v8/src/type-info.cc
2011-10-10 10:32:16 +00:00

571 lines
19 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "ast.h"
#include "code-stubs.h"
#include "compiler.h"
#include "ic.h"
#include "macro-assembler.h"
#include "stub-cache.h"
#include "type-info.h"
#include "ic-inl.h"
#include "objects-inl.h"
namespace v8 {
namespace internal {
TypeInfo TypeInfo::TypeFromValue(Handle<Object> value) {
TypeInfo info;
if (value->IsSmi()) {
info = TypeInfo::Smi();
} else if (value->IsHeapNumber()) {
info = TypeInfo::IsInt32Double(HeapNumber::cast(*value)->value())
? TypeInfo::Integer32()
: TypeInfo::Double();
} else if (value->IsString()) {
info = TypeInfo::String();
} else {
info = TypeInfo::Unknown();
}
return info;
}
TypeFeedbackOracle::TypeFeedbackOracle(Handle<Code> code,
Handle<Context> global_context,
Isolate* isolate) {
global_context_ = global_context;
isolate_ = isolate;
BuildDictionary(code);
ASSERT(reinterpret_cast<Address>(*dictionary_.location()) != kHandleZapValue);
}
Handle<Object> TypeFeedbackOracle::GetInfo(unsigned ast_id) {
int entry = dictionary_->FindEntry(ast_id);
return entry != NumberDictionary::kNotFound
? Handle<Object>(dictionary_->ValueAt(entry))
: Handle<Object>::cast(isolate_->factory()->undefined_value());
}
bool TypeFeedbackOracle::LoadIsMonomorphicNormal(Property* expr) {
Handle<Object> map_or_code = GetInfo(expr->id());
if (map_or_code->IsMap()) return true;
if (map_or_code->IsCode()) {
Handle<Code> code = Handle<Code>::cast(map_or_code);
return code->is_keyed_load_stub() &&
code->ic_state() == MONOMORPHIC &&
Code::ExtractTypeFromFlags(code->flags()) == NORMAL &&
code->FindFirstMap() != NULL;
}
return false;
}
bool TypeFeedbackOracle::LoadIsMegamorphicWithTypeInfo(Property* expr) {
Handle<Object> map_or_code = GetInfo(expr->id());
if (map_or_code->IsCode()) {
Handle<Code> code = Handle<Code>::cast(map_or_code);
Builtins* builtins = isolate_->builtins();
return code->is_keyed_load_stub() &&
*code != builtins->builtin(Builtins::kKeyedLoadIC_Generic) &&
code->ic_state() == MEGAMORPHIC;
}
return false;
}
bool TypeFeedbackOracle::StoreIsMonomorphicNormal(Expression* expr) {
Handle<Object> map_or_code = GetInfo(expr->id());
if (map_or_code->IsMap()) return true;
if (map_or_code->IsCode()) {
Handle<Code> code = Handle<Code>::cast(map_or_code);
return code->is_keyed_store_stub() &&
code->ic_state() == MONOMORPHIC &&
Code::ExtractTypeFromFlags(code->flags()) == NORMAL;
}
return false;
}
bool TypeFeedbackOracle::StoreIsMegamorphicWithTypeInfo(Expression* expr) {
Handle<Object> map_or_code = GetInfo(expr->id());
if (map_or_code->IsCode()) {
Handle<Code> code = Handle<Code>::cast(map_or_code);
Builtins* builtins = isolate_->builtins();
return code->is_keyed_store_stub() &&
*code != builtins->builtin(Builtins::kKeyedStoreIC_Generic) &&
*code != builtins->builtin(Builtins::kKeyedStoreIC_Generic_Strict) &&
code->ic_state() == MEGAMORPHIC;
}
return false;
}
bool TypeFeedbackOracle::CallIsMonomorphic(Call* expr) {
Handle<Object> value = GetInfo(expr->id());
return value->IsMap() || value->IsSmi() || value->IsJSFunction();
}
Handle<Map> TypeFeedbackOracle::LoadMonomorphicReceiverType(Property* expr) {
ASSERT(LoadIsMonomorphicNormal(expr));
Handle<Object> map_or_code = GetInfo(expr->id());
if (map_or_code->IsCode()) {
Handle<Code> code = Handle<Code>::cast(map_or_code);
Map* first_map = code->FindFirstMap();
ASSERT(first_map != NULL);
return Handle<Map>(first_map);
}
return Handle<Map>::cast(map_or_code);
}
Handle<Map> TypeFeedbackOracle::StoreMonomorphicReceiverType(Expression* expr) {
ASSERT(StoreIsMonomorphicNormal(expr));
Handle<Object> map_or_code = GetInfo(expr->id());
if (map_or_code->IsCode()) {
Handle<Code> code = Handle<Code>::cast(map_or_code);
return Handle<Map>(code->FindFirstMap());
}
return Handle<Map>::cast(map_or_code);
}
void TypeFeedbackOracle::LoadReceiverTypes(Property* expr,
Handle<String> name,
SmallMapList* types) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, NORMAL);
CollectReceiverTypes(expr->id(), name, flags, types);
}
void TypeFeedbackOracle::StoreReceiverTypes(Assignment* expr,
Handle<String> name,
SmallMapList* types) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::STORE_IC, NORMAL);
CollectReceiverTypes(expr->id(), name, flags, types);
}
void TypeFeedbackOracle::CallReceiverTypes(Call* expr,
Handle<String> name,
CallKind call_kind,
SmallMapList* types) {
int arity = expr->arguments()->length();
// Note: Currently we do not take string extra ic data into account
// here.
