v8/src/platform-cygwin.cc
bmeurer@chromium.org e9fcf8fc98 Revert the latest set of platform changes.
Revert "Fix NaCl build."
Revert "Revert target arch detection."
Revert "Fix typo."
Revert "Simplify implementation of Mutex."
Revert "Fix for older clang releases that lack __has_extension."
Revert "Reland initial bits of "Implement correct OS and CC detection.""

TBR=danno@chromium.org,svenpanne@chromium.org

Review URL: https://codereview.chromium.org/21095008

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15976 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-07-31 07:51:46 +00:00

484 lines
15 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for Cygwin goes here. For the POSIX comaptible parts
// the implementation is in platform-posix.cc.
#include <errno.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdarg.h>
#include <strings.h> // index
#include <sys/time.h>
#include <sys/mman.h> // mmap & munmap
#include <unistd.h> // sysconf
#undef MAP_TYPE
#include "v8.h"
#include "platform-posix.h"
#include "platform.h"
#include "simulator.h"
#include "v8threads.h"
#include "vm-state-inl.h"
#include "win32-headers.h"
namespace v8 {
namespace internal {
static Mutex* limit_mutex = NULL;
const char* OS::LocalTimezone(double time) {
if (std::isnan(time)) return "";
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return "";
return tzname[0]; // The location of the timezone string on Cygwin.
}
double OS::LocalTimeOffset() {
// On Cygwin, struct tm does not contain a tm_gmtoff field.
time_t utc = time(NULL);
ASSERT(utc != -1);
struct tm* loc = localtime(&utc);
ASSERT(loc != NULL);
// time - localtime includes any daylight savings offset, so subtract it.
return static_cast<double>((mktime(loc) - utc) * msPerSecond -
(loc->tm_isdst > 0 ? 3600 * msPerSecond : 0));
}
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification). The estimate is conservative, i.e., not all addresses in
// 'allocated' space are actually allocated to our heap. The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
static void UpdateAllocatedSpaceLimits(void* address, int size) {
ASSERT(limit_mutex != NULL);
ScopedLock lock(limit_mutex);
lowest_ever_allocated = Min(lowest_ever_allocated, address);
highest_ever_allocated =
Max(highest_ever_allocated,
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}
bool OS::IsOutsideAllocatedSpace(void* address) {
return address < lowest_ever_allocated || address >= highest_ever_allocated;
}
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (mbase == MAP_FAILED) {
LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
UpdateAllocatedSpaceLimits(mbase, msize);
return mbase;
}
void OS::DumpBacktrace() {
// Currently unsupported.
}
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
public:
PosixMemoryMappedFile(FILE* file, void* memory, int size)
: file_(file), memory_(memory), size_(size) { }
virtual ~PosixMemoryMappedFile();
virtual void* memory() { return memory_; }
virtual int size() { return size_; }
private:
FILE* file_;
void* memory_;
int size_;
};
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
FILE* file = fopen(name, "r+");
if (file == NULL) return NULL;
fseek(file, 0, SEEK_END);
int size = ftell(file);
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
void* initial) {
FILE* file = fopen(name, "w+");
if (file == NULL) return NULL;
int result = fwrite(initial, size, 1, file);
if (result < 1) {
fclose(file);
return NULL;
}
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
if (memory_) munmap(memory_, size_);
fclose(file_);
}
void OS::LogSharedLibraryAddresses() {
// This function assumes that the layout of the file is as follows:
// hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
// If we encounter an unexpected situation we abort scanning further entries.
FILE* fp = fopen("/proc/self/maps", "r");
if (fp == NULL) return;
// Allocate enough room to be able to store a full file name.
const int kLibNameLen = FILENAME_MAX + 1;
char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
i::Isolate* isolate = ISOLATE;
// This loop will terminate once the scanning hits an EOF.
while (true) {
uintptr_t start, end;
char attr_r, attr_w, attr_x, attr_p;
// Parse the addresses and permission bits at the beginning of the line.
if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
int c;
if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
// Found a read-only executable entry. Skip characters until we reach
// the beginning of the filename or the end of the line.
do {
c = getc(fp);
} while ((c != EOF) && (c != '\n') && (c != '/'));
if (c == EOF) break; // EOF: Was unexpected, just exit.
// Process the filename if found.
if (c == '/') {
ungetc(c, fp); // Push the '/' back into the stream to be read below.
// Read to the end of the line. Exit if the read fails.
if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
// Drop the newline character read by fgets. We do not need to check
// for a zero-length string because we know that we at least read the
// '/' character.
lib_name[strlen(lib_name) - 1] = '\0';
} else {
// No library name found, just record the raw address range.
snprintf(lib_name, kLibNameLen,
"%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
}
LOG(isolate, SharedLibraryEvent(lib_name, start, end));
} else {
// Entry not describing executable data. Skip to end of line to set up
// reading the next entry.
do {
c = getc(fp);
} while ((c != EOF) && (c != '\n'));
if (c == EOF) break;
}
}
free(lib_name);
fclose(fp);
}
void OS::SignalCodeMovingGC() {
// Nothing to do on Cygwin.
}
