v8/src/deoptimizer.cc

3153 lines
113 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "codegen.h"
#include "deoptimizer.h"
#include "disasm.h"
#include "full-codegen.h"
#include "global-handles.h"
#include "macro-assembler.h"
#include "prettyprinter.h"
namespace v8 {
namespace internal {
static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
OS::CommitPageSize(),
#if defined(__native_client__)
// The Native Client port of V8 uses an interpreter,
// so code pages don't need PROT_EXEC.
NOT_EXECUTABLE,
#else
EXECUTABLE,
#endif
NULL);
}
DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
: allocator_(allocator),
current_(NULL),
#ifdef ENABLE_DEBUGGER_SUPPORT
deoptimized_frame_info_(NULL),
#endif
deoptimizing_code_list_(NULL) {
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
deopt_entry_code_entries_[i] = -1;
deopt_entry_code_[i] = AllocateCodeChunk(allocator);
}
}
DeoptimizerData::~DeoptimizerData() {
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
allocator_->Free(deopt_entry_code_[i]);
deopt_entry_code_[i] = NULL;
}
DeoptimizingCodeListNode* current = deoptimizing_code_list_;
while (current != NULL) {
DeoptimizingCodeListNode* prev = current;
current = current->next();
delete prev;
}
deoptimizing_code_list_ = NULL;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void DeoptimizerData::Iterate(ObjectVisitor* v) {
if (deoptimized_frame_info_ != NULL) {
deoptimized_frame_info_->Iterate(v);
}
}
#endif
Code* DeoptimizerData::FindDeoptimizingCode(Address addr) {
for (DeoptimizingCodeListNode* node = deoptimizing_code_list_;
node != NULL;
node = node->next()) {
if (node->code()->contains(addr)) return *node->code();
}
return NULL;
}
void DeoptimizerData::RemoveDeoptimizingCode(Code* code) {
for (DeoptimizingCodeListNode *prev = NULL, *cur = deoptimizing_code_list_;
cur != NULL;
prev = cur, cur = cur->next()) {
if (*cur->code() == code) {
if (prev == NULL) {
deoptimizing_code_list_ = cur->next();
} else {
prev->set_next(cur->next());
}
delete cur;
return;
}
}
// Deoptimizing code is removed through weak callback. Each object is expected
// to be removed once and only once.
UNREACHABLE();
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Isolate* isolate) {
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
type,
bailout_id,
from,
fp_to_sp_delta,
NULL);
ASSERT(isolate->deoptimizer_data()->current_ == NULL);
isolate->deoptimizer_data()->current_ = deoptimizer;
return deoptimizer;
}
// No larger than 2K on all platforms
static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
size_t Deoptimizer::GetMaxDeoptTableSize() {
int entries_size =
Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
int commit_page_size = static_cast<int>(OS::CommitPageSize());
int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
commit_page_size) + 1;
return static_cast<size_t>(commit_page_size * page_count);
}
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
Deoptimizer* result = isolate->deoptimizer_data()->current_;
ASSERT(result != NULL);
result->DeleteFrameDescriptions();
isolate->deoptimizer_data()->current_ = NULL;
return result;
}
int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
if (jsframe_index == 0) return 0;
int frame_index = 0;
while (jsframe_index >= 0) {
FrameDescription* frame = output_[frame_index];
if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
jsframe_index--;
}
frame_index++;
}
return frame_index - 1;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate) {
ASSERT(frame->is_optimized());
ASSERT(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL);
// Get the function and code from the frame.
JSFunction* function = frame->function();
Code* code = frame->LookupCode();
// Locate the deoptimization point in the code. As we are at a call the
// return address must be at a place in the code with deoptimization support.
SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc());
int deoptimization_index = safepoint_entry.deoptimization_index();
ASSERT(deoptimization_index != Safepoint::kNoDeoptimizationIndex);
// Always use the actual stack slots when calculating the fp to sp
// delta adding two for the function and context.
unsigned stack_slots = code->stack_slots();
unsigned fp_to_sp_delta = ((stack_slots + 2) * kPointerSize);
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
Deoptimizer::DEBUGGER,
deoptimization_index,
frame->pc(),
fp_to_sp_delta,
code);
Address tos = frame->fp() - fp_to_sp_delta;
deoptimizer->FillInputFrame(tos, frame);
// Calculate the output frames.
Deoptimizer::ComputeOutputFrames(deoptimizer);
// Create the GC safe output frame information and register it for GC
// handling.
ASSERT_LT(jsframe_index, deoptimizer->jsframe_count());
// Convert JS frame index into frame index.
int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index);
bool has_arguments_adaptor =
frame_index > 0 &&
deoptimizer->output_[frame_index - 1]->GetFrameType() ==
StackFrame::ARGUMENTS_ADAPTOR;
int construct_offset = has_arguments_adaptor ? 2 : 1;
bool has_construct_stub =
frame_index >= construct_offset &&
deoptimizer->output_[frame_index - construct_offset]->GetFrameType() ==
StackFrame::CONSTRUCT;
DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer,
frame_index,
has_arguments_adaptor,
has_construct_stub);
isolate->deoptimizer_data()->deoptimized_frame_info_ = info;
// Get the "simulated" top and size for the requested frame.
FrameDescription* parameters_frame =
deoptimizer->output_[
has_arguments_adaptor ? (frame_index - 1) : frame_index];
uint32_t parameters_size = (info->parameters_count() + 1) * kPointerSize;
Address parameters_top = reinterpret_cast<Address>(
parameters_frame->GetTop() + (parameters_frame->GetFrameSize() -
parameters_size));
uint32_t expressions_size = info->expression_count() * kPointerSize;
Address expressions_top = reinterpret_cast<Address>(
deoptimizer->output_[frame_index]->GetTop());
// Done with the GC-unsafe frame descriptions. This re-enables allocation.
deoptimizer->DeleteFrameDescriptions();
// Allocate a heap number for the doubles belonging to this frame.
deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame(
parameters_top, parameters_size, expressions_top, expressions_size, info);
// Finished using the deoptimizer instance.
delete deoptimizer;
return info;
}
void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
Isolate* isolate) {
ASSERT(isolate->deoptimizer_data()->deoptimized_frame_info_ == info);
delete info;
isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL;
}
#endif
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
int count,
BailoutType type) {
TableEntryGenerator generator(masm, type, count);
generator.Generate();
}
void Deoptimizer::VisitAllOptimizedFunctionsForContext(
Context* context, OptimizedFunctionVisitor* visitor) {
Isolate* isolate = context->GetIsolate();
Zone zone(isolate);
DisallowHeapAllocation no_allocation;
ASSERT(context->IsNativeContext());
visitor->EnterContext(context);
// Create a snapshot of the optimized functions list. This is needed because
// visitors might remove more than one link from the list at once.
ZoneList<JSFunction*> snapshot(1, &zone);
Object* element = context->OptimizedFunctionsListHead();
while (!element->IsUndefined()) {
JSFunction* element_function = JSFunction::cast(element);
snapshot.Add(element_function, &zone);
element = element_function->next_function_link();
}
// Run through the snapshot of optimized functions and visit them.
for (int i = 0; i < snapshot.length(); ++i) {
visitor->VisitFunction(snapshot.at(i));
}
visitor->LeaveContext(context);
}
void Deoptimizer::VisitAllOptimizedFunctions(
Isolate* isolate,
OptimizedFunctionVisitor* visitor) {
DisallowHeapAllocation no_allocation;
// Run through the list of all native contexts and deoptimize.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
// Removes the functions selected by the given filter from the optimized
// function list of the given context and adds their code to the list of
// code objects to be deoptimized.
static void SelectCodeToDeoptimize(Context* context,
OptimizedFunctionFilter* filter,
ZoneList<Code*>* codes,
Zone* zone,
Object* undefined) {
DisallowHeapAllocation no_allocation;
Object* current = context->get(Context::OPTIMIZED_FUNCTIONS_LIST);
Object* remainder_head = undefined;
Object* remainder_tail = undefined;
// TODO(titzer): rewrite to not modify unselected functions.
while (current != undefined) {
JSFunction* function = JSFunction::cast(current);
current = function->next_function_link();
if (filter->TakeFunction(function)) {
// Extract this function from the context's list and remember the code.
Code* code = function->code();
ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
if (code->marked_for_deoptimization()) {
ASSERT(codes->Contains(code));
} else {
code->set_marked_for_deoptimization(true);
codes->Add(code, zone);
}
SharedFunctionInfo* shared = function->shared();
// Replace the function's code with the shared code.
function->set_code(shared->code());
// Evict the code from the optimized code map.
shared->EvictFromOptimizedCodeMap(code, "deoptimized function");
// Remove the function from the optimized functions list.
function->set_next_function_link(undefined);
if (FLAG_trace_deopt) {
PrintF("[forced deoptimization: ");
function->PrintName();
PrintF(" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
} else {
// Don't select this function; link it back into the list.
