v8/src/objects-inl.h
2015-11-02 14:58:19 +00:00

8139 lines
236 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Review notes:
//
// - The use of macros in these inline functions may seem superfluous
// but it is absolutely needed to make sure gcc generates optimal
// code. gcc is not happy when attempting to inline too deep.
//
#ifndef V8_OBJECTS_INL_H_
#define V8_OBJECTS_INL_H_
#include "src/base/atomicops.h"
#include "src/base/bits.h"
#include "src/contexts-inl.h"
#include "src/conversions-inl.h"
#include "src/factory.h"
#include "src/field-index-inl.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap.h"
#include "src/isolate.h"
#include "src/layout-descriptor-inl.h"
#include "src/lookup.h"
#include "src/objects.h"
#include "src/property.h"
#include "src/prototype.h"
#include "src/transitions-inl.h"
#include "src/type-feedback-vector-inl.h"
#include "src/types-inl.h"
#include "src/v8memory.h"
namespace v8 {
namespace internal {
PropertyDetails::PropertyDetails(Smi* smi) {
value_ = smi->value();
}
Smi* PropertyDetails::AsSmi() const {
// Ensure the upper 2 bits have the same value by sign extending it. This is
// necessary to be able to use the 31st bit of the property details.
int value = value_ << 1;
return Smi::FromInt(value >> 1);
}
int PropertyDetails::field_width_in_words() const {
DCHECK(location() == kField);
if (!FLAG_unbox_double_fields) return 1;
if (kDoubleSize == kPointerSize) return 1;
return representation().IsDouble() ? kDoubleSize / kPointerSize : 1;
}
#define TYPE_CHECKER(type, instancetype) \
bool Object::Is##type() const { \
return Object::IsHeapObject() && \
HeapObject::cast(this)->map()->instance_type() == instancetype; \
}
#define CAST_ACCESSOR(type) \
type* type::cast(Object* object) { \
SLOW_DCHECK(object->Is##type()); \
return reinterpret_cast<type*>(object); \
} \
const type* type::cast(const Object* object) { \
SLOW_DCHECK(object->Is##type()); \
return reinterpret_cast<const type*>(object); \
}
#define INT_ACCESSORS(holder, name, offset) \
int holder::name() const { return READ_INT_FIELD(this, offset); } \
void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
#define ACCESSORS(holder, name, type, offset) \
type* holder::name() const { return type::cast(READ_FIELD(this, offset)); } \
void holder::set_##name(type* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \
}
// Getter that returns a Smi as an int and writes an int as a Smi.
#define SMI_ACCESSORS(holder, name, offset) \
int holder::name() const { \
Object* value = READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::set_##name(int value) { \
WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define SYNCHRONIZED_SMI_ACCESSORS(holder, name, offset) \
int holder::synchronized_##name() const { \
Object* value = ACQUIRE_READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::synchronized_set_##name(int value) { \
RELEASE_WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define NOBARRIER_SMI_ACCESSORS(holder, name, offset) \
int holder::nobarrier_##name() const { \
Object* value = NOBARRIER_READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::nobarrier_set_##name(int value) { \
NOBARRIER_WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define BOOL_GETTER(holder, field, name, offset) \
bool holder::name() const { \
return BooleanBit::get(field(), offset); \
} \
#define BOOL_ACCESSORS(holder, field, name, offset) \
bool holder::name() const { \
return BooleanBit::get(field(), offset); \
} \
void holder::set_##name(bool value) { \
set_##field(BooleanBit::set(field(), offset, value)); \
}
bool Object::IsFixedArrayBase() const {
return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase();
}
// External objects are not extensible, so the map check is enough.
bool Object::IsExternal() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->external_map();
}
bool Object::IsAccessorInfo() const { return IsExecutableAccessorInfo(); }
TYPE_CHECKER(HeapNumber, HEAP_NUMBER_TYPE)
TYPE_CHECKER(MutableHeapNumber, MUTABLE_HEAP_NUMBER_TYPE)
TYPE_CHECKER(Symbol, SYMBOL_TYPE)
TYPE_CHECKER(Simd128Value, SIMD128_VALUE_TYPE)
#define SIMD128_TYPE_CHECKER(TYPE, Type, type, lane_count, lane_type) \
bool Object::Is##Type() const { \
return Object::IsHeapObject() && \
HeapObject::cast(this)->map() == \
HeapObject::cast(this)->GetHeap()->type##_map(); \
}
SIMD128_TYPES(SIMD128_TYPE_CHECKER)
#undef SIMD128_TYPE_CHECKER
bool Object::IsString() const {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
}
bool Object::IsName() const {
STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() <= LAST_NAME_TYPE;
}
bool Object::IsUniqueName() const {
return IsInternalizedString() || IsSymbol();
}
bool Object::IsCallable() const {
return Object::IsHeapObject() && HeapObject::cast(this)->map()->is_callable();
}
bool Object::IsConstructor() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->is_constructor();
}
bool Object::IsSpecObject() const {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE;
}
bool Object::IsTemplateInfo() const {
return IsObjectTemplateInfo() || IsFunctionTemplateInfo();
}
bool Object::IsInternalizedString() const {
if (!this->IsHeapObject()) return false;
uint32_t type = HeapObject::cast(this)->map()->instance_type();
STATIC_ASSERT(kNotInternalizedTag != 0);
return (type & (kIsNotStringMask | kIsNotInternalizedMask)) ==
(kStringTag | kInternalizedTag);
}
bool Object::IsConsString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsCons();
}
bool Object::IsSlicedString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSliced();
}
bool Object::IsSeqString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential();
}
bool Object::IsSeqOneByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsOneByteRepresentation();
}
bool Object::IsSeqTwoByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::IsExternalString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal();
}
bool Object::IsExternalOneByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsOneByteRepresentation();
}
bool Object::IsExternalTwoByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::HasValidElements() {
// Dictionary is covered under FixedArray.
return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase();
}
bool Object::KeyEquals(Object* second) {
Object* first = this;
if (second->IsNumber()) {
if (first->IsNumber()) return first->Number() == second->Number();
Object* temp = first;
first = second;
second = temp;
}
if (first->IsNumber()) {
DCHECK_LE(0, first->Number());
uint32_t expected = static_cast<uint32_t>(first->Number());
uint32_t index;
return Name::cast(second)->AsArrayIndex(&index) && index == expected;
}
return Name::cast(first)->Equals(Name::cast(second));
}
bool Object::FilterKey(PropertyAttributes filter) {
if ((filter & SYMBOLIC) && IsSymbol()) {
return true;
}
if ((filter & PRIVATE_SYMBOL) && IsSymbol() &&
Symbol::cast(this)->is_private()) {
return true;
}
if ((filter & STRING) && !IsSymbol()) {
return true;
}
return false;
}
Handle<Object> Object::NewStorageFor(Isolate* isolate,
Handle<Object> object,
Representation representation) {
if (representation.IsSmi() && object->IsUninitialized()) {
return handle(Smi::FromInt(0), isolate);
}
if (!representation.IsDouble()) return object;
double value;
if (object->IsUninitialized()) {
value = 0;
} else if (object->IsMutableHeapNumber()) {
value = HeapNumber::cast(*object)->value();
} else {
value = object->Number();
}
return isolate->factory()->NewHeapNumber(value, MUTABLE);
}
Handle<Object> Object::WrapForRead(Isolate* isolate,
Handle<Object> object,
Representation representation) {
DCHECK(!object->IsUninitialized());
if (!representation.IsDouble()) {
DCHECK(object->FitsRepresentation(representation));
return object;
}
return isolate->factory()->NewHeapNumber(HeapNumber::cast(*object)->value());
}
StringShape::StringShape(const String* str)
: type_(str->map()->instance_type()) {
set_valid();
DCHECK((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(Map* map)
: type_(map->instance_type()) {
set_valid();
DCHECK((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(InstanceType t)
: type_(static_cast<uint32_t>(t)) {
set_valid();
DCHECK((type_ & kIsNotStringMask) == kStringTag);
}
bool StringShape::IsInternalized() {
DCHECK(valid());
STATIC_ASSERT(kNotInternalizedTag != 0);
return (type_ & (kIsNotStringMask | kIsNotInternalizedMask)) ==
(kStringTag | kInternalizedTag);
}
bool String::IsOneByteRepresentation() const {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kOneByteStringTag;
}
bool String::IsTwoByteRepresentation() const {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kTwoByteStringTag;
}
bool String::IsOneByteRepresentationUnderneath() {
uint32_t type = map()->instance_type();
STATIC_ASSERT(kIsIndirectStringTag != 0);
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
DCHECK(IsFlat());
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
case kOneByteStringTag:
return true;
case kTwoByteStringTag:
return false;
default: // Cons or sliced string. Need to go deeper.
return GetUnderlying()->IsOneByteRepresentation();
}
}
bool String::IsTwoByteRepresentationUnderneath() {
uint32_t type = map()->instance_type();
STATIC_ASSERT(kIsIndirectStringTag != 0);
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
DCHECK(IsFlat());
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
case kOneByteStringTag:
return false;
case kTwoByteStringTag:
return true;
default: // Cons or sliced string. Need to go deeper.
return GetUnderlying()->IsTwoByteRepresentation();
}
}
bool String::HasOnlyOneByteChars() {
uint32_t type = map()->instance_type();
return (type & kOneByteDataHintMask) == kOneByteDataHintTag ||
IsOneByteRepresentation();
}
bool StringShape::IsCons() {
return (type_ & kStringRepresentationMask) == kConsStringTag;
}
bool StringShape::IsSliced() {
return (type_ & kStringRepresentationMask) == kSlicedStringTag;
}
bool StringShape::IsIndirect() {
return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
}
bool StringShape::IsExternal() {
return (type_ & kStringRepresentationMask) == kExternalStringTag;
}
bool StringShape::IsSequential() {
return (type_ & kStringRepresentationMask) == kSeqStringTag;
}
StringRepresentationTag StringShape::representation_tag() {
uint32_t tag = (type_ & kStringRepresentationMask);
return static_cast<StringRepresentationTag>(tag);
}
uint32_t StringShape::encoding_tag() {
return type_ & kStringEncodingMask;
}
uint32_t StringShape::full_representation_tag() {
return (type_ & (kStringRepresentationMask | kStringEncodingMask));
}
STATIC_ASSERT((kStringRepresentationMask | kStringEncodingMask) ==
Internals::kFullStringRepresentationMask);
STATIC_ASSERT(static_cast<uint32_t>(kStringEncodingMask) ==
Internals::kStringEncodingMask);
bool StringShape::IsSequentialOneByte() {
return full_representation_tag() == (kSeqStringTag | kOneByteStringTag);
}
bool StringShape::IsSequentialTwoByte() {
return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
}
bool StringShape::IsExternalOneByte() {
return full_representation_tag() == (kExternalStringTag | kOneByteStringTag);
}
STATIC_ASSERT((kExternalStringTag | kOneByteStringTag) ==
Internals::kExternalOneByteRepresentationTag);
STATIC_ASSERT(v8::String::ONE_BYTE_ENCODING == kOneByteStringTag);
bool StringShape::IsExternalTwoByte() {
return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
}
STATIC_ASSERT((kExternalStringTag | kTwoByteStringTag) ==
Internals::kExternalTwoByteRepresentationTag);
STATIC_ASSERT(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag);
uc32 FlatStringReader::Get(int index) {
if (is_one_byte_) {
return Get<uint8_t>(index);
} else {
return Get<uc16>(index);
}
}
template <typename Char>
Char FlatStringReader::Get(int index) {
DCHECK_EQ(is_one_byte_, sizeof(Char) == 1);
DCHECK(0 <= index && index <= length_);
if (sizeof(Char) == 1) {
return static_cast<Char>(static_cast<const uint8_t*>(start_)[index]);
} else {
return static_cast<Char>(static_cast<const uc16*>(start_)[index]);
}
}
Handle<Object> StringTableShape::AsHandle(Isolate* isolate, HashTableKey* key) {
return key->AsHandle(isolate);
}
Handle<Object> CompilationCacheShape::AsHandle(Isolate* isolate,
HashTableKey* key) {
return key->AsHandle(isolate);
}
Handle<Object> CodeCacheHashTableShape::AsHandle(Isolate* isolate,
HashTableKey* key) {
return key->AsHandle(isolate);
}
template <typename Char>
class SequentialStringKey : public HashTableKey {
public:
explicit SequentialStringKey(Vector<const Char> string, uint32_t seed)
: string_(string), hash_field_(0), seed_(seed) { }
uint32_t Hash() override {
hash_field_ = StringHasher::HashSequentialString<Char>(string_.start(),
string_.length(),
seed_);
uint32_t result = hash_field_ >> String::kHashShift;
DCHECK(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
uint32_t HashForObject(Object* other) override {
return String::cast(other)->Hash();
}
Vector<const Char> string_;
uint32_t hash_field_;
uint32_t seed_;
};
class OneByteStringKey : public SequentialStringKey<uint8_t> {
public:
OneByteStringKey(Vector<const uint8_t> str, uint32_t seed)
: SequentialStringKey<uint8_t>(str, seed) { }
bool IsMatch(Object* string) override {
return String::cast(string)->IsOneByteEqualTo(string_);
}
Handle<Object> AsHandle(Isolate* isolate) override;
};
class SeqOneByteSubStringKey : public HashTableKey {
public:
SeqOneByteSubStringKey(Handle<SeqOneByteString> string, int from, int length)
: string_(string), from_(from), length_(length) {
DCHECK(string_->IsSeqOneByteString());
}
uint32_t Hash() override {
DCHECK(length_ >= 0);
DCHECK(from_ + length_ <= string_->length());
const uint8_t* chars = string_->GetChars() + from_;
hash_field_ = StringHasher::HashSequentialString(
chars, length_, string_->GetHeap()->HashSeed());
uint32_t result = hash_field_ >> String::kHashShift;
DCHECK(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
uint32_t HashForObject(Object* other) override {
return String::cast(other)->Hash();
}
bool IsMatch(Object* string) override;
Handle<Object> AsHandle(Isolate* isolate) override;
private:
Handle<SeqOneByteString> string_;
int from_;
int length_;
uint32_t hash_field_;
};
class TwoByteStringKey : public SequentialStringKey<uc16> {
public:
explicit TwoByteStringKey(Vector<const uc16> str, uint32_t seed)
: SequentialStringKey<uc16>(str, seed) { }
bool IsMatch(Object* string) override {
return String::cast(string)->IsTwoByteEqualTo(string_);
}
Handle<Object> AsHandle(Isolate* isolate) override;
};
// Utf8StringKey carries a vector of chars as key.
class Utf8StringKey : public HashTableKey {
public:
explicit Utf8StringKey(Vector<const char> string, uint32_t seed)
: string_(string), hash_field_(0), seed_(seed) { }
bool IsMatch(Object* string) override {
return String::cast(string)->IsUtf8EqualTo(string_);
}
uint32_t Hash() override {
if (hash_field_ != 0) return hash_field_ >> String::kHashShift;
hash_field_ = StringHasher::ComputeUtf8Hash(string_, seed_, &chars_);
uint32_t result = hash_field_ >> String::kHashShift;
DCHECK(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
uint32_t HashForObject(Object* other) override {
return String::cast(other)->Hash();
}
Handle<Object> AsHandle(Isolate* isolate) override {
if (hash_field_ == 0) Hash();
return isolate->factory()->NewInternalizedStringFromUtf8(
string_, chars_, hash_field_);
}
Vector<const char> string_;
uint32_t hash_field_;
int chars_; // Caches the number of characters when computing the hash code.
uint32_t seed_;
};
bool Object::IsNumber() const {
return IsSmi() || IsHeapNumber();
}
TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE)
TYPE_CHECKER(BytecodeArray, BYTECODE_ARRAY_TYPE)
TYPE_CHECKER(FreeSpace, FREE_SPACE_TYPE)
bool Object::IsFiller() const {
if (!Object::IsHeapObject()) return false;
InstanceType instance_type = HeapObject::cast(this)->map()->instance_type();
return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
}
#define TYPED_ARRAY_TYPE_CHECKER(Type, type, TYPE, ctype, size) \
TYPE_CHECKER(Fixed##Type##Array, FIXED_##TYPE##_ARRAY_TYPE)
TYPED_ARRAYS(TYPED_ARRAY_TYPE_CHECKER)
#undef TYPED_ARRAY_TYPE_CHECKER
bool Object::IsFixedTypedArrayBase() const {
if (!Object::IsHeapObject()) return false;
InstanceType instance_type =
HeapObject::cast(this)->map()->instance_type();
return (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE &&
instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE);
}
bool Object::IsJSReceiver() const {
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
return IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE;
}
bool Object::IsJSObject() const {
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
return IsHeapObject() && HeapObject::cast(this)->map()->IsJSObjectMap();
}
bool Object::IsJSProxy() const {
if (!Object::IsHeapObject()) return false;
return HeapObject::cast(this)->map()->IsJSProxyMap();
}
TYPE_CHECKER(JSFunctionProxy, JS_FUNCTION_PROXY_TYPE)
TYPE_CHECKER(JSSet, JS_SET_TYPE)
TYPE_CHECKER(JSMap, JS_MAP_TYPE)
TYPE_CHECKER(JSSetIterator, JS_SET_ITERATOR_TYPE)
TYPE_CHECKER(JSMapIterator, JS_MAP_ITERATOR_TYPE)
TYPE_CHECKER(JSIteratorResult, JS_ITERATOR_RESULT_TYPE)
TYPE_CHECKER(JSWeakMap, JS_WEAK_MAP_TYPE)
TYPE_CHECKER(JSWeakSet, JS_WEAK_SET_TYPE)
TYPE_CHECKER(JSContextExtensionObject, JS_CONTEXT_EXTENSION_OBJECT_TYPE)
TYPE_CHECKER(Map, MAP_TYPE)
TYPE_CHECKER(FixedArray, FIXED_ARRAY_TYPE)
TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE)
TYPE_CHECKER(WeakFixedArray, FIXED_ARRAY_TYPE)
bool Object::IsJSWeakCollection() const {
return IsJSWeakMap() || IsJSWeakSet();
}
bool Object::IsDescriptorArray() const {
return IsFixedArray();
}
bool Object::IsArrayList() const { return IsFixedArray(); }
bool Object::IsLayoutDescriptor() const {
return IsSmi() || IsFixedTypedArrayBase();
}
bool Object::IsTransitionArray() const {
return IsFixedArray();
}
bool Object::IsTypeFeedbackVector() const { return IsFixedArray(); }
bool Object::IsTypeFeedbackMetadata() const { return IsFixedArray(); }
bool Object::IsLiteralsArray() const { return IsFixedArray(); }
bool Object::IsBindingsArray() const { return IsFixedArray(); }
bool Object::IsDeoptimizationInputData() const {
// Must be a fixed array.
if (!IsFixedArray()) return false;
// There's no sure way to detect the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can
// check that the length is zero or else the fixed size plus a multiple of
// the entry size.
int length = FixedArray::cast(this)->length();
if (length == 0) return true;
length -= DeoptimizationInputData::kFirstDeoptEntryIndex;
return length >= 0 && length % DeoptimizationInputData::kDeoptEntrySize == 0;
}
bool Object::IsDeoptimizationOutputData() const {
if (!IsFixedArray()) return false;
// There's actually no way to see the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can check
// that the length is plausible though.
if (FixedArray::cast(this)->length() % 2 != 0) return false;
return true;
}
bool Object::IsHandlerTable() const {
if (!IsFixedArray()) return false;
// There's actually no way to see the difference between a fixed array and
// a handler table array.
return true;
}
bool Object::IsDependentCode() const {
if (!IsFixedArray()) return false;
// There's actually no way to see the difference between a fixed array and
// a dependent codes array.
return true;
}
bool Object::IsContext() const {
if (!Object::IsHeapObject()) return false;
Map* map = HeapObject::cast(this)->map();
Heap* heap = map->GetHeap();
return (map == heap->function_context_map() ||
map == heap->catch_context_map() ||
map == heap->with_context_map() ||
map == heap->native_context_map() ||
map == heap->block_context_map() ||
map == heap->module_context_map() ||
map == heap->script_context_map());
}
bool Object::IsNativeContext() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->native_context_map();
}
bool Object::IsScriptContextTable() const {
if (!Object::IsHeapObject()) return false;
Map* map = HeapObject::cast(this)->map();
Heap* heap = map->GetHeap();
return map == heap->script_context_table_map();
}
bool Object::IsScopeInfo() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->scope_info_map();
}
TYPE_CHECKER(JSFunction, JS_FUNCTION_TYPE)
template <> inline bool Is<JSFunction>(Object* obj) {
return obj->IsJSFunction();
}
TYPE_CHECKER(Code, CODE_TYPE)
TYPE_CHECKER(Oddball, ODDBALL_TYPE)
TYPE_CHECKER(Cell, CELL_TYPE)
TYPE_CHECKER(PropertyCell, PROPERTY_CELL_TYPE)
TYPE_CHECKER(WeakCell, WEAK_CELL_TYPE)
TYPE_CHECKER(SharedFunctionInfo, SHARED_FUNCTION_INFO_TYPE)
TYPE_CHECKER(JSGeneratorObject, JS_GENERATOR_OBJECT_TYPE)
TYPE_CHECKER(JSModule, JS_MODULE_TYPE)
TYPE_CHECKER(JSValue, JS_VALUE_TYPE)
TYPE_CHECKER(JSDate, JS_DATE_TYPE)
TYPE_CHECKER(JSMessageObject, JS_MESSAGE_OBJECT_TYPE)
bool Object::IsStringWrapper() const {
return IsJSValue() && JSValue::cast(this)->value()->IsString();
}
TYPE_CHECKER(Foreign, FOREIGN_TYPE)
bool Object::IsBoolean() const {
return IsOddball() &&
((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
}
TYPE_CHECKER(JSArray, JS_ARRAY_TYPE)
TYPE_CHECKER(JSArrayBuffer, JS_ARRAY_BUFFER_TYPE)
TYPE_CHECKER(JSTypedArray, JS_TYPED_ARRAY_TYPE)
TYPE_CHECKER(JSDataView, JS_DATA_VIEW_TYPE)
bool Object::IsJSArrayBufferView() const {
return IsJSDataView() || IsJSTypedArray();
}
TYPE_CHECKER(JSRegExp, JS_REGEXP_TYPE)
template <> inline bool Is<JSArray>(Object* obj) {
return obj->IsJSArray();
}
bool Object::IsHashTable() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->hash_table_map();
}
bool Object::IsWeakHashTable() const {
return IsHashTable();
}
bool Object::IsDictionary() const {
return IsHashTable() &&
this != HeapObject::cast(this)->GetHeap()->string_table();
}
bool Object::IsNameDictionary() const {
return IsDictionary();
}
bool Object::IsGlobalDictionary() const { return IsDictionary(); }
bool Object::IsSeededNumberDictionary() const {
return IsDictionary();
}
bool Object::IsUnseededNumberDictionary() const {
return IsDictionary();
}
bool Object::IsStringTable() const {
return IsHashTable();
}
bool Object::IsNormalizedMapCache() const {
return NormalizedMapCache::IsNormalizedMapCache(this);
}
int NormalizedMapCache::GetIndex(Handle<Map> map) {
return map->Hash() % NormalizedMapCache::kEntries;
}
bool NormalizedMapCache::IsNormalizedMapCache(const Object* obj) {
if (!obj->IsFixedArray()) return false;
if (FixedArray::cast(obj)->length() != NormalizedMapCache::kEntries) {
return false;
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
reinterpret_cast<NormalizedMapCache*>(const_cast<Object*>(obj))->
NormalizedMapCacheVerify();
}
#endif
return true;
}
bool Object::IsCompilationCacheTable() const {
return IsHashTable();
}
bool Object::IsCodeCacheHashTable() const {
return IsHashTable();
}
bool Object::IsPolymorphicCodeCacheHashTable() const {
return IsHashTable();
}
bool Object::IsMapCache() const {
return IsHashTable();
}
bool Object::IsObjectHashTable() const {
return IsHashTable();
}
bool Object::IsOrderedHashTable() const {
return IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->ordered_hash_table_map();
}
bool Object::IsOrderedHashSet() const {
return IsOrderedHashTable();
}
bool Object::IsOrderedHashMap() const {
return IsOrderedHashTable();
}
bool Object::IsPrimitive() const {
return IsSmi() || HeapObject::cast(this)->map()->IsPrimitiveMap();
}
bool Object::IsJSGlobalProxy() const {
bool result = IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_GLOBAL_PROXY_TYPE);
DCHECK(!result ||
HeapObject::cast(this)->map()->is_access_check_needed());
return result;
}
TYPE_CHECKER(JSGlobalObject, JS_GLOBAL_OBJECT_TYPE)
bool Object::IsUndetectableObject() const {
return IsHeapObject()
&& HeapObject::cast(this)->map()->is_undetectable();
}
bool Object::IsAccessCheckNeeded() const {
if (!IsHeapObject()) return false;
if (IsJSGlobalProxy()) {
const JSGlobalProxy* proxy = JSGlobalProxy::cast(this);
JSGlobalObject* global = proxy->GetIsolate()->context()->global_object();
return proxy->IsDetachedFrom(global);
}
return HeapObject::cast(this)->map()->is_access_check_needed();
}
bool Object::IsStruct() const {
if (!IsHeapObject()) return false;
switch (HeapObject::cast(this)->map()->instance_type()) {
#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default: return false;
}
}
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
bool Object::Is##Name() const { \
return Object::IsHeapObject() \
&& HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
}
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
#undef MAKE_STRUCT_PREDICATE
bool Object::IsUndefined() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined;
}
bool Object::IsNull() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull;
}
bool Object::IsTheHole() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole;
}
bool Object::IsException() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kException;
}
bool Object::IsUninitialized() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUninitialized;
}
bool Object::IsTrue() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue;
}
bool Object::IsFalse() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse;
}
bool Object::IsArgumentsMarker() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker;
}
double Object::Number() const {
DCHECK(IsNumber());
return IsSmi()
? static_cast<double>(reinterpret_cast<const Smi*>(this)->value())
: reinterpret_cast<const HeapNumber*>(this)->value();
}
bool Object::IsNaN() const {
return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value());
}
bool Object::IsMinusZero() const {
return this->IsHeapNumber() &&
i::IsMinusZero(HeapNumber::cast(this)->value());
}
Representation Object::OptimalRepresentation() {
if (!FLAG_track_fields) return Representation::Tagged();
if (IsSmi()) {
return Representation::Smi();
} else if (FLAG_track_double_fields && IsHeapNumber()) {
return Representation::Double();
} else if (FLAG_track_computed_fields && IsUninitialized()) {
return Representation::None();
} else if (FLAG_track_heap_object_fields) {
DCHECK(IsHeapObject());
return Representation::HeapObject();
} else {
return Representation::Tagged();
}
}
ElementsKind Object::OptimalElementsKind() {
if (IsSmi()) return FAST_SMI_ELEMENTS;
if (IsNumber()) return FAST_DOUBLE_ELEMENTS;
return FAST_ELEMENTS;
}
bool Object::FitsRepresentation(Representation representation) {
if (FLAG_track_fields && representation.IsNone()) {
return false;
} else if (FLAG_track_fields && representation.IsSmi()) {
return IsSmi();
} else if (FLAG_track_double_fields && representation.IsDouble()) {
return IsMutableHeapNumber() || IsNumber();
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
return IsHeapObject();
}
return true;
}
// static
MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
Handle<Object> object) {
return ToObject(
isolate, object, handle(isolate->context()->native_context(), isolate));
}
// static
MaybeHandle<Object> Object::ToPrimitive(Handle<Object> input,
ToPrimitiveHint hint) {
if (input->IsPrimitive()) return input;
return JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), hint);
}
bool Object::HasSpecificClassOf(String* name) {
return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
}
MaybeHandle<Object> Object::GetProperty(Handle<Object> object,
Handle<Name> name,
LanguageMode language_mode) {
LookupIterator it(object, name);
return GetProperty(&it, language_mode);
}
MaybeHandle<Object> Object::GetElement(Isolate* isolate, Handle<Object> object,
uint32_t index,
LanguageMode language_mode) {
LookupIterator it(isolate, object, index);
return GetProperty(&it, language_mode);
}
MaybeHandle<Object> Object::SetElement(Isolate* isolate, Handle<Object> object,
uint32_t index, Handle<Object> value,
LanguageMode language_mode) {
LookupIterator it(isolate, object, index);
MAYBE_RETURN_NULL(
SetProperty(&it, value, language_mode, MAY_BE_STORE_FROM_KEYED));
return value;
}
Handle<Object> Object::GetPrototype(Isolate* isolate, Handle<Object> obj) {
// We don't expect access checks to be needed on JSProxy objects.
