v8/src/platform-win32.cc
sgjesse@chromium.org be059966c1 Add socket support to platform code.
The new Socket class is an encapsulation of the standard BSD socket API. As it depends on platform specific include files and have some slight platform variations it is part of the platform code.

On Mac OS only the option SO_REUSEADDR is set to true for server sockets. Running the test required it as the bound listener socket would sometimes end up in TIME_WAIT. On Windows and Linux this has never been observed (given the client end of the socket is closed before the server end).

The code has been tested on Windows, Linux and Mac OS. The FreeBSD version is a copy of the Linux version but has not been compiled nor tested.

Missing Xcode project updates.
Review URL: http://codereview.chromium.org/27085

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1349 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-02-24 13:32:01 +00:00

1847 lines
54 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for Win32.
#ifndef WIN32_LEAN_AND_MEAN
// WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
#define WIN32_LEAN_AND_MEAN
#endif
#ifndef NOMINMAX
#define NOMINMAX
#endif
#ifndef NOKERNEL
#define NOKERNEL
#endif
#ifndef NOUSER
#define NOUSER
#endif
#ifndef NOSERVICE
#define NOSERVICE
#endif
#ifndef NOSOUND
#define NOSOUND
#endif
#ifndef NOMCX
#define NOMCX
#endif
// Require Windows 2000 or higher (this is required for the IsDebuggerPresent
// function to be present).
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x500
#endif
#include <windows.h>
#include <time.h> // For LocalOffset() implementation.
#include <mmsystem.h> // For timeGetTime().
#ifndef __MINGW32__
#include <dbghelp.h> // For SymLoadModule64 and al.
#endif // __MINGW32__
#include <limits.h> // For INT_MAX and al.
#include <tlhelp32.h> // For Module32First and al.
// These additional WIN32 includes have to be right here as the #undef's below
// makes it impossible to have them elsewhere.
#include <winsock2.h>
#include <ws2tcpip.h>
#include <process.h> // for _beginthreadex()
#include <stdlib.h>
#undef VOID
#undef DELETE
#undef IN
#undef THIS
#undef CONST
#undef NAN
#undef GetObject
#undef CreateMutex
#undef CreateSemaphore
#include "v8.h"
#include "platform.h"
// Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
// refer to The Open Group Base Specification for specification of the correct
// semantics for these functions.
// (http://www.opengroup.org/onlinepubs/000095399/)
#ifdef _MSC_VER
namespace v8 {
namespace internal {
// Test for finite value - usually defined in math.h
int isfinite(double x) {
return _finite(x);
}
} // namespace v8
} // namespace internal
// Test for a NaN (not a number) value - usually defined in math.h
int isnan(double x) {
return _isnan(x);
}
// Test for infinity - usually defined in math.h
int isinf(double x) {
return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
}
// Test if x is less than y and both nominal - usually defined in math.h
int isless(double x, double y) {
return isnan(x) || isnan(y) ? 0 : x < y;
}
// Test if x is greater than y and both nominal - usually defined in math.h
int isgreater(double x, double y) {
return isnan(x) || isnan(y) ? 0 : x > y;
}
// Classify floating point number - usually defined in math.h
int fpclassify(double x) {
// Use the MS-specific _fpclass() for classification.
int flags = _fpclass(x);
// Determine class. We cannot use a switch statement because
// the _FPCLASS_ constants are defined as flags.
if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
// All cases should be covered by the code above.
ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
return FP_NAN;
}
// Test sign - usually defined in math.h
int signbit(double x) {
// We need to take care of the special case of both positive
// and negative versions of zero.
if (x == 0)
return _fpclass(x) & _FPCLASS_NZ;
else
return x < 0;
}
// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
// defined in strings.h.
int strncasecmp(const char* s1, const char* s2, int n) {
return _strnicmp(s1, s2, n);
}
#endif // _MSC_VER
// Extra functions for MinGW. Most of these are the _s functions which are in
// the Microsoft Visual Studio C++ CRT.
#ifdef __MINGW32__
int localtime_s(tm* out_tm, const time_t* time) {
tm* posix_local_time_struct = localtime(time);
if (posix_local_time_struct == NULL) return 1;
*out_tm = *posix_local_time_struct;
return 0;
}
// Not sure this the correct interpretation of _mkgmtime
time_t _mkgmtime(tm* timeptr) {
return mktime(timeptr);
}
int fopen_s(FILE** pFile, const char* filename, const char* mode) {
*pFile = fopen(filename, mode);
return *pFile != NULL ? 0 : 1;
}
int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
const char* format, va_list argptr) {
return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
}
#define _TRUNCATE 0
int strncpy_s(char* strDest, size_t numberOfElements,
const char* strSource, size_t count) {
strncpy(strDest, strSource, count);
return 0;
}
#endif // __MINGW32__
// Generate a pseudo-random number in the range 0-2^31-1. Usually
// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
int random() {
return rand();
}
namespace v8 { namespace internal {
double ceiling(double x) {
return ceil(x);
}
// ----------------------------------------------------------------------------
// The Time class represents time on win32. A timestamp is represented as
// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
// January 1, 1970.
class Time {
public:
// Constructors.
Time();
explicit Time(double jstime);
Time(int year, int mon, int day, int hour, int min, int sec);
// Convert timestamp to JavaScript representation.
double ToJSTime();
// Set timestamp to current time.
void SetToCurrentTime();
// Returns the local timezone offset in milliseconds east of UTC. This is
// the number of milliseconds you must add to UTC to get local time, i.e.
// LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
// routine also takes into account whether daylight saving is effect
// at the time.
int64_t LocalOffset();
// Returns the daylight savings time offset for the time in milliseconds.
int64_t DaylightSavingsOffset();
// Returns a string identifying the current timezone for the
// timestamp taking into account daylight saving.
char* LocalTimezone();
private:
// Constants for time conversion.
static const int64_t kTimeEpoc = 116444736000000000LL;
static const int64_t kTimeScaler = 10000;
static const int64_t kMsPerMinute = 60000;
// Constants for timezone information.
static const int kTzNameSize = 128;
static const bool kShortTzNames = false;
// Timezone information. We need to have static buffers for the
// timezone names because we return pointers to these in
// LocalTimezone().
static bool tz_initialized_;
static TIME_ZONE_INFORMATION tzinfo_;
static char std_tz_name_[kTzNameSize];
static char dst_tz_name_[kTzNameSize];
// Initialize the timezone information (if not already done).
static void TzSet();
// Guess the name of the timezone from the bias.
static const char* GuessTimezoneNameFromBias(int bias);
// Return whether or not daylight savings time is in effect at this time.
bool InDST();
// Return the difference (in milliseconds) between this timestamp and
// another timestamp.
int64_t Diff(Time* other);
// Accessor for FILETIME representation.
FILETIME& ft() { return time_.ft_; }
// Accessor for integer representation.
int64_t& t() { return time_.t_; }
// Although win32 uses 64-bit integers for representing timestamps,
// these are packed into a FILETIME structure. The FILETIME structure
// is just a struct representing a 64-bit integer. The TimeStamp union
// allows access to both a FILETIME and an integer representation of
// the timestamp.
union TimeStamp {
FILETIME ft_;
int64_t t_;
};
TimeStamp time_;
};
// Static variables.
bool Time::tz_initialized_ = false;
TIME_ZONE_INFORMATION Time::tzinfo_;
char Time::std_tz_name_[kTzNameSize];
char Time::dst_tz_name_[kTzNameSize];
// Initialize timestamp to start of epoc.
Time::Time() {
t() = 0;
}
// Initialize timestamp from a JavaScript timestamp.
Time::Time(double jstime) {
t() = static_cast<uint64_t>(jstime) * kTimeScaler + kTimeEpoc;
}
// Initialize timestamp from date/time components.
Time::Time(int year, int mon, int day, int hour, int min, int sec) {
SYSTEMTIME st;
st.wYear = year;
st.wMonth = mon;
st.wDay = day;
st.wHour = hour;
st.wMinute = min;
st.wSecond = sec;
st.wMilliseconds = 0;
SystemTimeToFileTime(&st, &ft());
}
// Convert timestamp to JavaScript timestamp.
double Time::ToJSTime() {
return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
}
// Guess the name of the timezone from the bias.
// The guess is very biased towards the northern hemisphere.
const char* Time::GuessTimezoneNameFromBias(int bias) {
static const int kHour = 60;
switch (-bias) {
case -9*kHour: return "Alaska";
case -8*kHour: return "Pacific";
case -7*kHour: return "Mountain";
case -6*kHour: return "Central";
case -5*kHour: return "Eastern";
case -4*kHour: return "Atlantic";
case 0*kHour: return "GMT";
case +1*kHour: return "Central Europe";
case +2*kHour: return "Eastern Europe";
case +3*kHour: return "Russia";
case +5*kHour + 30: return "India";
case +8*kHour: return "China";
case +9*kHour: return "Japan";
case +12*kHour: return "New Zealand";
default: return "Local";
}
}
// Initialize timezone information. The timezone information is obtained from
// windows. If we cannot get the timezone information we fall back to CET.
// Please notice that this code is not thread-safe.
void Time::TzSet() {
// Just return if timezone information has already been initialized.
if (tz_initialized_) return;
// Initialize POSIX time zone data.
_tzset();
// Obtain timezone information from operating system.
memset(&tzinfo_, 0, sizeof(tzinfo_));
if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
// If we cannot get timezone information we fall back to CET.
tzinfo_.Bias = -60;
tzinfo_.StandardDate.wMonth = 10;
tzinfo_.StandardDate.wDay = 5;
tzinfo_.StandardDate.wHour = 3;
tzinfo_.StandardBias = 0;
tzinfo_.DaylightDate.wMonth = 3;
tzinfo_.DaylightDate.wDay = 5;
tzinfo_.DaylightDate.wHour = 2;
tzinfo_.DaylightBias = -60;
}
// Make standard and DST timezone names.
OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
"%S",
tzinfo_.StandardName);
std_tz_name_[kTzNameSize - 1] = '\0';
OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
"%S",
tzinfo_.DaylightName);
dst_tz_name_[kTzNameSize - 1] = '\0';
// If OS returned empty string or resource id (like "@tzres.dll,-211")
// simply guess the name from the UTC bias of the timezone.
// To properly resolve the resource identifier requires a library load,
// which is not possible in a sandbox.
if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
"%s Standard Time",
GuessTimezoneNameFromBias(tzinfo_.Bias));
}
if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
"%s Daylight Time",
GuessTimezoneNameFromBias(tzinfo_.Bias));
}
// Timezone information initialized.
tz_initialized_ = true;
}
// Return the difference in milliseconds between this and another timestamp.
int64_t Time::Diff(Time* other) {
return (t() - other->t()) / kTimeScaler;
}
// Set timestamp to current time.
void Time::SetToCurrentTime() {
// The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
// Because we're fast, we like fast timers which have at least a
// 1ms resolution.
//
// timeGetTime() provides 1ms granularity when combined with
// timeBeginPeriod(). If the host application for v8 wants fast
// timers, it can use timeBeginPeriod to increase the resolution.
