v8/test/cctest/heap/test-spaces.cc
Ulan Degenbaev 4d7e6f4ce7 [test] Make cctest/test-spaces/OldLargeObjectSpace more robust
The test has a loop that allocates large objects until it gets an
allocation failure. The test then asserts that the subsequent allocation
should also fail. That however does not necessarily hold because the
previously allocated objects may be collected to free up the space.

This change creates a handle for each allocated object. It also
restricts the size of the heap to 20MB to reduce memory consumption.

Bug: v8:11172
Change-Id: Ic3dc1a0f5f235b0313bab2071546b59a77bd55e5
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2912884
Auto-Submit: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Commit-Queue: Dominik Inführ <dinfuehr@chromium.org>
Cr-Commit-Position: refs/heads/master@{#74728}
2021-05-25 07:48:02 +00:00

986 lines
34 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "include/v8-platform.h"
#include "src/base/bounded-page-allocator.h"
#include "src/base/macros.h"
#include "src/base/platform/platform.h"
#include "src/common/globals.h"
#include "src/heap/factory.h"
#include "src/heap/large-spaces.h"
#include "src/heap/memory-allocator.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/spaces-inl.h"
#include "src/heap/spaces.h"
#include "src/objects/free-space.h"
#include "src/objects/objects-inl.h"
#include "src/snapshot/snapshot.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"
namespace v8 {
namespace internal {
namespace heap {
// Temporarily sets a given allocator in an isolate.
class V8_NODISCARD TestMemoryAllocatorScope {
public:
TestMemoryAllocatorScope(Isolate* isolate, size_t max_capacity,
PageAllocator* page_allocator = nullptr)
: isolate_(isolate),
old_allocator_(std::move(isolate->heap()->memory_allocator_)) {
// Save the code pages for restoring them later on because the constructor
// of MemoryAllocator will change them.
isolate->GetCodePages()->swap(code_pages_);
isolate->heap()->memory_allocator_.reset(new MemoryAllocator(
isolate,
page_allocator != nullptr ? page_allocator : isolate->page_allocator(),
max_capacity));
if (page_allocator != nullptr) {
isolate->heap()->memory_allocator_->data_page_allocator_ = page_allocator;
}
}
MemoryAllocator* allocator() { return isolate_->heap()->memory_allocator(); }
~TestMemoryAllocatorScope() {
isolate_->heap()->memory_allocator()->TearDown();
isolate_->heap()->memory_allocator_.swap(old_allocator_);
isolate_->GetCodePages()->swap(code_pages_);
}
TestMemoryAllocatorScope(const TestMemoryAllocatorScope&) = delete;
TestMemoryAllocatorScope& operator=(const TestMemoryAllocatorScope&) = delete;
private:
Isolate* isolate_;
std::unique_ptr<MemoryAllocator> old_allocator_;
std::vector<MemoryRange> code_pages_;
};
// Temporarily sets a given code page allocator in an isolate.
class V8_NODISCARD TestCodePageAllocatorScope {
public:
TestCodePageAllocatorScope(Isolate* isolate,
v8::PageAllocator* code_page_allocator)
: isolate_(isolate),
old_code_page_allocator_(
isolate->heap()->memory_allocator()->code_page_allocator()) {
isolate->heap()->memory_allocator()->code_page_allocator_ =
code_page_allocator;
}
~TestCodePageAllocatorScope() {
isolate_->heap()->memory_allocator()->code_page_allocator_ =
old_code_page_allocator_;
}
TestCodePageAllocatorScope(const TestCodePageAllocatorScope&) = delete;
TestCodePageAllocatorScope& operator=(const TestCodePageAllocatorScope&) =
delete;
private:
Isolate* isolate_;
v8::PageAllocator* old_code_page_allocator_;