DCHECK(!obj->IsAccessCheckNeeded() || obj->IsJSObject());
Handle<Context> context(isolate->context());
if (obj->IsAccessCheckNeeded() &&
!isolate->MayAccess(context, Handle<JSObject>::cast(obj))) {
return isolate->factory()->null_value();
}
PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
do {
iter.AdvanceIgnoringProxies();
if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
return PrototypeIterator::GetCurrent(iter);
}
} while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN));
return PrototypeIterator::GetCurrent(iter);
}
MaybeHandle<Object> Object::GetProperty(Isolate* isolate, Handle<Object> object,
const char* name,
LanguageMode language_mode) {
Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
return GetProperty(object, str, language_mode);
}
#define FIELD_ADDR(p, offset) \
(reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
#define FIELD_ADDR_CONST(p, offset) \
(reinterpret_cast<const byte*>(p) + offset - kHeapObjectTag)
#define READ_FIELD(p, offset) \
(*reinterpret_cast<Object* const*>(FIELD_ADDR_CONST(p, offset)))
#define ACQUIRE_READ_FIELD(p, offset) \
reinterpret_cast<Object*>(base::Acquire_Load( \
reinterpret_cast<const base::AtomicWord*>(FIELD_ADDR_CONST(p, offset))))
#define NOBARRIER_READ_FIELD(p, offset) \
reinterpret_cast<Object*>(base::NoBarrier_Load( \
reinterpret_cast<const base::AtomicWord*>(FIELD_ADDR_CONST(p, offset))))
#define WRITE_FIELD(p, offset, value) \
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
#define RELEASE_WRITE_FIELD(p, offset, value) \
base::Release_Store( \
reinterpret_cast<base::AtomicWord*>(FIELD_ADDR(p, offset)), \
reinterpret_cast<base::AtomicWord>(value));
#define NOBARRIER_WRITE_FIELD(p, offset, value) \
base::NoBarrier_Store( \
reinterpret_cast<base::AtomicWord*>(FIELD_ADDR(p, offset)), \
reinterpret_cast<base::AtomicWord>(value));
#define WRITE_BARRIER(heap, object, offset, value) \
heap->incremental_marking()->RecordWrite( \
object, HeapObject::RawField(object, offset), value); \
if (heap->InNewSpace(value)) { \
heap->RecordWrite(object->address(), offset); \
}
#define CONDITIONAL_WRITE_BARRIER(heap, object, offset, value, mode) \
if (mode != SKIP_WRITE_BARRIER) { \
if (mode == UPDATE_WRITE_BARRIER) { \
heap->incremental_marking()->RecordWrite( \
object, HeapObject::RawField(object, offset), value); \
} \
if (heap->InNewSpace(value)) { \
heap->RecordWrite(object->address(), offset); \
} \
}
#define READ_DOUBLE_FIELD(p, offset) \
ReadDoubleValue(FIELD_ADDR_CONST(p, offset))
#define WRITE_DOUBLE_FIELD(p, offset, value) \
WriteDoubleValue(FIELD_ADDR(p, offset), value)
#define READ_INT_FIELD(p, offset) \
(*reinterpret_cast<const int*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INT_FIELD(p, offset, value) \
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
#define READ_INTPTR_FIELD(p, offset) \
(*reinterpret_cast<const intptr_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INTPTR_FIELD(p, offset, value) \
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_UINT8_FIELD(p, offset) \
(*reinterpret_cast<const uint8_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_UINT8_FIELD(p, offset, value) \
(*reinterpret_cast<uint8_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_INT8_FIELD(p, offset) \
(*reinterpret_cast<const int8_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INT8_FIELD(p, offset, value) \
(*reinterpret_cast<int8_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_UINT16_FIELD(p, offset) \
(*reinterpret_cast<const uint16_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_UINT16_FIELD(p, offset, value) \
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_INT16_FIELD(p, offset) \
(*reinterpret_cast<const int16_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INT16_FIELD(p, offset, value) \
(*reinterpret_cast<int16_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_UINT32_FIELD(p, offset) \
(*reinterpret_cast<const uint32_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_UINT32_FIELD(p, offset, value) \
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_INT32_FIELD(p, offset) \
(*reinterpret_cast<const int32_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INT32_FIELD(p, offset, value) \
(*reinterpret_cast<int32_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_FLOAT_FIELD(p, offset) \
(*reinterpret_cast<const float*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_FLOAT_FIELD(p, offset, value) \
(*reinterpret_cast<float*>(FIELD_ADDR(p, offset)) = value)
#define READ_UINT64_FIELD(p, offset) \
(*reinterpret_cast<const uint64_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_UINT64_FIELD(p, offset, value) \
(*reinterpret_cast<uint64_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_INT64_FIELD(p, offset) \
(*reinterpret_cast<const int64_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INT64_FIELD(p, offset, value) \
(*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_BYTE_FIELD(p, offset) \
(*reinterpret_cast<const byte*>(FIELD_ADDR_CONST(p, offset)))
#define NOBARRIER_READ_BYTE_FIELD(p, offset) \
static_cast<byte>(base::NoBarrier_Load( \
reinterpret_cast<base::Atomic8*>(FIELD_ADDR(p, offset))))
#define WRITE_BYTE_FIELD(p, offset, value) \
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
#define NOBARRIER_WRITE_BYTE_FIELD(p, offset, value) \
base::NoBarrier_Store( \
reinterpret_cast<base::Atomic8*>(FIELD_ADDR(p, offset)), \
static_cast<base::Atomic8>(value));
Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
return reinterpret_cast<Object**>(FIELD_ADDR(obj, byte_offset));
}
MapWord MapWord::FromMap(const Map* map) {
return MapWord(reinterpret_cast<uintptr_t>(map));
}
Map* MapWord::ToMap() {
return reinterpret_cast<Map*>(value_);
}
bool MapWord::IsForwardingAddress() {
return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
}
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
return MapWord(reinterpret_cast<uintptr_t>(raw));
}
HeapObject* MapWord::ToForwardingAddress() {
DCHECK(IsForwardingAddress());
return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
}
#ifdef VERIFY_HEAP
void HeapObject::VerifyObjectField(int offset) {
VerifyPointer(READ_FIELD(this, offset));
}
void HeapObject::VerifySmiField(int offset) {
CHECK(READ_FIELD(this, offset)->IsSmi());
}
#endif
Heap* HeapObject::GetHeap() const {
Heap* heap =
MemoryChunk::FromAddress(reinterpret_cast<const byte*>(this))->heap();
SLOW_DCHECK(heap != NULL);
return heap;
}
Isolate* HeapObject::GetIsolate() const {
return GetHeap()->isolate();
}
Map* HeapObject::map() const {
#ifdef DEBUG
// Clear mark potentially added by PathTracer.
uintptr_t raw_value =
map_word().ToRawValue() & ~static_cast<uintptr_t>(PathTracer::kMarkTag);
return MapWord::FromRawValue(raw_value).ToMap();
#else
return map_word().ToMap();
#endif
}
void HeapObject::set_map(Map* value) {
set_map_word(MapWord::FromMap(value));
if (value != NULL) {
// TODO(1600) We are passing NULL as a slot because maps can never be on
// evacuation candidate.
value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value);
}
}
Map* HeapObject::synchronized_map() {
return synchronized_map_word().ToMap();
}
void HeapObject::synchronized_set_map(Map* value) {
synchronized_set_map_word(MapWord::FromMap(value));
if (value != NULL) {
// TODO(1600) We are passing NULL as a slot because maps can never be on
// evacuation candidate.
value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value);
}
}
void HeapObject::synchronized_set_map_no_write_barrier(Map* value) {
synchronized_set_map_word(MapWord::FromMap(value));
}
// Unsafe accessor omitting write barrier.
void HeapObject::set_map_no_write_barrier(Map* value) {
set_map_word(MapWord::FromMap(value));
}
MapWord HeapObject::map_word() const {
return MapWord(
reinterpret_cast<uintptr_t>(NOBARRIER_READ_FIELD(this, kMapOffset)));
}
void HeapObject::set_map_word(MapWord map_word) {
NOBARRIER_WRITE_FIELD(
this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
}
MapWord HeapObject::synchronized_map_word() const {
return MapWord(
reinterpret_cast<uintptr_t>(ACQUIRE_READ_FIELD(this, kMapOffset)));
}
void HeapObject::synchronized_set_map_word(MapWord map_word) {
RELEASE_WRITE_FIELD(
this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
}
int HeapObject::Size() {
return SizeFromMap(map());
}
HeapObjectContents HeapObject::ContentType() {
InstanceType type = map()->instance_type();
if (type <= LAST_NAME_TYPE) {
if (type == SYMBOL_TYPE) {
return HeapObjectContents::kTaggedValues;
}
DCHECK(type < FIRST_NONSTRING_TYPE);
// There are four string representations: sequential strings, external
// strings, cons strings, and sliced strings.
// Only the former two contain raw values and no heap pointers (besides the
// map-word).
if (((type & kIsIndirectStringMask) != kIsIndirectStringTag))
return HeapObjectContents::kRawValues;
else
return HeapObjectContents::kTaggedValues;
#if 0
// TODO(jochen): Enable eventually.
} else if (type == JS_FUNCTION_TYPE) {
return HeapObjectContents::kMixedValues;
#endif
} else if (type == BYTECODE_ARRAY_TYPE) {
return HeapObjectContents::kMixedValues;
} else if (type >= FIRST_FIXED_TYPED_ARRAY_TYPE &&
type <= LAST_FIXED_TYPED_ARRAY_TYPE) {
return HeapObjectContents::kMixedValues;
} else if (type == JS_ARRAY_BUFFER_TYPE) {
return HeapObjectContents::kMixedValues;
} else if (type <= LAST_DATA_TYPE) {
// TODO(jochen): Why do we claim that Code and Map contain only raw values?
return HeapObjectContents::kRawValues;
} else {
if (FLAG_unbox_double_fields) {
LayoutDescriptorHelper helper(map());
if (!helper.all_fields_tagged()) return HeapObjectContents::kMixedValues;
}
return HeapObjectContents::kTaggedValues;
}
}
void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
}
void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
}
void HeapObject::IterateNextCodeLink(ObjectVisitor* v, int offset) {
v->VisitNextCodeLink(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
}
double HeapNumber::value() const {
return READ_DOUBLE_FIELD(this, kValueOffset);
}
void HeapNumber::set_value(double value) {
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
}
int HeapNumber::get_exponent() {
return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
kExponentShift) - kExponentBias;
}
int HeapNumber::get_sign() {
return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
}
bool Simd128Value::Equals(Simd128Value* that) {
#define SIMD128_VALUE(TYPE, Type, type, lane_count, lane_type) \
if (this->Is##Type()) { \
if (!that->Is##Type()) return false; \
return Type::cast(this)->Equals(Type::cast(that)); \
}
SIMD128_TYPES(SIMD128_VALUE)
#undef SIMD128_VALUE
return false;
}
// static
bool Simd128Value::Equals(Handle<Simd128Value> one, Handle<Simd128Value> two) {
return one->Equals(*two);
}
#define SIMD128_VALUE_EQUALS(TYPE, Type, type, lane_count, lane_type) \
bool Type::Equals(Type* that) { \
for (int lane = 0; lane < lane_count; ++lane) { \
if (this->get_lane(lane) != that->get_lane(lane)) return false; \
} \
return true; \
}
SIMD128_TYPES(SIMD128_VALUE_EQUALS)
#undef SIMD128_VALUE_EQUALS
#if defined(V8_TARGET_LITTLE_ENDIAN)
#define SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \
lane_type value = \
READ_##field_type##_FIELD(this, kValueOffset + lane * field_size);
#elif defined(V8_TARGET_BIG_ENDIAN)
#define SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \
lane_type value = READ_##field_type##_FIELD( \
this, kValueOffset + (lane_count - lane - 1) * field_size);
#else
#error Unknown byte ordering
#endif
#if defined(V8_TARGET_LITTLE_ENDIAN)
#define SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \
WRITE_##field_type##_FIELD(this, kValueOffset + lane * field_size, value);
#elif defined(V8_TARGET_BIG_ENDIAN)
#define SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \
WRITE_##field_type##_FIELD( \
this, kValueOffset + (lane_count - lane - 1) * field_size, value);
#else
#error Unknown byte ordering
#endif
#define SIMD128_NUMERIC_LANE_FNS(type, lane_type, lane_count, field_type, \
field_size) \
lane_type type::get_lane(int lane) const { \
DCHECK(lane < lane_count && lane >= 0); \
SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \
return value; \
} \
\
void type::set_lane(int lane, lane_type value) { \
DCHECK(lane < lane_count && lane >= 0); \
SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \
}
SIMD128_NUMERIC_LANE_FNS(Float32x4, float, 4, FLOAT, kFloatSize)
SIMD128_NUMERIC_LANE_FNS(Int32x4, int32_t, 4, INT32, kInt32Size)
SIMD128_NUMERIC_LANE_FNS(Uint32x4, uint32_t, 4, UINT32, kInt32Size)
SIMD128_NUMERIC_LANE_FNS(Int16x8, int16_t, 8, INT16, kShortSize)
SIMD128_NUMERIC_LANE_FNS(Uint16x8, uint16_t, 8, UINT16, kShortSize)
SIMD128_NUMERIC_LANE_FNS(Int8x16, int8_t, 16, INT8, kCharSize)
SIMD128_NUMERIC_LANE_FNS(Uint8x16, uint8_t, 16, UINT8, kCharSize)
#undef SIMD128_NUMERIC_LANE_FNS
#define SIMD128_BOOLEAN_LANE_FNS(type, lane_type, lane_count, field_type, \
field_size) \
bool type::get_lane(int lane) const { \
DCHECK(lane < lane_count && lane >= 0); \
SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \
DCHECK(value == 0 || value == -1); \
return value != 0; \
} \
\
void type::set_lane(int lane, bool value) { \
DCHECK(lane < lane_count && lane >= 0); \
int32_t int_val = value ? -1 : 0; \
SIMD128_WRITE_LANE(lane_count, field_type, field_size, int_val) \
}
SIMD128_BOOLEAN_LANE_FNS(Bool32x4, int32_t, 4, INT32, kInt32Size)
SIMD128_BOOLEAN_LANE_FNS(Bool16x8, int16_t, 8, INT16, kShortSize)
SIMD128_BOOLEAN_LANE_FNS(Bool8x16, int8_t, 16, INT8, kCharSize)
#undef SIMD128_BOOLEAN_LANE_FNS
#undef SIMD128_READ_LANE
#undef SIMD128_WRITE_LANE
ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
Object** FixedArray::GetFirstElementAddress() {
return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0)));
}
bool FixedArray::ContainsOnlySmisOrHoles() {
Object* the_hole = GetHeap()->the_hole_value();
Object** current = GetFirstElementAddress();
for (int i = 0; i < length(); ++i) {
Object* candidate = *current++;
if (!candidate->IsSmi() && candidate != the_hole) return false;
}
return true;
}
FixedArrayBase* JSObject::elements() const {
Object* array = READ_FIELD(this, kElementsOffset);
return static_cast<FixedArrayBase*>(array);
}
void AllocationSite::Initialize() {
set_transition_info(Smi::FromInt(0));
SetElementsKind(GetInitialFastElementsKind());
set_nested_site(Smi::FromInt(0));
set_pretenure_data(0);
set_pretenure_create_count(0);
set_dependent_code(DependentCode::cast(GetHeap()->empty_fixed_array()),
SKIP_WRITE_BARRIER);
}
bool AllocationSite::IsZombie() { return pretenure_decision() == kZombie; }
bool AllocationSite::IsMaybeTenure() {
return pretenure_decision() == kMaybeTenure;
}
bool AllocationSite::PretenuringDecisionMade() {
return pretenure_decision() != kUndecided;
}
void AllocationSite::MarkZombie() {
DCHECK(!IsZombie());
Initialize();
set_pretenure_decision(kZombie);
}
ElementsKind AllocationSite::GetElementsKind() {
DCHECK(!SitePointsToLiteral());
int value = Smi::cast(transition_info())->value();
return ElementsKindBits::decode(value);
}
void AllocationSite::SetElementsKind(ElementsKind kind) {
int value = Smi::cast(transition_info())->value();
set_transition_info(Smi::FromInt(ElementsKindBits::update(value, kind)),
SKIP_WRITE_BARRIER);
}
bool AllocationSite::CanInlineCall() {
int value = Smi::cast(transition_info())->value();
return DoNotInlineBit::decode(value) == 0;
}
void AllocationSite::SetDoNotInlineCall() {
int value = Smi::cast(transition_info())->value();
set_transition_info(Smi::FromInt(DoNotInlineBit::update(value, true)),
SKIP_WRITE_BARRIER);
}
bool AllocationSite::SitePointsToLiteral() {
// If transition_info is a smi, then it represents an ElementsKind
// for a constructed array. Otherwise, it must be a boilerplate
// for an object or array literal.
return transition_info()->IsJSArray() || transition_info()->IsJSObject();
}
// Heuristic: We only need to create allocation site info if the boilerplate
// elements kind is the initial elements kind.
AllocationSiteMode AllocationSite::GetMode(
ElementsKind boilerplate_elements_kind) {
if (IsFastSmiElementsKind(boilerplate_elements_kind)) {
return TRACK_ALLOCATION_SITE;
}
return DONT_TRACK_ALLOCATION_SITE;
}
AllocationSiteMode AllocationSite::GetMode(ElementsKind from,
ElementsKind to) {
if (IsFastSmiElementsKind(from) &&
IsMoreGeneralElementsKindTransition(from, to)) {
return TRACK_ALLOCATION_SITE;
}
return DONT_TRACK_ALLOCATION_SITE;
}
inline bool AllocationSite::CanTrack(InstanceType type) {
if (FLAG_allocation_site_pretenuring) {
return type == JS_ARRAY_TYPE ||
type == JS_OBJECT_TYPE ||
type < FIRST_NONSTRING_TYPE;
}
return type == JS_ARRAY_TYPE;
}
AllocationSite::PretenureDecision AllocationSite::pretenure_decision() {
int value = pretenure_data();
return PretenureDecisionBits::decode(value);
}
void AllocationSite::set_pretenure_decision(PretenureDecision decision) {
int value = pretenure_data();
set_pretenure_data(PretenureDecisionBits::update(value, decision));
}
bool AllocationSite::deopt_dependent_code() {
int value = pretenure_data();
return DeoptDependentCodeBit::decode(value);
}
void AllocationSite::set_deopt_dependent_code(bool deopt) {
int value = pretenure_data();
set_pretenure_data(DeoptDependentCodeBit::update(value, deopt));
}
int AllocationSite::memento_found_count() {
int value = pretenure_data();
return MementoFoundCountBits::decode(value);
}
inline void AllocationSite::set_memento_found_count(int count) {
int value = pretenure_data();
// Verify that we can count more mementos than we can possibly find in one
// new space collection.
DCHECK((GetHeap()->MaxSemiSpaceSize() /
(Heap::kMinObjectSizeInWords * kPointerSize +
AllocationMemento::kSize)) < MementoFoundCountBits::kMax);
DCHECK(count < MementoFoundCountBits::kMax);
set_pretenure_data(MementoFoundCountBits::update(value, count));
}
int AllocationSite::memento_create_count() { return pretenure_create_count(); }
void AllocationSite::set_memento_create_count(int count) {
set_pretenure_create_count(count);
}
inline bool AllocationSite::IncrementMementoFoundCount() {
if (IsZombie()) return false;
int value = memento_found_count();
set_memento_found_count(value + 1);
return memento_found_count() == kPretenureMinimumCreated;
}
inline void AllocationSite::IncrementMementoCreateCount() {
DCHECK(FLAG_allocation_site_pretenuring);
int value = memento_create_count();
set_memento_create_count(value + 1);
}
inline bool AllocationSite::MakePretenureDecision(
PretenureDecision current_decision,
double ratio,
bool maximum_size_scavenge) {
// Here we just allow state transitions from undecided or maybe tenure
// to don't tenure, maybe tenure, or tenure.
if ((current_decision == kUndecided || current_decision == kMaybeTenure)) {
if (ratio >= kPretenureRatio) {
// We just transition into tenure state when the semi-space was at
// maximum capacity.
if (maximum_size_scavenge) {
set_deopt_dependent_code(true);
set_pretenure_decision(kTenure);
// Currently we just need to deopt when we make a state transition to
// tenure.
return true;
}
set_pretenure_decision(kMaybeTenure);
} else {
set_pretenure_decision(kDontTenure);
}
}
return false;
}
inline bool AllocationSite::DigestPretenuringFeedback(
bool maximum_size_scavenge) {
bool deopt = false;
int create_count = memento_create_count();
int found_count = memento_found_count();
bool minimum_mementos_created = create_count >= kPretenureMinimumCreated;
double ratio =
minimum_mementos_created || FLAG_trace_pretenuring_statistics ?
static_cast<double>(found_count) / create_count : 0.0;
PretenureDecision current_decision = pretenure_decision();
if (minimum_mementos_created) {
deopt = MakePretenureDecision(
current_decision, ratio, maximum_size_scavenge);
}
if (FLAG_trace_pretenuring_statistics) {
PrintF(
"AllocationSite(%p): (created, found, ratio) (%d, %d, %f) %s => %s\n",
static_cast<void*>(this), create_count, found_count, ratio,
PretenureDecisionName(current_decision),
PretenureDecisionName(pretenure_decision()));
}
// Clear feedback calculation fields until the next gc.
set_memento_found_count(0);
set_memento_create_count(0);
return deopt;
}
bool AllocationMemento::IsValid() {
return allocation_site()->IsAllocationSite() &&
!AllocationSite::cast(allocation_site())->IsZombie();
}
AllocationSite* AllocationMemento::GetAllocationSite() {
DCHECK(IsValid());
return AllocationSite::cast(allocation_site());
}
void JSObject::EnsureCanContainHeapObjectElements(Handle<JSObject> object) {
JSObject::ValidateElements(object);
ElementsKind elements_kind = object->map()->elements_kind();
if (!IsFastObjectElementsKind(elements_kind)) {
if (IsFastHoleyElementsKind(elements_kind)) {
TransitionElementsKind(object, FAST_HOLEY_ELEMENTS);
} else {
TransitionElementsKind(object, FAST_ELEMENTS);
}
}
}
void JSObject::EnsureCanContainElements(Handle<JSObject> object,
Object** objects,
uint32_t count,
EnsureElementsMode mode) {
ElementsKind current_kind = object->map()->elements_kind();
ElementsKind target_kind = current_kind;
{
DisallowHeapAllocation no_allocation;
DCHECK(mode != ALLOW_COPIED_DOUBLE_ELEMENTS);
bool is_holey = IsFastHoleyElementsKind(current_kind);
if (current_kind == FAST_HOLEY_ELEMENTS) return;
Heap* heap = object->GetHeap();
Object* the_hole = heap->the_hole_value();
for (uint32_t i = 0; i < count; ++i) {
Object* current = *objects++;
if (current == the_hole) {
is_holey = true;
target_kind = GetHoleyElementsKind(target_kind);
} else if (!current->IsSmi()) {
if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) {
if (IsFastSmiElementsKind(target_kind)) {
if (is_holey) {
target_kind = FAST_HOLEY_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_DOUBLE_ELEMENTS;
}
}
} else if (is_holey) {
target_kind = FAST_HOLEY_ELEMENTS;
break;
} else {
target_kind = FAST_ELEMENTS;
}
}
}
}
if (target_kind != current_kind) {
TransitionElementsKind(object, target_kind);
}
}
void JSObject::EnsureCanContainElements(Handle<JSObject> object,
Handle<FixedArrayBase> elements,
uint32_t length,
EnsureElementsMode mode) {
Heap* heap = object->GetHeap();
if (elements->map() != heap->fixed_double_array_map()) {
DCHECK(elements->map() == heap->fixed_array_map() ||
elements->map() == heap->fixed_cow_array_map());
if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) {
mode = DONT_ALLOW_DOUBLE_ELEMENTS;
}
Object** objects =
Handle<FixedArray>::cast(elements)->GetFirstElementAddress();
EnsureCanContainElements(object, objects, length, mode);
return;
}
DCHECK(mode == ALLOW_COPIED_DOUBLE_ELEMENTS);
if (object->GetElementsKind() == FAST_HOLEY_SMI_ELEMENTS) {
TransitionElementsKind(object, FAST_HOLEY_DOUBLE_ELEMENTS);
} else if (object->GetElementsKind() == FAST_SMI_ELEMENTS) {
Handle<FixedDoubleArray> double_array =
Handle<FixedDoubleArray>::cast(elements);
for (uint32_t i = 0; i < length; ++i) {
if (double_array->is_the_hole(i)) {
TransitionElementsKind(object, FAST_HOLEY_DOUBLE_ELEMENTS);
return;
}
}
TransitionElementsKind(object, FAST_DOUBLE_ELEMENTS);
}
}
void JSObject::SetMapAndElements(Handle<JSObject> object,
Handle<Map> new_map,
Handle<FixedArrayBase> value) {
JSObject::MigrateToMap(object, new_map);
DCHECK((object->map()->has_fast_smi_or_object_elements() ||
(*value == object->GetHeap()->empty_fixed_array())) ==
(value->map() == object->GetHeap()->fixed_array_map() ||
value->map() == object->GetHeap()->fixed_cow_array_map()));
DCHECK((*value == object->GetHeap()->empty_fixed_array()) ||
(object->map()->has_fast_double_elements() ==
value->IsFixedDoubleArray()));
object->set_elements(*value);
}
void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kElementsOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode);
}
void JSObject::initialize_properties() {
DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array());
}
void JSObject::initialize_elements() {
FixedArrayBase* elements = map()->GetInitialElements();
WRITE_FIELD(this, kElementsOffset, elements);
}
ACCESSORS(Oddball, to_string, String, kToStringOffset)
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
ACCESSORS(Oddball, type_of, String, kTypeOfOffset)
byte Oddball::kind() const {
return Smi::cast(READ_FIELD(this, kKindOffset))->value();
}
void Oddball::set_kind(byte value) {
WRITE_FIELD(this, kKindOffset, Smi::FromInt(value));
}
// static
Handle<Object> Oddball::ToNumber(Handle<Oddball> input) {
return handle(input->to_number(), input->GetIsolate());
}
ACCESSORS(Cell, value, Object, kValueOffset)
ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset)
ACCESSORS(PropertyCell, property_details_raw, Object, kDetailsOffset)
ACCESSORS(PropertyCell, value, Object, kValueOffset)
PropertyDetails PropertyCell::property_details() {
return PropertyDetails(Smi::cast(property_details_raw()));
}
void PropertyCell::set_property_details(PropertyDetails details) {
set_property_details_raw(details.AsSmi());
}
Object* WeakCell::value() const { return READ_FIELD(this, kValueOffset); }
void WeakCell::clear() {
DCHECK(GetHeap()->gc_state() == Heap::MARK_COMPACT);
WRITE_FIELD(this, kValueOffset, Smi::FromInt(0));
}
void WeakCell::initialize(HeapObject* val) {
WRITE_FIELD(this, kValueOffset, val);
Heap* heap = GetHeap();
// We just have to execute the generational barrier here because we never
// mark through a weak cell and collect evacuation candidates when we process
// all weak cells.