if (remainder_head == undefined) {
remainder_head = function;
} else {
JSFunction::cast(remainder_tail)->set_next_function_link(function);
}
remainder_tail = function;
}
}
if (remainder_tail != undefined) {
JSFunction::cast(remainder_tail)->set_next_function_link(undefined);
}
context->set(Context::OPTIMIZED_FUNCTIONS_LIST, remainder_head);
}
class DeoptimizeAllFilter : public OptimizedFunctionFilter {
public:
virtual bool TakeFunction(JSFunction* function) {
return true;
}
};
class DeoptimizeWithMatchingCodeFilter : public OptimizedFunctionFilter {
public:
explicit DeoptimizeWithMatchingCodeFilter(Code* code) : code_(code) {}
virtual bool TakeFunction(JSFunction* function) {
return function->code() == code_;
}
private:
Code* code_;
};
class DeoptimizeMarkedCodeFilter : public OptimizedFunctionFilter {
public:
virtual bool TakeFunction(JSFunction* function) {
return function->code()->marked_for_deoptimization();
}
};
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
DisallowHeapAllocation no_allocation;
if (FLAG_trace_deopt) {
PrintF("[deoptimize all contexts]\n");
}
DeoptimizeAllFilter filter;
DeoptimizeAllFunctionsWith(isolate, &filter);
}
void Deoptimizer::DeoptimizeGlobalObject(JSObject* object) {
DisallowHeapAllocation no_allocation;
DeoptimizeAllFilter filter;
if (object->IsJSGlobalProxy()) {
Object* proto = object->GetPrototype();
ASSERT(proto->IsJSGlobalObject());
DeoptimizeAllFunctionsForContext(
GlobalObject::cast(proto)->native_context(), &filter);
} else if (object->IsGlobalObject()) {
DeoptimizeAllFunctionsForContext(
GlobalObject::cast(object)->native_context(), &filter);
}
}
void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
Code* code = function->code();
if (code->kind() != Code::OPTIMIZED_FUNCTION) return;
DeoptimizeWithMatchingCodeFilter filter(code);
DeoptimizeAllFunctionsForContext(
function->context()->native_context(), &filter);
}
void Deoptimizer::DeoptimizeAllFunctionsForContext(
Context* context, OptimizedFunctionFilter* filter) {
ASSERT(context->IsNativeContext());
Isolate* isolate = context->GetIsolate();
Object* undefined = isolate->heap()->undefined_value();
Zone zone(isolate);
ZoneList<Code*> codes(4, &zone);
SelectCodeToDeoptimize(context, filter, &codes, &zone, undefined);
for (int i = 0; i < codes.length(); i++) {
DeoptimizeCode(isolate, codes.at(i));
}
}
void Deoptimizer::DeoptimizeAllFunctionsWith(Isolate* isolate,
OptimizedFunctionFilter* filter) {
DisallowHeapAllocation no_allocation;
// Run through the list of all native contexts and deoptimize.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
DeoptimizeAllFunctionsForContext(Context::cast(context), filter);
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
void Deoptimizer::DeoptimizeCodeList(Isolate* isolate, ZoneList<Code*>* codes) {
if (codes->length() == 0) return; // Nothing to do.
// Mark the code; any functions refering to this code will be selected.
for (int i = 0; i < codes->length(); i++) {
ASSERT(!codes->at(i)->marked_for_deoptimization());
codes->at(i)->set_marked_for_deoptimization(true);
}
// For all contexts, remove optimized functions that refer to the selected
// code from the optimized function lists.
Object* undefined = isolate->heap()->undefined_value();
Zone zone(isolate);
Object* list = isolate->heap()->native_contexts_list();
DeoptimizeMarkedCodeFilter filter;
while (!list->IsUndefined()) {
Context* context = Context::cast(list);
// Note that selecting code unlinks the functions that refer to it.
SelectCodeToDeoptimize(context, &filter, codes, &zone, undefined);
list = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
// Now deoptimize all the code.
for (int i = 0; i < codes->length(); i++) {
DeoptimizeCode(isolate, codes->at(i));
}
}
void Deoptimizer::DeoptimizeCode(Isolate* isolate, Code* code) {
HandleScope scope(isolate);
DisallowHeapAllocation nha;
// Do platform-specific patching of the optimized code.
PatchCodeForDeoptimization(isolate, code);
// Add the deoptimizing code to the list.
DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code);
DeoptimizerData* data = isolate->deoptimizer_data();
node->set_next(data->deoptimizing_code_list_);
data->deoptimizing_code_list_ = node;
// We might be in the middle of incremental marking with compaction.
// Tell collector to treat this code object in a special way and
// ignore all slots that might have been recorded on it.
isolate->heap()->mark_compact_collector()->InvalidateCode(code);
}
void Deoptimizer::HandleWeakDeoptimizedCode(v8::Isolate* isolate,
v8::Persistent<v8::Value>* obj,
void* parameter) {
DeoptimizingCodeListNode* node =
reinterpret_cast<DeoptimizingCodeListNode*>(parameter);
DeoptimizerData* data =
reinterpret_cast<Isolate*>(isolate)->deoptimizer_data();
data->RemoveDeoptimizingCode(*node->code());
#ifdef DEBUG
for (DeoptimizingCodeListNode* current = data->deoptimizing_code_list_;
current != NULL;
current = current->next()) {
ASSERT(current != node);
}
#endif
}
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
deoptimizer->DoComputeOutputFrames();
}
bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type,
StackFrame::Type frame_type) {
switch (deopt_type) {
case EAGER:
case SOFT:
case LAZY:
case DEBUGGER:
return (frame_type == StackFrame::STUB)
? FLAG_trace_stub_failures
: FLAG_trace_deopt;
case OSR:
return FLAG_trace_osr;
}
UNREACHABLE();
return false;
}
const char* Deoptimizer::MessageFor(BailoutType type) {
switch (type) {
case EAGER: return "eager";
case SOFT: return "soft";
case LAZY: return "lazy";
case DEBUGGER: return "debugger";
case OSR: return "OSR";
}
UNREACHABLE();
return NULL;
}
Deoptimizer::Deoptimizer(Isolate* isolate,
JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Code* optimized_code)
: isolate_(isolate),
function_(function),
bailout_id_(bailout_id),
bailout_type_(type),
from_(from),
fp_to_sp_delta_(fp_to_sp_delta),
has_alignment_padding_(0),
input_(NULL),
output_count_(0),
jsframe_count_(0),
output_(NULL),
deferred_objects_tagged_values_(0),
deferred_objects_double_values_(0),
deferred_objects_(0),
deferred_heap_numbers_(0),
trace_(false) {
// For COMPILED_STUBs called from builtins, the function pointer is a SMI
// indicating an internal frame.
if (function->IsSmi()) {
function = NULL;
}
ASSERT(from != NULL);
if (function != NULL && function->IsOptimized()) {
function->shared()->increment_deopt_count();
if (bailout_type_ == Deoptimizer::SOFT) {
isolate->counters()->soft_deopts_executed()->Increment();
// Soft deopts shouldn't count against the overall re-optimization count
// that can eventually lead to disabling optimization for a function.
int opt_count = function->shared()->opt_count();
if (opt_count > 0) opt_count--;
function->shared()->set_opt_count(opt_count);
}
}
compiled_code_ = FindOptimizedCode(function, optimized_code);
StackFrame::Type frame_type = function == NULL
? StackFrame::STUB
: StackFrame::JAVA_SCRIPT;
trace_ = TraceEnabledFor(type, frame_type);
#ifdef DEBUG
CHECK(AllowHeapAllocation::IsAllowed());
disallow_heap_allocation_ = new DisallowHeapAllocation();
#endif // DEBUG
unsigned size = ComputeInputFrameSize();
input_ = new(size) FrameDescription(size, function);
input_->SetFrameType(frame_type);
}
Code* Deoptimizer::FindOptimizedCode(JSFunction* function,
Code* optimized_code) {
switch (bailout_type_) {
case Deoptimizer::SOFT:
case Deoptimizer::EAGER:
case Deoptimizer::LAZY: {
Code* compiled_code =
isolate_->deoptimizer_data()->FindDeoptimizingCode(from_);
return (compiled_code == NULL)
? static_cast<Code*>(isolate_->FindCodeObject(from_))
: compiled_code;
}
case Deoptimizer::OSR: {
// The function has already been optimized and we're transitioning
// from the unoptimized shared version to the optimized one in the
// function. The return address (from_) points to unoptimized code.
Code* compiled_code = function->code();
ASSERT(compiled_code->kind() == Code::OPTIMIZED_FUNCTION);
ASSERT(!compiled_code->contains(from_));
return compiled_code;
}
case Deoptimizer::DEBUGGER:
ASSERT(optimized_code->contains(from_));
return optimized_code;
}
UNREACHABLE();
return NULL;
}
void Deoptimizer::PrintFunctionName() {
if (function_->IsJSFunction()) {
function_->PrintName();
} else {
PrintF("%s", Code::Kind2String(compiled_code_->kind()));
}
}
Deoptimizer::~Deoptimizer() {
ASSERT(input_ == NULL && output_ == NULL);
ASSERT(disallow_heap_allocation_ == NULL);
}
void Deoptimizer::DeleteFrameDescriptions() {
delete input_;
for (int i = 0; i < output_count_; ++i) {
if (output_[i] != input_) delete output_[i];
}
delete[] output_;
input_ = NULL;
output_ = NULL;
#ifdef DEBUG
CHECK(!AllowHeapAllocation::IsAllowed());
CHECK(disallow_heap_allocation_ != NULL);
delete disallow_heap_allocation_;
disallow_heap_allocation_ = NULL;
#endif // DEBUG
}
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
int id,
BailoutType type,
GetEntryMode mode) {
ASSERT(id >= 0);
if (id >= kMaxNumberOfEntries) return NULL;
if (mode == ENSURE_ENTRY_CODE) {
EnsureCodeForDeoptimizationEntry(isolate, type, id);
} else {
ASSERT(mode == CALCULATE_ENTRY_ADDRESS);
}
DeoptimizerData* data = isolate->deoptimizer_data();
ASSERT(type < kBailoutTypesWithCodeEntry);
MemoryChunk* base = data->deopt_entry_code_[type];
return base->area_start() + (id * table_entry_size_);
}
int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
Address addr,
BailoutType type) {
DeoptimizerData* data = isolate->deoptimizer_data();
MemoryChunk* base = data->deopt_entry_code_[type];
Address start = base->area_start();
if (base == NULL ||
addr < start ||
addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
return kNotDeoptimizationEntry;
}
ASSERT_EQ(0,
static_cast<int>(addr - start) % table_entry_size_);
return static_cast<int>(addr - start) / table_entry_size_;
}
int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
BailoutId id,
SharedFunctionInfo* shared) {
// TODO(kasperl): For now, we do a simple linear search for the PC
// offset associated with the given node id. This should probably be
// changed to a binary search.
int length = data->DeoptPoints();
for (int i = 0; i < length; i++) {
if (data->AstId(i) == id) {
return data->PcAndState(i)->value();
}
}
PrintF("[couldn't find pc offset for node=%d]\n", id.ToInt());
PrintF("[method: %s]\n", *shared->DebugName()->ToCString());
// Print the source code if available.