Code::ExtraICState extra_ic_state =
CallIC::Contextual::encode(call_kind == CALL_AS_FUNCTION);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::CALL_IC,
NORMAL,
extra_ic_state,
OWN_MAP,
arity);
CollectReceiverTypes(expr->id(), name, flags, types);
}
CheckType TypeFeedbackOracle::GetCallCheckType(Call* expr) {
Handle<Object> value = GetInfo(expr->id());
if (!value->IsSmi()) return RECEIVER_MAP_CHECK;
CheckType check = static_cast<CheckType>(Smi::cast(*value)->value());
ASSERT(check != RECEIVER_MAP_CHECK);
return check;
}
Handle<JSObject> TypeFeedbackOracle::GetPrototypeForPrimitiveCheck(
CheckType check) {
JSFunction* function = NULL;
switch (check) {
case RECEIVER_MAP_CHECK:
UNREACHABLE();
break;
case STRING_CHECK:
function = global_context_->string_function();
break;
case NUMBER_CHECK:
function = global_context_->number_function();
break;
case BOOLEAN_CHECK:
function = global_context_->boolean_function();
break;
}
ASSERT(function != NULL);
return Handle<JSObject>(JSObject::cast(function->instance_prototype()));
}
Handle<JSFunction> TypeFeedbackOracle::GetCallTarget(Call* expr) {
return Handle<JSFunction>::cast(GetInfo(expr->id()));
}
bool TypeFeedbackOracle::LoadIsBuiltin(Property* expr, Builtins::Name id) {
return *GetInfo(expr->id()) ==
isolate_->builtins()->builtin(id);
}
TypeInfo TypeFeedbackOracle::CompareType(CompareOperation* expr) {
Handle<Object> object = GetInfo(expr->id());
TypeInfo unknown = TypeInfo::Unknown();
if (!object->IsCode()) return unknown;
Handle<Code> code = Handle<Code>::cast(object);
if (!code->is_compare_ic_stub()) return unknown;
CompareIC::State state = static_cast<CompareIC::State>(code->compare_state());
switch (state) {
case CompareIC::UNINITIALIZED:
// Uninitialized means never executed.
return TypeInfo::Uninitialized();
case CompareIC::SMIS:
return TypeInfo::Smi();
case CompareIC::HEAP_NUMBERS:
return TypeInfo::Number();
case CompareIC::SYMBOLS:
case CompareIC::STRINGS:
return TypeInfo::String();
case CompareIC::OBJECTS:
// TODO(kasperl): We really need a type for JS objects here.
return TypeInfo::NonPrimitive();
case CompareIC::GENERIC:
default:
return unknown;
}
}
bool TypeFeedbackOracle::IsSymbolCompare(CompareOperation* expr) {
Handle<Object> object = GetInfo(expr->id());
if (!object->IsCode()) return false;
Handle<Code> code = Handle<Code>::cast(object);
if (!code->is_compare_ic_stub()) return false;
CompareIC::State state = static_cast<CompareIC::State>(code->compare_state());
return state == CompareIC::SYMBOLS;
}
TypeInfo TypeFeedbackOracle::UnaryType(UnaryOperation* expr) {
Handle<Object> object = GetInfo(expr->id());
TypeInfo unknown = TypeInfo::Unknown();
if (!object->IsCode()) return unknown;
Handle<Code> code = Handle<Code>::cast(object);
ASSERT(code->is_unary_op_stub());
UnaryOpIC::TypeInfo type = static_cast<UnaryOpIC::TypeInfo>(
code->unary_op_type());
switch (type) {
case UnaryOpIC::SMI:
return TypeInfo::Smi();
case UnaryOpIC::HEAP_NUMBER:
return TypeInfo::Double();
default:
return unknown;
}
}
TypeInfo TypeFeedbackOracle::BinaryType(BinaryOperation* expr) {
Handle<Object> object = GetInfo(expr->id());
TypeInfo unknown = TypeInfo::Unknown();
if (!object->IsCode()) return unknown;
Handle<Code> code = Handle<Code>::cast(object);
if (code->is_binary_op_stub()) {
BinaryOpIC::TypeInfo type = static_cast<BinaryOpIC::TypeInfo>(
code->binary_op_type());
BinaryOpIC::TypeInfo result_type = static_cast<BinaryOpIC::TypeInfo>(
code->binary_op_result_type());
switch (type) {
case BinaryOpIC::UNINITIALIZED:
// Uninitialized means never executed.