if (heap->InNewSpace(val)) {
heap->RecordWrite(address(), kValueOffset);
}
}
bool WeakCell::cleared() const { return value() == Smi::FromInt(0); }
Object* WeakCell::next() const { return READ_FIELD(this, kNextOffset); }
void WeakCell::set_next(Object* val, WriteBarrierMode mode) {
WRITE_FIELD(this, kNextOffset, val);
if (mode == UPDATE_WRITE_BARRIER) {
WRITE_BARRIER(GetHeap(), this, kNextOffset, val);
}
}
void WeakCell::clear_next(Heap* heap) {
set_next(heap->the_hole_value(), SKIP_WRITE_BARRIER);
}
bool WeakCell::next_cleared() { return next()->IsTheHole(); }
int JSObject::GetHeaderSize() { return GetHeaderSize(map()->instance_type()); }
int JSObject::GetHeaderSize(InstanceType type) {
// Check for the most common kind of JavaScript object before
// falling into the generic switch. This speeds up the internal
// field operations considerably on average.
if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize;
switch (type) {
case JS_GENERATOR_OBJECT_TYPE:
return JSGeneratorObject::kSize;
case JS_MODULE_TYPE:
return JSModule::kSize;
case JS_GLOBAL_PROXY_TYPE:
return JSGlobalProxy::kSize;
case JS_GLOBAL_OBJECT_TYPE:
return JSGlobalObject::kSize;
case JS_FUNCTION_TYPE:
return JSFunction::kSize;
case JS_VALUE_TYPE:
return JSValue::kSize;
case JS_DATE_TYPE:
return JSDate::kSize;
case JS_ARRAY_TYPE:
return JSArray::kSize;
case JS_ARRAY_BUFFER_TYPE:
return JSArrayBuffer::kSize;
case JS_TYPED_ARRAY_TYPE:
return JSTypedArray::kSize;
case JS_DATA_VIEW_TYPE:
return JSDataView::kSize;
case JS_SET_TYPE:
return JSSet::kSize;
case JS_MAP_TYPE:
return JSMap::kSize;
case JS_SET_ITERATOR_TYPE:
return JSSetIterator::kSize;
case JS_MAP_ITERATOR_TYPE:
return JSMapIterator::kSize;
case JS_ITERATOR_RESULT_TYPE:
return JSIteratorResult::kSize;
case JS_WEAK_MAP_TYPE:
return JSWeakMap::kSize;
case JS_WEAK_SET_TYPE:
return JSWeakSet::kSize;
case JS_REGEXP_TYPE:
return JSRegExp::kSize;
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
return JSObject::kHeaderSize;
case JS_MESSAGE_OBJECT_TYPE:
return JSMessageObject::kSize;
default:
UNREACHABLE();
return 0;
}
}
int JSObject::GetInternalFieldCount(Map* map) {
int instance_size = map->instance_size();
if (instance_size == kVariableSizeSentinel) return 0;
InstanceType instance_type = map->instance_type();
return ((instance_size - GetHeaderSize(instance_type)) >> kPointerSizeLog2) -
map->GetInObjectProperties();
}
int JSObject::GetInternalFieldCount() { return GetInternalFieldCount(map()); }
int JSObject::GetInternalFieldOffset(int index) {
DCHECK(index < GetInternalFieldCount() && index >= 0);
return GetHeaderSize() + (kPointerSize * index);
}
Object* JSObject::GetInternalField(int index) {
DCHECK(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
}
void JSObject::SetInternalField(int index, Object* value) {
DCHECK(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
int offset = GetHeaderSize() + (kPointerSize * index);
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
}
void JSObject::SetInternalField(int index, Smi* value) {
DCHECK(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
int offset = GetHeaderSize() + (kPointerSize * index);
WRITE_FIELD(this, offset, value);
}
bool JSObject::IsUnboxedDoubleField(FieldIndex index) {
if (!FLAG_unbox_double_fields) return false;
return map()->IsUnboxedDoubleField(index);
}
bool Map::IsUnboxedDoubleField(FieldIndex index) {
if (!FLAG_unbox_double_fields) return false;
if (index.is_hidden_field() || !index.is_inobject()) return false;
return !layout_descriptor()->IsTagged(index.property_index());
}
// Access fast-case object properties at index. The use of these routines
// is needed to correctly distinguish between properties stored in-object and
// properties stored in the properties array.
Object* JSObject::RawFastPropertyAt(FieldIndex index) {
DCHECK(!IsUnboxedDoubleField(index));
if (index.is_inobject()) {
return READ_FIELD(this, index.offset());
} else {
return properties()->get(index.outobject_array_index());
}
}
double JSObject::RawFastDoublePropertyAt(FieldIndex index) {
DCHECK(IsUnboxedDoubleField(index));
return READ_DOUBLE_FIELD(this, index.offset());
}
void JSObject::RawFastPropertyAtPut(FieldIndex index, Object* value) {
if (index.is_inobject()) {
int offset = index.offset();
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
} else {
properties()->set(index.outobject_array_index(), value);
}
}
void JSObject::RawFastDoublePropertyAtPut(FieldIndex index, double value) {
WRITE_DOUBLE_FIELD(this, index.offset(), value);
}
void JSObject::FastPropertyAtPut(FieldIndex index, Object* value) {
if (IsUnboxedDoubleField(index)) {
DCHECK(value->IsMutableHeapNumber());
RawFastDoublePropertyAtPut(index, HeapNumber::cast(value)->value());
} else {
RawFastPropertyAtPut(index, value);
}
}
void JSObject::WriteToField(int descriptor, Object* value) {
DisallowHeapAllocation no_gc;
DescriptorArray* desc = map()->instance_descriptors();
PropertyDetails details = desc->GetDetails(descriptor);
DCHECK(details.type() == DATA);
FieldIndex index = FieldIndex::ForDescriptor(map(), descriptor);
if (details.representation().IsDouble()) {
// Nothing more to be done.
if (value->IsUninitialized()) return;
if (IsUnboxedDoubleField(index)) {
RawFastDoublePropertyAtPut(index, value->Number());
} else {
HeapNumber* box = HeapNumber::cast(RawFastPropertyAt(index));
DCHECK(box->IsMutableHeapNumber());
box->set_value(value->Number());
}
} else {
RawFastPropertyAtPut(index, value);
}
}
int JSObject::GetInObjectPropertyOffset(int index) {
return map()->GetInObjectPropertyOffset(index);
}
Object* JSObject::InObjectPropertyAt(int index) {
int offset = GetInObjectPropertyOffset(index);
return READ_FIELD(this, offset);
}
Object* JSObject::InObjectPropertyAtPut(int index,
Object* value,
WriteBarrierMode mode) {
// Adjust for the number of properties stored in the object.
int offset = GetInObjectPropertyOffset(index);
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
return value;
}
void JSObject::InitializeBody(Map* map,
Object* pre_allocated_value,
Object* filler_value) {
DCHECK(!filler_value->IsHeapObject() ||
!GetHeap()->InNewSpace(filler_value));
DCHECK(!pre_allocated_value->IsHeapObject() ||
!GetHeap()->InNewSpace(pre_allocated_value));
int size = map->instance_size();
int offset = kHeaderSize;
if (filler_value != pre_allocated_value) {
int pre_allocated =
map->GetInObjectProperties() - map->unused_property_fields();
DCHECK(pre_allocated * kPointerSize + kHeaderSize <= size);
for (int i = 0; i < pre_allocated; i++) {
WRITE_FIELD(this, offset, pre_allocated_value);
offset += kPointerSize;
}
}
while (offset < size) {
WRITE_FIELD(this, offset, filler_value);
offset += kPointerSize;
}
}
bool JSObject::HasFastProperties() {
DCHECK(properties()->IsDictionary() == map()->is_dictionary_map());
return !properties()->IsDictionary();
}
bool Map::TooManyFastProperties(StoreFromKeyed store_mode) {
if (unused_property_fields() != 0) return false;
if (is_prototype_map()) return false;
int minimum = store_mode == CERTAINLY_NOT_STORE_FROM_KEYED ? 128 : 12;
int limit = Max(minimum, GetInObjectProperties());
int external = NumberOfFields() - GetInObjectProperties();
return external > limit;
}
void Struct::InitializeBody(int object_size) {
Object* value = GetHeap()->undefined_value();
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
bool Object::ToArrayLength(uint32_t* index) { return Object::ToUint32(index); }
bool Object::ToArrayIndex(uint32_t* index) {
return Object::ToUint32(index) && *index != kMaxUInt32;
}
bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
if (!this->IsJSValue()) return false;
JSValue* js_value = JSValue::cast(this);
if (!js_value->value()->IsString()) return false;
String* str = String::cast(js_value->value());
if (index >= static_cast<uint32_t>(str->length())) return false;
return true;
}
void Object::VerifyApiCallResultType() {
#if DEBUG
if (!(IsSmi() || IsString() || IsSymbol() || IsSpecObject() ||
IsHeapNumber() || IsSimd128Value() || IsUndefined() || IsTrue() ||
IsFalse() || IsNull())) {
FATAL("API call returned invalid object");
}
#endif // DEBUG
}
Object* FixedArray::get(int index) const {
SLOW_DCHECK(index >= 0 && index < this->length());
return READ_FIELD(this, kHeaderSize + index * kPointerSize);
}
Handle<Object> FixedArray::get(Handle<FixedArray> array, int index) {
return handle(array->get(index), array->GetIsolate());
}
bool FixedArray::is_the_hole(int index) {
return get(index) == GetHeap()->the_hole_value();
}
void FixedArray::set(int index, Smi* value) {
DCHECK(map() != GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < this->length());
DCHECK(reinterpret_cast<Object*>(value)->IsSmi());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
}
void FixedArray::set(int index, Object* value) {
DCHECK_NE(GetHeap()->fixed_cow_array_map(), map());
DCHECK_EQ(FIXED_ARRAY_TYPE, map()->instance_type());
DCHECK(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
}
double FixedDoubleArray::get_scalar(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
DCHECK(index >= 0 && index < this->length());
DCHECK(!is_the_hole(index));
return READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize);
}
uint64_t FixedDoubleArray::get_representation(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
DCHECK(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kDoubleSize;
return READ_UINT64_FIELD(this, offset);
}
Handle<Object> FixedDoubleArray::get(Handle<FixedDoubleArray> array,
int index) {
if (array->is_the_hole(index)) {
return array->GetIsolate()->factory()->the_hole_value();
} else {
return array->GetIsolate()->factory()->NewNumber(array->get_scalar(index));
}
}
void FixedDoubleArray::set(int index, double value) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
if (std::isnan(value)) {
WRITE_DOUBLE_FIELD(this, offset, std::numeric_limits<double>::quiet_NaN());
} else {
WRITE_DOUBLE_FIELD(this, offset, value);
}
DCHECK(!is_the_hole(index));
}
void FixedDoubleArray::set_the_hole(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
WRITE_UINT64_FIELD(this, offset, kHoleNanInt64);
}
bool FixedDoubleArray::is_the_hole(int index) {
return get_representation(index) == kHoleNanInt64;
}
double* FixedDoubleArray::data_start() {
return reinterpret_cast<double*>(FIELD_ADDR(this, kHeaderSize));
}
void FixedDoubleArray::FillWithHoles(int from, int to) {
for (int i = from; i < to; i++) {
set_the_hole(i);
}
}
Object* WeakFixedArray::Get(int index) const {
Object* raw = FixedArray::cast(this)->get(index + kFirstIndex);
if (raw->IsSmi()) return raw;
DCHECK(raw->IsWeakCell());
return WeakCell::cast(raw)->value();
}
bool WeakFixedArray::IsEmptySlot(int index) const {
DCHECK(index < Length());
return Get(index)->IsSmi();
}
void WeakFixedArray::Clear(int index) {
FixedArray::cast(this)->set(index + kFirstIndex, Smi::FromInt(0));
}
int WeakFixedArray::Length() const {
return FixedArray::cast(this)->length() - kFirstIndex;
}
int WeakFixedArray::last_used_index() const {
return Smi::cast(FixedArray::cast(this)->get(kLastUsedIndexIndex))->value();
}
void WeakFixedArray::set_last_used_index(int index) {
FixedArray::cast(this)->set(kLastUsedIndexIndex, Smi::FromInt(index));
}
template <class T>
T* WeakFixedArray::Iterator::Next() {
if (list_ != NULL) {
// Assert that list did not change during iteration.
DCHECK_EQ(last_used_index_, list_->last_used_index());
while (index_ < list_->Length()) {
Object* item = list_->Get(index_++);
if (item != Empty()) return T::cast(item);
}
list_ = NULL;
}
return NULL;
}
int ArrayList::Length() {
if (FixedArray::cast(this)->length() == 0) return 0;
return Smi::cast(FixedArray::cast(this)->get(kLengthIndex))->value();
}
void ArrayList::SetLength(int length) {
return FixedArray::cast(this)->set(kLengthIndex, Smi::FromInt(length));
}
Object* ArrayList::Get(int index) {
return FixedArray::cast(this)->get(kFirstIndex + index);
}
Object** ArrayList::Slot(int index) {
return data_start() + kFirstIndex + index;
}
void ArrayList::Set(int index, Object* obj) {
FixedArray::cast(this)->set(kFirstIndex + index, obj);
}
void ArrayList::Clear(int index, Object* undefined) {
DCHECK(undefined->IsUndefined());
FixedArray::cast(this)
->set(kFirstIndex + index, undefined, SKIP_WRITE_BARRIER);
}
WriteBarrierMode HeapObject::GetWriteBarrierMode(
const DisallowHeapAllocation& promise) {
Heap* heap = GetHeap();
if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER;
if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER;
return UPDATE_WRITE_BARRIER;
}
AllocationAlignment HeapObject::RequiredAlignment() {
#ifdef V8_HOST_ARCH_32_BIT
if ((IsFixedFloat64Array() || IsFixedDoubleArray()) &&
FixedArrayBase::cast(this)->length() != 0) {
return kDoubleAligned;
}
if (IsHeapNumber()) return kDoubleUnaligned;
if (IsSimd128Value()) return kSimd128Unaligned;
#endif // V8_HOST_ARCH_32_BIT
return kWordAligned;
}
void FixedArray::set(int index,
Object* value,
WriteBarrierMode mode) {
DCHECK(map() != GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
}
void FixedArray::NoIncrementalWriteBarrierSet(FixedArray* array,
int index,
Object* value) {
DCHECK(array->map() != array->GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < array->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(array, offset, value);
Heap* heap = array->GetHeap();
if (heap->InNewSpace(value)) {
heap->RecordWrite(array->address(), offset);
}
}
void FixedArray::NoWriteBarrierSet(FixedArray* array,
int index,
Object* value) {
DCHECK(array->map() != array->GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < array->length());
DCHECK(!array->GetHeap()->InNewSpace(value));
WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
}
void FixedArray::set_undefined(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < this->length());
DCHECK(!GetHeap()->InNewSpace(GetHeap()->undefined_value()));
WRITE_FIELD(this,
kHeaderSize + index * kPointerSize,
GetHeap()->undefined_value());
}
void FixedArray::set_null(int index) {
DCHECK(index >= 0 && index < this->length());
DCHECK(!GetHeap()->InNewSpace(GetHeap()->null_value()));
WRITE_FIELD(this,
kHeaderSize + index * kPointerSize,
GetHeap()->null_value());
}
void FixedArray::set_the_hole(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < this->length());
DCHECK(!GetHeap()->InNewSpace(GetHeap()->the_hole_value()));
WRITE_FIELD(this,
kHeaderSize + index * kPointerSize,
GetHeap()->the_hole_value());
}
void FixedArray::FillWithHoles(int from, int to) {
for (int i = from; i < to; i++) {
set_the_hole(i);
}
}
Object** FixedArray::data_start() {
return HeapObject::RawField(this, kHeaderSize);
}
Object** FixedArray::RawFieldOfElementAt(int index) {
return HeapObject::RawField(this, OffsetOfElementAt(index));
}
bool DescriptorArray::IsEmpty() {
DCHECK(length() >= kFirstIndex ||
this == GetHeap()->empty_descriptor_array());
return length() < kFirstIndex;
}
int DescriptorArray::number_of_descriptors() {
DCHECK(length() >= kFirstIndex || IsEmpty());
int len = length();
return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value();
}
int DescriptorArray::number_of_descriptors_storage() {
int len = length();
return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize;
}
int DescriptorArray::NumberOfSlackDescriptors() {
return number_of_descriptors_storage() - number_of_descriptors();
}
void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) {
WRITE_FIELD(
this, kDescriptorLengthOffset, Smi::FromInt(number_of_descriptors));
}
inline int DescriptorArray::number_of_entries() {
return number_of_descriptors();
}
bool DescriptorArray::HasEnumCache() {
return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi();
}
void DescriptorArray::CopyEnumCacheFrom(DescriptorArray* array) {
set(kEnumCacheIndex, array->get(kEnumCacheIndex));
}
FixedArray* DescriptorArray::GetEnumCache() {
DCHECK(HasEnumCache());
FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex));
}
bool DescriptorArray::HasEnumIndicesCache() {
if (IsEmpty()) return false;
Object* object = get(kEnumCacheIndex);
if (object->IsSmi()) return false;
FixedArray* bridge = FixedArray::cast(object);
return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi();
}
FixedArray* DescriptorArray::GetEnumIndicesCache() {
DCHECK(HasEnumIndicesCache());
FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex));
}
Object** DescriptorArray::GetEnumCacheSlot() {
DCHECK(HasEnumCache());
return HeapObject::RawField(reinterpret_cast<HeapObject*>(this),
kEnumCacheOffset);
}
// Perform a binary search in a fixed array. Low and high are entry indices. If
// there are three entries in this array it should be called with low=0 and
// high=2.
template <SearchMode search_mode, typename T>
int BinarySearch(T* array, Name* name, int low, int high, int valid_entries,
int* out_insertion_index) {
DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == NULL);
uint32_t hash = name->Hash();
int limit = high;
DCHECK(low <= high);
while (low != high) {
int mid = low + (high - low) / 2;
Name* mid_name = array->GetSortedKey(mid);
uint32_t mid_hash = mid_name->Hash();
if (mid_hash >= hash) {
high = mid;
} else {
low = mid + 1;
}
}
for (; low <= limit; ++low) {
int sort_index = array->GetSortedKeyIndex(low);
Name* entry = array->GetKey(sort_index);
uint32_t current_hash = entry->Hash();
if (current_hash != hash) {
if (out_insertion_index != NULL) {
*out_insertion_index = sort_index + (current_hash > hash ? 0 : 1);
}
return T::kNotFound;
}
if (entry->Equals(name)) {
if (search_mode == ALL_ENTRIES || sort_index < valid_entries) {
return sort_index;
}
return T::kNotFound;
}
}
if (out_insertion_index != NULL) *out_insertion_index = limit + 1;
return T::kNotFound;
}
// Perform a linear search in this fixed array. len is the number of entry
// indices that are valid.
template <SearchMode search_mode, typename T>
int LinearSearch(T* array, Name* name, int len, int valid_entries,
int* out_insertion_index) {
uint32_t hash = name->Hash();
if (search_mode == ALL_ENTRIES) {
for (int number = 0; number < len; number++) {
int sorted_index = array->GetSortedKeyIndex(number);
Name* entry = array->GetKey(sorted_index);
uint32_t current_hash = entry->Hash();
if (current_hash > hash) {
if (out_insertion_index != NULL) *out_insertion_index = sorted_index;
return T::kNotFound;
}
if (current_hash == hash && entry->Equals(name)) return sorted_index;
}
if (out_insertion_index != NULL) *out_insertion_index = len;
return T::kNotFound;
} else {
DCHECK(len >= valid_entries);
DCHECK_NULL(out_insertion_index); // Not supported here.
for (int number = 0; number < valid_entries; number++) {
Name* entry = array->GetKey(number);
uint32_t current_hash = entry->Hash();
if (current_hash == hash && entry->Equals(name)) return number;
}
return T::kNotFound;
}
}
template <SearchMode search_mode, typename T>
int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) {
if (search_mode == VALID_ENTRIES) {
SLOW_DCHECK(array->IsSortedNoDuplicates(valid_entries));
} else {
SLOW_DCHECK(array->IsSortedNoDuplicates());
}
int nof = array->number_of_entries();
if (nof == 0) {
if (out_insertion_index != NULL) *out_insertion_index = 0;
return T::kNotFound;
}
// Fast case: do linear search for small arrays.
const int kMaxElementsForLinearSearch = 8;
if ((search_mode == ALL_ENTRIES &&
nof <= kMaxElementsForLinearSearch) ||
(search_mode == VALID_ENTRIES &&
valid_entries <= (kMaxElementsForLinearSearch * 3))) {
return LinearSearch<search_mode>(array, name, nof, valid_entries,
out_insertion_index);
}
// Slow case: perform binary search.
return BinarySearch<search_mode>(array, name, 0, nof - 1, valid_entries,
out_insertion_index);
}
int DescriptorArray::Search(Name* name, int valid_descriptors) {
return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors, NULL);
}
int DescriptorArray::SearchWithCache(Name* name, Map* map) {
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
if (number_of_own_descriptors == 0) return kNotFound;
DescriptorLookupCache* cache = GetIsolate()->descriptor_lookup_cache();
int number = cache->Lookup(map, name);
if (number == DescriptorLookupCache::kAbsent) {
number = Search(name, number_of_own_descriptors);
cache->Update(map, name, number);
}
return number;
}
PropertyDetails Map::GetLastDescriptorDetails() {
return instance_descriptors()->GetDetails(LastAdded());
}
int Map::LastAdded() {
int number_of_own_descriptors = NumberOfOwnDescriptors();
DCHECK(number_of_own_descriptors > 0);
return number_of_own_descriptors - 1;
}
int Map::NumberOfOwnDescriptors() {
return NumberOfOwnDescriptorsBits::decode(bit_field3());
}
void Map::SetNumberOfOwnDescriptors(int number) {
DCHECK(number <= instance_descriptors()->number_of_descriptors());
set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number));
}
int Map::EnumLength() { return EnumLengthBits::decode(bit_field3()); }
void Map::SetEnumLength(int length) {
if (length != kInvalidEnumCacheSentinel) {
DCHECK(length >= 0);
DCHECK(length == 0 || instance_descriptors()->HasEnumCache());
DCHECK(length <= NumberOfOwnDescriptors());
}
set_bit_field3(EnumLengthBits::update(bit_field3(), length));
}
FixedArrayBase* Map::GetInitialElements() {
if (has_fast_smi_or_object_elements() ||
has_fast_double_elements()) {
DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
return GetHeap()->empty_fixed_array();
} else if (has_fixed_typed_array_elements()) {
FixedTypedArrayBase* empty_array =
GetHeap()->EmptyFixedTypedArrayForMap(this);
DCHECK(!GetHeap()->InNewSpace(empty_array));
return empty_array;
} else {
UNREACHABLE();
}
return NULL;
}
Object** DescriptorArray::GetKeySlot(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return RawFieldOfElementAt(ToKeyIndex(descriptor_number));
}
Object** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) {
return GetKeySlot(descriptor_number);
}
Object** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) {
return GetValueSlot(descriptor_number - 1) + 1;
}
Name* DescriptorArray::GetKey(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return Name::cast(get(ToKeyIndex(descriptor_number)));
}
int DescriptorArray::GetSortedKeyIndex(int descriptor_number) {
return GetDetails(descriptor_number).pointer();
}
Name* DescriptorArray::GetSortedKey(int descriptor_number) {
return GetKey(GetSortedKeyIndex(descriptor_number));
}
void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) {
PropertyDetails details = GetDetails(descriptor_index);
set(ToDetailsIndex(descriptor_index), details.set_pointer(pointer).AsSmi());
}
void DescriptorArray::SetRepresentation(int descriptor_index,
Representation representation) {
DCHECK(!representation.IsNone());
PropertyDetails details = GetDetails(descriptor_index);
set(ToDetailsIndex(descriptor_index),
details.CopyWithRepresentation(representation).AsSmi());
}
Object** DescriptorArray::GetValueSlot(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return RawFieldOfElementAt(ToValueIndex(descriptor_number));
}
int DescriptorArray::GetValueOffset(int descriptor_number) {
return OffsetOfElementAt(ToValueIndex(descriptor_number));
}
Object* DescriptorArray::GetValue(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return get(ToValueIndex(descriptor_number));
}
void DescriptorArray::SetValue(int descriptor_index, Object* value) {
set(ToValueIndex(descriptor_index), value);
}
PropertyDetails DescriptorArray::GetDetails(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
Object* details = get(ToDetailsIndex(descriptor_number));
return PropertyDetails(Smi::cast(details));
}
PropertyType DescriptorArray::GetType(int descriptor_number) {
return GetDetails(descriptor_number).type();
}
int DescriptorArray::GetFieldIndex(int descriptor_number) {
DCHECK(GetDetails(descriptor_number).location() == kField);
return GetDetails(descriptor_number).field_index();
}
HeapType* DescriptorArray::GetFieldType(int descriptor_number) {
DCHECK(GetDetails(descriptor_number).location() == kField);
Object* value = GetValue(descriptor_number);
if (value->IsWeakCell()) {
if (WeakCell::cast(value)->cleared()) return HeapType::None();
value = WeakCell::cast(value)->value();
}
return HeapType::cast(value);
}
Object* DescriptorArray::GetConstant(int descriptor_number) {
return GetValue(descriptor_number);
}
Object* DescriptorArray::GetCallbacksObject(int descriptor_number) {
DCHECK(GetType(descriptor_number) == ACCESSOR_CONSTANT);
return GetValue(descriptor_number);
}
AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) {
DCHECK(GetType(descriptor_number) == ACCESSOR_CONSTANT);
Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number));
return reinterpret_cast<AccessorDescriptor*>(p->foreign_address());
}
void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
desc->Init(handle(GetKey(descriptor_number), GetIsolate()),
handle(GetValue(descriptor_number), GetIsolate()),
GetDetails(descriptor_number));
}
void DescriptorArray::Set(int descriptor_number,
Descriptor* desc,
const WhitenessWitness&) {
// Range check.
DCHECK(descriptor_number < number_of_descriptors());
NoIncrementalWriteBarrierSet(this,
ToKeyIndex(descriptor_number),
*desc->GetKey());
NoIncrementalWriteBarrierSet(this,
ToValueIndex(descriptor_number),
*desc->GetValue());
NoIncrementalWriteBarrierSet(this, ToDetailsIndex(descriptor_number),
desc->GetDetails().AsSmi());
}
void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
// Range check.
