
EXPECT_EQ(0.22314355131420976, log1p(0.25));
|
|
EXPECT_EQ(2.3978952727983707, log1p(10));
|
|
EXPECT_EQ(36.841361487904734, log1p(10e15));
|
|
EXPECT_EQ(37.08337388996168, log1p(12738099905822720));
|
|
EXPECT_EQ(37.08336444902049, log1p(12737979646738432));
|
|
EXPECT_EQ(1.3862943611198906, log1p(3));
|
|
EXPECT_EQ(1.3862945995384413, log1p(3 + 9.5367431640625e-7));
|
|
EXPECT_EQ(0.5596157879354227, log1p(0.75));
|
|
EXPECT_EQ(0.8109302162163288, log1p(1.25));
|
|
}
|
|
|
|
TEST(Ieee754, Log2) {
|
|
EXPECT_THAT(log2(kQNaN), IsNaN());
|
|
EXPECT_THAT(log2(kSNaN), IsNaN());
|
|
EXPECT_THAT(log2(-kInfinity), IsNaN());
|
|
EXPECT_THAT(log2(-1.0), IsNaN());
|
|
EXPECT_EQ(-kInfinity, log2(0.0));
|
|
EXPECT_EQ(-kInfinity, log2(-0.0));
|
|
EXPECT_EQ(kInfinity, log2(kInfinity));
|
|
}
|
|
|
|
TEST(Ieee754, Log10) {
|
|
EXPECT_THAT(log10(kQNaN), IsNaN());
|
|
EXPECT_THAT(log10(kSNaN), IsNaN());
|
|
EXPECT_THAT(log10(-kInfinity), IsNaN());
|
|
EXPECT_THAT(log10(-1.0), IsNaN());
|
|
EXPECT_EQ(-kInfinity, log10(0.0));
|
|
EXPECT_EQ(-kInfinity, log10(-0.0));
|
|
EXPECT_EQ(kInfinity, log10(kInfinity));
|
|
EXPECT_EQ(3.0, log10(1000.0));
|
|
EXPECT_EQ(14.0, log10(100000000000000)); // log10(10 ^ 14)
|
|
EXPECT_EQ(3.7389561269540406, log10(5482.2158));
|
|
EXPECT_EQ(14.661551142893833, log10(458723662312872.125782332587));
|
|
EXPECT_EQ(-0.9083828622192334, log10(0.12348583358871));
|
|
EXPECT_EQ(5.0, log10(100000.0));
|
|
}
|
|
|
|
TEST(Ieee754, Cbrt) {
|
|
EXPECT_THAT(cbrt(kQNaN), IsNaN());
|
|
EXPECT_THAT(cbrt(kSNaN), IsNaN());
|
|
EXPECT_EQ(kInfinity, cbrt(kInfinity));
|
|
EXPECT_EQ(-kInfinity, cbrt(-kInfinity));
|
|
EXPECT_EQ(1.4422495703074083, cbrt(3));
|
|
EXPECT_EQ(100, cbrt(100 * 100 * 100));
|
|
EXPECT_EQ(46.415888336127786, cbrt(100000));
|
|
}
|
|
|
|
TEST(Ieee754, Sin) {
|
|
// Test values mentioned in the EcmaScript spec.
|
|
EXPECT_THAT(sin(kQNaN), IsNaN());
|
|
EXPECT_THAT(sin(kSNaN), IsNaN());
|
|
EXPECT_THAT(sin(kInfinity), IsNaN());
|
|
EXPECT_THAT(sin(-kInfinity), IsNaN());
|
|
|
|
// Tests for sin for |x| < pi/4
|
|
EXPECT_EQ(-kInfinity, 1 / sin(-0.0));
|
|
EXPECT_EQ(kInfinity, 1 / sin(0.0));
|
|
// sin(x) = x for x < 2^-27
|
|
EXPECT_EQ(2.3283064365386963e-10, sin(2.3283064365386963e-10));
|
|
EXPECT_EQ(-2.3283064365386963e-10, sin(-2.3283064365386963e-10));
|
|
// sin(pi/8) = sqrt(sqrt(2)-1)/2^(3/4)
|
|
EXPECT_EQ(0.3826834323650898, sin(0.39269908169872414));
|
|
EXPECT_EQ(-0.3826834323650898, sin(-0.39269908169872414));
|
|
|
|
// Tests for sin.
|
|
EXPECT_EQ(0.479425538604203, sin(0.5));
|
|
EXPECT_EQ(-0.479425538604203, sin(-0.5));
|
|
EXPECT_EQ(1, sin(kPI / 2.0));
|
|
EXPECT_EQ(-1, sin(-kPI / 2.0));
|
|
// Test that sin(Math.PI) != 0 since Math.PI is not exact.