HeapStringAllocator string_allocator;
StringStream stream(&string_allocator);
shared->SourceCodePrint(&stream, -1);
PrintF("[source:\n%s\n]", *stream.ToCString());
FATAL("unable to find pc offset during deoptimization");
return -1;
}
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
int length = 0;
DeoptimizingCodeListNode* node =
isolate->deoptimizer_data()->deoptimizing_code_list_;
while (node != NULL) {
length++;
node = node->next();
}
return length;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
if (bailout_type_ == OSR) {
DoComputeOsrOutputFrame();
return;
}
// Print some helpful diagnostic information.
int64_t start = OS::Ticks();
if (FLAG_log_timer_events &&
compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
LOG(isolate(), CodeDeoptEvent(compiled_code_));
}
if (trace_) {
PrintF("[deoptimizing (DEOPT %s): begin 0x%08" V8PRIxPTR " ",
MessageFor(bailout_type_),
reinterpret_cast<intptr_t>(function_));
PrintFunctionName();
PrintF(" @%d, FP to SP delta: %d]\n", bailout_id_, fp_to_sp_delta_);
if (bailout_type_ == EAGER || bailout_type_ == SOFT) {
compiled_code_->PrintDeoptLocation(bailout_id_);
}
}
// Determine basic deoptimization information. The optimized frame is
// described by the input data.
DeoptimizationInputData* input_data =
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
BailoutId node_id = input_data->AstId(bailout_id_);
ByteArray* translations = input_data->TranslationByteArray();
unsigned translation_index =
input_data->TranslationIndex(bailout_id_)->value();
// Do the input frame to output frame(s) translation.
TranslationIterator iterator(translations, translation_index);
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
ASSERT(Translation::BEGIN == opcode);
USE(opcode);
// Read the number of output frames and allocate an array for their
// descriptions.
int count = iterator.Next();
iterator.Next(); // Drop JS frames count.
ASSERT(output_ == NULL);
output_ = new FrameDescription*[count];
for (int i = 0; i < count; ++i) {
output_[i] = NULL;
}
output_count_ = count;
// Translate each output frame.
for (int i = 0; i < count; ++i) {
// Read the ast node id, function, and frame height for this output frame.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
switch (opcode) {
case Translation::JS_FRAME:
DoComputeJSFrame(&iterator, i);
jsframe_count_++;
break;
case Translation::ARGUMENTS_ADAPTOR_FRAME:
DoComputeArgumentsAdaptorFrame(&iterator, i);
break;
case Translation::CONSTRUCT_STUB_FRAME:
DoComputeConstructStubFrame(&iterator, i);
break;
case Translation::GETTER_STUB_FRAME:
DoComputeAccessorStubFrame(&iterator, i, false);
break;
case Translation::SETTER_STUB_FRAME:
DoComputeAccessorStubFrame(&iterator, i, true);
break;
case Translation::COMPILED_STUB_FRAME:
DoComputeCompiledStubFrame(&iterator, i);
break;
case Translation::BEGIN:
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::STACK_SLOT:
case Translation::INT32_STACK_SLOT:
case Translation::UINT32_STACK_SLOT:
case Translation::DOUBLE_STACK_SLOT:
case Translation::LITERAL:
case Translation::ARGUMENTS_OBJECT:
default:
UNREACHABLE();
break;
}
}
// Print some helpful diagnostic information.
if (trace_) {
double ms = static_cast<double>(OS::Ticks() - start) / 1000;
int index = output_count_ - 1; // Index of the topmost frame.
JSFunction* function = output_[index]->GetFunction();
PrintF("[deoptimizing (%s): end 0x%08" V8PRIxPTR " ",
MessageFor(bailout_type_),
reinterpret_cast<intptr_t>(function));
PrintFunctionName();
PrintF(" @%d => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
" took %0.3f ms]\n",
bailout_id_,
node_id.ToInt(),
output_[index]->GetPc(),
FullCodeGenerator::State2String(
static_cast<FullCodeGenerator::State>(
output_[index]->GetState()->value())),
has_alignment_padding_ ? "with padding" : "no padding",
ms);
}
}
void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator,
int frame_index) {
BailoutId node_id = BailoutId(iterator->Next());
JSFunction* function;
if (frame_index != 0) {
function = JSFunction::cast(ComputeLiteral(iterator->Next()));
} else {
int closure_id = iterator->Next();
USE(closure_id);
ASSERT_EQ(Translation::kSelfLiteralId, closure_id);
function = function_;
}
unsigned height = iterator->Next();
unsigned height_in_bytes = height * kPointerSize;
if (trace_) {
PrintF(" translating ");
function->PrintName();
PrintF(" => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes);
}
// The 'fixed' part of the frame consists of the incoming parameters and
// the part described by JavaScriptFrameConstants.
unsigned fixed_frame_size = ComputeFixedSize(function);
unsigned input_frame_size = input_->GetFrameSize();
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
bool is_bottommost = (0 == frame_index);
bool is_topmost = (output_count_ - 1 == frame_index);
ASSERT(frame_index >= 0 && frame_index < output_count_);
ASSERT(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address for the bottommost output frame can be computed from
// the input frame pointer and the output frame's height. For all
// subsequent output frames, it can be computed from the previous one's
// top address and the current frame's size.
Register fp_reg = JavaScriptFrame::fp_register();
intptr_t top_address;
if (is_bottommost) {
// Determine whether the input frame contains alignment padding.
has_alignment_padding_ = HasAlignmentPadding(function) ? 1 : 0;
// 2 = context and function in the frame.
// If the optimized frame had alignment padding, adjust the frame pointer
// to point to the new position of the old frame pointer after padding
// is removed. Subtract 2 * kPointerSize for the context and function slots.
top_address = input_->GetRegister(fp_reg.code()) - (2 * kPointerSize) -
height_in_bytes + has_alignment_padding_ * kPointerSize;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = function->shared()->formal_parameter_count() + 1;
unsigned output_offset = output_frame_size;
unsigned input_offset = input_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
input_offset -= (parameter_count * kPointerSize);
// There are no translation commands for the caller's pc and fp, the
// context, and the function. Synthesize their values and set them up
// explicitly.
//
// The caller's pc for the bottommost output frame is the same as in the
// input frame. For all subsequent output frames, it can be read from the
// previous one. This frame's pc can be computed from the non-optimized
// function code and AST id of the bailout.
output_offset -= kPCOnStackSize;
input_offset -= kPCOnStackSize;
intptr_t value;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetPc();
}
output_frame->SetCallerPc(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's pc\n",
top_address + output_offset, output_offset, value);
}
// The caller's frame pointer for the bottommost output frame is the same
// as in the input frame. For all subsequent output frames, it can be
// read from the previous one. Also compute and set this frame's frame
// pointer.
output_offset -= kFPOnStackSize;
input_offset -= kFPOnStackSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetFp();
}
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
ASSERT(!is_bottommost || (input_->GetRegister(fp_reg.code()) +
has_alignment_padding_ * kPointerSize) == fp_value);
output_frame->SetFp(fp_value);
if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's fp\n",
fp_value, output_offset, value);
}
ASSERT(!is_bottommost || !has_alignment_padding_ ||
(fp_value & kPointerSize) != 0);
// For the bottommost output frame the context can be gotten from the input
// frame. For all subsequent output frames it can be gotten from the function
// so long as we don't inline functions that need local contexts.
Register context_reg = JavaScriptFrame::context_register();
output_offset -= kPointerSize;
input_offset -= kPointerSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = reinterpret_cast<intptr_t>(function->context());
}
output_frame->SetFrameSlot(output_offset, value);
output_frame->SetContext(value);
if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR "; context\n",
top_address + output_offset, output_offset, value);
}
// The function was mentioned explicitly in the BEGIN_FRAME.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
// The function for the bottommost output frame should also agree with the
// input frame.
ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR "; function\n",
top_address + output_offset, output_offset, value);
}
// Translate the rest of the frame.
for (unsigned i = 0; i < height; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
ASSERT(0 == output_offset);
// Compute this frame's PC, state, and continuation.
Code* non_optimized_code = function->shared()->code();
FixedArray* raw_data = non_optimized_code->deoptimization_data();
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
Address start = non_optimized_code->instruction_start();
unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
output_frame->SetPc(pc_value);
FullCodeGenerator::State state =
FullCodeGenerator::StateField::decode(pc_and_state);
output_frame->SetState(Smi::FromInt(state));
// Set the continuation for the topmost frame.
if (is_topmost && bailout_type_ != DEBUGGER) {
Builtins* builtins = isolate_->builtins();
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
if (bailout_type_ == LAZY) {
continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
} else if (bailout_type_ == SOFT) {
continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
} else {
ASSERT(bailout_type_ == EAGER);
}
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(continuation->entry()));
}
}
void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator,
int frame_index) {
JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
unsigned height = iterator->Next();
unsigned height_in_bytes = height * kPointerSize;
if (trace_) {
PrintF(" translating arguments adaptor => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
// Arguments adaptor can not be topmost or bottommost.
ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
ASSERT(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous
// frame's top and this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = height;
unsigned output_offset = output_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's pc\n",
top_address + output_offset, output_offset, callers_pc);
}
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's fp\n",
fp_value, output_offset, value);
}
// A marker value is used in place of the context.
output_offset -= kPointerSize;
intptr_t context = reinterpret_cast<intptr_t>(
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
output_frame->SetFrameSlot(output_offset, context);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; context (adaptor sentinel)\n",
top_address + output_offset, output_offset, context);
}
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; function\n",
top_address + output_offset, output_offset, value);
}
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; argc (%d)\n",
top_address + output_offset, output_offset, value, height - 1);
}
ASSERT(0 == output_offset);
Builtins* builtins = isolate_->builtins();
Code* adaptor_trampoline =
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
intptr_t pc_value = reinterpret_cast<intptr_t>(
adaptor_trampoline->instruction_start() +
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
output_frame->SetPc(pc_value);
}
void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator,
int frame_index) {
Builtins* builtins = isolate_->builtins();
Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
unsigned height = iterator->Next();
unsigned height_in_bytes = height * kPointerSize;
if (trace_) {
PrintF(" translating construct stub => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ConstructFrameConstants::kFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::CONSTRUCT);
// Construct stub can not be topmost or bottommost.
ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
ASSERT(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous
// frame's top and this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = height;
unsigned output_offset = output_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's pc\n",
top_address + output_offset, output_offset, callers_pc);
}
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's fp\n",
fp_value, output_offset, value);
}
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; context\n",
top_address + output_offset, output_offset, value);
}
// A marker value is used in place of the function.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; function (construct sentinel)\n",
top_address + output_offset, output_offset, value);
}
// The output frame reflects a JSConstructStubGeneric frame.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(construct_stub);
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; code object\n",
top_address + output_offset, output_offset, value);
}
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; argc (%d)\n",
top_address + output_offset, output_offset, value, height - 1);
}
// Constructor function being invoked by the stub (only present on some
// architectures, indicated by kConstructorOffset).
if (ConstructFrameConstants::kConstructorOffset != kMinInt) {
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; constructor function\n",
top_address + output_offset, output_offset, value);
}
}
// The newly allocated object was passed as receiver in the artificial
// constructor stub environment created by HEnvironment::CopyForInlining().
output_offset -= kPointerSize;
value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; allocated receiver\n",
top_address + output_offset, output_offset, value);
}
ASSERT(0 == output_offset);
intptr_t pc = reinterpret_cast<intptr_t>(
construct_stub->instruction_start() +
isolate_->heap()->construct_stub_deopt_pc_offset()->value());
output_frame->SetPc(pc);
}
void Deoptimizer::DoComputeAccessorStubFrame(TranslationIterator* iterator,
int frame_index,
bool is_setter_stub_frame) {
JSFunction* accessor = JSFunction::cast(ComputeLiteral(iterator->Next()));
// The receiver (and the implicit return value, if any) are expected in
// registers by the LoadIC/StoreIC, so they don't belong to the output stack
// frame. This means that we have to use a height of 0.
unsigned height = 0;
unsigned height_in_bytes = height * kPointerSize;
const char* kind = is_setter_stub_frame ? "setter" : "getter";
if (trace_) {
PrintF(" translating %s stub => height=%u\n", kind, height_in_bytes);
}
// We need 1 stack entry for the return address + 4 stack entries from
// StackFrame::INTERNAL (FP, context, frame type, code object, see
// MacroAssembler::EnterFrame). For a setter stub frame we need one additional
// entry for the implicit return value, see
// StoreStubCompiler::CompileStoreViaSetter.
unsigned fixed_frame_entries = (kPCOnStackSize / kPointerSize) +
(kFPOnStackSize / kPointerSize) + 3 +
(is_setter_stub_frame ? 1 : 0);
unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, accessor);
output_frame->SetFrameType(StackFrame::INTERNAL);
// A frame for an accessor stub can not be the topmost or bottommost one.
ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
ASSERT(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
unsigned output_offset = output_frame_size;
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; caller's pc\n",
top_address + output_offset, output_offset, callers_pc);
}
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; caller's fp\n",
fp_value, output_offset, value);
}
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; context\n",
top_address + output_offset, output_offset, value);
}
// A marker value is used in place of the function.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; function (%s sentinel)\n",
top_address + output_offset, output_offset, value, kind);
}
// Get Code object from accessor stub.
output_offset -= kPointerSize;
Builtins::Name name = is_setter_stub_frame ?
Builtins::kStoreIC_Setter_ForDeopt :
Builtins::kLoadIC_Getter_ForDeopt;
Code* accessor_stub = isolate_->builtins()->builtin(name);
value = reinterpret_cast<intptr_t>(accessor_stub);
output_frame->SetFrameSlot(output_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; code object\n",
top_address + output_offset, output_offset, value);
}
// Skip receiver.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
iterator->Skip(Translation::NumberOfOperandsFor(opcode));
if (is_setter_stub_frame) {
// The implicit return value was part of the artificial setter stub
// environment.
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
ASSERT(0 == output_offset);
Smi* offset = is_setter_stub_frame ?
isolate_->heap()->setter_stub_deopt_pc_offset() :
isolate_->heap()->getter_stub_deopt_pc_offset();
intptr_t pc = reinterpret_cast<intptr_t>(
accessor_stub->instruction_start() + offset->value());
output_frame->SetPc(pc);
}
void Deoptimizer::DoComputeCompiledStubFrame(TranslationIterator* iterator,
int frame_index) {
//
// FROM TO
// | .... | | .... |
// +-------------------------+ +-------------------------+
// | JSFunction continuation | | JSFunction continuation |
// +-------------------------+ +-------------------------+
// | | saved frame (FP) | | saved frame (FP) |
// | +=========================+<-fpreg +=========================+<-fpreg
// | | JSFunction context | | JSFunction context |
// v +-------------------------+ +-------------------------|
// | COMPILED_STUB marker | | STUB_FAILURE marker |
// +-------------------------+ +-------------------------+
// | | | caller args.arguments_ |
// | ... | +-------------------------+
// | | | caller args.length_ |
// |-------------------------|<-spreg +-------------------------+
// | caller args pointer |
// +-------------------------+
// | caller stack param 1 |
// parameters in registers +-------------------------+
// and spilled to stack | .... |
// +-------------------------+
// | caller stack param n |
// +-------------------------+<-spreg
// reg = number of parameters
// reg = failure handler address
// reg = saved frame
// reg = JSFunction context
//
ASSERT(compiled_code_->is_crankshafted() &&
compiled_code_->kind() != Code::OPTIMIZED_FUNCTION);
int major_key = compiled_code_->major_key();
CodeStubInterfaceDescriptor* descriptor =
isolate_->code_stub_interface_descriptor(major_key);
// The output frame must have room for all pushed register parameters
// and the standard stack frame slots. Include space for an argument
// object to the callee and optionally the space to pass the argument
// object to the stub failure handler.
ASSERT(descriptor->register_param_count_ >= 0);
int height_in_bytes = kPointerSize * descriptor->register_param_count_ +
sizeof(Arguments) + kPointerSize;
int fixed_frame_size = StandardFrameConstants::kFixedFrameSize;
int input_frame_size = input_->GetFrameSize();
int output_frame_size = height_in_bytes + fixed_frame_size;
if (trace_) {
PrintF(" translating %s => StubFailureTrampolineStub, height=%d\n",
CodeStub::MajorName(static_cast<CodeStub::Major>(major_key), false),
height_in_bytes);
}
// The stub failure trampoline is a single frame.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, NULL);
output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
ASSERT(frame_index == 0);
output_[frame_index] = output_frame;
// The top address for the output frame can be computed from the input
// frame pointer and the output frame's height. Subtract space for the
// context and function slots.
Register fp_reg = StubFailureTrampolineFrame::fp_register();
intptr_t top_address = input_->GetRegister(fp_reg.code()) -
(2 * kPointerSize) - height_in_bytes;
output_frame->SetTop(top_address);
// Read caller's PC (JSFunction continuation) from the input frame.
unsigned input_frame_offset = input_frame_size - kPCOnStackSize;
unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
intptr_t value = input_->GetFrameSlot(input_frame_offset);
output_frame->SetCallerPc(output_frame_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's pc\n",
top_address + output_frame_offset, output_frame_offset, value);
}
// Read caller's FP from the input frame, and set this frame's FP.
input_frame_offset -= kFPOnStackSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame_offset -= kFPOnStackSize;
output_frame->SetCallerFp(output_frame_offset, value);
intptr_t frame_ptr = input_->GetRegister(fp_reg.code());
output_frame->SetRegister(fp_reg.code(), frame_ptr);
output_frame->SetFp(frame_ptr);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's fp\n",
top_address + output_frame_offset, output_frame_offset, value);
}
// The context can be gotten from the input frame.
Register context_reg = StubFailureTrampolineFrame::context_register();
input_frame_offset -= kPointerSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame->SetRegister(context_reg.code(), value);
output_frame_offset -= kPointerSize;
output_frame->SetFrameSlot(output_frame_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; context\n",
top_address + output_frame_offset, output_frame_offset, value);
}
// A marker value is used in place of the function.
output_frame_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(
Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
output_frame->SetFrameSlot(output_frame_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; function (stub failure sentinel)\n",
top_address + output_frame_offset, output_frame_offset, value);
}
intptr_t caller_arg_count = 0;
bool arg_count_known = descriptor->stack_parameter_count_ == NULL;
// Build the Arguments object for the caller's parameters and a pointer to it.
output_frame_offset -= kPointerSize;
int args_arguments_offset = output_frame_offset;
intptr_t the_hole = reinterpret_cast<intptr_t>(
isolate_->heap()->the_hole_value());
if (arg_count_known) {
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
(caller_arg_count - 1) * kPointerSize;
} else {
value = the_hole;
}
output_frame->SetFrameSlot(args_arguments_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args.arguments %s\n",
top_address + args_arguments_offset, args_arguments_offset, value,
arg_count_known ? "" : "(the hole)");
}
output_frame_offset -= kPointerSize;
int length_frame_offset = output_frame_offset;
value = arg_count_known ? caller_arg_count : the_hole;
output_frame->SetFrameSlot(length_frame_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args.length %s\n",
top_address + length_frame_offset, length_frame_offset, value,
arg_count_known ? "" : "(the hole)");
}
output_frame_offset -= kPointerSize;
value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
(output_frame_size - output_frame_offset) + kPointerSize;
output_frame->SetFrameSlot(output_frame_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args*\n",
top_address + output_frame_offset, output_frame_offset, value);
}
// Copy the register parameters to the failure frame.
for (int i = 0; i < descriptor->register_param_count_; ++i) {
output_frame_offset -= kPointerSize;
DoTranslateCommand(iterator, 0, output_frame_offset);
}
if (!arg_count_known) {
DoTranslateCommand(iterator, 0, length_frame_offset,
TRANSLATED_VALUE_IS_NATIVE);
caller_arg_count = output_frame->GetFrameSlot(length_frame_offset);
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
(caller_arg_count - 1) * kPointerSize;
output_frame->SetFrameSlot(args_arguments_offset, value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args.arguments\n",
top_address + args_arguments_offset, args_arguments_offset, value);
}
}
ASSERT(0 == output_frame_offset);
// Copy the double registers from the input into the output frame.