int OS::StackWalk(Vector<OS::StackFrame> frames) {
// Not supported on Cygwin.
return 0;
}
// The VirtualMemory implementation is taken from platform-win32.cc.
// The mmap-based virtual memory implementation as it is used on most posix
// platforms does not work well because Cygwin does not support MAP_FIXED.
// This causes VirtualMemory::Commit to not always commit the memory region
// specified.
static void* GetRandomAddr() {
Isolate* isolate = Isolate::UncheckedCurrent();
// Note that the current isolate isn't set up in a call path via
// CpuFeatures::Probe. We don't care about randomization in this case because
// the code page is immediately freed.
if (isolate != NULL) {
// The address range used to randomize RWX allocations in OS::Allocate
// Try not to map pages into the default range that windows loads DLLs
// Use a multiple of 64k to prevent committing unused memory.
// Note: This does not guarantee RWX regions will be within the
// range kAllocationRandomAddressMin to kAllocationRandomAddressMax
#ifdef V8_HOST_ARCH_64_BIT
static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
#else
static const intptr_t kAllocationRandomAddressMin = 0x04000000;
static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
#endif
uintptr_t address = (V8::RandomPrivate(isolate) << kPageSizeBits)
| kAllocationRandomAddressMin;
address &= kAllocationRandomAddressMax;
return reinterpret_cast<void *>(address);
}
return NULL;
}
static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
LPVOID base = NULL;
if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
// For exectutable pages try and randomize the allocation address
for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
base = VirtualAlloc(GetRandomAddr(), size, action, protection);
}
}
// After three attempts give up and let the OS find an address to use.
if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
return base;
}
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size)
: address_(ReserveRegion(size)), size_(size) { }
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* address = ReserveRegion(request_size);
if (address == NULL) return;
Address base = RoundUp(static_cast<Address>(address), alignment);
// Try reducing the size by freeing and then reallocating a specific area.
bool result = ReleaseRegion(address, request_size);
USE(result);
ASSERT(result);
address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
if (address != NULL) {
request_size = size;
ASSERT(base == static_cast<Address>(address));
} else {
// Resizing failed, just go with a bigger area.
address = ReserveRegion(request_size);
if (address == NULL) return;
}
address_ = address;
size_ = request_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address_, size_);
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
ASSERT(IsReserved());
return UncommitRegion(address, size);
}
void* VirtualMemory::ReserveRegion(size_t size) {
return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
}
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
return false;
}
UpdateAllocatedSpaceLimits(base, static_cast<int>(size));
return true;
}
bool VirtualMemory::Guard(void* address) {
if (NULL == VirtualAlloc(address,
OS::CommitPageSize(),
MEM_COMMIT,
PAGE_READONLY | PAGE_GUARD)) {
return false;
}
return true;
}
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
return VirtualFree(base, size, MEM_DECOMMIT) != 0;
}
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
return VirtualFree(base, 0, MEM_RELEASE) != 0;
}
bool VirtualMemory::HasLazyCommits() {
// TODO(alph): implement for the platform.
return false;
}
class CygwinSemaphore : public Semaphore {
public:
explicit CygwinSemaphore(int count) { sem_init(&sem_, 0, count); }
virtual ~CygwinSemaphore() { sem_destroy(&sem_); }
virtual void Wait();
virtual bool Wait(int timeout);
virtual void Signal() { sem_post(&sem_); }
private:
sem_t sem_;
};
void CygwinSemaphore::Wait() {
while (true) {
int result = sem_wait(&sem_);
if (result == 0) return; // Successfully got semaphore.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
#ifndef TIMEVAL_TO_TIMESPEC
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
(ts)->tv_sec = (tv)->tv_sec; \
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
} while (false)
#endif
bool CygwinSemaphore::Wait(int timeout) {
const long kOneSecondMicros = 1000000; // NOLINT
// Split timeout into second and nanosecond parts.
struct timeval delta;
delta.tv_usec = timeout % kOneSecondMicros;
delta.tv_sec = timeout / kOneSecondMicros;
struct timeval current_time;
// Get the current time.
if (gettimeofday(&current_time, NULL) == -1) {
return false;
}
// Calculate time for end of timeout.
struct timeval end_time;
timeradd(&current_time, &delta, &end_time);
struct timespec ts;
TIMEVAL_TO_TIMESPEC(&end_time, &ts);
// Wait for semaphore signalled or timeout.
while (true) {
int result = sem_timedwait(&sem_, &ts);
if (result == 0) return true; // Successfully got semaphore.
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
Semaphore* OS::CreateSemaphore(int count) {
return new CygwinSemaphore(count);
}
void OS::SetUp() {
// Seed the random number generator.
// Convert the current time to a 64-bit integer first, before converting it
// to an unsigned. Going directly can cause an overflow and the seed to be
// set to all ones. The seed will be identical for different instances that
// call this setup code within the same millisecond.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
}
void OS::TearDown() {
delete limit_mutex;
}
} } // namespace v8::internal