};
static void VerifyMemoryChunk(Isolate* isolate, Heap* heap,
v8::PageAllocator* code_page_allocator,
size_t reserve_area_size, size_t commit_area_size,
Executability executable, Space* space) {
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
TestCodePageAllocatorScope test_code_page_allocator_scope(
isolate, code_page_allocator);
v8::PageAllocator* page_allocator =
memory_allocator->page_allocator(executable);
size_t allocatable_memory_area_offset =
MemoryChunkLayout::ObjectStartOffsetInMemoryChunk(space->identity());
size_t guard_size =
(executable == EXECUTABLE) ? MemoryChunkLayout::CodePageGuardSize() : 0;
MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(
reserve_area_size, commit_area_size, executable, space);
size_t reserved_size =
((executable == EXECUTABLE))
? allocatable_memory_area_offset +
RoundUp(reserve_area_size, page_allocator->CommitPageSize()) +
guard_size
: RoundUp(allocatable_memory_area_offset + reserve_area_size,
page_allocator->CommitPageSize());
CHECK(memory_chunk->size() == reserved_size);
CHECK(memory_chunk->area_start() <
memory_chunk->address() + memory_chunk->size());
CHECK(memory_chunk->area_end() <=
memory_chunk->address() + memory_chunk->size());
CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);
memory_allocator->Free<MemoryAllocator::kFull>(memory_chunk);
}
static unsigned int PseudorandomAreaSize() {
static uint32_t lo = 2345;
lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
return lo & 0xFFFFF;
}
TEST(MemoryChunk) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
size_t reserve_area_size = 1 * MB;
size_t initial_commit_area_size;
for (int i = 0; i < 100; i++) {
initial_commit_area_size =
RoundUp(PseudorandomAreaSize(), page_allocator->CommitPageSize());
// With CodeRange.
const size_t code_range_size = 32 * MB;
VirtualMemory code_range_reservation(page_allocator, code_range_size,
nullptr, MemoryChunk::kAlignment);
CHECK(code_range_reservation.IsReserved());
base::BoundedPageAllocator code_page_allocator(
page_allocator, code_range_reservation.address(),
code_range_reservation.size(), MemoryChunk::kAlignment);
VerifyMemoryChunk(isolate, heap, &code_page_allocator, reserve_area_size,
initial_commit_area_size, EXECUTABLE, heap->code_space());
VerifyMemoryChunk(isolate, heap, &code_page_allocator, reserve_area_size,
initial_commit_area_size, NOT_EXECUTABLE,
heap->old_space());
}
}
TEST(MemoryAllocator) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
int total_pages = 0;
OldSpace faked_space(heap);
CHECK(!faked_space.first_page());
CHECK(!faked_space.last_page());
Page* first_page = memory_allocator->AllocatePage(
faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space),
NOT_EXECUTABLE);
faked_space.memory_chunk_list().PushBack(first_page);
CHECK(first_page->next_page() == nullptr);
total_pages++;
for (Page* p = first_page; p != nullptr; p = p->next_page()) {
CHECK(p->owner() == &faked_space);
}
// Again, we should get n or n - 1 pages.
Page* other = memory_allocator->AllocatePage(
faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space),
NOT_EXECUTABLE);
total_pages++;
faked_space.memory_chunk_list().PushBack(other);
int page_count = 0;
for (Page* p = first_page; p != nullptr; p = p->next_page()) {
CHECK(p->owner() == &faked_space);
page_count++;
}
CHECK(total_pages == page_count);
Page* second_page = first_page->next_page();
CHECK_NOT_NULL(second_page);
// OldSpace's destructor will tear down the space and free up all pages.