CopyDoubleRegisters(output_frame);
// Fill registers containing handler and number of parameters.
SetPlatformCompiledStubRegisters(output_frame, descriptor);
// Compute this frame's PC, state, and continuation.
Code* trampoline = NULL;
StubFunctionMode function_mode = descriptor->function_mode_;
StubFailureTrampolineStub(function_mode).FindCodeInCache(&trampoline,
isolate_);
ASSERT(trampoline != NULL);
output_frame->SetPc(reinterpret_cast<intptr_t>(
trampoline->instruction_start()));
output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS));
Code* notify_failure =
isolate_->builtins()->builtin(Builtins::kNotifyStubFailure);
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(notify_failure->entry()));
}
void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
ASSERT_NE(DEBUGGER, bailout_type_);
// Handlify all tagged object values before triggering any allocation.
List<Handle<Object> > values(deferred_objects_tagged_values_.length());
for (int i = 0; i < deferred_objects_tagged_values_.length(); ++i) {
values.Add(Handle<Object>(deferred_objects_tagged_values_[i], isolate_));
}
// Play it safe and clear all unhandlified values before we continue.
deferred_objects_tagged_values_.Clear();
// Materialize all heap numbers before looking at arguments because when the
// output frames are used to materialize arguments objects later on they need
// to already contain valid heap numbers.
for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
HeapNumberMaterializationDescriptor d = deferred_heap_numbers_[i];
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
if (trace_) {
PrintF("Materializing a new heap number %p [%e] in slot %p\n",
reinterpret_cast<void*>(*num),
d.value(),
d.slot_address());
}
Memory::Object_at(d.slot_address()) = *num;
}
// Materialize all heap numbers required for arguments objects.
for (int i = 0; i < values.length(); i++) {
if (!values.at(i)->IsTheHole()) continue;
double double_value = deferred_objects_double_values_[i];
Handle<Object> num = isolate_->factory()->NewNumber(double_value);
if (trace_) {
PrintF("Materializing a new heap number %p [%e] for arguments object\n",
reinterpret_cast<void*>(*num), double_value);
}
values.Set(i, num);
}
// Materialize arguments objects one frame at a time.
for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
if (frame_index != 0) it->Advance();
JavaScriptFrame* frame = it->frame();
Handle<JSFunction> function(frame->function(), isolate_);
Handle<JSObject> arguments;
for (int i = frame->ComputeExpressionsCount() - 1; i >= 0; --i) {
if (frame->GetExpression(i) == isolate_->heap()->arguments_marker()) {
ObjectMaterializationDescriptor descriptor =
deferred_objects_.RemoveLast();
const int length = descriptor.object_length();
if (arguments.is_null()) {
if (frame->has_adapted_arguments()) {
// Use the arguments adapter frame we just built to materialize the
// arguments object. FunctionGetArguments can't throw an exception.
arguments = Handle<JSObject>::cast(
Accessors::FunctionGetArguments(function));
values.RewindBy(length);
} else {
// Construct an arguments object and copy the parameters to a newly
// allocated arguments object backing store.
arguments =
isolate_->factory()->NewArgumentsObject(function, length);
Handle<FixedArray> array =
isolate_->factory()->NewFixedArray(length);
ASSERT(array->length() == length);
for (int i = length - 1; i >= 0 ; --i) {
array->set(i, *values.RemoveLast());
}
arguments->set_elements(*array);
}
}
frame->SetExpression(i, *arguments);
ASSERT_EQ(Memory::Object_at(descriptor.slot_address()), *arguments);
if (trace_) {
PrintF("Materializing %sarguments object of length %d for %p: ",
frame->has_adapted_arguments() ? "(adapted) " : "",
arguments->elements()->length(),
reinterpret_cast<void*>(descriptor.slot_address()));
arguments->ShortPrint();
PrintF("\n");
}
}
}
}
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
Address parameters_top,
uint32_t parameters_size,
Address expressions_top,
uint32_t expressions_size,
DeoptimizedFrameInfo* info) {
ASSERT_EQ(DEBUGGER, bailout_type_);
Address parameters_bottom = parameters_top + parameters_size;
Address expressions_bottom = expressions_top + expressions_size;
for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
HeapNumberMaterializationDescriptor d = deferred_heap_numbers_[i];
// Check of the heap number to materialize actually belong to the frame
// being extracted.
Address slot = d.slot_address();
if (parameters_top <= slot && slot < parameters_bottom) {
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
int index = (info->parameters_count() - 1) -
static_cast<int>(slot - parameters_top) / kPointerSize;
if (trace_) {
PrintF("Materializing a new heap number %p [%e] in slot %p"
"for parameter slot #%d\n",
reinterpret_cast<void*>(*num),
d.value(),
d.slot_address(),
index);
}
info->SetParameter(index, *num);
} else if (expressions_top <= slot && slot < expressions_bottom) {
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
int index = info->expression_count() - 1 -
static_cast<int>(slot - expressions_top) / kPointerSize;
if (trace_) {
PrintF("Materializing a new heap number %p [%e] in slot %p"
"for expression slot #%d\n",
reinterpret_cast<void*>(*num),
d.value(),
d.slot_address(),
index);
}
info->SetExpression(index, *num);
}
}
}
#endif
static const char* TraceValueType(bool is_smi, bool is_native = false) {
if (is_native) {
return "native";
} else if (is_smi) {
return "smi";
}
return "heap number";
}
void Deoptimizer::DoTranslateObject(TranslationIterator* iterator,
int object_opcode,
int field_index) {
disasm::NameConverter converter;
Address object_slot = deferred_objects_.last().slot_address();
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::COMPILED_STUB_FRAME:
case Translation::ARGUMENTS_OBJECT:
UNREACHABLE();
return;
case Translation::REGISTER: {
int input_reg = iterator->Next();
intptr_t input_value = input_->GetRegister(input_reg);
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF("0x%08" V8PRIxPTR " ; %s ", input_value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(input_value)->ShortPrint();
PrintF("\n");
}
AddObjectTaggedValue(input_value);
return;
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
intptr_t value = input_->GetRegister(input_reg);
bool is_smi = Smi::IsValid(value);
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF("%" V8PRIdPTR " ; %s (%s)\n", value,
converter.NameOfCPURegister(input_reg),
TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
AddObjectTaggedValue(tagged_value);
} else {
double double_value = static_cast<double>(static_cast<int32_t>(value));
AddObjectDoubleValue(double_value);
}
return;
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF("%" V8PRIdPTR " ; uint %s (%s)\n", value,
converter.NameOfCPURegister(input_reg),
TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
AddObjectTaggedValue(tagged_value);
} else {
double double_value = static_cast<double>(static_cast<uint32_t>(value));
AddObjectDoubleValue(double_value);
}
return;
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
double value = input_->GetDoubleRegister(input_reg);
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF("%e ; %s\n", value,
DoubleRegister::AllocationIndexToString(input_reg));
}
AddObjectDoubleValue(value);
return;
}
case Translation::STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t input_value = input_->GetFrameSlot(input_offset);
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF("0x%08" V8PRIxPTR " ; [sp + %d] ", input_value, input_offset);
reinterpret_cast<Object*>(input_value)->ShortPrint();
PrintF("\n");
}
AddObjectTaggedValue(input_value);
return;
}
case Translation::INT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t value = input_->GetFrameSlot(input_offset);
bool is_smi = Smi::IsValid(value);
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF("%" V8PRIdPTR " ; [sp + %d] (%s)\n",
value, input_offset, TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
AddObjectTaggedValue(tagged_value);
} else {
double double_value = static_cast<double>(static_cast<int32_t>(value));
AddObjectDoubleValue(double_value);
}
return;
}
case Translation::UINT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
uintptr_t value =
static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF("%" V8PRIdPTR " ; [sp + %d] (uint %s)\n",
value, input_offset, TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
AddObjectTaggedValue(tagged_value);
} else {
double double_value = static_cast<double>(static_cast<uint32_t>(value));
AddObjectDoubleValue(double_value);
}
return;
}
case Translation::DOUBLE_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
double value = input_->GetDoubleFrameSlot(input_offset);
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF("%e ; [sp + %d]\n", value, input_offset);
}
AddObjectDoubleValue(value);
return;
}
case Translation::LITERAL: {
Object* literal = ComputeLiteral(iterator->Next());
if (trace_) {
PrintF(" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
literal->ShortPrint();
PrintF(" ; literal\n");
}
intptr_t value = reinterpret_cast<intptr_t>(literal);
AddObjectTaggedValue(value);
return;
}
}
}
void Deoptimizer::DoTranslateCommand(TranslationIterator* iterator,
int frame_index,
unsigned output_offset,
DeoptimizerTranslatedValueType value_type) {
disasm::NameConverter converter;
// A GC-safe temporary placeholder that we can put in the output frame.