|
|
EXPECT_EQ(1.2246467991473532e-16, sin(kPI));
|
|
EXPECT_EQ(-7.047032979958965e-14, sin(2200.0 * kPI));
|
|
// Test sin for various phases.
|
|
EXPECT_EQ(-0.7071067811865477, sin(7.0 / 4.0 * kPI));
|
|
EXPECT_EQ(0.7071067811865474, sin(9.0 / 4.0 * kPI));
|
|
EXPECT_EQ(0.7071067811865483, sin(11.0 / 4.0 * kPI));
|
|
EXPECT_EQ(-0.7071067811865479, sin(13.0 / 4.0 * kPI));
|
|
EXPECT_EQ(-3.2103381051568376e-11, sin(1048576.0 / 4 * kPI));
|
|
|
|
// Test Hayne-Panek reduction.
|
|
EXPECT_EQ(0.377820109360752e0, sin(kTwo120));
|
|
EXPECT_EQ(-0.377820109360752e0, sin(-kTwo120));
|
|
}
|
|
|
|
TEST(Ieee754, Sinh) {
|
|
// Test values mentioned in the EcmaScript spec.
|
|
EXPECT_THAT(sinh(kQNaN), IsNaN());
|
|
EXPECT_THAT(sinh(kSNaN), IsNaN());
|
|
EXPECT_THAT(sinh(kInfinity), kInfinity);
|
|
EXPECT_THAT(sinh(-kInfinity), -kInfinity);
|
|
EXPECT_EQ(0.0, sinh(0.0));
|
|
EXPECT_EQ(-0.0, sinh(-0.0));
|
|
}
|
|
|
|
TEST(Ieee754, Tan) {
|
|
// Test values mentioned in the EcmaScript spec.
|
|
EXPECT_THAT(tan(kQNaN), IsNaN());
|
|
EXPECT_THAT(tan(kSNaN), IsNaN());
|
|
EXPECT_THAT(tan(kInfinity), IsNaN());
|
|
EXPECT_THAT(tan(-kInfinity), IsNaN());
|
|
|
|
// Tests for tan for |x| < pi/4
|
|
EXPECT_EQ(kInfinity, 1 / tan(0.0));
|
|
EXPECT_EQ(-kInfinity, 1 / tan(-0.0));
|
|
// tan(x) = x for |x| < 2^-28
|
|
EXPECT_EQ(2.3283064365386963e-10, tan(2.3283064365386963e-10));
|
|
EXPECT_EQ(-2.3283064365386963e-10, tan(-2.3283064365386963e-10));
|
|
// Test KERNELTAN for |x| > 0.67434.
|
|
EXPECT_EQ(0.8211418015898941, tan(11.0 / 16.0));
|
|
EXPECT_EQ(-0.8211418015898941, tan(-11.0 / 16.0));
|
|
EXPECT_EQ(0.41421356237309503, tan(0.39269908169872414));
|
|
// crbug/427468
|
|
EXPECT_EQ(0.7993357819992383, tan(0.6743358));
|
|
|
|
// Tests for tan.
|
|
EXPECT_EQ(3.725290298461914e-9, tan(3.725290298461914e-9));
|
|
// Test that tan(PI/2) != Infinity since PI is not exact.
|
|
EXPECT_EQ(1.633123935319537e16, tan(kPI / 2));
|
|
// Cover different code paths in KERNELTAN (tangent and cotangent)
|
|
EXPECT_EQ(0.5463024898437905, tan(0.5));
|
|
EXPECT_EQ(2.0000000000000027, tan(1.107148717794091));
|
|
EXPECT_EQ(-1.0000000000000004, tan(7.0 / 4.0 * kPI));
|
|
EXPECT_EQ(0.9999999999999994, tan(9.0 / 4.0 * kPI));
|
|
EXPECT_EQ(-6.420676210313675e-11, tan(1048576.0 / 2.0 * kPI));
|
|
EXPECT_EQ(2.910566692924059e11, tan(1048575.0 / 2.0 * kPI));
|
|
|
|
// Test Hayne-Panek reduction.
|
|
EXPECT_EQ(-0.40806638884180424e0, tan(kTwo120));
|
|
EXPECT_EQ(0.40806638884180424e0, tan(-kTwo120));
|
|
}
|
|
|
|
TEST(Ieee754, Tanh) {
|
|
// Test values mentioned in the EcmaScript spec.
|
|
EXPECT_THAT(tanh(kQNaN), IsNaN());
|
|
EXPECT_THAT(tanh(kSNaN), IsNaN());
|
|
EXPECT_THAT(tanh(kInfinity), 1);
|
|
EXPECT_THAT(tanh(-kInfinity), -1);
|
|
EXPECT_EQ(0.0, tanh(0.0));
|
|
EXPECT_EQ(-0.0, tanh(-0.0));
|
|
}
|
|
|
|
} // namespace ieee754
|
|
} // namespace base
|
|
} // namespace v8
|