DCHECK(descriptor_number < number_of_descriptors());
set(ToKeyIndex(descriptor_number), *desc->GetKey());
set(ToValueIndex(descriptor_number), *desc->GetValue());
set(ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi());
}
void DescriptorArray::Append(Descriptor* desc) {
DisallowHeapAllocation no_gc;
int descriptor_number = number_of_descriptors();
SetNumberOfDescriptors(descriptor_number + 1);
Set(descriptor_number, desc);
uint32_t hash = desc->GetKey()->Hash();
int insertion;
for (insertion = descriptor_number; insertion > 0; --insertion) {
Name* key = GetSortedKey(insertion - 1);
if (key->Hash() <= hash) break;
SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1));
}
SetSortedKey(insertion, descriptor_number);
}
void DescriptorArray::SwapSortedKeys(int first, int second) {
int first_key = GetSortedKeyIndex(first);
SetSortedKey(first, GetSortedKeyIndex(second));
SetSortedKey(second, first_key);
}
DescriptorArray::WhitenessWitness::WhitenessWitness(DescriptorArray* array)
: marking_(array->GetHeap()->incremental_marking()) {
marking_->EnterNoMarkingScope();
DCHECK(!marking_->IsMarking() ||
Marking::Color(array) == Marking::WHITE_OBJECT);
}
DescriptorArray::WhitenessWitness::~WhitenessWitness() {
marking_->LeaveNoMarkingScope();
}
PropertyType DescriptorArray::Entry::type() { return descs_->GetType(index_); }
Object* DescriptorArray::Entry::GetCallbackObject() {
return descs_->GetValue(index_);
}
int HashTableBase::NumberOfElements() {
return Smi::cast(get(kNumberOfElementsIndex))->value();
}
int HashTableBase::NumberOfDeletedElements() {
return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
}
int HashTableBase::Capacity() {
return Smi::cast(get(kCapacityIndex))->value();
}
void HashTableBase::ElementAdded() {
SetNumberOfElements(NumberOfElements() + 1);
}
void HashTableBase::ElementRemoved() {
SetNumberOfElements(NumberOfElements() - 1);
SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
}
void HashTableBase::ElementsRemoved(int n) {
SetNumberOfElements(NumberOfElements() - n);
SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
}
// static
int HashTableBase::ComputeCapacity(int at_least_space_for) {
const int kMinCapacity = 4;
int capacity = base::bits::RoundUpToPowerOfTwo32(at_least_space_for * 2);
return Max(capacity, kMinCapacity);
}
bool HashTableBase::IsKey(Object* k) {
return !k->IsTheHole() && !k->IsUndefined();
}
void HashTableBase::SetNumberOfElements(int nof) {
set(kNumberOfElementsIndex, Smi::FromInt(nof));
}
void HashTableBase::SetNumberOfDeletedElements(int nod) {
set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
}
template <typename Derived, typename Shape, typename Key>
int HashTable<Derived, Shape, Key>::FindEntry(Key key) {
return FindEntry(GetIsolate(), key);
}
template<typename Derived, typename Shape, typename Key>
int HashTable<Derived, Shape, Key>::FindEntry(Isolate* isolate, Key key) {
return FindEntry(isolate, key, HashTable::Hash(key));
}
// Find entry for key otherwise return kNotFound.
template <typename Derived, typename Shape, typename Key>
int HashTable<Derived, Shape, Key>::FindEntry(Isolate* isolate, Key key,
int32_t hash) {
uint32_t capacity = Capacity();
uint32_t entry = FirstProbe(hash, capacity);
uint32_t count = 1;
// EnsureCapacity will guarantee the hash table is never full.
while (true) {
Object* element = KeyAt(entry);
// Empty entry. Uses raw unchecked accessors because it is called by the
// string table during bootstrapping.
if (element == isolate->heap()->root(Heap::kUndefinedValueRootIndex)) break;
if (element != isolate->heap()->root(Heap::kTheHoleValueRootIndex) &&
Shape::IsMatch(key, element)) return entry;
entry = NextProbe(entry, count++, capacity);
}
return kNotFound;
}
bool SeededNumberDictionary::requires_slow_elements() {
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return false;
return 0 !=
(Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
}
uint32_t SeededNumberDictionary::max_number_key() {
DCHECK(!requires_slow_elements());
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return 0;
uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
return value >> kRequiresSlowElementsTagSize;
}
void SeededNumberDictionary::set_requires_slow_elements() {
set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
}
// ------------------------------------
// Cast operations
CAST_ACCESSOR(AccessorInfo)
CAST_ACCESSOR(ArrayList)
CAST_ACCESSOR(Bool16x8)
CAST_ACCESSOR(Bool32x4)
CAST_ACCESSOR(Bool8x16)
CAST_ACCESSOR(ByteArray)
CAST_ACCESSOR(BytecodeArray)
CAST_ACCESSOR(Cell)
CAST_ACCESSOR(Code)
CAST_ACCESSOR(CodeCacheHashTable)
CAST_ACCESSOR(CompilationCacheTable)
CAST_ACCESSOR(ConsString)
CAST_ACCESSOR(DeoptimizationInputData)
CAST_ACCESSOR(DeoptimizationOutputData)
CAST_ACCESSOR(DependentCode)
CAST_ACCESSOR(DescriptorArray)
CAST_ACCESSOR(ExternalOneByteString)
CAST_ACCESSOR(ExternalString)
CAST_ACCESSOR(ExternalTwoByteString)
CAST_ACCESSOR(FixedArray)
CAST_ACCESSOR(FixedArrayBase)
CAST_ACCESSOR(FixedDoubleArray)
CAST_ACCESSOR(FixedTypedArrayBase)
CAST_ACCESSOR(Float32x4)
CAST_ACCESSOR(Foreign)
CAST_ACCESSOR(GlobalDictionary)
CAST_ACCESSOR(HandlerTable)
CAST_ACCESSOR(HeapObject)
CAST_ACCESSOR(Int16x8)
CAST_ACCESSOR(Int32x4)
CAST_ACCESSOR(Int8x16)
CAST_ACCESSOR(JSArray)
CAST_ACCESSOR(JSArrayBuffer)
CAST_ACCESSOR(JSArrayBufferView)
CAST_ACCESSOR(JSDataView)
CAST_ACCESSOR(JSDate)
CAST_ACCESSOR(JSFunction)
CAST_ACCESSOR(JSFunctionProxy)
CAST_ACCESSOR(JSGeneratorObject)
CAST_ACCESSOR(JSGlobalObject)
CAST_ACCESSOR(JSGlobalProxy)
CAST_ACCESSOR(JSMap)
CAST_ACCESSOR(JSMapIterator)
CAST_ACCESSOR(JSMessageObject)
CAST_ACCESSOR(JSModule)
CAST_ACCESSOR(JSObject)
CAST_ACCESSOR(JSProxy)
CAST_ACCESSOR(JSReceiver)
CAST_ACCESSOR(JSRegExp)
CAST_ACCESSOR(JSSet)
CAST_ACCESSOR(JSSetIterator)
CAST_ACCESSOR(JSIteratorResult)
CAST_ACCESSOR(JSTypedArray)
CAST_ACCESSOR(JSValue)
CAST_ACCESSOR(JSWeakMap)
CAST_ACCESSOR(JSWeakSet)
CAST_ACCESSOR(LayoutDescriptor)
CAST_ACCESSOR(Map)
CAST_ACCESSOR(Name)
CAST_ACCESSOR(NameDictionary)
CAST_ACCESSOR(NormalizedMapCache)
CAST_ACCESSOR(Object)
CAST_ACCESSOR(ObjectHashTable)
CAST_ACCESSOR(Oddball)
CAST_ACCESSOR(OrderedHashMap)
CAST_ACCESSOR(OrderedHashSet)
CAST_ACCESSOR(PolymorphicCodeCacheHashTable)
CAST_ACCESSOR(PropertyCell)
CAST_ACCESSOR(ScopeInfo)
CAST_ACCESSOR(SeededNumberDictionary)
CAST_ACCESSOR(SeqOneByteString)
CAST_ACCESSOR(SeqString)
CAST_ACCESSOR(SeqTwoByteString)
CAST_ACCESSOR(SharedFunctionInfo)
CAST_ACCESSOR(Simd128Value)
CAST_ACCESSOR(SlicedString)
CAST_ACCESSOR(Smi)
CAST_ACCESSOR(String)
CAST_ACCESSOR(StringTable)
CAST_ACCESSOR(Struct)
CAST_ACCESSOR(Symbol)
CAST_ACCESSOR(Uint16x8)
CAST_ACCESSOR(Uint32x4)
CAST_ACCESSOR(Uint8x16)
CAST_ACCESSOR(UnseededNumberDictionary)
CAST_ACCESSOR(WeakCell)
CAST_ACCESSOR(WeakFixedArray)
CAST_ACCESSOR(WeakHashTable)
// static
template <class Traits>
STATIC_CONST_MEMBER_DEFINITION const InstanceType
FixedTypedArray<Traits>::kInstanceType;
template <class Traits>
FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(Object* object) {
SLOW_DCHECK(object->IsHeapObject() &&
HeapObject::cast(object)->map()->instance_type() ==
Traits::kInstanceType);
return reinterpret_cast<FixedTypedArray<Traits>*>(object);
}
template <class Traits>
const FixedTypedArray<Traits>*
FixedTypedArray<Traits>::cast(const Object* object) {
SLOW_DCHECK(object->IsHeapObject() &&
HeapObject::cast(object)->map()->instance_type() ==
Traits::kInstanceType);
return reinterpret_cast<FixedTypedArray<Traits>*>(object);
}
#define DEFINE_DEOPT_ELEMENT_ACCESSORS(name, type) \
type* DeoptimizationInputData::name() { \
return type::cast(get(k##name##Index)); \
} \
void DeoptimizationInputData::Set##name(type* value) { \
set(k##name##Index, value); \
}
DEFINE_DEOPT_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
DEFINE_DEOPT_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
DEFINE_DEOPT_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrAstId, Smi)
DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
DEFINE_DEOPT_ELEMENT_ACCESSORS(OptimizationId, Smi)
DEFINE_DEOPT_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
DEFINE_DEOPT_ELEMENT_ACCESSORS(WeakCellCache, Object)
#undef DEFINE_DEOPT_ELEMENT_ACCESSORS
#define DEFINE_DEOPT_ENTRY_ACCESSORS(name, type) \
type* DeoptimizationInputData::name(int i) { \
return type::cast(get(IndexForEntry(i) + k##name##Offset)); \
} \
void DeoptimizationInputData::Set##name(int i, type* value) { \
set(IndexForEntry(i) + k##name##Offset, value); \
}
DEFINE_DEOPT_ENTRY_ACCESSORS(AstIdRaw, Smi)
DEFINE_DEOPT_ENTRY_ACCESSORS(TranslationIndex, Smi)
DEFINE_DEOPT_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
DEFINE_DEOPT_ENTRY_ACCESSORS(Pc, Smi)
#undef DEFINE_DEOPT_ENTRY_ACCESSORS
BailoutId DeoptimizationInputData::AstId(int i) {
return BailoutId(AstIdRaw(i)->value());
}
void DeoptimizationInputData::SetAstId(int i, BailoutId value) {
SetAstIdRaw(i, Smi::FromInt(value.ToInt()));
}
int DeoptimizationInputData::DeoptCount() {
return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
}
int DeoptimizationOutputData::DeoptPoints() { return length() / 2; }
BailoutId DeoptimizationOutputData::AstId(int index) {
return BailoutId(Smi::cast(get(index * 2))->value());
}
void DeoptimizationOutputData::SetAstId(int index, BailoutId id) {
set(index * 2, Smi::FromInt(id.ToInt()));
}
Smi* DeoptimizationOutputData::PcAndState(int index) {
return Smi::cast(get(1 + index * 2));
}
void DeoptimizationOutputData::SetPcAndState(int index, Smi* offset) {
set(1 + index * 2, offset);
}
Object* LiteralsArray::get(int index) const { return FixedArray::get(index); }
void LiteralsArray::set(int index, Object* value) {
FixedArray::set(index, value);
}
void LiteralsArray::set(int index, Smi* value) {
FixedArray::set(index, value);
}
void LiteralsArray::set(int index, Object* value, WriteBarrierMode mode) {
FixedArray::set(index, value, mode);
}
LiteralsArray* LiteralsArray::cast(Object* object) {
SLOW_DCHECK(object->IsLiteralsArray());
return reinterpret_cast<LiteralsArray*>(object);
}
TypeFeedbackVector* LiteralsArray::feedback_vector() const {
return TypeFeedbackVector::cast(get(kVectorIndex));
}
void LiteralsArray::set_feedback_vector(TypeFeedbackVector* vector) {
set(kVectorIndex, vector);
}
Object* LiteralsArray::literal(int literal_index) const {
return get(kFirstLiteralIndex + literal_index);
}
void LiteralsArray::set_literal(int literal_index, Object* literal) {
set(kFirstLiteralIndex + literal_index, literal);
}
int LiteralsArray::literals_count() const {
return length() - kFirstLiteralIndex;
}
Object* BindingsArray::get(int index) const { return FixedArray::get(index); }
void BindingsArray::set(int index, Object* value) {
FixedArray::set(index, value);
}
void BindingsArray::set(int index, Smi* value) {
FixedArray::set(index, value);
}
void BindingsArray::set(int index, Object* value, WriteBarrierMode mode) {
FixedArray::set(index, value, mode);
}
int BindingsArray::length() const { return FixedArray::length(); }
BindingsArray* BindingsArray::cast(Object* object) {
SLOW_DCHECK(object->IsBindingsArray());
return reinterpret_cast<BindingsArray*>(object);
}
void BindingsArray::set_feedback_vector(TypeFeedbackVector* vector) {
set(kVectorIndex, vector);
}
TypeFeedbackVector* BindingsArray::feedback_vector() const {
return TypeFeedbackVector::cast(get(kVectorIndex));
}
JSReceiver* BindingsArray::bound_function() const {
return JSReceiver::cast(get(kBoundFunctionIndex));
}
void BindingsArray::set_bound_function(JSReceiver* function) {
set(kBoundFunctionIndex, function);
}
Object* BindingsArray::bound_this() const { return get(kBoundThisIndex); }
void BindingsArray::set_bound_this(Object* bound_this) {
set(kBoundThisIndex, bound_this);
}
Object* BindingsArray::binding(int binding_index) const {
return get(kFirstBindingIndex + binding_index);
}
void BindingsArray::set_binding(int binding_index, Object* binding) {
set(kFirstBindingIndex + binding_index, binding);
}
int BindingsArray::bindings_count() const {
return length() - kFirstBindingIndex;
}
void HandlerTable::SetRangeStart(int index, int value) {
set(index * kRangeEntrySize + kRangeStartIndex, Smi::FromInt(value));
}
void HandlerTable::SetRangeEnd(int index, int value) {
set(index * kRangeEntrySize + kRangeEndIndex, Smi::FromInt(value));
}
void HandlerTable::SetRangeHandler(int index, int offset,
CatchPrediction prediction) {
int value = HandlerOffsetField::encode(offset) |
HandlerPredictionField::encode(prediction);
set(index * kRangeEntrySize + kRangeHandlerIndex, Smi::FromInt(value));
}
void HandlerTable::SetRangeDepth(int index, int value) {
set(index * kRangeEntrySize + kRangeDepthIndex, Smi::FromInt(value));
}
void HandlerTable::SetReturnOffset(int index, int value) {
set(index * kReturnEntrySize + kReturnOffsetIndex, Smi::FromInt(value));
}
void HandlerTable::SetReturnHandler(int index, int offset,
CatchPrediction prediction) {
int value = HandlerOffsetField::encode(offset) |
HandlerPredictionField::encode(prediction);
set(index * kReturnEntrySize + kReturnHandlerIndex, Smi::FromInt(value));
}
#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
STRUCT_LIST(MAKE_STRUCT_CAST)
#undef MAKE_STRUCT_CAST
template <typename Derived, typename Shape, typename Key>
HashTable<Derived, Shape, Key>*
HashTable<Derived, Shape, Key>::cast(Object* obj) {
SLOW_DCHECK(obj->IsHashTable());
return reinterpret_cast<HashTable*>(obj);
}
template <typename Derived, typename Shape, typename Key>
const HashTable<Derived, Shape, Key>*
HashTable<Derived, Shape, Key>::cast(const Object* obj) {
SLOW_DCHECK(obj->IsHashTable());
return reinterpret_cast<const HashTable*>(obj);
}
SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
NOBARRIER_SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
SMI_ACCESSORS(String, length, kLengthOffset)
SYNCHRONIZED_SMI_ACCESSORS(String, length, kLengthOffset)
int FreeSpace::Size() { return size(); }
FreeSpace* FreeSpace::next() {
DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) ||
(!GetHeap()->deserialization_complete() && map() == NULL));
DCHECK_LE(kNextOffset + kPointerSize, nobarrier_size());
return reinterpret_cast<FreeSpace*>(
Memory::Address_at(address() + kNextOffset));
}
void FreeSpace::set_next(FreeSpace* next) {
DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) ||
(!GetHeap()->deserialization_complete() && map() == NULL));
DCHECK_LE(kNextOffset + kPointerSize, nobarrier_size());
base::NoBarrier_Store(
reinterpret_cast<base::AtomicWord*>(address() + kNextOffset),
reinterpret_cast<base::AtomicWord>(next));
}
FreeSpace* FreeSpace::cast(HeapObject* o) {
SLOW_DCHECK(!o->GetHeap()->deserialization_complete() || o->IsFreeSpace());
return reinterpret_cast<FreeSpace*>(o);
}
uint32_t Name::hash_field() {
return READ_UINT32_FIELD(this, kHashFieldOffset);
}
void Name::set_hash_field(uint32_t value) {
WRITE_UINT32_FIELD(this, kHashFieldOffset, value);
#if V8_HOST_ARCH_64_BIT
#if V8_TARGET_LITTLE_ENDIAN
WRITE_UINT32_FIELD(this, kHashFieldSlot + kIntSize, 0);
#else
WRITE_UINT32_FIELD(this, kHashFieldSlot, 0);
#endif
#endif
}
bool Name::Equals(Name* other) {
if (other == this) return true;
if ((this->IsInternalizedString() && other->IsInternalizedString()) ||
this->IsSymbol() || other->IsSymbol()) {
return false;
}
return String::cast(this)->SlowEquals(String::cast(other));
}
bool Name::Equals(Handle<Name> one, Handle<Name> two) {
if (one.is_identical_to(two)) return true;
if ((one->IsInternalizedString() && two->IsInternalizedString()) ||
one->IsSymbol() || two->IsSymbol()) {
return false;
}
return String::SlowEquals(Handle<String>::cast(one),
Handle<String>::cast(two));
}
ACCESSORS(Symbol, name, Object, kNameOffset)
SMI_ACCESSORS(Symbol, flags, kFlagsOffset)
BOOL_ACCESSORS(Symbol, flags, is_private, kPrivateBit)
BOOL_ACCESSORS(Symbol, flags, is_well_known_symbol, kWellKnownSymbolBit)
bool String::Equals(String* other) {
if (other == this) return true;
if (this->IsInternalizedString() && other->IsInternalizedString()) {
return false;
}
return SlowEquals(other);
}
bool String::Equals(Handle<String> one, Handle<String> two) {
if (one.is_identical_to(two)) return true;
if (one->IsInternalizedString() && two->IsInternalizedString()) {
return false;
}
return SlowEquals(one, two);
}
Handle<String> String::Flatten(Handle<String> string, PretenureFlag pretenure) {
if (!string->IsConsString()) return string;
Handle<ConsString> cons = Handle<ConsString>::cast(string);
if (cons->IsFlat()) return handle(cons->first());
return SlowFlatten(cons, pretenure);
}
Handle<Name> Name::Flatten(Handle<Name> name, PretenureFlag pretenure) {
if (name->IsSymbol()) return name;
return String::Flatten(Handle<String>::cast(name));
}
uint16_t String::Get(int index) {
DCHECK(index >= 0 && index < length());
switch (StringShape(this).full_representation_tag()) {
case kSeqStringTag | kOneByteStringTag:
return SeqOneByteString::cast(this)->SeqOneByteStringGet(index);
case kSeqStringTag | kTwoByteStringTag:
return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
case kConsStringTag | kOneByteStringTag:
case kConsStringTag | kTwoByteStringTag:
return ConsString::cast(this)->ConsStringGet(index);
case kExternalStringTag | kOneByteStringTag:
return ExternalOneByteString::cast(this)->ExternalOneByteStringGet(index);
case kExternalStringTag | kTwoByteStringTag:
return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
case kSlicedStringTag | kOneByteStringTag:
case kSlicedStringTag | kTwoByteStringTag:
return SlicedString::cast(this)->SlicedStringGet(index);
default:
break;
}
UNREACHABLE();
return 0;
}
void String::Set(int index, uint16_t value) {
DCHECK(index >= 0 && index < length());
DCHECK(StringShape(this).IsSequential());
return this->IsOneByteRepresentation()
? SeqOneByteString::cast(this)->SeqOneByteStringSet(index, value)
: SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
}
bool String::IsFlat() {
if (!StringShape(this).IsCons()) return true;
return ConsString::cast(this)->second()->length() == 0;
}
String* String::GetUnderlying() {
// Giving direct access to underlying string only makes sense if the
// wrapping string is already flattened.
DCHECK(this->IsFlat());
DCHECK(StringShape(this).IsIndirect());
STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset);
const int kUnderlyingOffset = SlicedString::kParentOffset;
return String::cast(READ_FIELD(this, kUnderlyingOffset));
}
template<class Visitor>
ConsString* String::VisitFlat(Visitor* visitor,
String* string,
const int offset) {
int slice_offset = offset;
const int length = string->length();
DCHECK(offset <= length);
while (true) {
int32_t type = string->map()->instance_type();
switch (type & (kStringRepresentationMask | kStringEncodingMask)) {
case kSeqStringTag | kOneByteStringTag:
visitor->VisitOneByteString(
SeqOneByteString::cast(string)->GetChars() + slice_offset,
length - offset);
return NULL;
case kSeqStringTag | kTwoByteStringTag:
visitor->VisitTwoByteString(
SeqTwoByteString::cast(string)->GetChars() + slice_offset,
length - offset);
return NULL;
case kExternalStringTag | kOneByteStringTag:
visitor->VisitOneByteString(
ExternalOneByteString::cast(string)->GetChars() + slice_offset,
length - offset);
return NULL;
case kExternalStringTag | kTwoByteStringTag:
visitor->VisitTwoByteString(
ExternalTwoByteString::cast(string)->GetChars() + slice_offset,
length - offset);
return NULL;
case kSlicedStringTag | kOneByteStringTag:
case kSlicedStringTag | kTwoByteStringTag: {
SlicedString* slicedString = SlicedString::cast(string);
slice_offset += slicedString->offset();
string = slicedString->parent();
continue;
}
case kConsStringTag | kOneByteStringTag:
case kConsStringTag | kTwoByteStringTag:
return ConsString::cast(string);
default:
UNREACHABLE();
return NULL;
}
}
}
template <>
inline Vector<const uint8_t> String::GetCharVector() {
String::FlatContent flat = GetFlatContent();
DCHECK(flat.IsOneByte());
return flat.ToOneByteVector();
}
template <>
inline Vector<const uc16> String::GetCharVector() {
String::FlatContent flat = GetFlatContent();
DCHECK(flat.IsTwoByte());
return flat.ToUC16Vector();
}
uint16_t SeqOneByteString::SeqOneByteStringGet(int index) {
DCHECK(index >= 0 && index < length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) {
DCHECK(index >= 0 && index < length() && value <= kMaxOneByteCharCode);
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
static_cast<byte>(value));
}
Address SeqOneByteString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
uint8_t* SeqOneByteString::GetChars() {
return reinterpret_cast<uint8_t*>(GetCharsAddress());
}
Address SeqTwoByteString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
uc16* SeqTwoByteString::GetChars() {
return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
}
uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
DCHECK(index >= 0 && index < length());
return READ_UINT16_FIELD(this, kHeaderSize + index * kShortSize);
}
void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
DCHECK(index >= 0 && index < length());
WRITE_UINT16_FIELD(this, kHeaderSize + index * kShortSize, value);
}
int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
return SizeFor(length());
}
int SeqOneByteString::SeqOneByteStringSize(InstanceType instance_type) {
return SizeFor(length());
}
String* SlicedString::parent() {
return String::cast(READ_FIELD(this, kParentOffset));
}
void SlicedString::set_parent(String* parent, WriteBarrierMode mode) {
DCHECK(parent->IsSeqString() || parent->IsExternalString());
WRITE_FIELD(this, kParentOffset, parent);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kParentOffset, parent, mode);
}
SMI_ACCESSORS(SlicedString, offset, kOffsetOffset)
String* ConsString::first() {
return String::cast(READ_FIELD(this, kFirstOffset));
}
Object* ConsString::unchecked_first() {
return READ_FIELD(this, kFirstOffset);
}
void ConsString::set_first(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kFirstOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, value, mode);
}
String* ConsString::second() {
return String::cast(READ_FIELD(this, kSecondOffset));
}
Object* ConsString::unchecked_second() {
return READ_FIELD(this, kSecondOffset);
}
void ConsString::set_second(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kSecondOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, value, mode);
}
bool ExternalString::is_short() {
InstanceType type = map()->instance_type();
return (type & kShortExternalStringMask) == kShortExternalStringTag;
}
const ExternalOneByteString::Resource* ExternalOneByteString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalOneByteString::update_data_cache() {
if (is_short()) return;
const char** data_field =
reinterpret_cast<const char**>(FIELD_ADDR(this, kResourceDataOffset));
*data_field = resource()->data();
}
void ExternalOneByteString::set_resource(
const ExternalOneByteString::Resource* resource) {
DCHECK(IsAligned(reinterpret_cast<intptr_t>(resource), kPointerSize));
*reinterpret_cast<const Resource**>(
FIELD_ADDR(this, kResourceOffset)) = resource;
if (resource != NULL) update_data_cache();
}
const uint8_t* ExternalOneByteString::GetChars() {
return reinterpret_cast<const uint8_t*>(resource()->data());
}
uint16_t ExternalOneByteString::ExternalOneByteStringGet(int index) {
DCHECK(index >= 0 && index < length());
return GetChars()[index];
}
const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalTwoByteString::update_data_cache() {
if (is_short()) return;
const uint16_t** data_field =
reinterpret_cast<const uint16_t**>(FIELD_ADDR(this, kResourceDataOffset));
*data_field = resource()->data();
}
void ExternalTwoByteString::set_resource(
const ExternalTwoByteString::Resource* resource) {
*reinterpret_cast<const Resource**>(
FIELD_ADDR(this, kResourceOffset)) = resource;
if (resource != NULL) update_data_cache();
}
const uint16_t* ExternalTwoByteString::GetChars() {
return resource()->data();
}
uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) {
DCHECK(index >= 0 && index < length());
return GetChars()[index];
}
const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData(
unsigned start) {
return GetChars() + start;
}
int ConsStringIterator::OffsetForDepth(int depth) { return depth & kDepthMask; }
void ConsStringIterator::PushLeft(ConsString* string) {
frames_[depth_++ & kDepthMask] = string;
}
void ConsStringIterator::PushRight(ConsString* string) {
// Inplace update.
frames_[(depth_-1) & kDepthMask] = string;
}
void ConsStringIterator::AdjustMaximumDepth() {
if (depth_ > maximum_depth_) maximum_depth_ = depth_;
}
void ConsStringIterator::Pop() {
DCHECK(depth_ > 0);
DCHECK(depth_ <= maximum_depth_);
depth_--;
}
uint16_t StringCharacterStream::GetNext() {
DCHECK(buffer8_ != NULL && end_ != NULL);
// Advance cursor if needed.
if (buffer8_ == end_) HasMore();
DCHECK(buffer8_ < end_);
return is_one_byte_ ? *buffer8_++ : *buffer16_++;
}
StringCharacterStream::StringCharacterStream(String* string, int offset)
: is_one_byte_(false) {
Reset(string, offset);
}
void StringCharacterStream::Reset(String* string, int offset) {
buffer8_ = NULL;
end_ = NULL;
ConsString* cons_string = String::VisitFlat(this, string, offset);
iter_.Reset(cons_string, offset);
if (cons_string != NULL) {
string = iter_.Next(&offset);
if (string != NULL) String::VisitFlat(this, string, offset);
}
}
bool StringCharacterStream::HasMore() {
if (buffer8_ != end_) return true;
int offset;
String* string = iter_.Next(&offset);
DCHECK_EQ(offset, 0);
if (string == NULL) return false;
String::VisitFlat(this, string);
DCHECK(buffer8_ != end_);
return true;
}
void StringCharacterStream::VisitOneByteString(
const uint8_t* chars, int length) {
is_one_byte_ = true;
buffer8_ = chars;
end_ = chars + length;
}
void StringCharacterStream::VisitTwoByteString(
const uint16_t* chars, int length) {
is_one_byte_ = false;
buffer16_ = chars;
end_ = reinterpret_cast<const uint8_t*>(chars + length);
}
int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }
byte ByteArray::get(int index) {
DCHECK(index >= 0 && index < this->length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void ByteArray::set(int index, byte value) {
DCHECK(index >= 0 && index < this->length());
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}
int ByteArray::get_int(int index) {
DCHECK(index >= 0 && (index * kIntSize) < this->length());
return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
}
ByteArray* ByteArray::FromDataStartAddress(Address address) {
DCHECK_TAG_ALIGNED(address);
return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
}
int ByteArray::ByteArraySize() { return SizeFor(this->length()); }
Address ByteArray::GetDataStartAddress() {
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}
void BytecodeArray::BytecodeArrayIterateBody(ObjectVisitor* v) {
IteratePointer(v, kConstantPoolOffset);
}
byte BytecodeArray::get(int index) {
DCHECK(index >= 0 && index < this->length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void BytecodeArray::set(int index, byte value) {
DCHECK(index >= 0 && index < this->length());
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}
void BytecodeArray::set_frame_size(int frame_size) {
DCHECK_GE(frame_size, 0);
DCHECK(IsAligned(frame_size, static_cast<unsigned>(kPointerSize)));
WRITE_INT_FIELD(this, kFrameSizeOffset, frame_size);
}
int BytecodeArray::frame_size() const {
return READ_INT_FIELD(this, kFrameSizeOffset);
}
int BytecodeArray::register_count() const {
return frame_size() / kPointerSize;
}
void BytecodeArray::set_parameter_count(int number_of_parameters) {
DCHECK_GE(number_of_parameters, 0);
// Parameter count is stored as the size on stack of the parameters to allow
// it to be used directly by generated code.