const intptr_t kPlaceholder = reinterpret_cast<intptr_t>(Smi::FromInt(0));
bool is_native = value_type == TRANSLATED_VALUE_IS_NATIVE;
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::COMPILED_STUB_FRAME:
UNREACHABLE();
return;
case Translation::REGISTER: {
int input_reg = iterator->Next();
intptr_t input_value = input_->GetRegister(input_reg);
if (trace_) {
PrintF(
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s ",
output_[frame_index]->GetTop() + output_offset,
output_offset,
input_value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(input_value)->ShortPrint();
PrintF("\n");
}
output_[frame_index]->SetFrameSlot(output_offset, input_value);
return;
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
intptr_t value = input_->GetRegister(input_reg);
bool is_smi = (value_type == TRANSLATED_VALUE_IS_TAGGED) &&
Smi::IsValid(value);
if (trace_) {
PrintF(
" 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIdPTR " ; %s (%s)\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
converter.NameOfCPURegister(input_reg),
TraceValueType(is_smi, is_native));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else if (value_type == TRANSLATED_VALUE_IS_NATIVE) {
output_[frame_index]->SetFrameSlot(output_offset, value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
ASSERT(value_type == TRANSLATED_VALUE_IS_TAGGED);
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<int32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
bool is_smi = (value_type == TRANSLATED_VALUE_IS_TAGGED) &&
(value <= static_cast<uintptr_t>(Smi::kMaxValue));
if (trace_) {
PrintF(
" 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIuPTR
" ; uint %s (%s)\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
converter.NameOfCPURegister(input_reg),
TraceValueType(is_smi, is_native));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else if (value_type == TRANSLATED_VALUE_IS_NATIVE) {
output_[frame_index]->SetFrameSlot(output_offset, value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
ASSERT(value_type == TRANSLATED_VALUE_IS_TAGGED);
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<uint32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
double value = input_->GetDoubleRegister(input_reg);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- %e ; %s\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
DoubleRegister::AllocationIndexToString(input_reg));
}
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
return;
}
case Translation::STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t input_value = input_->GetFrameSlot(input_offset);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF("[top + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
output_offset,
input_value,
input_offset);
reinterpret_cast<Object*>(input_value)->ShortPrint();
PrintF("\n");
}
output_[frame_index]->SetFrameSlot(output_offset, input_value);
return;
}
case Translation::INT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t value = input_->GetFrameSlot(input_offset);
bool is_smi = (value_type == TRANSLATED_VALUE_IS_TAGGED) &&
Smi::IsValid(value);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF("[top + %d] <- %" V8PRIdPTR " ; [sp + %d] (%s)\n",
output_offset,
value,
input_offset,
TraceValueType(is_smi, is_native));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else if (value_type == TRANSLATED_VALUE_IS_NATIVE) {
output_[frame_index]->SetFrameSlot(output_offset, value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
ASSERT(value_type == TRANSLATED_VALUE_IS_TAGGED);
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<int32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::UINT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
uintptr_t value =
static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
bool is_smi = (value_type == TRANSLATED_VALUE_IS_TAGGED) &&
(value <= static_cast<uintptr_t>(Smi::kMaxValue));
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF("[top + %d] <- %" V8PRIuPTR " ; [sp + %d] (uint32 %s)\n",
output_offset,
value,
input_offset,
TraceValueType(is_smi, is_native));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else if (value_type == TRANSLATED_VALUE_IS_NATIVE) {
output_[frame_index]->SetFrameSlot(output_offset, value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
ASSERT(value_type == TRANSLATED_VALUE_IS_TAGGED);
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<uint32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::DOUBLE_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
double value = input_->GetDoubleFrameSlot(input_offset);
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- %e ; [sp + %d]\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
input_offset);
}
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
return;
}
case Translation::LITERAL: {
Object* literal = ComputeLiteral(iterator->Next());
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- ",
output_[frame_index]->GetTop() + output_offset,
output_offset);
literal->ShortPrint();
PrintF(" ; literal\n");
}
intptr_t value = reinterpret_cast<intptr_t>(literal);
output_[frame_index]->SetFrameSlot(output_offset, value);
return;
}
case Translation::ARGUMENTS_OBJECT: {
int length = iterator->Next();
if (trace_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- ",
output_[frame_index]->GetTop() + output_offset,
output_offset);
isolate_->heap()->arguments_marker()->ShortPrint();
PrintF(" ; arguments object (length = %d)\n", length);
}
// Use the arguments marker value as a sentinel and fill in the arguments
// object after the deoptimized frame is built.
intptr_t value = reinterpret_cast<intptr_t>(
isolate_->heap()->arguments_marker());
AddObjectStart(output_[frame_index]->GetTop() + output_offset, length);
output_[frame_index]->SetFrameSlot(output_offset, value);
// We save the argument values on the side and materialize the actual
// arguments object after the deoptimized frame is built.
for (int i = 0; i < length; i++) {
DoTranslateObject(iterator, Translation::ARGUMENTS_OBJECT, i);
}
return;
}
}
}
bool Deoptimizer::DoOsrTranslateCommand(TranslationIterator* iterator,
int* input_offset) {
disasm::NameConverter converter;
FrameDescription* output = output_[0];
// The input values are all part of the unoptimized frame so they
// are all tagged pointers.
uintptr_t input_value = input_->GetFrameSlot(*input_offset);
Object* input_object = reinterpret_cast<Object*>(input_value);
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::COMPILED_STUB_FRAME:
UNREACHABLE(); // Malformed input.
return false;
case Translation::REGISTER: {
int output_reg = iterator->Next();
if (FLAG_trace_osr) {
PrintF(" %s <- 0x%08" V8PRIxPTR " ; [sp + %d]\n",
converter.NameOfCPURegister(output_reg),
input_value,
*input_offset);
}
output->SetRegister(output_reg, input_value);
break;
}
case Translation::INT32_REGISTER: {
int32_t int32_value = 0;
if (!input_object->ToInt32(&int32_value)) return false;
int output_reg = iterator->Next();
if (FLAG_trace_osr) {
PrintF(" %s <- %d (int32) ; [sp + %d]\n",
converter.NameOfCPURegister(output_reg),
int32_value,
*input_offset);
}
output->SetRegister(output_reg, int32_value);
break;
}
case Translation::UINT32_REGISTER: {
uint32_t uint32_value = 0;
if (!input_object->ToUint32(&uint32_value)) return false;
int output_reg = iterator->Next();
if (FLAG_trace_osr) {
PrintF(" %s <- %u (uint32) ; [sp + %d]\n",
converter.NameOfCPURegister(output_reg),
uint32_value,
*input_offset);
}
output->SetRegister(output_reg, static_cast<int32_t>(uint32_value));
}
case Translation::DOUBLE_REGISTER: {
// Abort OSR if we don't have a number.
if (!input_object->IsNumber()) return false;
int output_reg = iterator->Next();
double double_value = input_object->Number();
if (FLAG_trace_osr) {
PrintF(" %s <- %g (double) ; [sp + %d]\n",
DoubleRegister::AllocationIndexToString(output_reg),
double_value,
*input_offset);
}
output->SetDoubleRegister(output_reg, double_value);
break;
}
case Translation::STACK_SLOT: {
int output_index = iterator->Next();
unsigned output_offset =
output->GetOffsetFromSlotIndex(output_index);
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
output_offset,
input_value,
*input_offset);
reinterpret_cast<Object*>(input_value)->ShortPrint();
PrintF("\n");
}
output->SetFrameSlot(output_offset, input_value);
break;
}
case Translation::INT32_STACK_SLOT: {
int32_t int32_value = 0;
if (!input_object->ToInt32(&int32_value)) return false;
int output_index = iterator->Next();
unsigned output_offset =
output->GetOffsetFromSlotIndex(output_index);
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- %d (int32) ; [sp + %d]\n",
output_offset,
int32_value,
*input_offset);
}
output->SetFrameSlot(output_offset, int32_value);
break;
}
case Translation::UINT32_STACK_SLOT: {
uint32_t uint32_value = 0;
if (!input_object->ToUint32(&uint32_value)) return false;
int output_index = iterator->Next();
unsigned output_offset =
output->GetOffsetFromSlotIndex(output_index);
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- %u (uint32) ; [sp + %d]\n",
output_offset,
uint32_value,
*input_offset);
}
output->SetFrameSlot(output_offset, static_cast<int32_t>(uint32_value));
break;
}
case Translation::DOUBLE_STACK_SLOT: {
static const int kLowerOffset = 0 * kPointerSize;
static const int kUpperOffset = 1 * kPointerSize;
// Abort OSR if we don't have a number.
if (!input_object->IsNumber()) return false;
int output_index = iterator->Next();
unsigned output_offset =
output->GetOffsetFromSlotIndex(output_index);
double double_value = input_object->Number();
uint64_t int_value = BitCast<uint64_t, double>(double_value);
int32_t lower = static_cast<int32_t>(int_value);
int32_t upper = static_cast<int32_t>(int_value >> kBitsPerInt);
if (FLAG_trace_osr) {
PrintF(" [sp + %d] <- 0x%08x (upper bits of %g) ; [sp + %d]\n",
output_offset + kUpperOffset,
upper,
double_value,
*input_offset);
PrintF(" [sp + %d] <- 0x%08x (lower bits of %g) ; [sp + %d]\n",
output_offset + kLowerOffset,
lower,
double_value,
*input_offset);
}
output->SetFrameSlot(output_offset + kLowerOffset, lower);
output->SetFrameSlot(output_offset + kUpperOffset, upper);
break;
}
case Translation::LITERAL: {
// Just ignore non-materialized literals.
iterator->Next();
break;
}
case Translation::ARGUMENTS_OBJECT: {
// Optimized code assumes that the argument object has not been
// materialized and so bypasses it when doing arguments access.
// We should have bailed out before starting the frame
// translation.
UNREACHABLE();
return false;
}
}
*input_offset -= kPointerSize;
return true;
}
void Deoptimizer::PatchInterruptCode(Code* unoptimized_code,
Code* interrupt_code,
Code* replacement_code) {
// Iterate over the back edge table and patch every interrupt
// call to an unconditional call to the replacement code.