//
// Using timeGetTime() has a drawback because it is a 32bit value
// and hence rolls-over every ~49days.
//
// To use the clock, we use GetSystemTimeAsFileTime as our base;
// and then use timeGetTime to extrapolate current time from the
// start time. To deal with rollovers, we resync the clock
// any time when more than kMaxClockElapsedTime has passed or
// whenever timeGetTime creates a rollover.
static bool initialized = false;
static TimeStamp init_time;
static DWORD init_ticks;
static const int64_t kHundredNanosecondsPerSecond = 10000000;
static const int64_t kMaxClockElapsedTime =
60*kHundredNanosecondsPerSecond; // 1 minute
// If we are uninitialized, we need to resync the clock.
bool needs_resync = !initialized;
// Get the current time.
TimeStamp time_now;
GetSystemTimeAsFileTime(&time_now.ft_);
DWORD ticks_now = timeGetTime();
// Check if we need to resync due to clock rollover.
needs_resync |= ticks_now < init_ticks;
// Check if we need to resync due to elapsed time.
needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
// Resync the clock if necessary.
if (needs_resync) {
GetSystemTimeAsFileTime(&init_time.ft_);
init_ticks = ticks_now = timeGetTime();
initialized = true;
}
// Finally, compute the actual time. Why is this so hard.
DWORD elapsed = ticks_now - init_ticks;
this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
}
// Return the local timezone offset in milliseconds east of UTC. This
// takes into account whether daylight saving is in effect at the time.
// Only times in the 32-bit Unix range may be passed to this function.
// Also, adding the time-zone offset to the input must not overflow.
// The function EquivalentTime() in date-delay.js guarantees this.
int64_t Time::LocalOffset() {
// Initialize timezone information, if needed.
TzSet();
Time rounded_to_second(*this);
rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
1000 * kTimeScaler;
// Convert to local time using POSIX localtime function.
// Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
// very slow. Other browsers use localtime().
// Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
// POSIX seconds past 1/1/1970 0:00:00.
double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
return 0;
}
// Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
time_t posix_time = static_cast<time_t>(unchecked_posix_time);
// Convert to local time, as struct with fields for day, hour, year, etc.
tm posix_local_time_struct;
if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
// Convert local time in struct to POSIX time as if it were a UTC time.
time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
Time localtime(1000.0 * local_posix_time);
return localtime.Diff(&rounded_to_second);
}
// Return whether or not daylight savings time is in effect at this time.
bool Time::InDST() {
// Initialize timezone information, if needed.
TzSet();
// Determine if DST is in effect at the specified time.
bool in_dst = false;
if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
// Get the local timezone offset for the timestamp in milliseconds.
int64_t offset = LocalOffset();
// Compute the offset for DST. The bias parameters in the timezone info
// are specified in minutes. These must be converted to milliseconds.
int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
// If the local time offset equals the timezone bias plus the daylight
// bias then DST is in effect.
in_dst = offset == dstofs;
}
return in_dst;
}
// Return the daylight savings time offset for this time.
int64_t Time::DaylightSavingsOffset() {
return InDST() ? 60 * kMsPerMinute : 0;
}
// Returns a string identifying the current timezone for the
// timestamp taking into account daylight saving.
char* Time::LocalTimezone() {
// Return the standard or DST time zone name based on whether daylight
// saving is in effect at the given time.
return InDST() ? dst_tz_name_ : std_tz_name_;
}
void OS::Setup() {
// Seed the random number generator.
// Convert the current time to a 64-bit integer first, before converting it
// to an unsigned. Going directly can cause an overflow and the seed to be
// set to all ones. The seed will be identical for different instances that
// call this setup code within the same millisecond.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
srand(static_cast<unsigned int>(seed));
}
// Returns the accumulated user time for thread.
int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
FILETIME dummy;
uint64_t usertime;
// Get the amount of time that the thread has executed in user mode.
if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
reinterpret_cast<FILETIME*>(&usertime))) return -1;
// Adjust the resolution to micro-seconds.
usertime /= 10;
// Convert to seconds and microseconds
*secs = static_cast<uint32_t>(usertime / 1000000);
*usecs = static_cast<uint32_t>(usertime % 1000000);
return 0;
}
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
double OS::TimeCurrentMillis() {
Time t;
t.SetToCurrentTime();
return t.ToJSTime();
}
// Returns the tickcounter based on timeGetTime.
int64_t OS::Ticks() {
return timeGetTime() * 1000; // Convert to microseconds.
}
// Returns a string identifying the current timezone taking into
// account daylight saving.
char* OS::LocalTimezone(double time) {
return Time(time).LocalTimezone();
}
// Returns the local time offset in milliseconds east of UTC without
// taking daylight savings time into account.
double OS::LocalTimeOffset() {
// Use current time, rounded to the millisecond.
Time t(TimeCurrentMillis());
// Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
}
// Returns the daylight savings offset in milliseconds for the given
// time.
double OS::DaylightSavingsOffset(double time) {
int64_t offset = Time(time).DaylightSavingsOffset();
return static_cast<double>(offset);
}
// ----------------------------------------------------------------------------
// Win32 console output.
//
// If a Win32 application is linked as a console application it has a normal
// standard output and standard error. In this case normal printf works fine
// for output. However, if the application is linked as a GUI application,
// the process doesn't have a console, and therefore (debugging) output is lost.
// This is the case if we are embedded in a windows program (like a browser).