}
TEST(ComputeDiscardMemoryAreas) {
base::AddressRegion memory_area;
size_t page_size = MemoryAllocator::GetCommitPageSize();
size_t free_header_size = FreeSpace::kSize;
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(0, 0);
CHECK_EQ(memory_area.begin(), 0);
CHECK_EQ(memory_area.size(), 0);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
0, page_size + free_header_size);
CHECK_EQ(memory_area.begin(), 0);
CHECK_EQ(memory_area.size(), 0);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
page_size - free_header_size, page_size + free_header_size);
CHECK_EQ(memory_area.begin(), page_size);
CHECK_EQ(memory_area.size(), page_size);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(page_size, page_size);
CHECK_EQ(memory_area.begin(), 0);
CHECK_EQ(memory_area.size(), 0);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
page_size / 2, page_size + page_size / 2);
CHECK_EQ(memory_area.begin(), page_size);
CHECK_EQ(memory_area.size(), page_size);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
page_size / 2, page_size + page_size / 4);
CHECK_EQ(memory_area.begin(), 0);
CHECK_EQ(memory_area.size(), 0);
memory_area =
MemoryAllocator::ComputeDiscardMemoryArea(page_size / 2, page_size * 3);
CHECK_EQ(memory_area.begin(), page_size);
CHECK_EQ(memory_area.size(), page_size * 2);
}
TEST(NewSpace) {
if (FLAG_single_generation) return;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
NewSpace new_space(heap, memory_allocator->data_page_allocator(),
CcTest::heap()->InitialSemiSpaceSize(),
CcTest::heap()->InitialSemiSpaceSize());
CHECK(new_space.MaximumCapacity());
while (new_space.Available() >= kMaxRegularHeapObjectSize) {
CHECK(new_space.Contains(new_space
.AllocateRaw(kMaxRegularHeapObjectSize,
AllocationAlignment::kWordAligned)
.ToObjectChecked()));
}
new_space.TearDown();
memory_allocator->unmapper()->EnsureUnmappingCompleted();
}
TEST(OldSpace) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
OldSpace* s = new OldSpace(heap);
CHECK_NOT_NULL(s);
while (s->Available() > 0) {
s->AllocateRawUnaligned(kMaxRegularHeapObjectSize).ToObjectChecked();
}
delete s;
}
TEST(OldLargeObjectSpace) {
// This test does not initialize allocated objects, which confuses the
// incremental marker.
FLAG_incremental_marking = false;
FLAG_max_heap_size = 20;
v8::V8::Initialize();
OldLargeObjectSpace* lo = CcTest::heap()->lo_space();
CHECK_NOT_NULL(lo);
int lo_size = Page::kPageSize;
Object obj = lo->AllocateRaw(lo_size).ToObjectChecked();
CHECK(obj.IsHeapObject());
HeapObject ho = HeapObject::cast(obj);
CHECK(lo->Contains(HeapObject::cast(obj)));
CHECK(lo->Contains(ho));
CHECK_EQ(0, Heap::GetFillToAlign(ho.address(), kWordAligned));
// All large objects have the same alignment because they start at the
// same offset within a page. Fixed double arrays have the most strict
// alignment requirements.
CHECK_EQ(
0, Heap::GetFillToAlign(
ho.address(),
HeapObject::RequiredAlignment(
ReadOnlyRoots(CcTest::i_isolate()).fixed_double_array_map())));
Isolate* isolate = CcTest::i_isolate();
HandleScope handle_scope(isolate);
while (true) {
{
AllocationResult allocation = lo->AllocateRaw(lo_size);
if (allocation.IsRetry()) break;
HeapObject ho = HeapObject::cast(allocation.ToObjectChecked());
Handle<HeapObject> keep_alive(ho, isolate);
}
}
CHECK(!lo->IsEmpty());
CHECK(lo->AllocateRaw(lo_size).IsRetry());
}
#ifndef DEBUG
// The test verifies that committed size of a space is less then some threshold.
// Debug builds pull in all sorts of additional instrumentation that increases
// heap sizes. E.g. CSA_ASSERT creates on-heap strings for error messages. These
// messages are also not stable if files are moved and modified during the build
// process (jumbo builds).
TEST(SizeOfInitialHeap) {
ManualGCScope manual_gc_scope;
if (i::FLAG_always_opt) return;
// Bootstrapping without a snapshot causes more allocations.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
if (!isolate->snapshot_available()) return;
HandleScope scope(isolate);
v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
// Skip this test on the custom snapshot builder.
if (!CcTest::global()
->Get(context, v8_str("assertEquals"))
.ToLocalChecked()
->IsUndefined()) {
return;
}
// Initial size of LO_SPACE
size_t initial_lo_space = isolate->heap()->lo_space()->Size();
// The limit for each space for an empty isolate containing just the
// snapshot.
// In PPC the page size is 64K, causing more internal fragmentation
// hence requiring a larger limit.
#if V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64)
const size_t kMaxInitialSizePerSpace = 3 * MB;
#else
const size_t kMaxInitialSizePerSpace = 2 * MB;
#endif
// Freshly initialized VM gets by with the snapshot size (which is below
// kMaxInitialSizePerSpace per space).