WRITE_INT_FIELD(this, kParameterSizeOffset,
(number_of_parameters << kPointerSizeLog2));
}
int BytecodeArray::parameter_count() const {
// Parameter count is stored as the size on stack of the parameters to allow
// it to be used directly by generated code.
return READ_INT_FIELD(this, kParameterSizeOffset) >> kPointerSizeLog2;
}
ACCESSORS(BytecodeArray, constant_pool, FixedArray, kConstantPoolOffset)
Address BytecodeArray::GetFirstBytecodeAddress() {
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}
int BytecodeArray::BytecodeArraySize() { return SizeFor(this->length()); }
ACCESSORS(FixedTypedArrayBase, base_pointer, Object, kBasePointerOffset)
void* FixedTypedArrayBase::external_pointer() const {
intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
return reinterpret_cast<void*>(ptr);
}
void FixedTypedArrayBase::set_external_pointer(void* value,
WriteBarrierMode mode) {
intptr_t ptr = reinterpret_cast<intptr_t>(value);
WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
}
void* FixedTypedArrayBase::DataPtr() {
return reinterpret_cast<void*>(
reinterpret_cast<intptr_t>(base_pointer()) +
reinterpret_cast<intptr_t>(external_pointer()));
}
int FixedTypedArrayBase::ElementSize(InstanceType type) {
int element_size;
switch (type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case FIXED_##TYPE##_ARRAY_TYPE: \
element_size = size; \
break;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
UNREACHABLE();
return 0;
}
return element_size;
}
int FixedTypedArrayBase::DataSize(InstanceType type) {
if (base_pointer() == Smi::FromInt(0)) return 0;
return length() * ElementSize(type);
}
int FixedTypedArrayBase::DataSize() {
return DataSize(map()->instance_type());
}
int FixedTypedArrayBase::size() {
return OBJECT_POINTER_ALIGN(kDataOffset + DataSize());
}
int FixedTypedArrayBase::TypedArraySize(InstanceType type) {
return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type));
}
int FixedTypedArrayBase::TypedArraySize(InstanceType type, int length) {
return OBJECT_POINTER_ALIGN(kDataOffset + length * ElementSize(type));
}
uint8_t Uint8ArrayTraits::defaultValue() { return 0; }
uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; }
int8_t Int8ArrayTraits::defaultValue() { return 0; }
uint16_t Uint16ArrayTraits::defaultValue() { return 0; }
int16_t Int16ArrayTraits::defaultValue() { return 0; }
uint32_t Uint32ArrayTraits::defaultValue() { return 0; }
int32_t Int32ArrayTraits::defaultValue() { return 0; }
float Float32ArrayTraits::defaultValue() {
return std::numeric_limits<float>::quiet_NaN();
}
double Float64ArrayTraits::defaultValue() {
return std::numeric_limits<double>::quiet_NaN();
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
ElementType* ptr = reinterpret_cast<ElementType*>(DataPtr());
return ptr[index];
}
template <class Traits>
void FixedTypedArray<Traits>::set(int index, ElementType value) {
DCHECK((index >= 0) && (index < this->length()));
ElementType* ptr = reinterpret_cast<ElementType*>(DataPtr());
ptr[index] = value;
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from_int(int value) {
return static_cast<ElementType>(value);
}
template <> inline
uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from_int(int value) {
if (value < 0) return 0;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(value);
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from_double(
double value) {
return static_cast<ElementType>(DoubleToInt32(value));
}
template<> inline
uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from_double(double value) {
// Handle NaNs and less than zero values which clamp to zero.
if (!(value > 0)) return 0;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(lrint(value));
}
template<> inline
float FixedTypedArray<Float32ArrayTraits>::from_double(double value) {
return static_cast<float>(value);
}
template<> inline
double FixedTypedArray<Float64ArrayTraits>::from_double(double value) {
return value;
}
template <class Traits>
Handle<Object> FixedTypedArray<Traits>::get(
Handle<FixedTypedArray<Traits> > array,
int index) {
return Traits::ToHandle(array->GetIsolate(), array->get_scalar(index));
}
template <class Traits>
void FixedTypedArray<Traits>::SetValue(uint32_t index, Object* value) {
ElementType cast_value = Traits::defaultValue();
if (value->IsSmi()) {
int int_value = Smi::cast(value)->value();
cast_value = from_int(int_value);
} else if (value->IsHeapNumber()) {
double double_value = HeapNumber::cast(value)->value();
cast_value = from_double(double_value);
} else {
// Clamp undefined to the default value. All other types have been
// converted to a number type further up in the call chain.
DCHECK(value->IsUndefined());
}
set(index, cast_value);
}
Handle<Object> Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint8ClampedArrayTraits::ToHandle(Isolate* isolate,
uint8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) {
return isolate->factory()->NewNumberFromUint(scalar);
}
Handle<Object> Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) {
return isolate->factory()->NewNumberFromInt(scalar);
}
Handle<Object> Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) {
return isolate->factory()->NewNumber(scalar);
}
Handle<Object> Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) {
return isolate->factory()->NewNumber(scalar);
}
int Map::visitor_id() {
return READ_BYTE_FIELD(this, kVisitorIdOffset);
}
void Map::set_visitor_id(int id) {
DCHECK(0 <= id && id < 256);
WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id));
}
int Map::instance_size() {
return NOBARRIER_READ_BYTE_FIELD(
this, kInstanceSizeOffset) << kPointerSizeLog2;
}
int Map::inobject_properties_or_constructor_function_index() {
return READ_BYTE_FIELD(this,
kInObjectPropertiesOrConstructorFunctionIndexOffset);
}
void Map::set_inobject_properties_or_constructor_function_index(int value) {
DCHECK(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInObjectPropertiesOrConstructorFunctionIndexOffset,
static_cast<byte>(value));
}
int Map::GetInObjectProperties() {
DCHECK(IsJSObjectMap());
return inobject_properties_or_constructor_function_index();
}
void Map::SetInObjectProperties(int value) {
DCHECK(IsJSObjectMap());
set_inobject_properties_or_constructor_function_index(value);
}
int Map::GetConstructorFunctionIndex() {
DCHECK(IsPrimitiveMap());
return inobject_properties_or_constructor_function_index();
}
void Map::SetConstructorFunctionIndex(int value) {
DCHECK(IsPrimitiveMap());
set_inobject_properties_or_constructor_function_index(value);
}
int Map::GetInObjectPropertyOffset(int index) {
// Adjust for the number of properties stored in the object.
index -= GetInObjectProperties();
DCHECK(index <= 0);
return instance_size() + (index * kPointerSize);
}
Handle<Map> Map::CopyInstallDescriptorsForTesting(
Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
Handle<LayoutDescriptor> layout_descriptor) {
return CopyInstallDescriptors(map, new_descriptor, descriptors,
layout_descriptor);
}
int HeapObject::SizeFromMap(Map* map) {
int instance_size = map->instance_size();
if (instance_size != kVariableSizeSentinel) return instance_size;
// Only inline the most frequent cases.
InstanceType instance_type = map->instance_type();
if (instance_type == FIXED_ARRAY_TYPE) {
return FixedArray::BodyDescriptor::SizeOf(map, this);
}
if (instance_type == ONE_BYTE_STRING_TYPE ||
instance_type == ONE_BYTE_INTERNALIZED_STRING_TYPE) {
// Strings may get concurrently truncated, hence we have to access its
// length synchronized.
return SeqOneByteString::SizeFor(
reinterpret_cast<SeqOneByteString*>(this)->synchronized_length());
}
if (instance_type == BYTE_ARRAY_TYPE) {
return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
}
if (instance_type == BYTECODE_ARRAY_TYPE) {
return reinterpret_cast<BytecodeArray*>(this)->BytecodeArraySize();
}
if (instance_type == FREE_SPACE_TYPE) {
return reinterpret_cast<FreeSpace*>(this)->nobarrier_size();
}
if (instance_type == STRING_TYPE ||
instance_type == INTERNALIZED_STRING_TYPE) {
// Strings may get concurrently truncated, hence we have to access its
// length synchronized.
return SeqTwoByteString::SizeFor(
reinterpret_cast<SeqTwoByteString*>(this)->synchronized_length());
}
if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
return FixedDoubleArray::SizeFor(
reinterpret_cast<FixedDoubleArray*>(this)->length());
}
if (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE &&
instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE) {
return reinterpret_cast<FixedTypedArrayBase*>(
this)->TypedArraySize(instance_type);
}
DCHECK(instance_type == CODE_TYPE);
return reinterpret_cast<Code*>(this)->CodeSize();
}
void Map::set_instance_size(int value) {
DCHECK_EQ(0, value & (kPointerSize - 1));
value >>= kPointerSizeLog2;
DCHECK(0 <= value && value < 256);
NOBARRIER_WRITE_BYTE_FIELD(
this, kInstanceSizeOffset, static_cast<byte>(value));
}
void Map::clear_unused() { WRITE_BYTE_FIELD(this, kUnusedOffset, 0); }
InstanceType Map::instance_type() {
return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
}
void Map::set_instance_type(InstanceType value) {
WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
}
int Map::unused_property_fields() {
return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
}
void Map::set_unused_property_fields(int value) {
WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
}
byte Map::bit_field() const { return READ_BYTE_FIELD(this, kBitFieldOffset); }
void Map::set_bit_field(byte value) {
WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
}
byte Map::bit_field2() const { return READ_BYTE_FIELD(this, kBitField2Offset); }
void Map::set_bit_field2(byte value) {
WRITE_BYTE_FIELD(this, kBitField2Offset, value);
}
void Map::set_non_instance_prototype(bool value) {
if (value) {
set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
} else {
set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
}
}
bool Map::has_non_instance_prototype() {
return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
}
void Map::set_is_constructor(bool value) {
if (value) {
set_bit_field(bit_field() | (1 << kIsConstructor));
} else {
set_bit_field(bit_field() & ~(1 << kIsConstructor));
}
}
bool Map::is_constructor() const {
return ((1 << kIsConstructor) & bit_field()) != 0;
}
void Map::set_is_hidden_prototype() {
set_bit_field3(IsHiddenPrototype::update(bit_field3(), true));
}
bool Map::is_hidden_prototype() const {
return IsHiddenPrototype::decode(bit_field3());
}
void Map::set_has_indexed_interceptor() {
set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
}
bool Map::has_indexed_interceptor() {
return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
}
void Map::set_is_undetectable() {
set_bit_field(bit_field() | (1 << kIsUndetectable));
}
bool Map::is_undetectable() {
return ((1 << kIsUndetectable) & bit_field()) != 0;
}
void Map::set_is_observed() { set_bit_field(bit_field() | (1 << kIsObserved)); }
bool Map::is_observed() { return ((1 << kIsObserved) & bit_field()) != 0; }
void Map::set_has_named_interceptor() {
set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
}
bool Map::has_named_interceptor() {
return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
}
void Map::set_is_access_check_needed(bool access_check_needed) {
if (access_check_needed) {
set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
} else {
set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
}
}
bool Map::is_access_check_needed() {
return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
}
void Map::set_is_extensible(bool value) {
if (value) {
set_bit_field2(bit_field2() | (1 << kIsExtensible));
} else {
set_bit_field2(bit_field2() & ~(1 << kIsExtensible));
}
}
bool Map::is_extensible() {
return ((1 << kIsExtensible) & bit_field2()) != 0;
}
void Map::set_is_prototype_map(bool value) {
set_bit_field2(IsPrototypeMapBits::update(bit_field2(), value));
}
bool Map::is_prototype_map() const {
return IsPrototypeMapBits::decode(bit_field2());
}
void Map::set_elements_kind(ElementsKind elements_kind) {
DCHECK(static_cast<int>(elements_kind) < kElementsKindCount);
DCHECK(kElementsKindCount <= (1 << Map::ElementsKindBits::kSize));
set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind));
DCHECK(this->elements_kind() == elements_kind);
}
ElementsKind Map::elements_kind() {
return Map::ElementsKindBits::decode(bit_field2());
}
bool Map::has_fast_smi_elements() {
return IsFastSmiElementsKind(elements_kind());
}
bool Map::has_fast_object_elements() {
return IsFastObjectElementsKind(elements_kind());
}
bool Map::has_fast_smi_or_object_elements() {
return IsFastSmiOrObjectElementsKind(elements_kind());
}
bool Map::has_fast_double_elements() {
return IsFastDoubleElementsKind(elements_kind());
}
bool Map::has_fast_elements() { return IsFastElementsKind(elements_kind()); }
bool Map::has_sloppy_arguments_elements() {
return IsSloppyArgumentsElements(elements_kind());
}
bool Map::has_fixed_typed_array_elements() {
return IsFixedTypedArrayElementsKind(elements_kind());
}
bool Map::has_dictionary_elements() {
return IsDictionaryElementsKind(elements_kind());
}
void Map::set_dictionary_map(bool value) {
uint32_t new_bit_field3 = DictionaryMap::update(bit_field3(), value);
new_bit_field3 = IsUnstable::update(new_bit_field3, value);
set_bit_field3(new_bit_field3);
}
bool Map::is_dictionary_map() {
return DictionaryMap::decode(bit_field3());
}
Code::Flags Code::flags() {
return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
}
void Map::set_owns_descriptors(bool owns_descriptors) {
set_bit_field3(OwnsDescriptors::update(bit_field3(), owns_descriptors));
}
bool Map::owns_descriptors() {
return OwnsDescriptors::decode(bit_field3());
}
void Map::set_is_callable() { set_bit_field(bit_field() | (1 << kIsCallable)); }
bool Map::is_callable() const {
return ((1 << kIsCallable) & bit_field()) != 0;
}
void Map::deprecate() {
set_bit_field3(Deprecated::update(bit_field3(), true));
}
bool Map::is_deprecated() {
return Deprecated::decode(bit_field3());
}
void Map::set_migration_target(bool value) {
set_bit_field3(IsMigrationTarget::update(bit_field3(), value));
}
bool Map::is_migration_target() {
return IsMigrationTarget::decode(bit_field3());
}
void Map::set_is_strong() {
set_bit_field3(IsStrong::update(bit_field3(), true));
}
bool Map::is_strong() {
return IsStrong::decode(bit_field3());
}
void Map::set_counter(int value) {
set_bit_field3(Counter::update(bit_field3(), value));
}
int Map::counter() { return Counter::decode(bit_field3()); }
void Map::mark_unstable() {
set_bit_field3(IsUnstable::update(bit_field3(), true));
}
bool Map::is_stable() {
return !IsUnstable::decode(bit_field3());
}
bool Map::has_code_cache() {
return code_cache() != GetIsolate()->heap()->empty_fixed_array();
}
bool Map::CanBeDeprecated() {
int descriptor = LastAdded();
for (int i = 0; i <= descriptor; i++) {
PropertyDetails details = instance_descriptors()->GetDetails(i);
if (details.representation().IsNone()) return true;
if (details.representation().IsSmi()) return true;
if (details.representation().IsDouble()) return true;
if (details.representation().IsHeapObject()) return true;
if (details.type() == DATA_CONSTANT) return true;
}
return false;
}
void Map::NotifyLeafMapLayoutChange() {
if (is_stable()) {
mark_unstable();
dependent_code()->DeoptimizeDependentCodeGroup(
GetIsolate(),
DependentCode::kPrototypeCheckGroup);
}
}
bool Map::CanTransition() {
// Only JSObject and subtypes have map transitions and back pointers.
STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
return instance_type() >= FIRST_JS_OBJECT_TYPE;
}
bool Map::IsPrimitiveMap() {
STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE);
return instance_type() <= LAST_PRIMITIVE_TYPE;
}
bool Map::IsJSObjectMap() {
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
return instance_type() >= FIRST_JS_OBJECT_TYPE;
}
bool Map::IsJSArrayMap() { return instance_type() == JS_ARRAY_TYPE; }
bool Map::IsJSFunctionMap() { return instance_type() == JS_FUNCTION_TYPE; }
bool Map::IsStringMap() { return instance_type() < FIRST_NONSTRING_TYPE; }
bool Map::IsJSProxyMap() {
InstanceType type = instance_type();
return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE;
}
bool Map::IsJSGlobalProxyMap() {
return instance_type() == JS_GLOBAL_PROXY_TYPE;
}
bool Map::IsJSGlobalObjectMap() {
return instance_type() == JS_GLOBAL_OBJECT_TYPE;
}
bool Map::IsJSTypedArrayMap() { return instance_type() == JS_TYPED_ARRAY_TYPE; }
bool Map::CanOmitMapChecks() {
return is_stable() && FLAG_omit_map_checks_for_leaf_maps;
}
int DependentCode::number_of_entries(DependencyGroup group) {
if (length() == 0) return 0;
return Smi::cast(get(group))->value();
}
void DependentCode::set_number_of_entries(DependencyGroup group, int value) {
set(group, Smi::FromInt(value));
}
void DependentCode::set_object_at(int i, Object* object) {
set(kCodesStartIndex + i, object);
}
Object* DependentCode::object_at(int i) {
return get(kCodesStartIndex + i);
}
void DependentCode::clear_at(int i) {
set_undefined(kCodesStartIndex + i);
}
void DependentCode::copy(int from, int to) {
set(kCodesStartIndex + to, get(kCodesStartIndex + from));
}
void DependentCode::ExtendGroup(DependencyGroup group) {
GroupStartIndexes starts(this);
for (int g = kGroupCount - 1; g > group; g--) {
if (starts.at(g) < starts.at(g + 1)) {
copy(starts.at(g), starts.at(g + 1));
}
}
}
void Code::set_flags(Code::Flags flags) {
STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1);
WRITE_INT_FIELD(this, kFlagsOffset, flags);
}
Code::Kind Code::kind() {
return ExtractKindFromFlags(flags());
}
bool Code::IsCodeStubOrIC() {
return kind() == STUB || kind() == HANDLER || kind() == LOAD_IC ||
kind() == KEYED_LOAD_IC || kind() == CALL_IC || kind() == STORE_IC ||
kind() == KEYED_STORE_IC || kind() == BINARY_OP_IC ||
kind() == COMPARE_IC || kind() == COMPARE_NIL_IC ||
kind() == TO_BOOLEAN_IC;
}
bool Code::IsJavaScriptCode() {
return kind() == FUNCTION || kind() == OPTIMIZED_FUNCTION ||
is_interpreter_entry_trampoline();
}
InlineCacheState Code::ic_state() {
InlineCacheState result = ExtractICStateFromFlags(flags());
// Only allow uninitialized or debugger states for non-IC code
// objects. This is used in the debugger to determine whether or not
// a call to code object has been replaced with a debug break call.
DCHECK(is_inline_cache_stub() ||
result == UNINITIALIZED ||
result == DEBUG_STUB);
return result;
}
ExtraICState Code::extra_ic_state() {
DCHECK(is_inline_cache_stub() || ic_state() == DEBUG_STUB);
return ExtractExtraICStateFromFlags(flags());
}
Code::StubType Code::type() {
return ExtractTypeFromFlags(flags());
}
// For initialization.
void Code::set_raw_kind_specific_flags1(int value) {
WRITE_INT_FIELD(this, kKindSpecificFlags1Offset, value);
}
void Code::set_raw_kind_specific_flags2(int value) {
WRITE_INT_FIELD(this, kKindSpecificFlags2Offset, value);
}
inline bool Code::is_crankshafted() {
return IsCrankshaftedField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
}
inline bool Code::is_hydrogen_stub() {
return is_crankshafted() && kind() != OPTIMIZED_FUNCTION;
}
inline bool Code::is_interpreter_entry_trampoline() {
Handle<Code> interpreter_entry =
GetIsolate()->builtins()->InterpreterEntryTrampoline();
return interpreter_entry.location() != nullptr && *interpreter_entry == this;
}
inline void Code::set_is_crankshafted(bool value) {
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = IsCrankshaftedField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
inline bool Code::is_turbofanned() {
return IsTurbofannedField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
inline void Code::set_is_turbofanned(bool value) {
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = IsTurbofannedField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
inline bool Code::can_have_weak_objects() {
DCHECK(kind() == OPTIMIZED_FUNCTION);
return CanHaveWeakObjectsField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
inline void Code::set_can_have_weak_objects(bool value) {
DCHECK(kind() == OPTIMIZED_FUNCTION);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = CanHaveWeakObjectsField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::has_deoptimization_support() {
DCHECK_EQ(FUNCTION, kind());
unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags);
return FullCodeFlagsHasDeoptimizationSupportField::decode(flags);
}
void Code::set_has_deoptimization_support(bool value) {
DCHECK_EQ(FUNCTION, kind());
unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value);
WRITE_UINT32_FIELD(this, kFullCodeFlags, flags);
}
bool Code::has_debug_break_slots() {
DCHECK_EQ(FUNCTION, kind());
unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags);
return FullCodeFlagsHasDebugBreakSlotsField::decode(flags);
}
void Code::set_has_debug_break_slots(bool value) {
DCHECK_EQ(FUNCTION, kind());
unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value);
WRITE_UINT32_FIELD(this, kFullCodeFlags, flags);
}
bool Code::has_reloc_info_for_serialization() {
DCHECK_EQ(FUNCTION, kind());
unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags);
return FullCodeFlagsHasRelocInfoForSerialization::decode(flags);
}
void Code::set_has_reloc_info_for_serialization(bool value) {
DCHECK_EQ(FUNCTION, kind());
unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsHasRelocInfoForSerialization::update(flags, value);
WRITE_UINT32_FIELD(this, kFullCodeFlags, flags);
}
int Code::allow_osr_at_loop_nesting_level() {
DCHECK_EQ(FUNCTION, kind());
int fields = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
return AllowOSRAtLoopNestingLevelField::decode(fields);
}
void Code::set_allow_osr_at_loop_nesting_level(int level) {
DCHECK_EQ(FUNCTION, kind());
DCHECK(level >= 0 && level <= kMaxLoopNestingMarker);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = AllowOSRAtLoopNestingLevelField::update(previous, level);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
int Code::profiler_ticks() {
DCHECK_EQ(FUNCTION, kind());
return ProfilerTicksField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_profiler_ticks(int ticks) {
if (kind() == FUNCTION) {
unsigned previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
unsigned updated = ProfilerTicksField::update(previous, ticks);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
}
int Code::builtin_index() {
return READ_INT32_FIELD(this, kKindSpecificFlags1Offset);
}
void Code::set_builtin_index(int index) {
WRITE_INT32_FIELD(this, kKindSpecificFlags1Offset, index);
}
unsigned Code::stack_slots() {
DCHECK(is_crankshafted());
return StackSlotsField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_stack_slots(unsigned slots) {
CHECK(slots <= (1 << kStackSlotsBitCount));
DCHECK(is_crankshafted());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = StackSlotsField::update(previous, slots);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
unsigned Code::safepoint_table_offset() {
DCHECK(is_crankshafted());
return SafepointTableOffsetField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
}
void Code::set_safepoint_table_offset(unsigned offset) {
CHECK(offset <= (1 << kSafepointTableOffsetBitCount));
DCHECK(is_crankshafted());
DCHECK(IsAligned(offset, static_cast<unsigned>(kIntSize)));
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = SafepointTableOffsetField::update(previous, offset);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
unsigned Code::back_edge_table_offset() {
DCHECK_EQ(FUNCTION, kind());
return BackEdgeTableOffsetField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)) << kPointerSizeLog2;
}
void Code::set_back_edge_table_offset(unsigned offset) {
DCHECK_EQ(FUNCTION, kind());
DCHECK(IsAligned(offset, static_cast<unsigned>(kPointerSize)));
offset = offset >> kPointerSizeLog2;
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = BackEdgeTableOffsetField::update(previous, offset);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
bool Code::back_edges_patched_for_osr() {
DCHECK_EQ(FUNCTION, kind());
return allow_osr_at_loop_nesting_level() > 0;
}
uint16_t Code::to_boolean_state() { return extra_ic_state(); }
bool Code::has_function_cache() {
DCHECK(kind() == STUB);
return HasFunctionCacheField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_has_function_cache(bool flag) {
DCHECK(kind() == STUB);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = HasFunctionCacheField::update(previous, flag);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::marked_for_deoptimization() {
DCHECK(kind() == OPTIMIZED_FUNCTION);
return MarkedForDeoptimizationField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_marked_for_deoptimization(bool flag) {
DCHECK(kind() == OPTIMIZED_FUNCTION);
DCHECK(!flag || AllowDeoptimization::IsAllowed(GetIsolate()));
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = MarkedForDeoptimizationField::update(previous, flag);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::is_inline_cache_stub() {
Kind kind = this->kind();
switch (kind) {
#define CASE(name) case name: return true;
IC_KIND_LIST(CASE)
#undef CASE
default: return false;
}
}
bool Code::is_keyed_stub() {
return is_keyed_load_stub() || is_keyed_store_stub();
}
bool Code::is_debug_stub() { return ic_state() == DEBUG_STUB; }
bool Code::is_handler() { return kind() == HANDLER; }
bool Code::is_load_stub() { return kind() == LOAD_IC; }
bool Code::is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
bool Code::is_store_stub() { return kind() == STORE_IC; }
bool Code::is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
bool Code::is_call_stub() { return kind() == CALL_IC; }
bool Code::is_binary_op_stub() { return kind() == BINARY_OP_IC; }
bool Code::is_compare_ic_stub() { return kind() == COMPARE_IC; }
bool Code::is_compare_nil_ic_stub() { return kind() == COMPARE_NIL_IC; }
bool Code::is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; }
bool Code::is_optimized_code() { return kind() == OPTIMIZED_FUNCTION; }
bool Code::embeds_maps_weakly() {
Kind k = kind();
return (k == LOAD_IC || k == STORE_IC || k == KEYED_LOAD_IC ||
k == KEYED_STORE_IC || k == COMPARE_NIL_IC) &&
ic_state() == MONOMORPHIC;
}
Address Code::constant_pool() {
Address constant_pool = NULL;
if (FLAG_enable_embedded_constant_pool) {
int offset = constant_pool_offset();
if (offset < instruction_size()) {
constant_pool = FIELD_ADDR(this, kHeaderSize + offset);
}
}
return constant_pool;
}
Code::Flags Code::ComputeFlags(Kind kind, InlineCacheState ic_state,
ExtraICState extra_ic_state, StubType type,
CacheHolderFlag holder) {
// Compute the bit mask.
unsigned int bits = KindField::encode(kind)
| ICStateField::encode(ic_state)
| TypeField::encode(type)
| ExtraICStateField::encode(extra_ic_state)
| CacheHolderField::encode(holder);
return static_cast<Flags>(bits);
}
Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
ExtraICState extra_ic_state,
CacheHolderFlag holder,
StubType type) {
return ComputeFlags(kind, MONOMORPHIC, extra_ic_state, type, holder);
}
Code::Flags Code::ComputeHandlerFlags(Kind handler_kind, StubType type,
CacheHolderFlag holder) {
return ComputeFlags(Code::HANDLER, MONOMORPHIC, handler_kind, type, holder);
}
Code::Kind Code::ExtractKindFromFlags(Flags flags) {
return KindField::decode(flags);
}
InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
return ICStateField::decode(flags);
}
ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) {
return ExtraICStateField::decode(flags);
}
Code::StubType Code::ExtractTypeFromFlags(Flags flags) {
return TypeField::decode(flags);
}
CacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) {
return CacheHolderField::decode(flags);
}
Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
int bits = flags & ~TypeField::kMask;
return static_cast<Flags>(bits);
}
Code::Flags Code::RemoveTypeAndHolderFromFlags(Flags flags) {
int bits = flags & ~TypeField::kMask & ~CacheHolderField::kMask;
return static_cast<Flags>(bits);
}
Code* Code::GetCodeFromTargetAddress(Address address) {
HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
// GetCodeFromTargetAddress might be called when marking objects during mark
// sweep. reinterpret_cast is therefore used instead of the more appropriate
// Code::cast. Code::cast does not work when the object's map is
// marked.