// In order to be able to get debug output in this case the the debugging
// facility using OutputDebugString. This output goes to the active debugger
// for the process (if any). Else the output can be monitored using DBMON.EXE.
enum OutputMode {
UNKNOWN, // Output method has not yet been determined.
CONSOLE, // Output is written to stdout.
ODS // Output is written to debug facility.
};
static OutputMode output_mode = UNKNOWN; // Current output mode.
// Determine if the process has a console for output.
static bool HasConsole() {
// Only check the first time. Eventual race conditions are not a problem,
// because all threads will eventually determine the same mode.
if (output_mode == UNKNOWN) {
// We cannot just check that the standard output is attached to a console
// because this would fail if output is redirected to a file. Therefore we
// say that a process does not have an output console if either the
// standard output handle is invalid or its file type is unknown.
if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
output_mode = CONSOLE;
else
output_mode = ODS;
}
return output_mode == CONSOLE;
}
static void VPrintHelper(FILE* stream, const char* format, va_list args) {
if (HasConsole()) {
vfprintf(stream, format, args);
} else {
// It is important to use safe print here in order to avoid
// overflowing the buffer. We might truncate the output, but this
// does not crash.
EmbeddedVector<char, 4096> buffer;
OS::VSNPrintF(buffer, format, args);
OutputDebugStringA(buffer.start());
}
}
FILE* OS::FOpen(const char* path, const char* mode) {
FILE* result;
if (fopen_s(&result, path, mode) == 0) {
return result;
} else {
return NULL;
}
}
// Print (debug) message to console.
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VPrint(format, args);
va_end(args);
}
void OS::VPrint(const char* format, va_list args) {
VPrintHelper(stdout, format, args);
}
// Print error message to console.
void OS::PrintError(const char* format, ...) {
va_list args;
va_start(args, format);
VPrintError(format, args);
va_end(args);
}
void OS::VPrintError(const char* format, va_list args) {
VPrintHelper(stderr, format, args);
}
int OS::SNPrintF(Vector<char> str, const char* format, ...) {
va_list args;
va_start(args, format);
int result = VSNPrintF(str, format, args);
va_end(args);
return result;
}
int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
// Make sure to zero-terminate the string if the output was
// truncated or if there was an error.
if (n < 0 || n >= str.length()) {
str[str.length() - 1] = '\0';
return -1;
} else {
return n;
}
}
char* OS::StrChr(char* str, int c) {
return const_cast<char*>(strchr(str, c));
}
void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
int result = strncpy_s(dest.start(), dest.length(), src, n);
USE(result);
ASSERT(result == 0);
}
char* OS::StrDup(const char* str) {
return _strdup(str);
}
char* OS::StrNDup(const char* str, size_t n) {
// Stupid implementation of strndup since windows isn't born with
// one.
size_t len = strlen(str);
if (len <= n) {
return StrDup(str);
}
char* result = new char[n+1];
size_t i;
for (i = 0; i <= n; i++) {
result[i] = str[i];
}
result[i] = '\0';
return result;
}
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification). The estimate is conservative, ie, not all addresses in
// 'allocated' space are actually allocated to our heap. The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
static void UpdateAllocatedSpaceLimits(void* address, int size) {
lowest_ever_allocated = Min(lowest_ever_allocated, address);
highest_ever_allocated =
Max(highest_ever_allocated,
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}
bool OS::IsOutsideAllocatedSpace(void* pointer) {
if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
return true;
// Ask the Windows API
if (IsBadWritePtr(pointer, 1))
return true;
return false;
}
// Get the system's page size used by VirtualAlloc() or the next power
// of two. The reason for always returning a power of two is that the
// rounding up in OS::Allocate expects that.
static size_t GetPageSize() {
static size_t page_size = 0;
if (page_size == 0) {
SYSTEM_INFO info;
GetSystemInfo(&info);
page_size = RoundUpToPowerOf2(info.dwPageSize);
}
return page_size;
}
// The allocation alignment is the guaranteed alignment for
// VirtualAlloc'ed blocks of memory.
size_t OS::AllocateAlignment() {
static size_t allocate_alignment = 0;
if (allocate_alignment == 0) {
SYSTEM_INFO info;
GetSystemInfo(&info);
allocate_alignment = info.dwAllocationGranularity;
}
return allocate_alignment;
}
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool executable) {
// VirtualAlloc rounds allocated size to page size automatically.
size_t msize = RoundUp(requested, GetPageSize());
// Windows XP SP2 allows Data Excution Prevention (DEP).
int prot = executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
if (mbase == NULL) {
LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
return NULL;
}
ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
*allocated = msize;
UpdateAllocatedSpaceLimits(mbase, msize);
return mbase;
}
void OS::Free(void* buf, const size_t length) {
// TODO(1240712): VirtualFree has a return value which is ignored here.
VirtualFree(buf, 0, MEM_RELEASE);
USE(length);
}
void OS::Sleep(int milliseconds) {
::Sleep(milliseconds);
}
void OS::Abort() {
if (!IsDebuggerPresent()) {
#ifdef _MSC_VER
// Make the MSVCRT do a silent abort.