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
int loop_nesting_level = unoptimized_code->allow_osr_at_loop_nesting_level();
Address back_edge_cursor = unoptimized_code->instruction_start() +
unoptimized_code->back_edge_table_offset();
uint32_t table_length = Memory::uint32_at(back_edge_cursor);
back_edge_cursor += kIntSize;
for (uint32_t i = 0; i < table_length; ++i) {
uint32_t loop_depth = Memory::uint32_at(back_edge_cursor + 2 * kIntSize);
if (static_cast<int>(loop_depth) == loop_nesting_level) {
// Loop back edge has the loop depth that we want to patch.
uint32_t pc_offset = Memory::uint32_at(back_edge_cursor + kIntSize);
Address pc_after = unoptimized_code->instruction_start() + pc_offset;
PatchInterruptCodeAt(unoptimized_code,
pc_after,
interrupt_code,
replacement_code);
}
back_edge_cursor += FullCodeGenerator::kBackEdgeEntrySize;
}
unoptimized_code->set_back_edges_patched_for_osr(true);
#ifdef DEBUG
Deoptimizer::VerifyInterruptCode(
unoptimized_code, interrupt_code, replacement_code, loop_nesting_level);
#endif // DEBUG
}
void Deoptimizer::RevertInterruptCode(Code* unoptimized_code,
Code* interrupt_code,
Code* replacement_code) {
// Iterate over the back edge table and revert the patched interrupt calls.
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
ASSERT(unoptimized_code->back_edges_patched_for_osr());
int loop_nesting_level = unoptimized_code->allow_osr_at_loop_nesting_level();
Address back_edge_cursor = unoptimized_code->instruction_start() +
unoptimized_code->back_edge_table_offset();
uint32_t table_length = Memory::uint32_at(back_edge_cursor);
back_edge_cursor += kIntSize;
for (uint32_t i = 0; i < table_length; ++i) {
uint32_t loop_depth = Memory::uint32_at(back_edge_cursor + 2 * kIntSize);
if (static_cast<int>(loop_depth) <= loop_nesting_level) {
uint32_t pc_offset = Memory::uint32_at(back_edge_cursor + kIntSize);
Address pc_after = unoptimized_code->instruction_start() + pc_offset;
RevertInterruptCodeAt(unoptimized_code,
pc_after,
interrupt_code,
replacement_code);
}
back_edge_cursor += FullCodeGenerator::kBackEdgeEntrySize;
}
unoptimized_code->set_back_edges_patched_for_osr(false);
unoptimized_code->set_allow_osr_at_loop_nesting_level(0);
#ifdef DEBUG
// Assert that none of the back edges are patched anymore.
Deoptimizer::VerifyInterruptCode(
unoptimized_code, interrupt_code, replacement_code, -1);
#endif // DEBUG
}
#ifdef DEBUG
void Deoptimizer::VerifyInterruptCode(Code* unoptimized_code,
Code* interrupt_code,
Code* replacement_code,
int loop_nesting_level) {
CHECK(unoptimized_code->kind() == Code::FUNCTION);
Address back_edge_cursor = unoptimized_code->instruction_start() +
unoptimized_code->back_edge_table_offset();
uint32_t table_length = Memory::uint32_at(back_edge_cursor);
back_edge_cursor += kIntSize;
for (uint32_t i = 0; i < table_length; ++i) {
uint32_t loop_depth = Memory::uint32_at(back_edge_cursor + 2 * kIntSize);
CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker);
// Assert that all back edges for shallower loops (and only those)
// have already been patched.
uint32_t pc_offset = Memory::uint32_at(back_edge_cursor + kIntSize);
Address pc_after = unoptimized_code->instruction_start() + pc_offset;
CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level),
InterruptCodeIsPatched(unoptimized_code,
pc_after,
interrupt_code,
replacement_code));
back_edge_cursor += FullCodeGenerator::kBackEdgeEntrySize;
}
}
#endif // DEBUG
unsigned Deoptimizer::ComputeInputFrameSize() const {
unsigned fixed_size = ComputeFixedSize(function_);
// The fp-to-sp delta already takes the context and the function
// into account so we have to avoid double counting them (-2).
unsigned result = fixed_size + fp_to_sp_delta_ - (2 * kPointerSize);
#ifdef DEBUG
if (bailout_type_ == OSR) {
// TODO(kasperl): It would be nice if we could verify that the
// size matches with the stack height we can compute based on the
// environment at the OSR entry. The code for that his built into
// the DoComputeOsrOutputFrame function for now.
} else if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
unsigned stack_slots = compiled_code_->stack_slots();
unsigned outgoing_size = ComputeOutgoingArgumentSize();
ASSERT(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size);
}
#endif
return result;
}
unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const {
// The fixed part of the frame consists of the return address, frame
// pointer, function, context, and all the incoming arguments.
return ComputeIncomingArgumentSize(function) +
StandardFrameConstants::kFixedFrameSize;
}
unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const {
// The incoming arguments is the values for formal parameters and
// the receiver. Every slot contains a pointer.
if (function->IsSmi()) {
ASSERT(Smi::cast(function) == Smi::FromInt(StackFrame::STUB));
return 0;
}
unsigned arguments = function->shared()->formal_parameter_count() + 1;
return arguments * kPointerSize;
}
unsigned Deoptimizer::ComputeOutgoingArgumentSize() const {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
compiled_code_->deoptimization_data());
unsigned height = data->ArgumentsStackHeight(bailout_id_)->value();
return height * kPointerSize;
}
Object* Deoptimizer::ComputeLiteral(int index) const {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
compiled_code_->deoptimization_data());
FixedArray* literals = data->LiteralArray();
return literals->get(index);
}
void Deoptimizer::AddObjectStart(intptr_t slot_address, int length) {
ObjectMaterializationDescriptor object_desc(
reinterpret_cast<Address>(slot_address), length);
deferred_objects_.Add(object_desc);
}
void Deoptimizer::AddObjectTaggedValue(intptr_t value) {
deferred_objects_tagged_values_.Add(reinterpret_cast<Object*>(value));
deferred_objects_double_values_.Add(isolate()->heap()->nan_value()->value());
}
void Deoptimizer::AddObjectDoubleValue(double value) {
deferred_objects_tagged_values_.Add(isolate()->heap()->the_hole_value());
deferred_objects_double_values_.Add(value);
}
void Deoptimizer::AddDoubleValue(intptr_t slot_address, double value) {
HeapNumberMaterializationDescriptor value_desc(
reinterpret_cast<Address>(slot_address), value);
deferred_heap_numbers_.Add(value_desc);
}
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
BailoutType type,
int max_entry_id) {
// We cannot run this if the serializer is enabled because this will
// cause us to emit relocation information for the external
// references. This is fine because the deoptimizer's code section
// isn't meant to be serialized at all.
ASSERT(type == EAGER || type == SOFT || type == LAZY);
DeoptimizerData* data = isolate->deoptimizer_data();
int entry_count = data->deopt_entry_code_entries_[type];
if (max_entry_id < entry_count) return;
entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
while (max_entry_id >= entry_count) entry_count *= 2;
ASSERT(entry_count <= Deoptimizer::kMaxNumberOfEntries);
MacroAssembler masm(isolate, NULL, 16 * KB);
masm.set_emit_debug_code(false);
GenerateDeoptimizationEntries(&masm, entry_count, type);
CodeDesc desc;
masm.GetCode(&desc);
ASSERT(!RelocInfo::RequiresRelocation(desc));
MemoryChunk* chunk = data->deopt_entry_code_[type];
ASSERT(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
desc.instr_size);
chunk->CommitArea(desc.instr_size);
CopyBytes(chunk->area_start(), desc.buffer,
static_cast<size_t>(desc.instr_size));
CPU::FlushICache(chunk->area_start(), desc.instr_size);
data->deopt_entry_code_entries_[type] = entry_count;
}
FrameDescription::FrameDescription(uint32_t frame_size,
JSFunction* function)
: frame_size_(frame_size),
function_(function),
top_(kZapUint32),
pc_(kZapUint32),
fp_(kZapUint32),
context_(kZapUint32) {
// Zap all the registers.
for (int r = 0; r < Register::kNumRegisters; r++) {
SetRegister(r, kZapUint32);
}
// Zap all the slots.
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
SetFrameSlot(o, kZapUint32);
}
}
int FrameDescription::ComputeFixedSize() {
return StandardFrameConstants::kFixedFrameSize +
(ComputeParametersCount() + 1) * kPointerSize;
}
unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
if (slot_index >= 0) {
// Local or spill slots. Skip the fixed part of the frame
// including all arguments.
unsigned base = GetFrameSize() - ComputeFixedSize();
return base - ((slot_index + 1) * kPointerSize);
} else {
// Incoming parameter.
int arg_size = (ComputeParametersCount() + 1) * kPointerSize;
unsigned base = GetFrameSize() - arg_size;
return base - ((slot_index + 1) * kPointerSize);
}
}
int FrameDescription::ComputeParametersCount() {
switch (type_) {
case StackFrame::JAVA_SCRIPT:
return function_->shared()->formal_parameter_count();
case StackFrame::ARGUMENTS_ADAPTOR: {
// Last slot contains number of incomming arguments as a smi.