Code* result = reinterpret_cast<Code*>(code);
return result;
}
Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
return HeapObject::
FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize);
}
bool Code::CanContainWeakObjects() {
// is_turbofanned() implies !can_have_weak_objects().
DCHECK(!is_optimized_code() || !is_turbofanned() || !can_have_weak_objects());
return is_optimized_code() && can_have_weak_objects();
}
bool Code::IsWeakObject(Object* object) {
return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object));
}
bool Code::IsWeakObjectInOptimizedCode(Object* object) {
if (object->IsMap()) {
return Map::cast(object)->CanTransition() &&
FLAG_weak_embedded_maps_in_optimized_code;
}
if (object->IsCell()) {
object = Cell::cast(object)->value();
} else if (object->IsPropertyCell()) {
object = PropertyCell::cast(object)->value();
}
if (object->IsJSObject() || object->IsJSProxy()) {
// JSProxy is handled like JSObject because it can morph into one.
return FLAG_weak_embedded_objects_in_optimized_code;
}
if (object->IsFixedArray()) {
// Contexts of inlined functions are embedded in optimized code.
Map* map = HeapObject::cast(object)->map();
Heap* heap = map->GetHeap();
return FLAG_weak_embedded_objects_in_optimized_code &&
map == heap->function_context_map();
}
return false;
}
class Code::FindAndReplacePattern {
public:
FindAndReplacePattern() : count_(0) { }
void Add(Handle<Map> map_to_find, Handle<Object> obj_to_replace) {
DCHECK(count_ < kMaxCount);
find_[count_] = map_to_find;
replace_[count_] = obj_to_replace;
++count_;
}
private:
static const int kMaxCount = 4;
int count_;
Handle<Map> find_[kMaxCount];
Handle<Object> replace_[kMaxCount];
friend class Code;
};
Object* Map::prototype() const {
return READ_FIELD(this, kPrototypeOffset);
}
void Map::set_prototype(Object* value, WriteBarrierMode mode) {
DCHECK(value->IsNull() || value->IsJSReceiver());
WRITE_FIELD(this, kPrototypeOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode);
}
LayoutDescriptor* Map::layout_descriptor_gc_safe() {
Object* layout_desc = READ_FIELD(this, kLayoutDecriptorOffset);
return LayoutDescriptor::cast_gc_safe(layout_desc);
}
bool Map::HasFastPointerLayout() const {
Object* layout_desc = READ_FIELD(this, kLayoutDecriptorOffset);
return LayoutDescriptor::IsFastPointerLayout(layout_desc);
}
void Map::UpdateDescriptors(DescriptorArray* descriptors,
LayoutDescriptor* layout_desc) {
set_instance_descriptors(descriptors);
if (FLAG_unbox_double_fields) {
if (layout_descriptor()->IsSlowLayout()) {
set_layout_descriptor(layout_desc);
}
#ifdef VERIFY_HEAP
// TODO(ishell): remove these checks from VERIFY_HEAP mode.
if (FLAG_verify_heap) {
CHECK(layout_descriptor()->IsConsistentWithMap(this));
CHECK(visitor_id() == Heap::GetStaticVisitorIdForMap(this));
}
#else
SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(this));
DCHECK(visitor_id() == Heap::GetStaticVisitorIdForMap(this));
#endif
}
}
void Map::InitializeDescriptors(DescriptorArray* descriptors,
LayoutDescriptor* layout_desc) {
int len = descriptors->number_of_descriptors();
set_instance_descriptors(descriptors);
SetNumberOfOwnDescriptors(len);
if (FLAG_unbox_double_fields) {
set_layout_descriptor(layout_desc);
#ifdef VERIFY_HEAP
// TODO(ishell): remove these checks from VERIFY_HEAP mode.
if (FLAG_verify_heap) {
CHECK(layout_descriptor()->IsConsistentWithMap(this));
}
#else
SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(this));
#endif
set_visitor_id(Heap::GetStaticVisitorIdForMap(this));
}
}
ACCESSORS(Map, instance_descriptors, DescriptorArray, kDescriptorsOffset)
ACCESSORS(Map, layout_descriptor, LayoutDescriptor, kLayoutDecriptorOffset)
void Map::set_bit_field3(uint32_t bits) {
if (kInt32Size != kPointerSize) {
WRITE_UINT32_FIELD(this, kBitField3Offset + kInt32Size, 0);
}
WRITE_UINT32_FIELD(this, kBitField3Offset, bits);
}
uint32_t Map::bit_field3() const {
return READ_UINT32_FIELD(this, kBitField3Offset);
}
LayoutDescriptor* Map::GetLayoutDescriptor() {
return FLAG_unbox_double_fields ? layout_descriptor()
: LayoutDescriptor::FastPointerLayout();
}
void Map::AppendDescriptor(Descriptor* desc) {
DescriptorArray* descriptors = instance_descriptors();
int number_of_own_descriptors = NumberOfOwnDescriptors();
DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
descriptors->Append(desc);
SetNumberOfOwnDescriptors(number_of_own_descriptors + 1);
// This function does not support appending double field descriptors and
// it should never try to (otherwise, layout descriptor must be updated too).
#ifdef DEBUG
PropertyDetails details = desc->GetDetails();
CHECK(details.type() != DATA || !details.representation().IsDouble());
#endif
}
Object* Map::GetBackPointer() {
Object* object = constructor_or_backpointer();
if (object->IsMap()) {
return object;
}
return GetIsolate()->heap()->undefined_value();
}
Map* Map::ElementsTransitionMap() {
return TransitionArray::SearchSpecial(
this, GetHeap()->elements_transition_symbol());
}
ACCESSORS(Map, raw_transitions, Object, kTransitionsOrPrototypeInfoOffset)
Object* Map::prototype_info() const {
DCHECK(is_prototype_map());
return READ_FIELD(this, Map::kTransitionsOrPrototypeInfoOffset);
}
void Map::set_prototype_info(Object* value, WriteBarrierMode mode) {
DCHECK(is_prototype_map());
WRITE_FIELD(this, Map::kTransitionsOrPrototypeInfoOffset, value);
CONDITIONAL_WRITE_BARRIER(
GetHeap(), this, Map::kTransitionsOrPrototypeInfoOffset, value, mode);
}
void Map::SetBackPointer(Object* value, WriteBarrierMode mode) {
DCHECK(instance_type() >= FIRST_JS_RECEIVER_TYPE);
DCHECK((value->IsUndefined() && GetBackPointer()->IsMap()) ||
(value->IsMap() && GetBackPointer()->IsUndefined()));
DCHECK(!value->IsMap() ||
Map::cast(value)->GetConstructor() == constructor_or_backpointer());
set_constructor_or_backpointer(value, mode);
}
ACCESSORS(Map, code_cache, Object, kCodeCacheOffset)
ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset)
ACCESSORS(Map, weak_cell_cache, Object, kWeakCellCacheOffset)
ACCESSORS(Map, constructor_or_backpointer, Object,
kConstructorOrBackPointerOffset)
Object* Map::GetConstructor() const {
Object* maybe_constructor = constructor_or_backpointer();
// Follow any back pointers.
while (maybe_constructor->IsMap()) {
maybe_constructor =
Map::cast(maybe_constructor)->constructor_or_backpointer();
}
return maybe_constructor;
}
void Map::SetConstructor(Object* constructor, WriteBarrierMode mode) {
// Never overwrite a back pointer with a constructor.
DCHECK(!constructor_or_backpointer()->IsMap());
set_constructor_or_backpointer(constructor, mode);
}
Handle<Map> Map::CopyInitialMap(Handle<Map> map) {
return CopyInitialMap(map, map->instance_size(), map->GetInObjectProperties(),
map->unused_property_fields());
}
ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
ACCESSORS(JSFunction, literals_or_bindings, FixedArray, kLiteralsOffset)
ACCESSORS(JSFunction, next_function_link, Object, kNextFunctionLinkOffset)
ACCESSORS(JSGlobalObject, native_context, Context, kNativeContextOffset)
ACCESSORS(JSGlobalObject, global_proxy, JSObject, kGlobalProxyOffset)
ACCESSORS(JSGlobalProxy, native_context, Object, kNativeContextOffset)
ACCESSORS(JSGlobalProxy, hash, Object, kHashOffset)
ACCESSORS(AccessorInfo, name, Object, kNameOffset)
SMI_ACCESSORS(AccessorInfo, flag, kFlagOffset)
ACCESSORS(AccessorInfo, expected_receiver_type, Object,
kExpectedReceiverTypeOffset)
ACCESSORS(ExecutableAccessorInfo, getter, Object, kGetterOffset)
ACCESSORS(ExecutableAccessorInfo, setter, Object, kSetterOffset)
ACCESSORS(ExecutableAccessorInfo, data, Object, kDataOffset)
ACCESSORS(Box, value, Object, kValueOffset)
ACCESSORS(PrototypeInfo, prototype_users, Object, kPrototypeUsersOffset)
SMI_ACCESSORS(PrototypeInfo, registry_slot, kRegistrySlotOffset)
ACCESSORS(PrototypeInfo, validity_cell, Object, kValidityCellOffset)
ACCESSORS(PrototypeInfo, constructor_name, Object, kConstructorNameOffset)
ACCESSORS(SloppyBlockWithEvalContextExtension, scope_info, ScopeInfo,
kScopeInfoOffset)
ACCESSORS(SloppyBlockWithEvalContextExtension, extension, JSObject,
kExtensionOffset)
ACCESSORS(AccessorPair, getter, Object, kGetterOffset)
ACCESSORS(AccessorPair, setter, Object, kSetterOffset)
ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
ACCESSORS(AccessCheckInfo, callback, Object, kCallbackOffset)
ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
SMI_ACCESSORS(InterceptorInfo, flags, kFlagsOffset)
BOOL_ACCESSORS(InterceptorInfo, flags, can_intercept_symbols,
kCanInterceptSymbolsBit)
BOOL_ACCESSORS(InterceptorInfo, flags, all_can_read, kAllCanReadBit)
BOOL_ACCESSORS(InterceptorInfo, flags, non_masking, kNonMasking)
ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
SMI_ACCESSORS(TemplateInfo, number_of_properties, kNumberOfProperties)
ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
ACCESSORS(TemplateInfo, property_accessors, Object, kPropertyAccessorsOffset)
ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
kPrototypeTemplateOffset)
ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
kNamedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
kIndexedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, instance_template, Object,
kInstanceTemplateOffset)
ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
kInstanceCallHandlerOffset)
ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
kAccessCheckInfoOffset)
SMI_ACCESSORS(FunctionTemplateInfo, flag, kFlagOffset)
ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
kInternalFieldCountOffset)
ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
ACCESSORS(AllocationSite, transition_info, Object, kTransitionInfoOffset)
ACCESSORS(AllocationSite, nested_site, Object, kNestedSiteOffset)
SMI_ACCESSORS(AllocationSite, pretenure_data, kPretenureDataOffset)
SMI_ACCESSORS(AllocationSite, pretenure_create_count,
kPretenureCreateCountOffset)
ACCESSORS(AllocationSite, dependent_code, DependentCode,
kDependentCodeOffset)
ACCESSORS(AllocationSite, weak_next, Object, kWeakNextOffset)
ACCESSORS(AllocationMemento, allocation_site, Object, kAllocationSiteOffset)
ACCESSORS(Script, source, Object, kSourceOffset)
ACCESSORS(Script, name, Object, kNameOffset)
SMI_ACCESSORS(Script, id, kIdOffset)
SMI_ACCESSORS(Script, line_offset, kLineOffsetOffset)
SMI_ACCESSORS(Script, column_offset, kColumnOffsetOffset)
ACCESSORS(Script, context_data, Object, kContextOffset)
ACCESSORS(Script, wrapper, HeapObject, kWrapperOffset)
SMI_ACCESSORS(Script, type, kTypeOffset)
ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset)
SMI_ACCESSORS(Script, eval_from_instructions_offset,
kEvalFrominstructionsOffsetOffset)
ACCESSORS(Script, shared_function_infos, Object, kSharedFunctionInfosOffset)
SMI_ACCESSORS(Script, flags, kFlagsOffset)
ACCESSORS(Script, source_url, Object, kSourceUrlOffset)
ACCESSORS(Script, source_mapping_url, Object, kSourceMappingUrlOffset)
Script::CompilationType Script::compilation_type() {
return BooleanBit::get(flags(), kCompilationTypeBit) ?
COMPILATION_TYPE_EVAL : COMPILATION_TYPE_HOST;
}
void Script::set_compilation_type(CompilationType type) {
set_flags(BooleanBit::set(flags(), kCompilationTypeBit,
type == COMPILATION_TYPE_EVAL));
}
bool Script::hide_source() { return BooleanBit::get(flags(), kHideSourceBit); }
void Script::set_hide_source(bool value) {
set_flags(BooleanBit::set(flags(), kHideSourceBit, value));
}
Script::CompilationState Script::compilation_state() {
return BooleanBit::get(flags(), kCompilationStateBit) ?
COMPILATION_STATE_COMPILED : COMPILATION_STATE_INITIAL;
}
void Script::set_compilation_state(CompilationState state) {
set_flags(BooleanBit::set(flags(), kCompilationStateBit,
state == COMPILATION_STATE_COMPILED));
}
ScriptOriginOptions Script::origin_options() {
return ScriptOriginOptions((flags() & kOriginOptionsMask) >>
kOriginOptionsShift);
}
void Script::set_origin_options(ScriptOriginOptions origin_options) {
DCHECK(!(origin_options.Flags() & ~((1 << kOriginOptionsSize) - 1)));
set_flags((flags() & ~kOriginOptionsMask) |
(origin_options.Flags() << kOriginOptionsShift));
}
ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
ACCESSORS(DebugInfo, code, Code, kCodeIndex)
ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
SMI_ACCESSORS(BreakPointInfo, code_position, kCodePositionIndex)
SMI_ACCESSORS(BreakPointInfo, source_position, kSourcePositionIndex)
SMI_ACCESSORS(BreakPointInfo, statement_position, kStatementPositionIndex)
ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
ACCESSORS(SharedFunctionInfo, optimized_code_map, Object,
kOptimizedCodeMapOffset)
ACCESSORS(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset)
ACCESSORS(SharedFunctionInfo, feedback_vector, TypeFeedbackVector,
kFeedbackVectorOffset)
#if TRACE_MAPS
SMI_ACCESSORS(SharedFunctionInfo, unique_id, kUniqueIdOffset)
#endif
ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
kInstanceClassNameOffset)
ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset)
ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset)
SMI_ACCESSORS(FunctionTemplateInfo, length, kLengthOffset)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
kHiddenPrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
kNeedsAccessCheckBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype,
kReadOnlyPrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, remove_prototype,
kRemovePrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, do_not_cache,
kDoNotCacheBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, instantiated, kInstantiatedBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, accept_any_receiver,
kAcceptAnyReceiver)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
kIsExpressionBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
kIsTopLevelBit)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, allows_lazy_compilation,
kAllowLazyCompilation)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
allows_lazy_compilation_without_context,
kAllowLazyCompilationWithoutContext)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
uses_arguments,
kUsesArguments)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
has_duplicate_parameters,
kHasDuplicateParameters)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, asm_function, kIsAsmFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, deserialized, kDeserialized)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, never_compiled,
kNeverCompiled)
#if V8_HOST_ARCH_32_BIT
SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
SMI_ACCESSORS(SharedFunctionInfo, internal_formal_parameter_count,
kFormalParameterCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
kExpectedNofPropertiesOffset)
SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type,
kStartPositionAndTypeOffset)
SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
SMI_ACCESSORS(SharedFunctionInfo, function_token_position,
kFunctionTokenPositionOffset)
SMI_ACCESSORS(SharedFunctionInfo, compiler_hints,
kCompilerHintsOffset)
SMI_ACCESSORS(SharedFunctionInfo, opt_count_and_bailout_reason,
kOptCountAndBailoutReasonOffset)
SMI_ACCESSORS(SharedFunctionInfo, counters, kCountersOffset)
SMI_ACCESSORS(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, profiler_ticks, kProfilerTicksOffset)
#else
#if V8_TARGET_LITTLE_ENDIAN
#define PSEUDO_SMI_LO_ALIGN 0
#define PSEUDO_SMI_HI_ALIGN kIntSize
#else
#define PSEUDO_SMI_LO_ALIGN kIntSize
#define PSEUDO_SMI_HI_ALIGN 0
#endif
#define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \
STATIC_ASSERT(holder::offset % kPointerSize == PSEUDO_SMI_LO_ALIGN); \
int holder::name() const { \
int value = READ_INT_FIELD(this, offset); \
DCHECK(kHeapObjectTag == 1); \
DCHECK((value & kHeapObjectTag) == 0); \
return value >> 1; \
} \
void holder::set_##name(int value) { \
DCHECK(kHeapObjectTag == 1); \
DCHECK((value & 0xC0000000) == 0xC0000000 || (value & 0xC0000000) == 0x0); \
WRITE_INT_FIELD(this, offset, (value << 1) & ~kHeapObjectTag); \
}
#define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \
STATIC_ASSERT(holder::offset % kPointerSize == PSEUDO_SMI_HI_ALIGN); \
INT_ACCESSORS(holder, name, offset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, internal_formal_parameter_count,
kFormalParameterCountOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
expected_nof_properties,
kExpectedNofPropertiesOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
start_position_and_type,
kStartPositionAndTypeOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
function_token_position,
kFunctionTokenPositionOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
compiler_hints,
kCompilerHintsOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
opt_count_and_bailout_reason,
kOptCountAndBailoutReasonOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, counters, kCountersOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
ast_node_count,
kAstNodeCountOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
profiler_ticks,
kProfilerTicksOffset)
#endif
BOOL_GETTER(SharedFunctionInfo,
compiler_hints,
optimization_disabled,
kOptimizationDisabled)
void SharedFunctionInfo::set_optimization_disabled(bool disable) {
set_compiler_hints(BooleanBit::set(compiler_hints(),
kOptimizationDisabled,
disable));
}
LanguageMode SharedFunctionInfo::language_mode() {
STATIC_ASSERT(LANGUAGE_END == 3);
return construct_language_mode(
BooleanBit::get(compiler_hints(), kStrictModeFunction),
BooleanBit::get(compiler_hints(), kStrongModeFunction));
}
void SharedFunctionInfo::set_language_mode(LanguageMode language_mode) {
STATIC_ASSERT(LANGUAGE_END == 3);
// We only allow language mode transitions that set the same language mode
// again or go up in the chain:
DCHECK(is_sloppy(this->language_mode()) || is_strict(language_mode));
int hints = compiler_hints();
hints = BooleanBit::set(hints, kStrictModeFunction, is_strict(language_mode));
hints = BooleanBit::set(hints, kStrongModeFunction, is_strong(language_mode));
set_compiler_hints(hints);
}
FunctionKind SharedFunctionInfo::kind() {
return FunctionKindBits::decode(compiler_hints());
}
void SharedFunctionInfo::set_kind(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
int hints = compiler_hints();
hints = FunctionKindBits::update(hints, kind);
set_compiler_hints(hints);
}
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, needs_home_object,
kNeedsHomeObject)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, force_inline, kForceInline)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints,
name_should_print_as_anonymous,
kNameShouldPrintAsAnonymous)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_function, kIsFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_crankshaft,
kDontCrankshaft)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_flush, kDontFlush)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_arrow, kIsArrow)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_generator, kIsGenerator)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_concise_method,
kIsConciseMethod)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_accessor_function,
kIsAccessorFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_default_constructor,
kIsDefaultConstructor)
ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset)
ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset)
ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset)
bool Script::HasValidSource() {
Object* src = this->source();
if (!src->IsString()) return true;
String* src_str = String::cast(src);
if (!StringShape(src_str).IsExternal()) return true;
if (src_str->IsOneByteRepresentation()) {
return ExternalOneByteString::cast(src)->resource() != NULL;
} else if (src_str->IsTwoByteRepresentation()) {
return ExternalTwoByteString::cast(src)->resource() != NULL;
}
return true;
}
void SharedFunctionInfo::DontAdaptArguments() {
DCHECK(code()->kind() == Code::BUILTIN);
set_internal_formal_parameter_count(kDontAdaptArgumentsSentinel);
}
int SharedFunctionInfo::start_position() const {
return start_position_and_type() >> kStartPositionShift;
}
void SharedFunctionInfo::set_start_position(int start_position) {
set_start_position_and_type((start_position << kStartPositionShift)
| (start_position_and_type() & ~kStartPositionMask));
}
Code* SharedFunctionInfo::code() const {
return Code::cast(READ_FIELD(this, kCodeOffset));
}
void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
DCHECK(value->kind() != Code::OPTIMIZED_FUNCTION);
WRITE_FIELD(this, kCodeOffset, value);
CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode);
}
void SharedFunctionInfo::ReplaceCode(Code* value) {
// If the GC metadata field is already used then the function was
// enqueued as a code flushing candidate and we remove it now.
if (code()->gc_metadata() != NULL) {
CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher();
flusher->EvictCandidate(this);
}
DCHECK(code()->gc_metadata() == NULL && value->gc_metadata() == NULL);
#ifdef DEBUG
Code::VerifyRecompiledCode(code(), value);
#endif // DEBUG
set_code(value);
if (is_compiled()) set_never_compiled(false);
}
ScopeInfo* SharedFunctionInfo::scope_info() const {
return reinterpret_cast<ScopeInfo*>(READ_FIELD(this, kScopeInfoOffset));
}
void SharedFunctionInfo::set_scope_info(ScopeInfo* value,
WriteBarrierMode mode) {
WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value));
CONDITIONAL_WRITE_BARRIER(GetHeap(),
this,
kScopeInfoOffset,
reinterpret_cast<Object*>(value),
mode);
}
bool SharedFunctionInfo::is_compiled() {
Builtins* builtins = GetIsolate()->builtins();
DCHECK(code() != builtins->builtin(Builtins::kCompileOptimizedConcurrent));
DCHECK(code() != builtins->builtin(Builtins::kCompileOptimized));
return code() != builtins->builtin(Builtins::kCompileLazy);
}
bool SharedFunctionInfo::has_simple_parameters() {
return scope_info()->HasSimpleParameters();
}
bool SharedFunctionInfo::HasDebugInfo() {
bool has_debug_info = debug_info()->IsStruct();
DCHECK(!has_debug_info || HasDebugCode());
return has_debug_info;
}
DebugInfo* SharedFunctionInfo::GetDebugInfo() {
DCHECK(HasDebugInfo());
return DebugInfo::cast(debug_info());
}
bool SharedFunctionInfo::HasDebugCode() {
return code()->kind() == Code::FUNCTION && code()->has_debug_break_slots();
}
bool SharedFunctionInfo::IsApiFunction() {
return function_data()->IsFunctionTemplateInfo();
}
FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() {
DCHECK(IsApiFunction());
return FunctionTemplateInfo::cast(function_data());
}
bool SharedFunctionInfo::HasBuiltinFunctionId() {
return function_data()->IsSmi();
}
BuiltinFunctionId SharedFunctionInfo::builtin_function_id() {
DCHECK(HasBuiltinFunctionId());
return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value());
}
bool SharedFunctionInfo::HasBytecodeArray() {
return function_data()->IsBytecodeArray();
}
BytecodeArray* SharedFunctionInfo::bytecode_array() {
DCHECK(HasBytecodeArray());
return BytecodeArray::cast(function_data());
}
int SharedFunctionInfo::ic_age() {
return ICAgeBits::decode(counters());
}
void SharedFunctionInfo::set_ic_age(int ic_age) {
set_counters(ICAgeBits::update(counters(), ic_age));
}
int SharedFunctionInfo::deopt_count() {
return DeoptCountBits::decode(counters());
}
void SharedFunctionInfo::set_deopt_count(int deopt_count) {
set_counters(DeoptCountBits::update(counters(), deopt_count));
}
void SharedFunctionInfo::increment_deopt_count() {
int value = counters();
int deopt_count = DeoptCountBits::decode(value);
deopt_count = (deopt_count + 1) & DeoptCountBits::kMax;
set_counters(DeoptCountBits::update(value, deopt_count));
}
int SharedFunctionInfo::opt_reenable_tries() {
return OptReenableTriesBits::decode(counters());
}
void SharedFunctionInfo::set_opt_reenable_tries(int tries) {
set_counters(OptReenableTriesBits::update(counters(), tries));
}
int SharedFunctionInfo::opt_count() {
return OptCountBits::decode(opt_count_and_bailout_reason());
}
void SharedFunctionInfo::set_opt_count(int opt_count) {
set_opt_count_and_bailout_reason(
OptCountBits::update(opt_count_and_bailout_reason(), opt_count));
}
BailoutReason SharedFunctionInfo::disable_optimization_reason() {
return static_cast<BailoutReason>(
DisabledOptimizationReasonBits::decode(opt_count_and_bailout_reason()));
}
bool SharedFunctionInfo::has_deoptimization_support() {
Code* code = this->code();
return code->kind() == Code::FUNCTION && code->has_deoptimization_support();
}
void SharedFunctionInfo::TryReenableOptimization() {
int tries = opt_reenable_tries();
set_opt_reenable_tries((tries + 1) & OptReenableTriesBits::kMax);
// We reenable optimization whenever the number of tries is a large
// enough power of 2.