_set_abort_behavior(0, _WRITE_ABORT_MSG);
_set_abort_behavior(0, _CALL_REPORTFAULT);
#endif // _MSC_VER
abort();
} else {
DebugBreak();
}
}
void OS::DebugBreak() {
#ifdef _MSC_VER
__debugbreak();
#else
::DebugBreak();
#endif
}
class Win32MemoryMappedFile : public OS::MemoryMappedFile {
public:
Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
: file_(file), file_mapping_(file_mapping), memory_(memory) { }
virtual ~Win32MemoryMappedFile();
virtual void* memory() { return memory_; }
private:
HANDLE file_;
HANDLE file_mapping_;
void* memory_;
};
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
void* initial) {
// Open a physical file
HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
if (file == NULL) return NULL;
// Create a file mapping for the physical file
HANDLE file_mapping = CreateFileMapping(file, NULL,
PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
if (file_mapping == NULL) return NULL;
// Map a view of the file into memory
void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
if (memory) memmove(memory, initial, size);
return new Win32MemoryMappedFile(file, file_mapping, memory);
}
Win32MemoryMappedFile::~Win32MemoryMappedFile() {
if (memory_ != NULL)
UnmapViewOfFile(memory_);
CloseHandle(file_mapping_);
CloseHandle(file_);
}
// The following code loads functions defined in DbhHelp.h and TlHelp32.h
// dynamically. This is to avoid being depending on dbghelp.dll and
// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
// kernel32.dll at some point so loading functions defines in TlHelp32.h
// dynamically might not be necessary any more - for some versions of Windows?).
// Function pointers to functions dynamically loaded from dbghelp.dll.
#define DBGHELP_FUNCTION_LIST(V) \
V(SymInitialize) \
V(SymGetOptions) \
V(SymSetOptions) \
V(SymGetSearchPath) \
V(SymLoadModule64) \
V(StackWalk64) \
V(SymGetSymFromAddr64) \
V(SymGetLineFromAddr64) \
V(SymFunctionTableAccess64) \
V(SymGetModuleBase64)
// Function pointers to functions dynamically loaded from dbghelp.dll.
#define TLHELP32_FUNCTION_LIST(V) \
V(CreateToolhelp32Snapshot) \
V(Module32FirstW) \
V(Module32NextW)
// Define the decoration to use for the type and variable name used for
// dynamically loaded DLL function..
#define DLL_FUNC_TYPE(name) _##name##_
#define DLL_FUNC_VAR(name) _##name
// Define the type for each dynamically loaded DLL function. The function
// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
// from the Windows include files are redefined here to have the function
// definitions to be as close to the ones in the original .h files as possible.
#ifndef IN
#define IN
#endif
#ifndef VOID
#define VOID void
#endif
// DbgHelp isn't supported on MinGW yet
#ifndef __MINGW32__
// DbgHelp.h functions.
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
IN PSTR UserSearchPath,
IN BOOL fInvadeProcess);
typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
IN HANDLE hProcess,
OUT PSTR SearchPath,
IN DWORD SearchPathLength);
typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
IN HANDLE hProcess,
IN HANDLE hFile,
IN PSTR ImageName,
IN PSTR ModuleName,
IN DWORD64 BaseOfDll,
IN DWORD SizeOfDll);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
DWORD MachineType,
HANDLE hProcess,
HANDLE hThread,
LPSTACKFRAME64 StackFrame,
PVOID ContextRecord,
PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
IN HANDLE hProcess,
IN DWORD64 qwAddr,
OUT PDWORD64 pdwDisplacement,
OUT PIMAGEHLP_SYMBOL64 Symbol);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
IN HANDLE hProcess,
IN DWORD64 qwAddr,
OUT PDWORD pdwDisplacement,
OUT PIMAGEHLP_LINE64 Line64);
// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
HANDLE hProcess,
DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
HANDLE hProcess,
DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
// TlHelp32.h functions.
typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
DWORD dwFlags,
DWORD th32ProcessID);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
LPMODULEENTRY32W lpme);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
LPMODULEENTRY32W lpme);
#undef IN
#undef VOID
// Declare a variable for each dynamically loaded DLL function.
#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
#undef DEF_DLL_FUNCTION
// Load the functions. This function has a lot of "ugly" macros in order to
// keep down code duplication.
static bool LoadDbgHelpAndTlHelp32() {
static bool dbghelp_loaded = false;
if (dbghelp_loaded) return true;
HMODULE module;
// Load functions from the dbghelp.dll module.
module = LoadLibrary(TEXT("dbghelp.dll"));
if (module == NULL) {
return false;
}
#define LOAD_DLL_FUNC(name) \
DLL_FUNC_VAR(name) = \
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
#undef LOAD_DLL_FUNC
// Load functions from the kernel32.dll module (the TlHelp32.h function used
// to be in tlhelp32.dll but are now moved to kernel32.dll).
module = LoadLibrary(TEXT("kernel32.dll"));
if (module == NULL) {
return false;
}
#define LOAD_DLL_FUNC(name) \
DLL_FUNC_VAR(name) = \
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
#undef LOAD_DLL_FUNC
// Check that all functions where loaded.
bool result =
#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
#undef DLL_FUNC_LOADED
true;
dbghelp_loaded = result;
return result;
// NOTE: The modules are never unloaded and will stay around until the
// application is closed.
}
// Load the symbols for generating stack traces.
static bool LoadSymbols(HANDLE process_handle) {
static bool symbols_loaded = false;
if (symbols_loaded) return true;
BOOL ok;
// Initialize the symbol engine.
ok = _SymInitialize(process_handle, // hProcess
NULL, // UserSearchPath
FALSE); // fInvadeProcess
if (!ok) return false;
DWORD options = _SymGetOptions();
options |= SYMOPT_LOAD_LINES;
options |= SYMOPT_FAIL_CRITICAL_ERRORS;
options = _SymSetOptions(options);
char buf[OS::kStackWalkMaxNameLen] = {0};
ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
if (!ok) {
int err = GetLastError();
PrintF("%d\n", err);
return false;
}
HANDLE snapshot = _CreateToolhelp32Snapshot(
TH32CS_SNAPMODULE, // dwFlags
GetCurrentProcessId()); // th32ProcessId
if (snapshot == INVALID_HANDLE_VALUE) return false;
MODULEENTRY32W module_entry;
module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
BOOL cont = _Module32FirstW(snapshot, &module_entry);
while (cont) {
DWORD64 base;
// NOTE the SymLoadModule64 function has the peculiarity of accepting a
// both unicode and ASCII strings even though the parameter is PSTR.