return TypeInfo::Uninitialized();
case BinaryOpIC::SMI:
switch (result_type) {
case BinaryOpIC::UNINITIALIZED:
case BinaryOpIC::SMI:
return TypeInfo::Smi();
case BinaryOpIC::INT32:
return TypeInfo::Integer32();
case BinaryOpIC::HEAP_NUMBER:
return TypeInfo::Double();
default:
return unknown;
}
case BinaryOpIC::INT32:
if (expr->op() == Token::DIV ||
result_type == BinaryOpIC::HEAP_NUMBER) {
return TypeInfo::Double();
}
return TypeInfo::Integer32();
case BinaryOpIC::HEAP_NUMBER:
return TypeInfo::Double();
case BinaryOpIC::BOTH_STRING:
return TypeInfo::String();
case BinaryOpIC::STRING:
case BinaryOpIC::GENERIC:
return unknown;
default:
return unknown;
}
}
return unknown;
}
TypeInfo TypeFeedbackOracle::SwitchType(CaseClause* clause) {
Handle<Object> object = GetInfo(clause->CompareId());
TypeInfo unknown = TypeInfo::Unknown();
if (!object->IsCode()) return unknown;
Handle<Code> code = Handle<Code>::cast(object);
if (!code->is_compare_ic_stub()) return unknown;
CompareIC::State state = static_cast<CompareIC::State>(code->compare_state());
switch (state) {
case CompareIC::UNINITIALIZED:
// Uninitialized means never executed.
// TODO(fschneider): Introduce a separate value for never-executed ICs.
return unknown;
case CompareIC::SMIS:
return TypeInfo::Smi();
case CompareIC::HEAP_NUMBERS:
return TypeInfo::Number();
case CompareIC::OBJECTS:
// TODO(kasperl): We really need a type for JS objects here.
return TypeInfo::NonPrimitive();
case CompareIC::GENERIC:
default:
return unknown;
}
}
TypeInfo TypeFeedbackOracle::IncrementType(CountOperation* expr) {
Handle<Object> object = GetInfo(expr->CountId());
TypeInfo unknown = TypeInfo::Unknown();
if (!object->IsCode()) return unknown;
Handle<Code> code = Handle<Code>::cast(object);
if (!code->is_binary_op_stub()) return unknown;
BinaryOpIC::TypeInfo type = static_cast<BinaryOpIC::TypeInfo>(
code->binary_op_type());
switch (type) {
case BinaryOpIC::UNINITIALIZED:
case BinaryOpIC::SMI:
return TypeInfo::Smi();
case BinaryOpIC::INT32:
return TypeInfo::Integer32();
case BinaryOpIC::HEAP_NUMBER:
return TypeInfo::Double();
case BinaryOpIC::BOTH_STRING:
case BinaryOpIC::STRING:
case BinaryOpIC::GENERIC:
return unknown;
default:
return unknown;
}
UNREACHABLE();
return unknown;
}
void TypeFeedbackOracle::CollectReceiverTypes(unsigned ast_id,
Handle<String> name,
Code::Flags flags,
SmallMapList* types) {
Handle<Object> object = GetInfo(ast_id);
if (object->IsUndefined() || object->IsSmi()) return;
if (*object ==
isolate_->builtins()->builtin(Builtins::kStoreIC_GlobalProxy)) {
// TODO(fschneider): We could collect the maps and signal that
// we need a generic store (or load) here.