if (tries >= 16 && (((tries - 1) & tries) == 0)) {
set_optimization_disabled(false);
set_opt_count(0);
set_deopt_count(0);
}
}
void SharedFunctionInfo::set_disable_optimization_reason(BailoutReason reason) {
set_opt_count_and_bailout_reason(DisabledOptimizationReasonBits::update(
opt_count_and_bailout_reason(), reason));
}
bool SharedFunctionInfo::IsBuiltin() {
Object* script_obj = script();
if (script_obj->IsUndefined()) return true;
Script* script = Script::cast(script_obj);
Script::Type type = static_cast<Script::Type>(script->type());
return type != Script::TYPE_NORMAL;
}
bool SharedFunctionInfo::IsSubjectToDebugging() { return !IsBuiltin(); }
bool JSFunction::IsBuiltin() { return shared()->IsBuiltin(); }
bool JSFunction::IsSubjectToDebugging() {
return shared()->IsSubjectToDebugging();
}
bool JSFunction::NeedsArgumentsAdaption() {
return shared()->internal_formal_parameter_count() !=
SharedFunctionInfo::kDontAdaptArgumentsSentinel;
}
bool JSFunction::IsOptimized() {
return code()->kind() == Code::OPTIMIZED_FUNCTION;
}
bool JSFunction::IsMarkedForOptimization() {
return code() == GetIsolate()->builtins()->builtin(
Builtins::kCompileOptimized);
}
bool JSFunction::IsMarkedForConcurrentOptimization() {
return code() == GetIsolate()->builtins()->builtin(
Builtins::kCompileOptimizedConcurrent);
}
bool JSFunction::IsInOptimizationQueue() {
return code() == GetIsolate()->builtins()->builtin(
Builtins::kInOptimizationQueue);
}
bool JSFunction::IsInobjectSlackTrackingInProgress() {
return has_initial_map() &&
initial_map()->counter() >= Map::kSlackTrackingCounterEnd;
}
Code* JSFunction::code() {
return Code::cast(
Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset)));
}
void JSFunction::set_code(Code* value) {
DCHECK(!GetHeap()->InNewSpace(value));
Address entry = value->entry();
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
GetHeap()->incremental_marking()->RecordWriteOfCodeEntry(
this,
HeapObject::RawField(this, kCodeEntryOffset),
value);
}
void JSFunction::set_code_no_write_barrier(Code* value) {
DCHECK(!GetHeap()->InNewSpace(value));
Address entry = value->entry();
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
}
void JSFunction::ReplaceCode(Code* code) {
bool was_optimized = IsOptimized();
bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION;
if (was_optimized && is_optimized) {
shared()->EvictFromOptimizedCodeMap(this->code(),
"Replacing with another optimized code");
}
set_code(code);
// Add/remove the function from the list of optimized functions for this
// context based on the state change.
if (!was_optimized && is_optimized) {
context()->native_context()->AddOptimizedFunction(this);
}
if (was_optimized && !is_optimized) {
// TODO(titzer): linear in the number of optimized functions; fix!
context()->native_context()->RemoveOptimizedFunction(this);
}
}
Context* JSFunction::context() {
return Context::cast(READ_FIELD(this, kContextOffset));
}
JSObject* JSFunction::global_proxy() {
return context()->global_proxy();
}
void JSFunction::set_context(Object* value) {
DCHECK(value->IsUndefined() || value->IsContext());
WRITE_FIELD(this, kContextOffset, value);
WRITE_BARRIER(GetHeap(), this, kContextOffset, value);
}
ACCESSORS(JSFunction, prototype_or_initial_map, Object,
kPrototypeOrInitialMapOffset)
Map* JSFunction::initial_map() {
return Map::cast(prototype_or_initial_map());
}
bool JSFunction::has_initial_map() {
return prototype_or_initial_map()->IsMap();
}
bool JSFunction::has_instance_prototype() {
return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
}
bool JSFunction::has_prototype() {
return map()->has_non_instance_prototype() || has_instance_prototype();
}
Object* JSFunction::instance_prototype() {
DCHECK(has_instance_prototype());
if (has_initial_map()) return initial_map()->prototype();
// When there is no initial map and the prototype is a JSObject, the
// initial map field is used for the prototype field.
return prototype_or_initial_map();
}
Object* JSFunction::prototype() {
DCHECK(has_prototype());
// If the function's prototype property has been set to a non-JSObject
// value, that value is stored in the constructor field of the map.
if (map()->has_non_instance_prototype()) {
Object* prototype = map()->GetConstructor();
// The map must have a prototype in that field, not a back pointer.
DCHECK(!prototype->IsMap());
return prototype;
}
return instance_prototype();
}
bool JSFunction::is_compiled() {
Builtins* builtins = GetIsolate()->builtins();
return code() != builtins->builtin(Builtins::kCompileLazy) &&
code() != builtins->builtin(Builtins::kCompileOptimized) &&
code() != builtins->builtin(Builtins::kCompileOptimizedConcurrent);
}
bool JSFunction::has_simple_parameters() {
return shared()->has_simple_parameters();
}
LiteralsArray* JSFunction::literals() {
DCHECK(!shared()->bound());
return LiteralsArray::cast(literals_or_bindings());
}
void JSFunction::set_literals(LiteralsArray* literals) {
DCHECK(!shared()->bound());
set_literals_or_bindings(literals);
}
BindingsArray* JSFunction::function_bindings() {
DCHECK(shared()->bound());
return BindingsArray::cast(literals_or_bindings());
}
void JSFunction::set_function_bindings(BindingsArray* bindings) {
DCHECK(shared()->bound());
// Bound function literal may be initialized to the empty fixed array
// before the bindings are set.
DCHECK(bindings == GetHeap()->empty_fixed_array() ||
bindings->map() == GetHeap()->fixed_array_map());
set_literals_or_bindings(bindings);
}
int JSFunction::NumberOfLiterals() {
DCHECK(!shared()->bound());
return literals()->length();
}
ACCESSORS(JSProxy, handler, Object, kHandlerOffset)
ACCESSORS(JSProxy, hash, Object, kHashOffset)
ACCESSORS(JSFunctionProxy, call_trap, JSReceiver, kCallTrapOffset)
ACCESSORS(JSFunctionProxy, construct_trap, Object, kConstructTrapOffset)
void JSProxy::InitializeBody(int object_size, Object* value) {
DCHECK(!value->IsHeapObject() || !GetHeap()->InNewSpace(value));
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
ACCESSORS(JSCollection, table, Object, kTableOffset)
#define ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(name, type, offset) \
template<class Derived, class TableType> \
type* OrderedHashTableIterator<Derived, TableType>::name() const { \
return type::cast(READ_FIELD(this, offset)); \
} \
template<class Derived, class TableType> \
void OrderedHashTableIterator<Derived, TableType>::set_##name( \
type* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \
}
ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(table, Object, kTableOffset)
ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(index, Object, kIndexOffset)
ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(kind, Object, kKindOffset)
#undef ORDERED_HASH_TABLE_ITERATOR_ACCESSORS
ACCESSORS(JSWeakCollection, table, Object, kTableOffset)
ACCESSORS(JSWeakCollection, next, Object, kNextOffset)
Address Foreign::foreign_address() {
return AddressFrom<Address>(READ_INTPTR_FIELD(this, kForeignAddressOffset));
}
void Foreign::set_foreign_address(Address value) {
WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value));
}
ACCESSORS(JSGeneratorObject, function, JSFunction, kFunctionOffset)
ACCESSORS(JSGeneratorObject, context, Context, kContextOffset)
ACCESSORS(JSGeneratorObject, receiver, Object, kReceiverOffset)
SMI_ACCESSORS(JSGeneratorObject, continuation, kContinuationOffset)
ACCESSORS(JSGeneratorObject, operand_stack, FixedArray, kOperandStackOffset)
bool JSGeneratorObject::is_suspended() {
DCHECK_LT(kGeneratorExecuting, kGeneratorClosed);
DCHECK_EQ(kGeneratorClosed, 0);
return continuation() > 0;
}
bool JSGeneratorObject::is_closed() {
return continuation() == kGeneratorClosed;
}
bool JSGeneratorObject::is_executing() {
return continuation() == kGeneratorExecuting;
}
ACCESSORS(JSModule, context, Object, kContextOffset)
ACCESSORS(JSModule, scope_info, ScopeInfo, kScopeInfoOffset)
ACCESSORS(JSValue, value, Object, kValueOffset)
HeapNumber* HeapNumber::cast(Object* object) {
SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber());
return reinterpret_cast<HeapNumber*>(object);
}
const HeapNumber* HeapNumber::cast(const Object* object) {
SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber());
return reinterpret_cast<const HeapNumber*>(object);
}
ACCESSORS(JSDate, value, Object, kValueOffset)
ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset)
ACCESSORS(JSDate, year, Object, kYearOffset)
ACCESSORS(JSDate, month, Object, kMonthOffset)
ACCESSORS(JSDate, day, Object, kDayOffset)
ACCESSORS(JSDate, weekday, Object, kWeekdayOffset)
ACCESSORS(JSDate, hour, Object, kHourOffset)
ACCESSORS(JSDate, min, Object, kMinOffset)
ACCESSORS(JSDate, sec, Object, kSecOffset)
SMI_ACCESSORS(JSMessageObject, type, kTypeOffset)
ACCESSORS(JSMessageObject, argument, Object, kArgumentsOffset)
ACCESSORS(JSMessageObject, script, Object, kScriptOffset)
ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset)
SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset)
SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset)
INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
INT_ACCESSORS(Code, prologue_offset, kPrologueOffset)
INT_ACCESSORS(Code, constant_pool_offset, kConstantPoolOffset)
ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset)
ACCESSORS(Code, handler_table, FixedArray, kHandlerTableOffset)
ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset)
ACCESSORS(Code, raw_type_feedback_info, Object, kTypeFeedbackInfoOffset)
ACCESSORS(Code, next_code_link, Object, kNextCodeLinkOffset)
void Code::WipeOutHeader() {
WRITE_FIELD(this, kRelocationInfoOffset, NULL);
WRITE_FIELD(this, kHandlerTableOffset, NULL);
WRITE_FIELD(this, kDeoptimizationDataOffset, NULL);
// Do not wipe out major/minor keys on a code stub or IC
if (!READ_FIELD(this, kTypeFeedbackInfoOffset)->IsSmi()) {
WRITE_FIELD(this, kTypeFeedbackInfoOffset, NULL);
}
WRITE_FIELD(this, kNextCodeLinkOffset, NULL);
WRITE_FIELD(this, kGCMetadataOffset, NULL);
}
Object* Code::type_feedback_info() {
DCHECK(kind() == FUNCTION);
return raw_type_feedback_info();
}
void Code::set_type_feedback_info(Object* value, WriteBarrierMode mode) {
DCHECK(kind() == FUNCTION);
set_raw_type_feedback_info(value, mode);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kTypeFeedbackInfoOffset,
value, mode);
}
uint32_t Code::stub_key() {
DCHECK(IsCodeStubOrIC());
Smi* smi_key = Smi::cast(raw_type_feedback_info());
return static_cast<uint32_t>(smi_key->value());
}
void Code::set_stub_key(uint32_t key) {
DCHECK(IsCodeStubOrIC());
set_raw_type_feedback_info(Smi::FromInt(key));
}
ACCESSORS(Code, gc_metadata, Object, kGCMetadataOffset)
INT_ACCESSORS(Code, ic_age, kICAgeOffset)
byte* Code::instruction_start() {
return FIELD_ADDR(this, kHeaderSize);
}
byte* Code::instruction_end() {
return instruction_start() + instruction_size();
}
int Code::body_size() {
return RoundUp(instruction_size(), kObjectAlignment);
}
ByteArray* Code::unchecked_relocation_info() {
return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
}
byte* Code::relocation_start() {
return unchecked_relocation_info()->GetDataStartAddress();
}
int Code::relocation_size() {
return unchecked_relocation_info()->length();
}
byte* Code::entry() {
return instruction_start();
}
bool Code::contains(byte* inner_pointer) {
return (address() <= inner_pointer) && (inner_pointer <= address() + Size());
}
int Code::ExecutableSize() {
// Check that the assumptions about the layout of the code object holds.
DCHECK_EQ(static_cast<int>(instruction_start() - address()),
Code::kHeaderSize);
return instruction_size() + Code::kHeaderSize;
}
int Code::CodeSize() { return SizeFor(body_size()); }
ACCESSORS(JSArray, length, Object, kLengthOffset)
void* JSArrayBuffer::backing_store() const {
intptr_t ptr = READ_INTPTR_FIELD(this, kBackingStoreOffset);
return reinterpret_cast<void*>(ptr);
}
void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) {
intptr_t ptr = reinterpret_cast<intptr_t>(value);
WRITE_INTPTR_FIELD(this, kBackingStoreOffset, ptr);
}
ACCESSORS(JSArrayBuffer, byte_length, Object, kByteLengthOffset)
void JSArrayBuffer::set_bit_field(uint32_t bits) {
if (kInt32Size != kPointerSize) {
#if V8_TARGET_LITTLE_ENDIAN
WRITE_UINT32_FIELD(this, kBitFieldSlot + kInt32Size, 0);
#else
WRITE_UINT32_FIELD(this, kBitFieldSlot, 0);
#endif
}
WRITE_UINT32_FIELD(this, kBitFieldOffset, bits);
}
uint32_t JSArrayBuffer::bit_field() const {
return READ_UINT32_FIELD(this, kBitFieldOffset);
}
bool JSArrayBuffer::is_external() { return IsExternal::decode(bit_field()); }
void JSArrayBuffer::set_is_external(bool value) {
set_bit_field(IsExternal::update(bit_field(), value));
}
bool JSArrayBuffer::is_neuterable() {
return IsNeuterable::decode(bit_field());
}
void JSArrayBuffer::set_is_neuterable(bool value) {
set_bit_field(IsNeuterable::update(bit_field(), value));
}
bool JSArrayBuffer::was_neutered() { return WasNeutered::decode(bit_field()); }
void JSArrayBuffer::set_was_neutered(bool value) {
set_bit_field(WasNeutered::update(bit_field(), value));
}
bool JSArrayBuffer::is_shared() { return IsShared::decode(bit_field()); }
void JSArrayBuffer::set_is_shared(bool value) {
set_bit_field(IsShared::update(bit_field(), value));
}
// static
template <typename StaticVisitor>
void JSArrayBuffer::JSArrayBufferIterateBody(Heap* heap, HeapObject* obj) {
StaticVisitor::VisitPointers(
heap, obj,
HeapObject::RawField(obj, JSArrayBuffer::BodyDescriptor::kStartOffset),
HeapObject::RawField(obj,
JSArrayBuffer::kByteLengthOffset + kPointerSize));
StaticVisitor::VisitPointers(
heap, obj, HeapObject::RawField(obj, JSArrayBuffer::kSize),
HeapObject::RawField(obj, JSArrayBuffer::kSizeWithInternalFields));
}
void JSArrayBuffer::JSArrayBufferIterateBody(HeapObject* obj,
ObjectVisitor* v) {
v->VisitPointers(
HeapObject::RawField(obj, JSArrayBuffer::BodyDescriptor::kStartOffset),
HeapObject::RawField(obj,
JSArrayBuffer::kByteLengthOffset + kPointerSize));
v->VisitPointers(
HeapObject::RawField(obj, JSArrayBuffer::kSize),
HeapObject::RawField(obj, JSArrayBuffer::kSizeWithInternalFields));
}
Object* JSArrayBufferView::byte_offset() const {
if (WasNeutered()) return Smi::FromInt(0);
return Object::cast(READ_FIELD(this, kByteOffsetOffset));
}
void JSArrayBufferView::set_byte_offset(Object* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kByteOffsetOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteOffsetOffset, value, mode);
}
Object* JSArrayBufferView::byte_length() const {
if (WasNeutered()) return Smi::FromInt(0);
return Object::cast(READ_FIELD(this, kByteLengthOffset));
}
void JSArrayBufferView::set_byte_length(Object* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kByteLengthOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteLengthOffset, value, mode);
}
ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset)
#ifdef VERIFY_HEAP
ACCESSORS(JSArrayBufferView, raw_byte_offset, Object, kByteOffsetOffset)
ACCESSORS(JSArrayBufferView, raw_byte_length, Object, kByteLengthOffset)
#endif
bool JSArrayBufferView::WasNeutered() const {
return JSArrayBuffer::cast(buffer())->was_neutered();
}
Object* JSTypedArray::length() const {
if (WasNeutered()) return Smi::FromInt(0);
return Object::cast(READ_FIELD(this, kLengthOffset));
}
uint32_t JSTypedArray::length_value() const {
if (WasNeutered()) return 0;
uint32_t index = 0;
CHECK(Object::cast(READ_FIELD(this, kLengthOffset))->ToArrayLength(&index));
return index;
}
void JSTypedArray::set_length(Object* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kLengthOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kLengthOffset, value, mode);
}
#ifdef VERIFY_HEAP
ACCESSORS(JSTypedArray, raw_length, Object, kLengthOffset)
#endif
ACCESSORS(JSRegExp, data, Object, kDataOffset)
JSRegExp::Type JSRegExp::TypeTag() {
Object* data = this->data();
if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
return static_cast<JSRegExp::Type>(smi->value());
}
int JSRegExp::CaptureCount() {
switch (TypeTag()) {
case ATOM:
return 0;
case IRREGEXP:
return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
default:
UNREACHABLE();
return -1;
}
}
JSRegExp::Flags JSRegExp::GetFlags() {
DCHECK(this->data()->IsFixedArray());
Object* data = this->data();
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
return Flags(smi->value());
}
String* JSRegExp::Pattern() {
DCHECK(this->data()->IsFixedArray());
Object* data = this->data();
String* pattern = String::cast(FixedArray::cast(data)->get(kSourceIndex));
return pattern;
}
Object* JSRegExp::DataAt(int index) {
DCHECK(TypeTag() != NOT_COMPILED);
return FixedArray::cast(data())->get(index);
}
void JSRegExp::SetDataAt(int index, Object* value) {
DCHECK(TypeTag() != NOT_COMPILED);
DCHECK(index >= kDataIndex); // Only implementation data can be set this way.
FixedArray::cast(data())->set(index, value);
}
ElementsKind JSObject::GetElementsKind() {
ElementsKind kind = map()->elements_kind();
#if VERIFY_HEAP && DEBUG
FixedArrayBase* fixed_array =
reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset));
// If a GC was caused while constructing this object, the elements
// pointer may point to a one pointer filler map.
if (ElementsAreSafeToExamine()) {
Map* map = fixed_array->map();
DCHECK((IsFastSmiOrObjectElementsKind(kind) &&
(map == GetHeap()->fixed_array_map() ||
map == GetHeap()->fixed_cow_array_map())) ||
(IsFastDoubleElementsKind(kind) &&
(fixed_array->IsFixedDoubleArray() ||
fixed_array == GetHeap()->empty_fixed_array())) ||
(kind == DICTIONARY_ELEMENTS &&
fixed_array->IsFixedArray() &&
fixed_array->IsDictionary()) ||
(kind > DICTIONARY_ELEMENTS));
DCHECK(!IsSloppyArgumentsElements(kind) ||
(elements()->IsFixedArray() && elements()->length() >= 2));
}
#endif
return kind;
}
bool JSObject::HasFastObjectElements() {
return IsFastObjectElementsKind(GetElementsKind());
}
bool JSObject::HasFastSmiElements() {
return IsFastSmiElementsKind(GetElementsKind());
}
bool JSObject::HasFastSmiOrObjectElements() {
return IsFastSmiOrObjectElementsKind(GetElementsKind());
}
bool JSObject::HasFastDoubleElements() {
return IsFastDoubleElementsKind(GetElementsKind());
}
bool JSObject::HasFastHoleyElements() {
return IsFastHoleyElementsKind(GetElementsKind());
}
bool JSObject::HasFastElements() {
return IsFastElementsKind(GetElementsKind());
}
bool JSObject::HasDictionaryElements() {
return GetElementsKind() == DICTIONARY_ELEMENTS;
}
bool JSObject::HasFastArgumentsElements() {
return GetElementsKind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS;
}
bool JSObject::HasSlowArgumentsElements() {
return GetElementsKind() == SLOW_SLOPPY_ARGUMENTS_ELEMENTS;
}
bool JSObject::HasSloppyArgumentsElements() {
return IsSloppyArgumentsElements(GetElementsKind());
}
bool JSObject::HasFixedTypedArrayElements() {
HeapObject* array = elements();
DCHECK(array != NULL);
return array->IsFixedTypedArrayBase();
}
#define FIXED_TYPED_ELEMENTS_CHECK(Type, type, TYPE, ctype, size) \
bool JSObject::HasFixed##Type##Elements() { \
HeapObject* array = elements(); \
DCHECK(array != NULL); \
if (!array->IsHeapObject()) \
return false; \
return array->map()->instance_type() == FIXED_##TYPE##_ARRAY_TYPE; \
}
TYPED_ARRAYS(FIXED_TYPED_ELEMENTS_CHECK)
#undef FIXED_TYPED_ELEMENTS_CHECK
bool JSObject::HasNamedInterceptor() {
return map()->has_named_interceptor();
}
bool JSObject::HasIndexedInterceptor() {
return map()->has_indexed_interceptor();
}
NameDictionary* JSObject::property_dictionary() {
DCHECK(!HasFastProperties());
DCHECK(!IsJSGlobalObject());
return NameDictionary::cast(properties());
}
GlobalDictionary* JSObject::global_dictionary() {
DCHECK(!HasFastProperties());
DCHECK(IsJSGlobalObject());
return GlobalDictionary::cast(properties());
}
SeededNumberDictionary* JSObject::element_dictionary() {
DCHECK(HasDictionaryElements());
return SeededNumberDictionary::cast(elements());
}
bool Name::IsHashFieldComputed(uint32_t field) {
return (field & kHashNotComputedMask) == 0;
}
bool Name::HasHashCode() {
return IsHashFieldComputed(hash_field());
}
uint32_t Name::Hash() {
// Fast case: has hash code already been computed?
uint32_t field = hash_field();
if (IsHashFieldComputed(field)) return field >> kHashShift;
// Slow case: compute hash code and set it. Has to be a string.
return String::cast(this)->ComputeAndSetHash();
}
bool Name::IsPrivate() {
return this->IsSymbol() && Symbol::cast(this)->is_private();
}
StringHasher::StringHasher(int length, uint32_t seed)
: length_(length),
raw_running_hash_(seed),
array_index_(0),
is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
is_first_char_(true) {
DCHECK(FLAG_randomize_hashes || raw_running_hash_ == 0);
}
bool StringHasher::has_trivial_hash() {
return length_ > String::kMaxHashCalcLength;
}
uint32_t StringHasher::AddCharacterCore(uint32_t running_hash, uint16_t c) {
running_hash += c;
running_hash += (running_hash << 10);
running_hash ^= (running_hash >> 6);
return running_hash;
}
uint32_t StringHasher::GetHashCore(uint32_t running_hash) {
running_hash += (running_hash << 3);
running_hash ^= (running_hash >> 11);
running_hash += (running_hash << 15);
if ((running_hash & String::kHashBitMask) == 0) {
return kZeroHash;
}
return running_hash;
}
uint32_t StringHasher::ComputeRunningHash(uint32_t running_hash,
const uc16* chars, int length) {
DCHECK_NOT_NULL(chars);
DCHECK(length >= 0);
for (int i = 0; i < length; ++i) {
running_hash = AddCharacterCore(running_hash, *chars++);
}
return running_hash;
}
uint32_t StringHasher::ComputeRunningHashOneByte(uint32_t running_hash,
const char* chars,
int length) {
DCHECK_NOT_NULL(chars);
DCHECK(length >= 0);
for (int i = 0; i < length; ++i) {
uint16_t c = static_cast<uint16_t>(*chars++);
running_hash = AddCharacterCore(running_hash, c);
}
return running_hash;
}
void StringHasher::AddCharacter(uint16_t c) {
// Use the Jenkins one-at-a-time hash function to update the hash
// for the given character.
raw_running_hash_ = AddCharacterCore(raw_running_hash_, c);
}
bool StringHasher::UpdateIndex(uint16_t c) {
DCHECK(is_array_index_);
if (c < '0' || c > '9') {
is_array_index_ = false;
return false;
}
int d = c - '0';
if (is_first_char_) {
is_first_char_ = false;
if (c == '0' && length_ > 1) {
is_array_index_ = false;
return false;
}
}
if (array_index_ > 429496729U - ((d + 3) >> 3)) {
is_array_index_ = false;
return false;
}
array_index_ = array_index_ * 10 + d;
return true;
}
template<typename Char>
inline void StringHasher::AddCharacters(const Char* chars, int length) {
DCHECK(sizeof(Char) == 1 || sizeof(Char) == 2);
int i = 0;
if (is_array_index_) {
for (; i < length; i++) {
AddCharacter(chars[i]);
if (!UpdateIndex(chars[i])) {
i++;
break;
}
}
}
for (; i < length; i++) {
DCHECK(!is_array_index_);
AddCharacter(chars[i]);
}
}
template <typename schar>
uint32_t StringHasher::HashSequentialString(const schar* chars,
int length,
uint32_t seed) {
StringHasher hasher(length, seed);
if (!hasher.has_trivial_hash()) hasher.AddCharacters(chars, length);
return hasher.GetHashField();
}
IteratingStringHasher::IteratingStringHasher(int len, uint32_t seed)
: StringHasher(len, seed) {}
uint32_t IteratingStringHasher::Hash(String* string, uint32_t seed) {
IteratingStringHasher hasher(string->length(), seed);
// Nothing to do.
if (hasher.has_trivial_hash()) return hasher.GetHashField();
ConsString* cons_string = String::VisitFlat(&hasher, string);
if (cons_string == nullptr) return hasher.GetHashField();
hasher.VisitConsString(cons_string);
return hasher.GetHashField();
}
void IteratingStringHasher::VisitOneByteString(const uint8_t* chars,
int length) {
AddCharacters(chars, length);
}
void IteratingStringHasher::VisitTwoByteString(const uint16_t* chars,
int length) {
AddCharacters(chars, length);
}
bool Name::AsArrayIndex(uint32_t* index) {
return IsString() && String::cast(this)->AsArrayIndex(index);
}
bool String::AsArrayIndex(uint32_t* index) {
uint32_t field = hash_field();
if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
return false;
}
return SlowAsArrayIndex(index);
}
void String::SetForwardedInternalizedString(String* canonical) {
DCHECK(IsInternalizedString());
DCHECK(HasHashCode());
if (canonical == this) return; // No need to forward.
DCHECK(SlowEquals(canonical));
DCHECK(canonical->IsInternalizedString());
DCHECK(canonical->HasHashCode());
WRITE_FIELD(this, kHashFieldSlot, canonical);
// Setting the hash field to a tagged value sets the LSB, causing the hash
// code to be interpreted as uninitialized. We use this fact to recognize
// that we have a forwarded string.