base = _SymLoadModule64(
process_handle, // hProcess
0, // hFile
reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
module_entry.modBaseSize); // SizeOfDll
if (base == 0) {
int err = GetLastError();
if (err != ERROR_MOD_NOT_FOUND &&
err != ERROR_INVALID_HANDLE) return false;
}
LOG(SharedLibraryEvent(
module_entry.szExePath,
reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
module_entry.modBaseSize)));
cont = _Module32NextW(snapshot, &module_entry);
}
CloseHandle(snapshot);
symbols_loaded = true;
return true;
}
void OS::LogSharedLibraryAddresses() {
// SharedLibraryEvents are logged when loading symbol information.
// Only the shared libraries loaded at the time of the call to
// LogSharedLibraryAddresses are logged. DLLs loaded after
// initialization are not accounted for.
if (!LoadDbgHelpAndTlHelp32()) return;
HANDLE process_handle = GetCurrentProcess();
LoadSymbols(process_handle);
}
// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
// Switch off warning 4748 (/GS can not protect parameters and local variables
// from local buffer overrun because optimizations are disabled in function) as
// it is triggered by the use of inline assembler.
#pragma warning(push)
#pragma warning(disable : 4748)
int OS::StackWalk(OS::StackFrame* frames, int frames_size) {
BOOL ok;
// Load the required functions from DLL's.
if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
// Get the process and thread handles.
HANDLE process_handle = GetCurrentProcess();
HANDLE thread_handle = GetCurrentThread();
// Read the symbols.
if (!LoadSymbols(process_handle)) return kStackWalkError;
// Capture current context.
CONTEXT context;
memset(&context, 0, sizeof(context));
context.ContextFlags = CONTEXT_CONTROL;
context.ContextFlags = CONTEXT_CONTROL;
__asm call x
__asm x: pop eax
__asm mov context.Eip, eax
__asm mov context.Ebp, ebp
__asm mov context.Esp, esp
// NOTE: At some point, we could use RtlCaptureContext(&context) to
// capture the context instead of inline assembler. However it is
// only available on XP, Vista, Server 2003 and Server 2008 which
// might not be sufficient.
// Initialize the stack walking
STACKFRAME64 stack_frame;
memset(&stack_frame, 0, sizeof(stack_frame));
stack_frame.AddrPC.Offset = context.Eip;
stack_frame.AddrPC.Mode = AddrModeFlat;
stack_frame.AddrFrame.Offset = context.Ebp;
stack_frame.AddrFrame.Mode = AddrModeFlat;
stack_frame.AddrStack.Offset = context.Esp;
stack_frame.AddrStack.Mode = AddrModeFlat;
int frames_count = 0;
// Collect stack frames.
while (frames_count < frames_size) {
ok = _StackWalk64(
IMAGE_FILE_MACHINE_I386, // MachineType
process_handle, // hProcess
thread_handle, // hThread
&stack_frame, // StackFrame
&context, // ContextRecord
NULL, // ReadMemoryRoutine
_SymFunctionTableAccess64, // FunctionTableAccessRoutine
_SymGetModuleBase64, // GetModuleBaseRoutine
NULL); // TranslateAddress
if (!ok) break;
// Store the address.
ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
frames[frames_count].address =
reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
// Try to locate a symbol for this frame.
DWORD64 symbol_displacement;
IMAGEHLP_SYMBOL64* symbol = NULL;
symbol = NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen);
if (!symbol) return kStackWalkError; // Out of memory.
memset(symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
symbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
symbol->MaxNameLength = kStackWalkMaxNameLen;
ok = _SymGetSymFromAddr64(process_handle, // hProcess
stack_frame.AddrPC.Offset, // Address
&symbol_displacement, // Displacement
symbol); // Symbol
if (ok) {
// Try to locate more source information for the symbol.
IMAGEHLP_LINE64 Line;
memset(&Line, 0, sizeof(Line));
Line.SizeOfStruct = sizeof(Line);
DWORD line_displacement;
ok = _SymGetLineFromAddr64(
process_handle, // hProcess
stack_frame.AddrPC.Offset, // dwAddr
&line_displacement, // pdwDisplacement
&Line); // Line
// Format a text representation of the frame based on the information
// available.
if (ok) {
SNPrintF(MutableCStrVector(frames[frames_count].text,
kStackWalkMaxTextLen),
"%s %s:%d:%d",
symbol->Name, Line.FileName, Line.LineNumber,
line_displacement);
} else {
SNPrintF(MutableCStrVector(frames[frames_count].text,
kStackWalkMaxTextLen),
"%s",
symbol->Name);
}
// Make sure line termination is in place.
frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
} else {
// No text representation of this frame
frames[frames_count].text[0] = '\0';
// Continue if we are just missing a module (for non C/C++ frames a
// module will never be found).
int err = GetLastError();
if (err != ERROR_MOD_NOT_FOUND) {
DeleteArray(symbol);
break;
}
}
DeleteArray(symbol);
frames_count++;
}
// Return the number of frames filled in.
return frames_count;
}
// Restore warnings to previous settings.