ASSERT(Handle<Code>::cast(object)->ic_state() == MEGAMORPHIC);
} else if (object->IsMap()) {
types->Add(Handle<Map>::cast(object));
} else if (Handle<Code>::cast(object)->ic_state() == MEGAMORPHIC) {
types->Reserve(4);
ASSERT(object->IsCode());
isolate_->stub_cache()->CollectMatchingMaps(types, *name, flags);
}
}
void TypeFeedbackOracle::CollectKeyedReceiverTypes(unsigned ast_id,
SmallMapList* types) {
Handle<Object> object = GetInfo(ast_id);
if (!object->IsCode()) return;
Handle<Code> code = Handle<Code>::cast(object);
if (code->kind() == Code::KEYED_LOAD_IC ||
code->kind() == Code::KEYED_STORE_IC) {
AssertNoAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(*code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Object* object = info->target_object();
if (object->IsMap()) {
types->Add(Handle<Map>(Map::cast(object)));
}
}
}
}
byte TypeFeedbackOracle::ToBooleanTypes(unsigned ast_id) {
Handle<Object> object = GetInfo(ast_id);
return object->IsCode() ? Handle<Code>::cast(object)->to_boolean_state() : 0;
}
// Things are a bit tricky here: The iterator for the RelocInfos and the infos
// themselves are not GC-safe, so we first get all infos, then we create the
// dictionary (possibly triggering GC), and finally we relocate the collected
// infos before we process them.
void TypeFeedbackOracle::BuildDictionary(Handle<Code> code) {
AssertNoAllocation no_allocation;
ZoneList<RelocInfo> infos(16);
HandleScope scope;
GetRelocInfos(code, &infos);
CreateDictionary(code, &infos);
ProcessRelocInfos(&infos);
// Allocate handle in the parent scope.
dictionary_ = scope.CloseAndEscape(dictionary_);
}
void TypeFeedbackOracle::GetRelocInfos(Handle<Code> code,
ZoneList<RelocInfo>* infos) {
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID);
for (RelocIterator it(*code, mask); !it.done(); it.next()) {
infos->Add(*it.rinfo());
}
}
void TypeFeedbackOracle::CreateDictionary(Handle<Code> code,
ZoneList<RelocInfo>* infos) {
DisableAssertNoAllocation allocation_allowed;
byte* old_start = code->instruction_start();
dictionary_ = FACTORY->NewNumberDictionary(infos->length());
byte* new_start = code->instruction_start();
RelocateRelocInfos(infos, old_start, new_start);
}
void TypeFeedbackOracle::RelocateRelocInfos(ZoneList<RelocInfo>* infos,
byte* old_start,
byte* new_start) {
for (int i = 0; i < infos->length(); i++) {
RelocInfo* info = &(*infos)[i];
info->set_pc(new_start + (info->pc() - old_start));
}
}
void TypeFeedbackOracle::ProcessRelocInfos(ZoneList<RelocInfo>* infos) {
for (int i = 0; i < infos->length(); i++) {
Address target_address = (*infos)[i].target_address();
unsigned ast_id = static_cast<unsigned>((*infos)[i].data());
ProcessTargetAt(target_address, ast_id);
}
}
void TypeFeedbackOracle::ProcessTargetAt(Address target_address,
unsigned ast_id) {
Code* target = Code::GetCodeFromTargetAddress(target_address);
switch (target->kind()) {
case Code::LOAD_IC:
case Code::STORE_IC:
case Code::CALL_IC:
case Code::KEYED_CALL_IC:
if (target->ic_state() == MONOMORPHIC) {
if (target->kind() == Code::CALL_IC &&
target->check_type() != RECEIVER_MAP_CHECK) {
SetInfo(ast_id, Smi::FromInt(target->check_type()));
} else {
Object* map = target->FindFirstMap();
SetInfo(ast_id, map == NULL ? static_cast<Object*>(target) : map);
}
} else if (target->ic_state() == MEGAMORPHIC) {
SetInfo(ast_id, target);
}
break;
case Code::KEYED_LOAD_IC:
case Code::KEYED_STORE_IC:
if (target->ic_state() == MONOMORPHIC ||
target->ic_state() == MEGAMORPHIC) {
SetInfo(ast_id, target);
}
break;
case Code::UNARY_OP_IC:
case Code::BINARY_OP_IC:
case Code::COMPARE_IC:
case Code::TO_BOOLEAN_IC:
SetInfo(ast_id, target);
break;
case Code::STUB:
if (target->major_key() == CodeStub::CallFunction &&
target->has_function_cache()) {
Object* value = CallFunctionStub::GetCachedValue(target_address);
if (value->IsJSFunction()) {
SetInfo(ast_id, value);
}
}
break;
default:
break;
}
}
void TypeFeedbackOracle::SetInfo(unsigned ast_id, Object* target) {
ASSERT(dictionary_->FindEntry(ast_id) == NumberDictionary::kNotFound);
MaybeObject* maybe_result = dictionary_->AtNumberPut(ast_id, target);
USE(maybe_result);
#ifdef DEBUG
Object* result = NULL;
// Dictionary has been allocated with sufficient size for all elements.
ASSERT(maybe_result->ToObject(&result));
ASSERT(*dictionary_ == result);
#endif
}
} } // namespace v8::internal