DCHECK(!HasHashCode());
}
String* String::GetForwardedInternalizedString() {
DCHECK(IsInternalizedString());
if (HasHashCode()) return this;
String* canonical = String::cast(READ_FIELD(this, kHashFieldSlot));
DCHECK(canonical->IsInternalizedString());
DCHECK(SlowEquals(canonical));
DCHECK(canonical->HasHashCode());
return canonical;
}
// static
Maybe<bool> Object::GreaterThan(Handle<Object> x, Handle<Object> y,
Strength strength) {
Maybe<ComparisonResult> result = Compare(x, y, strength);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kGreaterThan:
return Just(true);
case ComparisonResult::kLessThan:
case ComparisonResult::kEqual:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::GreaterThanOrEqual(Handle<Object> x, Handle<Object> y,
Strength strength) {
Maybe<ComparisonResult> result = Compare(x, y, strength);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kEqual:
case ComparisonResult::kGreaterThan:
return Just(true);
case ComparisonResult::kLessThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::LessThan(Handle<Object> x, Handle<Object> y,
Strength strength) {
Maybe<ComparisonResult> result = Compare(x, y, strength);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kLessThan:
return Just(true);
case ComparisonResult::kEqual:
case ComparisonResult::kGreaterThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::LessThanOrEqual(Handle<Object> x, Handle<Object> y,
Strength strength) {
Maybe<ComparisonResult> result = Compare(x, y, strength);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kEqual:
case ComparisonResult::kLessThan:
return Just(true);
case ComparisonResult::kGreaterThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> object,
Handle<Name> name,
LanguageMode language_mode) {
LookupIterator it =
LookupIterator::PropertyOrElement(name->GetIsolate(), object, name);
return GetProperty(&it, language_mode);
}
MaybeHandle<Object> Object::GetPropertyOrElement(Handle<JSReceiver> holder,
Handle<Name> name,
Handle<Object> receiver,
LanguageMode language_mode) {
LookupIterator it = LookupIterator::PropertyOrElement(
name->GetIsolate(), receiver, name, holder);
return GetProperty(&it, language_mode);
}
Maybe<bool> JSReceiver::HasProperty(Handle<JSReceiver> object,
Handle<Name> name) {
// Call the "has" trap on proxies.
if (object->IsJSProxy()) {
Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
return JSProxy::HasPropertyWithHandler(proxy, name);
}
Maybe<PropertyAttributes> result = GetPropertyAttributes(object, name);
return result.IsJust() ? Just(result.FromJust() != ABSENT) : Nothing<bool>();
}
Maybe<bool> JSReceiver::HasOwnProperty(Handle<JSReceiver> object,
Handle<Name> name) {
// Call the "has" trap on proxies.
if (object->IsJSProxy()) {
Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
return JSProxy::HasPropertyWithHandler(proxy, name);
}
Maybe<PropertyAttributes> result = GetOwnPropertyAttributes(object, name);
return result.IsJust() ? Just(result.FromJust() != ABSENT) : Nothing<bool>();
}
Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes(
Handle<JSReceiver> object, Handle<Name> name) {
LookupIterator it =
LookupIterator::PropertyOrElement(name->GetIsolate(), object, name);
return GetPropertyAttributes(&it);
}
Maybe<PropertyAttributes> JSReceiver::GetOwnPropertyAttributes(
Handle<JSReceiver> object, Handle<Name> name) {
LookupIterator it = LookupIterator::PropertyOrElement(
name->GetIsolate(), object, name, LookupIterator::HIDDEN);
return GetPropertyAttributes(&it);
}
Maybe<bool> JSReceiver::HasElement(Handle<JSReceiver> object, uint32_t index) {
// Call the "has" trap on proxies.
if (object->IsJSProxy()) {
Isolate* isolate = object->GetIsolate();
Handle<Name> name = isolate->factory()->Uint32ToString(index);
Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
return JSProxy::HasPropertyWithHandler(proxy, name);
}
Maybe<PropertyAttributes> result = GetElementAttributes(object, index);
return result.IsJust() ? Just(result.FromJust() != ABSENT) : Nothing<bool>();
}
Maybe<bool> JSReceiver::HasOwnElement(Handle<JSReceiver> object,
uint32_t index) {
// Call the "has" trap on proxies.
if (object->IsJSProxy()) {
Isolate* isolate = object->GetIsolate();
Handle<Name> name = isolate->factory()->Uint32ToString(index);
Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
return JSProxy::HasPropertyWithHandler(proxy, name);
}
Maybe<PropertyAttributes> result = GetOwnElementAttributes(object, index);
return result.IsJust() ? Just(result.FromJust() != ABSENT) : Nothing<bool>();
}
Maybe<PropertyAttributes> JSReceiver::GetElementAttributes(
Handle<JSReceiver> object, uint32_t index) {
Isolate* isolate = object->GetIsolate();
LookupIterator it(isolate, object, index);
return GetPropertyAttributes(&it);
}
Maybe<PropertyAttributes> JSReceiver::GetOwnElementAttributes(
Handle<JSReceiver> object, uint32_t index) {
Isolate* isolate = object->GetIsolate();
LookupIterator it(isolate, object, index, LookupIterator::HIDDEN);
return GetPropertyAttributes(&it);
}
bool JSGlobalObject::IsDetached() {
return JSGlobalProxy::cast(global_proxy())->IsDetachedFrom(this);
}
bool JSGlobalProxy::IsDetachedFrom(JSGlobalObject* global) const {
const PrototypeIterator iter(this->GetIsolate(),
const_cast<JSGlobalProxy*>(this));
return iter.GetCurrent() != global;
}
Handle<Smi> JSReceiver::GetOrCreateIdentityHash(Handle<JSReceiver> object) {
return object->IsJSProxy()
? JSProxy::GetOrCreateIdentityHash(Handle<JSProxy>::cast(object))
: JSObject::GetOrCreateIdentityHash(Handle<JSObject>::cast(object));
}
Object* JSReceiver::GetIdentityHash() {
return IsJSProxy()
? JSProxy::cast(this)->GetIdentityHash()
: JSObject::cast(this)->GetIdentityHash();
}
bool AccessorInfo::all_can_read() {
return BooleanBit::get(flag(), kAllCanReadBit);
}
void AccessorInfo::set_all_can_read(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
}
bool AccessorInfo::all_can_write() {
return BooleanBit::get(flag(), kAllCanWriteBit);
}
void AccessorInfo::set_all_can_write(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
}
bool AccessorInfo::is_special_data_property() {
return BooleanBit::get(flag(), kSpecialDataProperty);
}
void AccessorInfo::set_is_special_data_property(bool value) {
set_flag(BooleanBit::set(flag(), kSpecialDataProperty, value));
}
PropertyAttributes AccessorInfo::property_attributes() {
return AttributesField::decode(static_cast<uint32_t>(flag()));
}
void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
set_flag(AttributesField::update(flag(), attributes));
}
bool AccessorInfo::IsCompatibleReceiver(Object* receiver) {
if (!HasExpectedReceiverType()) return true;
if (!receiver->IsJSObject()) return false;
return FunctionTemplateInfo::cast(expected_receiver_type())
->IsTemplateFor(JSObject::cast(receiver)->map());
}
bool AccessorInfo::HasExpectedReceiverType() {
return expected_receiver_type()->IsFunctionTemplateInfo();
}
Object* AccessorPair::get(AccessorComponent component) {
return component == ACCESSOR_GETTER ? getter() : setter();
}
void AccessorPair::set(AccessorComponent component, Object* value) {
if (component == ACCESSOR_GETTER) {
set_getter(value);
} else {
set_setter(value);
}
}
void AccessorPair::SetComponents(Object* getter, Object* setter) {
if (!getter->IsNull()) set_getter(getter);
if (!setter->IsNull()) set_setter(setter);
}
bool AccessorPair::Equals(AccessorPair* pair) {
return (this == pair) || pair->Equals(getter(), setter());
}
bool AccessorPair::Equals(Object* getter_value, Object* setter_value) {
return (getter() == getter_value) && (setter() == setter_value);
}
bool AccessorPair::ContainsAccessor() {
return IsJSAccessor(getter()) || IsJSAccessor(setter());
}
bool AccessorPair::IsJSAccessor(Object* obj) {
return obj->IsCallable() || obj->IsUndefined();
}
template<typename Derived, typename Shape, typename Key>
void Dictionary<Derived, Shape, Key>::SetEntry(int entry,
Handle<Object> key,
Handle<Object> value) {
this->SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0)));
}
template<typename Derived, typename Shape, typename Key>
void Dictionary<Derived, Shape, Key>::SetEntry(int entry,
Handle<Object> key,
Handle<Object> value,
PropertyDetails details) {
Shape::SetEntry(static_cast<Derived*>(this), entry, key, value, details);
}
template <typename Key>
template <typename Dictionary>
void BaseDictionaryShape<Key>::SetEntry(Dictionary* dict, int entry,
Handle<Object> key,
Handle<Object> value,
PropertyDetails details) {
STATIC_ASSERT(Dictionary::kEntrySize == 3);
DCHECK(!key->IsName() || details.dictionary_index() > 0);
int index = dict->EntryToIndex(entry);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = dict->GetWriteBarrierMode(no_gc);
dict->set(index, *key, mode);
dict->set(index + 1, *value, mode);
dict->set(index + 2, details.AsSmi());
}
template <typename Dictionary>
void GlobalDictionaryShape::SetEntry(Dictionary* dict, int entry,
Handle<Object> key, Handle<Object> value,
PropertyDetails details) {
STATIC_ASSERT(Dictionary::kEntrySize == 2);
DCHECK(!key->IsName() || details.dictionary_index() > 0);
DCHECK(value->IsPropertyCell());
int index = dict->EntryToIndex(entry);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = dict->GetWriteBarrierMode(no_gc);
dict->set(index, *key, mode);
dict->set(index + 1, *value, mode);
PropertyCell::cast(*value)->set_property_details(details);
}
bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
DCHECK(other->IsNumber());
return key == static_cast<uint32_t>(other->Number());
}
uint32_t UnseededNumberDictionaryShape::Hash(uint32_t key) {
return ComputeIntegerHash(key, 0);
}
uint32_t UnseededNumberDictionaryShape::HashForObject(uint32_t key,
Object* other) {
DCHECK(other->IsNumber());
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), 0);
}
uint32_t SeededNumberDictionaryShape::SeededHash(uint32_t key, uint32_t seed) {
return ComputeIntegerHash(key, seed);
}
uint32_t SeededNumberDictionaryShape::SeededHashForObject(uint32_t key,
uint32_t seed,
Object* other) {
DCHECK(other->IsNumber());
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), seed);
}
Handle<Object> NumberDictionaryShape::AsHandle(Isolate* isolate, uint32_t key) {
return isolate->factory()->NewNumberFromUint(key);
}
bool NameDictionaryShape::IsMatch(Handle<Name> key, Object* other) {
// We know that all entries in a hash table had their hash keys created.
// Use that knowledge to have fast failure.
if (key->Hash() != Name::cast(other)->Hash()) return false;
return key->Equals(Name::cast(other));
}
uint32_t NameDictionaryShape::Hash(Handle<Name> key) {
return key->Hash();
}
uint32_t NameDictionaryShape::HashForObject(Handle<Name> key, Object* other) {
return Name::cast(other)->Hash();
}
Handle<Object> NameDictionaryShape::AsHandle(Isolate* isolate,
Handle<Name> key) {
DCHECK(key->IsUniqueName());
return key;
}
Handle<FixedArray> NameDictionary::DoGenerateNewEnumerationIndices(
Handle<NameDictionary> dictionary) {
return DerivedDictionary::GenerateNewEnumerationIndices(dictionary);
}
template <typename Dictionary>
PropertyDetails GlobalDictionaryShape::DetailsAt(Dictionary* dict, int entry) {
DCHECK(entry >= 0); // Not found is -1, which is not caught by get().
Object* raw_value = dict->ValueAt(entry);
DCHECK(raw_value->IsPropertyCell());
PropertyCell* cell = PropertyCell::cast(raw_value);
return cell->property_details();
}
template <typename Dictionary>
void GlobalDictionaryShape::DetailsAtPut(Dictionary* dict, int entry,
PropertyDetails value) {
DCHECK(entry >= 0); // Not found is -1, which is not caught by get().
Object* raw_value = dict->ValueAt(entry);
DCHECK(raw_value->IsPropertyCell());
PropertyCell* cell = PropertyCell::cast(raw_value);
cell->set_property_details(value);
}
template <typename Dictionary>
bool GlobalDictionaryShape::IsDeleted(Dictionary* dict, int entry) {
DCHECK(dict->ValueAt(entry)->IsPropertyCell());
return PropertyCell::cast(dict->ValueAt(entry))->value()->IsTheHole();
}
bool ObjectHashTableShape::IsMatch(Handle<Object> key, Object* other) {
return key->SameValue(other);
}
uint32_t ObjectHashTableShape::Hash(Handle<Object> key) {
return Smi::cast(key->GetHash())->value();
}
uint32_t ObjectHashTableShape::HashForObject(Handle<Object> key,
Object* other) {
return Smi::cast(other->GetHash())->value();
}
Handle<Object> ObjectHashTableShape::AsHandle(Isolate* isolate,
Handle<Object> key) {
return key;
}
Handle<ObjectHashTable> ObjectHashTable::Shrink(
Handle<ObjectHashTable> table, Handle<Object> key) {
return DerivedHashTable::Shrink(table, key);
}
Object* OrderedHashMap::ValueAt(int entry) {
return get(EntryToIndex(entry) + kValueOffset);
}
template <int entrysize>
bool WeakHashTableShape<entrysize>::IsMatch(Handle<Object> key, Object* other) {
if (other->IsWeakCell()) other = WeakCell::cast(other)->value();
return key->IsWeakCell() ? WeakCell::cast(*key)->value() == other
: *key == other;
}
template <int entrysize>
uint32_t WeakHashTableShape<entrysize>::Hash(Handle<Object> key) {
intptr_t hash =
key->IsWeakCell()
? reinterpret_cast<intptr_t>(WeakCell::cast(*key)->value())
: reinterpret_cast<intptr_t>(*key);
return (uint32_t)(hash & 0xFFFFFFFF);
}
template <int entrysize>
uint32_t WeakHashTableShape<entrysize>::HashForObject(Handle<Object> key,
Object* other) {
if (other->IsWeakCell()) other = WeakCell::cast(other)->value();
intptr_t hash = reinterpret_cast<intptr_t>(other);
return (uint32_t)(hash & 0xFFFFFFFF);
}
template <int entrysize>
Handle<Object> WeakHashTableShape<entrysize>::AsHandle(Isolate* isolate,
Handle<Object> key) {
return key;
}
bool ScopeInfo::IsAsmModule() { return AsmModuleField::decode(Flags()); }
bool ScopeInfo::IsAsmFunction() { return AsmFunctionField::decode(Flags()); }
bool ScopeInfo::HasSimpleParameters() {
return HasSimpleParametersField::decode(Flags());
}
#define SCOPE_INFO_FIELD_ACCESSORS(name) \
void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \
int ScopeInfo::name() { \
if (length() > 0) { \
return Smi::cast(get(k##name))->value(); \
} else { \
return 0; \
} \
}
FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(SCOPE_INFO_FIELD_ACCESSORS)
#undef SCOPE_INFO_FIELD_ACCESSORS
void Map::ClearCodeCache(Heap* heap) {
// No write barrier is needed since empty_fixed_array is not in new space.
// Please note this function is used during marking:
// - MarkCompactCollector::MarkUnmarkedObject
// - IncrementalMarking::Step
DCHECK(!heap->InNewSpace(heap->empty_fixed_array()));
WRITE_FIELD(this, kCodeCacheOffset, heap->empty_fixed_array());
}
int Map::SlackForArraySize(int old_size, int size_limit) {
const int max_slack = size_limit - old_size;
CHECK_LE(0, max_slack);
if (old_size < 4) {
DCHECK_LE(1, max_slack);
return 1;
}
return Min(max_slack, old_size / 4);
}
void JSArray::set_length(Smi* length) {
// Don't need a write barrier for a Smi.
set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER);
}
bool JSArray::SetLengthWouldNormalize(Heap* heap, uint32_t new_length) {
// If the new array won't fit in a some non-trivial fraction of the max old
// space size, then force it to go dictionary mode.
uint32_t max_fast_array_size =
static_cast<uint32_t>((heap->MaxOldGenerationSize() / kDoubleSize) / 4);
return new_length >= max_fast_array_size;
}
bool JSArray::AllowsSetLength() {
bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray();
DCHECK(result == !HasFixedTypedArrayElements());
return result;
}
void JSArray::SetContent(Handle<JSArray> array,
Handle<FixedArrayBase> storage) {
EnsureCanContainElements(array, storage, storage->length(),
ALLOW_COPIED_DOUBLE_ELEMENTS);
DCHECK((storage->map() == array->GetHeap()->fixed_double_array_map() &&
IsFastDoubleElementsKind(array->GetElementsKind())) ||
((storage->map() != array->GetHeap()->fixed_double_array_map()) &&
(IsFastObjectElementsKind(array->GetElementsKind()) ||
(IsFastSmiElementsKind(array->GetElementsKind()) &&
Handle<FixedArray>::cast(storage)->ContainsOnlySmisOrHoles()))));
array->set_elements(*storage);
array->set_length(Smi::FromInt(storage->length()));
}
int TypeFeedbackInfo::ic_total_count() {
int current = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
return ICTotalCountField::decode(current);
}
void TypeFeedbackInfo::set_ic_total_count(int count) {
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
value = ICTotalCountField::update(value,
ICTotalCountField::decode(count));
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value));
}
int TypeFeedbackInfo::ic_with_type_info_count() {
int current = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
return ICsWithTypeInfoCountField::decode(current);
}
void TypeFeedbackInfo::change_ic_with_type_info_count(int delta) {
if (delta == 0) return;
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
int new_count = ICsWithTypeInfoCountField::decode(value) + delta;
// We can get negative count here when the type-feedback info is
// shared between two code objects. The can only happen when
// the debugger made a shallow copy of code object (see Heap::CopyCode).
// Since we do not optimize when the debugger is active, we can skip
// this counter update.
if (new_count >= 0) {
new_count &= ICsWithTypeInfoCountField::kMask;
value = ICsWithTypeInfoCountField::update(value, new_count);
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value));
}
}
int TypeFeedbackInfo::ic_generic_count() {
return Smi::cast(READ_FIELD(this, kStorage3Offset))->value();
}
void TypeFeedbackInfo::change_ic_generic_count(int delta) {
if (delta == 0) return;
int new_count = ic_generic_count() + delta;
if (new_count >= 0) {
new_count &= ~Smi::kMinValue;
WRITE_FIELD(this, kStorage3Offset, Smi::FromInt(new_count));
}
}
void TypeFeedbackInfo::initialize_storage() {
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(0));
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(0));
WRITE_FIELD(this, kStorage3Offset, Smi::FromInt(0));
}
void TypeFeedbackInfo::change_own_type_change_checksum() {
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
int checksum = OwnTypeChangeChecksum::decode(value);
checksum = (checksum + 1) % (1 << kTypeChangeChecksumBits);
value = OwnTypeChangeChecksum::update(value, checksum);
// Ensure packed bit field is in Smi range.
if (value > Smi::kMaxValue) value |= Smi::kMinValue;
if (value < Smi::kMinValue) value &= ~Smi::kMinValue;
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value));
}
void TypeFeedbackInfo::set_inlined_type_change_checksum(int checksum) {
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
int mask = (1 << kTypeChangeChecksumBits) - 1;
value = InlinedTypeChangeChecksum::update(value, checksum & mask);
// Ensure packed bit field is in Smi range.
if (value > Smi::kMaxValue) value |= Smi::kMinValue;
if (value < Smi::kMinValue) value &= ~Smi::kMinValue;
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value));
}
int TypeFeedbackInfo::own_type_change_checksum() {
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
return OwnTypeChangeChecksum::decode(value);
}
bool TypeFeedbackInfo::matches_inlined_type_change_checksum(int checksum) {
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
int mask = (1 << kTypeChangeChecksumBits) - 1;
return InlinedTypeChangeChecksum::decode(value) == (checksum & mask);
}
SMI_ACCESSORS(AliasedArgumentsEntry, aliased_context_slot, kAliasedContextSlot)
Relocatable::Relocatable(Isolate* isolate) {
isolate_ = isolate;
prev_ = isolate->relocatable_top();
isolate->set_relocatable_top(this);
}
Relocatable::~Relocatable() {
DCHECK_EQ(isolate_->relocatable_top(), this);
isolate_->set_relocatable_top(prev_);
}
// static
int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) {
return map->instance_size();
}
// static
int FixedArray::BodyDescriptor::SizeOf(Map* map, HeapObject* object) {
return SizeFor(reinterpret_cast<FixedArray*>(object)->synchronized_length());
}
// static
int StructBodyDescriptor::SizeOf(Map* map, HeapObject* object) {
return map->instance_size();
}
void Foreign::ForeignIterateBody(ObjectVisitor* v) {
v->VisitExternalReference(
reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset)));
}
template<typename StaticVisitor>
void Foreign::ForeignIterateBody() {
StaticVisitor::VisitExternalReference(
reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset)));
}
void FixedTypedArrayBase::FixedTypedArrayBaseIterateBody(ObjectVisitor* v) {
v->VisitPointer(
reinterpret_cast<Object**>(FIELD_ADDR(this, kBasePointerOffset)));
}
template <typename StaticVisitor>
void FixedTypedArrayBase::FixedTypedArrayBaseIterateBody() {
StaticVisitor::VisitPointer(
reinterpret_cast<Object**>(FIELD_ADDR(this, kBasePointerOffset)));
}
void ExternalOneByteString::ExternalOneByteStringIterateBody(ObjectVisitor* v) {
typedef v8::String::ExternalOneByteStringResource Resource;
v->VisitExternalOneByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template <typename StaticVisitor>
void ExternalOneByteString::ExternalOneByteStringIterateBody() {
typedef v8::String::ExternalOneByteStringResource Resource;
StaticVisitor::VisitExternalOneByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) {
typedef v8::String::ExternalStringResource Resource;
v->VisitExternalTwoByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template<typename StaticVisitor>
void ExternalTwoByteString::ExternalTwoByteStringIterateBody() {
typedef v8::String::ExternalStringResource Resource;
StaticVisitor::VisitExternalTwoByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
static inline void IterateBodyUsingLayoutDescriptor(HeapObject* object,
int start_offset,
int end_offset,
ObjectVisitor* v) {
DCHECK(FLAG_unbox_double_fields);
DCHECK(IsAligned(start_offset, kPointerSize) &&
IsAligned(end_offset, kPointerSize));
LayoutDescriptorHelper helper(object->map());
DCHECK(!helper.all_fields_tagged());
for (int offset = start_offset; offset < end_offset; offset += kPointerSize) {
// Visit all tagged fields.
if (helper.IsTagged(offset)) {
v->VisitPointer(HeapObject::RawField(object, offset));
}
}
}
template<int start_offset, int end_offset, int size>
void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody(
HeapObject* obj,
ObjectVisitor* v) {
if (!FLAG_unbox_double_fields || obj->map()->HasFastPointerLayout()) {
v->VisitPointers(HeapObject::RawField(obj, start_offset),
HeapObject::RawField(obj, end_offset));
} else {
IterateBodyUsingLayoutDescriptor(obj, start_offset, end_offset, v);
}
}
template<int start_offset>
void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj,
int object_size,
ObjectVisitor* v) {
if (!FLAG_unbox_double_fields || obj->map()->HasFastPointerLayout()) {
v->VisitPointers(HeapObject::RawField(obj, start_offset),
HeapObject::RawField(obj, object_size));
} else {
IterateBodyUsingLayoutDescriptor(obj, start_offset, object_size, v);
}
}
template<class Derived, class TableType>
Object* OrderedHashTableIterator<Derived, TableType>::CurrentKey() {
TableType* table(TableType::cast(this->table()));
int index = Smi::cast(this->index())->value();
Object* key = table->KeyAt(index);
DCHECK(!key->IsTheHole());
return key;
}
void JSSetIterator::PopulateValueArray(FixedArray* array) {
array->set(0, CurrentKey());
}
void JSMapIterator::PopulateValueArray(FixedArray* array) {
array->set(0, CurrentKey());
array->set(1, CurrentValue());
}
Object* JSMapIterator::CurrentValue() {
OrderedHashMap* table(OrderedHashMap::cast(this->table()));
int index = Smi::cast(this->index())->value();
Object* value = table->ValueAt(index);
DCHECK(!value->IsTheHole());
return value;
}
ACCESSORS(JSIteratorResult, done, Object, kDoneOffset)
ACCESSORS(JSIteratorResult, value, Object, kValueOffset)
String::SubStringRange::SubStringRange(String* string, int first, int length)
: string_(string),
first_(first),
length_(length == -1 ? string->length() : length) {}
class String::SubStringRange::iterator final {
public:
typedef std::forward_iterator_tag iterator_category;
typedef int difference_type;
typedef uc16 value_type;
typedef uc16* pointer;
typedef uc16& reference;
iterator(const iterator& other)
: content_(other.content_), offset_(other.offset_) {}
uc16 operator*() { return content_.Get(offset_); }
bool operator==(const iterator& other) const {
return content_.UsesSameString(other.content_) && offset_ == other.offset_;
}
bool operator!=(const iterator& other) const {
return !content_.UsesSameString(other.content_) || offset_ != other.offset_;
}
iterator& operator++() {
++offset_;
return *this;
}
iterator operator++(int);
private:
friend class String;
iterator(String* from, int offset)
: content_(from->GetFlatContent()), offset_(offset) {}
String::FlatContent content_;
int offset_;
};
String::SubStringRange::iterator String::SubStringRange::begin() {
return String::SubStringRange::iterator(string_, first_);
}
String::SubStringRange::iterator String::SubStringRange::end() {
return String::SubStringRange::iterator(string_, first_ + length_);
}
#undef TYPE_CHECKER
#undef CAST_ACCESSOR
#undef INT_ACCESSORS
#undef ACCESSORS
#undef SMI_ACCESSORS
#undef SYNCHRONIZED_SMI_ACCESSORS
#undef NOBARRIER_SMI_ACCESSORS
#undef BOOL_GETTER
#undef BOOL_ACCESSORS
#undef FIELD_ADDR
#undef FIELD_ADDR_CONST
#undef READ_FIELD
#undef NOBARRIER_READ_FIELD
#undef WRITE_FIELD
#undef NOBARRIER_WRITE_FIELD
#undef WRITE_BARRIER
#undef CONDITIONAL_WRITE_BARRIER
#undef READ_DOUBLE_FIELD
#undef WRITE_DOUBLE_FIELD
#undef READ_INT_FIELD
#undef WRITE_INT_FIELD
#undef READ_INTPTR_FIELD
#undef WRITE_INTPTR_FIELD
#undef READ_UINT8_FIELD
#undef WRITE_UINT8_FIELD
#undef READ_INT8_FIELD
#undef WRITE_INT8_FIELD
#undef READ_UINT16_FIELD
#undef WRITE_UINT16_FIELD
#undef READ_INT16_FIELD
#undef WRITE_INT16_FIELD
#undef READ_UINT32_FIELD
#undef WRITE_UINT32_FIELD
#undef READ_INT32_FIELD
#undef WRITE_INT32_FIELD
#undef READ_FLOAT_FIELD
#undef WRITE_FLOAT_FIELD
#undef READ_UINT64_FIELD
#undef WRITE_UINT64_FIELD
#undef READ_INT64_FIELD
#undef WRITE_INT64_FIELD
#undef READ_BYTE_FIELD
#undef WRITE_BYTE_FIELD
#undef NOBARRIER_READ_BYTE_FIELD
#undef NOBARRIER_WRITE_BYTE_FIELD
} // namespace internal
} // namespace v8
#endif // V8_OBJECTS_INL_H_