#pragma warning(pop)
#else // __MINGW32__
void OS::LogSharedLibraryAddresses() { }
int OS::StackWalk(OS::StackFrame* frames, int frames_size) { return 0; }
#endif // __MINGW32__
double OS::nan_value() {
#ifdef _MSC_VER
static const __int64 nanval = 0xfff8000000000000;
return *reinterpret_cast<const double*>(&nanval);
#else // _MSC_VER
return NAN;
#endif // _MSC_VER
}
int OS::ActivationFrameAlignment() {
// No constraint on Windows.
return 0;
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
VirtualMemory::VirtualMemory(size_t size) {
address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
size_ = size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
}
}
bool VirtualMemory::Commit(void* address, size_t size, bool executable) {
int prot = executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
return false;
}
UpdateAllocatedSpaceLimits(address, size);
return true;
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
ASSERT(IsReserved());
return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
}
// ----------------------------------------------------------------------------
// Win32 thread support.
// Definition of invalid thread handle and id.
static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
static const DWORD kNoThreadId = 0;
class ThreadHandle::PlatformData : public Malloced {
public:
explicit PlatformData(ThreadHandle::Kind kind) {
Initialize(kind);
}
void Initialize(ThreadHandle::Kind kind) {
switch (kind) {
case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
}
}
DWORD tid_; // Win32 thread identifier.
};
// Entry point for threads. The supplied argument is a pointer to the thread
// object. The entry function dispatches to the run method in the thread
// object. It is important that this function has __stdcall calling
// convention.
static unsigned int __stdcall ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// This is also initialized by the last parameter to _beginthreadex() but we
// don't know which thread will run first (the original thread or the new
// one) so we initialize it here too.
thread->thread_handle_data()->tid_ = GetCurrentThreadId();
thread->Run();
return 0;
}
// Initialize thread handle to invalid handle.
ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
data_ = new PlatformData(kind);
}
ThreadHandle::~ThreadHandle() {
delete data_;
}
// The thread is running if it has the same id as the current thread.
bool ThreadHandle::IsSelf() const {
return GetCurrentThreadId() == data_->tid_;
}
// Test for invalid thread handle.
bool ThreadHandle::IsValid() const {
return data_->tid_ != kNoThreadId;
}
void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
data_->Initialize(kind);
}
class Thread::PlatformData : public Malloced {
public:
explicit PlatformData(HANDLE thread) : thread_(thread) {}
HANDLE thread_;
};
// Initialize a Win32 thread object. The thread has an invalid thread
// handle until it is started.
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
data_ = new PlatformData(kNoThread);
}
// Close our own handle for the thread.
Thread::~Thread() {
if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
delete data_;
}
// Create a new thread. It is important to use _beginthreadex() instead of
// the Win32 function CreateThread(), because the CreateThread() does not
// initialize thread specific structures in the C runtime library.
void Thread::Start() {
data_->thread_ = reinterpret_cast<HANDLE>(
_beginthreadex(NULL,
0,
ThreadEntry,
this,
0,
reinterpret_cast<unsigned int*>(
&thread_handle_data()->tid_)));
ASSERT(IsValid());
}
// Wait for thread to terminate.
void Thread::Join() {
WaitForSingleObject(data_->thread_, INFINITE);
}
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
DWORD result = TlsAlloc();
ASSERT(result != TLS_OUT_OF_INDEXES);
return static_cast<LocalStorageKey>(result);
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
BOOL result = TlsFree(static_cast<DWORD>(key));
USE(result);
ASSERT(result);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
return TlsGetValue(static_cast<DWORD>(key));
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
USE(result);
ASSERT(result);
}
void Thread::YieldCPU() {
Sleep(0);
}
// ----------------------------------------------------------------------------
// Win32 mutex support.
//
// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
// faster than Win32 Mutex objects because they are implemented using user mode
// atomic instructions. Therefore we only do ring transitions if there is lock
// contention.
class Win32Mutex : public Mutex {
public:
Win32Mutex() { InitializeCriticalSection(&cs_); }
~Win32Mutex() { DeleteCriticalSection(&cs_); }
int Lock() {
EnterCriticalSection(&cs_);
return 0;
}
int Unlock() {
LeaveCriticalSection(&cs_);
return 0;
}
private:
CRITICAL_SECTION cs_; // Critical section used for mutex
};
Mutex* OS::CreateMutex() {
return new Win32Mutex();
}
// ----------------------------------------------------------------------------
// Win32 semaphore support.
//
// On Win32 semaphores are implemented using Win32 Semaphore objects. The
// semaphores are anonymous. Also, the semaphores are initialized to have
// no upper limit on count.
class Win32Semaphore : public Semaphore {
public:
explicit Win32Semaphore(int count) {
sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
}
~Win32Semaphore() {
CloseHandle(sem);
}
void Wait() {
WaitForSingleObject(sem, INFINITE);
}
void Signal() {
LONG dummy;
ReleaseSemaphore(sem, 1, &dummy);
}
private:
HANDLE sem;
};
Semaphore* OS::CreateSemaphore(int count) {
return new Win32Semaphore(count);
}
// ----------------------------------------------------------------------------
// Win32 socket support.