// Can't use GetExpression(0) because it would cause infinite recursion.
return reinterpret_cast<Smi*>(*GetFrameSlotPointer(0))->value();
}
case StackFrame::STUB:
return -1; // Minus receiver.
default:
UNREACHABLE();
return 0;
}
}
Object* FrameDescription::GetParameter(int index) {
ASSERT(index >= 0);
ASSERT(index < ComputeParametersCount());
// The slot indexes for incoming arguments are negative.
unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount());
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
unsigned FrameDescription::GetExpressionCount() {
ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned size = GetFrameSize() - ComputeFixedSize();
return size / kPointerSize;
}
Object* FrameDescription::GetExpression(int index) {
ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned offset = GetOffsetFromSlotIndex(index);
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
void TranslationBuffer::Add(int32_t value, Zone* zone) {
// Encode the sign bit in the least significant bit.
bool is_negative = (value < 0);
uint32_t bits = ((is_negative ? -value : value) << 1) |
static_cast<int32_t>(is_negative);
// Encode the individual bytes using the least significant bit of
// each byte to indicate whether or not more bytes follow.
do {
uint32_t next = bits >> 7;
contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
bits = next;
} while (bits != 0);
}
int32_t TranslationIterator::Next() {
// Run through the bytes until we reach one with a least significant
// bit of zero (marks the end).
uint32_t bits = 0;
for (int i = 0; true; i += 7) {
ASSERT(HasNext());
uint8_t next = buffer_->get(index_++);
bits |= (next >> 1) << i;
if ((next & 1) == 0) break;
}
// The bits encode the sign in the least significant bit.
bool is_negative = (bits & 1) == 1;
int32_t result = bits >> 1;
return is_negative ? -result : result;
}
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
int length = contents_.length();
Handle<ByteArray> result = factory->NewByteArray(length, TENURED);
OS::MemCopy(
result->GetDataStartAddress(), contents_.ToVector().start(), length);
return result;
}
void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginGetterStubFrame(int literal_id) {
buffer_->Add(GETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginSetterStubFrame(int literal_id) {
buffer_->Add(SETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginJSFrame(BailoutId node_id,
int literal_id,
unsigned height) {
buffer_->Add(JS_FRAME, zone());
buffer_->Add(node_id.ToInt(), zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginCompiledStubFrame() {
buffer_->Add(COMPILED_STUB_FRAME, zone());
}
void Translation::BeginArgumentsObject(int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_length, zone());
}
void Translation::StoreRegister(Register reg) {
buffer_->Add(REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreInt32Register(Register reg) {
buffer_->Add(INT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreUint32Register(Register reg) {
buffer_->Add(UINT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreDoubleRegister(DoubleRegister reg) {
buffer_->Add(DOUBLE_REGISTER, zone());
buffer_->Add(DoubleRegister::ToAllocationIndex(reg), zone());
}
void Translation::StoreStackSlot(int index) {
buffer_->Add(STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreInt32StackSlot(int index) {
buffer_->Add(INT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreUint32StackSlot(int index) {
buffer_->Add(UINT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreDoubleStackSlot(int index) {
buffer_->Add(DOUBLE_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreLiteral(int literal_id) {
buffer_->Add(LITERAL, zone());
buffer_->Add(literal_id, zone());
}
void Translation::StoreArgumentsObject(bool args_known,
int args_index,
int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_known, zone());
buffer_->Add(args_index, zone());
buffer_->Add(args_length, zone());
}
int Translation::NumberOfOperandsFor(Opcode opcode) {
switch (opcode) {
case GETTER_STUB_FRAME:
case SETTER_STUB_FRAME:
case ARGUMENTS_OBJECT:
case REGISTER:
case INT32_REGISTER:
case UINT32_REGISTER:
case DOUBLE_REGISTER:
case STACK_SLOT:
case INT32_STACK_SLOT:
case UINT32_STACK_SLOT:
case DOUBLE_STACK_SLOT:
case LITERAL:
case COMPILED_STUB_FRAME:
return 1;
case BEGIN:
case ARGUMENTS_ADAPTOR_FRAME:
case CONSTRUCT_STUB_FRAME:
return 2;
case JS_FRAME:
return 3;
}
UNREACHABLE();
return -1;
}
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
const char* Translation::StringFor(Opcode opcode) {
switch (opcode) {
case BEGIN:
return "BEGIN";
case JS_FRAME:
return "JS_FRAME";
case ARGUMENTS_ADAPTOR_FRAME:
return "ARGUMENTS_ADAPTOR_FRAME";
case CONSTRUCT_STUB_FRAME:
return "CONSTRUCT_STUB_FRAME";
case GETTER_STUB_FRAME:
return "GETTER_STUB_FRAME";
case SETTER_STUB_FRAME:
return "SETTER_STUB_FRAME";
case COMPILED_STUB_FRAME:
return "COMPILED_STUB_FRAME";
case REGISTER:
return "REGISTER";
case INT32_REGISTER:
return "INT32_REGISTER";
case UINT32_REGISTER:
return "UINT32_REGISTER";
case DOUBLE_REGISTER:
return "DOUBLE_REGISTER";
case STACK_SLOT:
return "STACK_SLOT";
case INT32_STACK_SLOT:
return "INT32_STACK_SLOT";
case UINT32_STACK_SLOT:
return "UINT32_STACK_SLOT";
case DOUBLE_STACK_SLOT:
return "DOUBLE_STACK_SLOT";
case LITERAL:
return "LITERAL";
case ARGUMENTS_OBJECT:
return "ARGUMENTS_OBJECT";
}
UNREACHABLE();
return "";
}
#endif
DeoptimizingCodeListNode::DeoptimizingCodeListNode(Code* code): next_(NULL) {
GlobalHandles* global_handles = code->GetIsolate()->global_handles();
// Globalize the code object and make it weak.
code_ = Handle<Code>::cast(global_handles->Create(code));
global_handles->MakeWeak(reinterpret_cast<Object**>(code_.location()),
this,
Deoptimizer::HandleWeakDeoptimizedCode);
}
DeoptimizingCodeListNode::~DeoptimizingCodeListNode() {
GlobalHandles* global_handles = code_->GetIsolate()->global_handles();
global_handles->Destroy(reinterpret_cast<Object**>(code_.location()));
}
// We can't intermix stack decoding and allocations because
// deoptimization infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
SlotRef SlotRef::ComputeSlotForNextArgument(TranslationIterator* iterator,
DeoptimizationInputData* data,
JavaScriptFrame* frame) {
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
// Peeled off before getting here.
break;
case Translation::ARGUMENTS_OBJECT:
// This can be only emitted for local slots not for argument slots.
break;
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::DOUBLE_REGISTER:
// We are at safepoint which corresponds to call. All registers are
// saved by caller so there would be no live registers at this
// point. Thus these translation commands should not be used.
break;
case Translation::STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::TAGGED);
}
case Translation::INT32_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::INT32);
}
case Translation::UINT32_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::UINT32);
}
case Translation::DOUBLE_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::DOUBLE);
}
case Translation::LITERAL: {
int literal_index = iterator->Next();
return SlotRef(data->GetIsolate(),
data->LiteralArray()->get(literal_index));
}
case Translation::COMPILED_STUB_FRAME:
UNREACHABLE();
break;
}
UNREACHABLE();
return SlotRef();
}
void SlotRef::ComputeSlotsForArguments(Vector<SlotRef>* args_slots,
TranslationIterator* it,
DeoptimizationInputData* data,
JavaScriptFrame* frame) {
// Process the translation commands for the arguments.
// Skip the translation command for the receiver.
it->Skip(Translation::NumberOfOperandsFor(
static_cast<Translation::Opcode>(it->Next())));
// Compute slots for arguments.
for (int i = 0; i < args_slots->length(); ++i) {
(*args_slots)[i] = ComputeSlotForNextArgument(it, data, frame);
}
}
Vector<SlotRef> SlotRef::ComputeSlotMappingForArguments(
JavaScriptFrame* frame,
int inlined_jsframe_index,
int formal_parameter_count) {
DisallowHeapAllocation no_gc;
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data =
static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
ASSERT(opcode == Translation::BEGIN);
it.Next(); // Drop frame count.
int jsframe_count = it.Next();
USE(jsframe_count);
ASSERT(jsframe_count > inlined_jsframe_index);
int jsframes_to_skip = inlined_jsframe_index;
while (true) {
opcode = static_cast<Translation::Opcode>(it.Next());
if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) {
if (jsframes_to_skip == 0) {
ASSERT(Translation::NumberOfOperandsFor(opcode) == 2);
it.Skip(1); // literal id
int height = it.Next();
// We reached the arguments adaptor frame corresponding to the
// inlined function in question. Number of arguments is height - 1.
Vector<SlotRef> args_slots =
Vector<SlotRef>::New(height - 1); // Minus receiver.
ComputeSlotsForArguments(&args_slots, &it, data, frame);
return args_slots;
}
} else if (opcode == Translation::JS_FRAME) {
if (jsframes_to_skip == 0) {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
// We reached the frame corresponding to the inlined function
// in question. Process the translation commands for the
// arguments. Number of arguments is equal to the number of
// format parameter count.
Vector<SlotRef> args_slots =
Vector<SlotRef>::New(formal_parameter_count);
ComputeSlotsForArguments(&args_slots, &it, data, frame);
return args_slots;
}
jsframes_to_skip--;
}
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
UNREACHABLE();
return Vector<SlotRef>();
}
#ifdef ENABLE_DEBUGGER_SUPPORT
DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
int frame_index,
bool has_arguments_adaptor,
bool has_construct_stub) {
FrameDescription* output_frame = deoptimizer->output_[frame_index];
function_ = output_frame->GetFunction();
has_construct_stub_ = has_construct_stub;
expression_count_ = output_frame->GetExpressionCount();
expression_stack_ = new Object*[expression_count_];
// Get the source position using the unoptimized code.
Address pc = reinterpret_cast<Address>(output_frame->GetPc());
Code* code = Code::cast(deoptimizer->isolate()->FindCodeObject(pc));
source_position_ = code->SourcePosition(pc);
for (int i = 0; i < expression_count_; i++) {
SetExpression(i, output_frame->GetExpression(i));
}
if (has_arguments_adaptor) {
output_frame = deoptimizer->output_[frame_index - 1];
ASSERT(output_frame->GetFrameType() == StackFrame::ARGUMENTS_ADAPTOR);
}
parameters_count_ = output_frame->ComputeParametersCount();
parameters_ = new Object*[parameters_count_];
for (int i = 0; i < parameters_count_; i++) {
SetParameter(i, output_frame->GetParameter(i));
}
}
DeoptimizedFrameInfo::~DeoptimizedFrameInfo() {
delete[] expression_stack_;
delete[] parameters_;
}
void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
v->VisitPointer(BitCast<Object**>(&function_));
v->VisitPointers(parameters_, parameters_ + parameters_count_);
v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
}
#endif // ENABLE_DEBUGGER_SUPPORT
} } // namespace v8::internal