//
class Win32Socket : public Socket {
public:
explicit Win32Socket() {
// Create the socket.
socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
}
explicit Win32Socket(SOCKET socket): socket_(socket) { }
virtual ~Win32Socket() {
if (IsValid()) {
// Close socket.
closesocket(socket_);
}
}
// Server initialization.
bool Bind (const int port);
bool Listen(int backlog) const;
Socket* Accept () const;
// Client initialization.
bool Connect(const char* host, const char* port);
// Data Transimission
int Send(const char* data, int len) const;
bool SendAll(const char* data, int len) const;
int Receive(char* data, int len) const;
bool IsValid() const { return socket_ != INVALID_SOCKET; }
private:
SOCKET socket_;
};
bool Win32Socket::Bind(const int port) {
if (!IsValid()) {
return false;
}
sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(port);
int status = bind(socket_,
reinterpret_cast<struct sockaddr *>(&addr),
sizeof (addr));
return status == 0;
}
bool Win32Socket::Listen(int backlog) const {
if (!IsValid()) {
return false;
}
int status = listen(socket_, backlog);
return status == 0;
}
Socket* Win32Socket::Accept() const {
if (!IsValid()) {
return NULL;
}
SOCKET socket = accept(socket_, NULL, NULL);
if (socket == INVALID_SOCKET) {
return NULL;
} else {
return new Win32Socket(socket);
}
}
bool Win32Socket::Connect(const char* host, const char* port) {
if (!IsValid()) {
return false;
}
// Lookup host and port.
struct addrinfo *result = NULL;
struct addrinfo hints;
memset(&hints, 0, sizeof(addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
int status = getaddrinfo(host, port, &hints, &result);
if (status != 0) {
return false;
}
// Connect.
status = connect(socket_, result->ai_addr, result->ai_addrlen);
return status == 0;
}
int Win32Socket::Send(const char* data, int len) const {
int status = send(socket_, data, len, 0);
return status;
}
bool Win32Socket::SendAll(const char* data, int len) const {
int sent_len = 0;
while (sent_len < len) {
int status = Send(data, len);
if (status <= 0) {
return false;
}
sent_len += status;
}
return true;
}
int Win32Socket::Receive(char* data, int len) const {
int status = recv(socket_, data, len, 0);
return status;
}
bool Socket::Setup() {
// Initialize Winsock32
int err;
WSADATA winsock_data;
WORD version_requested = MAKEWORD(1, 0);
err = WSAStartup(version_requested, &winsock_data);
if (err != 0) {
PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
}
return err == 0;
}
int Socket::LastError() {
return WSAGetLastError();
}
uint16_t Socket::HToN(uint16_t value) {
return htons(value);
}
uint16_t Socket::NToH(uint16_t value) {
return ntohs(value);
}
uint32_t Socket::HToN(uint32_t value) {
return htonl(value);
}
uint32_t Socket::NToH(uint32_t value) {
return ntohl(value);
}
Socket* OS::CreateSocket() {
return new Win32Socket();
}
#ifdef ENABLE_LOGGING_AND_PROFILING
// ----------------------------------------------------------------------------
// Win32 profiler support.
//
// On win32 we use a sampler thread with high priority to sample the program
// counter for the profiled thread.
class Sampler::PlatformData : public Malloced {
public:
explicit PlatformData(Sampler* sampler) {
sampler_ = sampler;
sampler_thread_ = INVALID_HANDLE_VALUE;
profiled_thread_ = INVALID_HANDLE_VALUE;
}
Sampler* sampler_;
HANDLE sampler_thread_;
HANDLE profiled_thread_;
// Sampler thread handler.
void Runner() {
// Context used for sampling the register state of the profiled thread.
CONTEXT context;
memset(&context, 0, sizeof(context));
// Loop until the sampler is disengaged.
while (sampler_->IsActive()) {
TickSample sample;
// If profiling, we record the pc and sp of the profiled thread.
if (sampler_->IsProfiling()) {
// Pause the profiled thread and get its context.
SuspendThread(profiled_thread_);
context.ContextFlags = CONTEXT_FULL;
GetThreadContext(profiled_thread_, &context);
ResumeThread(profiled_thread_);
// Invoke tick handler with program counter and stack pointer.
sample.pc = context.Eip;
sample.sp = context.Esp;
sample.fp = context.Ebp;
}
// We always sample the VM state.
sample.state = Logger::state();
sampler_->Tick(&sample);
// Wait until next sampling.
Sleep(sampler_->interval_);
}
}
};
// Entry point for sampler thread.
static unsigned int __stdcall SamplerEntry(void* arg) {
Sampler::PlatformData* data =
reinterpret_cast<Sampler::PlatformData*>(arg);
data->Runner();
return 0;
}
// Initialize a profile sampler.
Sampler::Sampler(int interval, bool profiling)
: interval_(interval), profiling_(profiling), active_(false) {
data_ = new PlatformData(this);
}
Sampler::~Sampler() {
delete data_;
}
// Start profiling.
void Sampler::Start() {
// If we are profiling, we need to be able to access the calling
// thread.
if (IsProfiling()) {
// Get a handle to the calling thread. This is the thread that we are
// going to profile. We need to duplicate the handle because we are
// going to use it in the sampler thread. using GetThreadHandle() will
// not work in this case.
BOOL ok = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
GetCurrentProcess(), &data_->profiled_thread_,
THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME |
THREAD_QUERY_INFORMATION, FALSE, 0);
if (!ok) return;
}
// Start sampler thread.
unsigned int tid;
active_ = true;
data_->sampler_thread_ = reinterpret_cast<HANDLE>(
_beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
// Set thread to high priority to increase sampling accuracy.
SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
}
// Stop profiling.
void Sampler::Stop() {
// Seting active to false triggers termination of the sampler
// thread.
active_ = false;
// Wait for sampler thread to terminate.
WaitForSingleObject(data_->sampler_thread_, INFINITE);
// Release the thread handles
CloseHandle(data_->sampler_thread_);
CloseHandle(data_->profiled_thread_);
}
#endif // ENABLE_LOGGING_AND_PROFILING
} } // namespace v8::internal