Heap* heap = isolate->heap();
for (int i = FIRST_GROWABLE_PAGED_SPACE; i <= LAST_GROWABLE_PAGED_SPACE;
i++) {
// Debug code can be very large, so skip CODE_SPACE if we are generating it.
if (i == CODE_SPACE && i::FLAG_debug_code) continue;
// Check that the initial heap is also below the limit.
CHECK_LE(heap->paged_space(i)->CommittedMemory(), kMaxInitialSizePerSpace);
}
CompileRun("/*empty*/");
// No large objects required to perform the above steps.
CHECK_EQ(initial_lo_space,
static_cast<size_t>(isolate->heap()->lo_space()->Size()));
}
#endif // DEBUG
static HeapObject AllocateUnaligned(NewSpace* space, int size) {
AllocationResult allocation = space->AllocateRaw(size, kWordAligned);
CHECK(!allocation.IsRetry());
HeapObject filler;
CHECK(allocation.To(&filler));
space->heap()->CreateFillerObjectAt(filler.address(), size,
ClearRecordedSlots::kNo);
return filler;
}
static HeapObject AllocateUnaligned(PagedSpace* space, int size) {
AllocationResult allocation = space->AllocateRaw(size, kWordAligned);
CHECK(!allocation.IsRetry());
HeapObject filler;
CHECK(allocation.To(&filler));
space->heap()->CreateFillerObjectAt(filler.address(), size,
ClearRecordedSlots::kNo);
return filler;
}
static HeapObject AllocateUnaligned(OldLargeObjectSpace* space, int size) {
AllocationResult allocation = space->AllocateRaw(size);
CHECK(!allocation.IsRetry());
HeapObject filler;
CHECK(allocation.To(&filler));
return filler;
}
class Observer : public AllocationObserver {
public:
explicit Observer(intptr_t step_size)
: AllocationObserver(step_size), count_(0) {}
void Step(int bytes_allocated, Address addr, size_t) override { count_++; }
int count() const { return count_; }
private:
int count_;
};
template <typename T>
void testAllocationObserver(Isolate* i_isolate, T* space) {
Observer observer1(128);
space->AddAllocationObserver(&observer1);
// The observer should not get notified if we have only allocated less than
// 128 bytes.
AllocateUnaligned(space, 64);
CHECK_EQ(observer1.count(), 0);
// The observer should get called when we have allocated exactly 128 bytes.
AllocateUnaligned(space, 64);
CHECK_EQ(observer1.count(), 1);
// Another >128 bytes should get another notification.
AllocateUnaligned(space, 136);
CHECK_EQ(observer1.count(), 2);
// Allocating a large object should get only one notification.
AllocateUnaligned(space, 1024);
CHECK_EQ(observer1.count(), 3);
// Allocating another 2048 bytes in small objects should get 16
// notifications.
for (int i = 0; i < 64; ++i) {
AllocateUnaligned(space, 32);
}
CHECK_EQ(observer1.count(), 19);
// Multiple observers should work.
Observer observer2(96);
space->AddAllocationObserver(&observer2);
AllocateUnaligned(space, 2048);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 1);
AllocateUnaligned(space, 104);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 2);
// Callback should stop getting called after an observer is removed.
space->RemoveAllocationObserver(&observer1);
AllocateUnaligned(space, 384);
CHECK_EQ(observer1.count(), 20); // no more notifications.
CHECK_EQ(observer2.count(), 3); // this one is still active.
// Ensure that PauseInlineAllocationObserversScope work correctly.
AllocateUnaligned(space, 48);
CHECK_EQ(observer2.count(), 3);
{
PauseAllocationObserversScope pause_observers(i_isolate->heap());
CHECK_EQ(observer2.count(), 3);
AllocateUnaligned(space, 384);
CHECK_EQ(observer2.count(), 3);
}
CHECK_EQ(observer2.count(), 3);
// Coupled with the 48 bytes allocated before the pause, another 48 bytes
// allocated here should trigger a notification.
AllocateUnaligned(space, 48);
CHECK_EQ(observer2.count(), 4);
space->RemoveAllocationObserver(&observer2);
AllocateUnaligned(space, 384);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 4);
}
UNINITIALIZED_TEST(AllocationObserver) {
if (FLAG_single_generation) return;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
testAllocationObserver<NewSpace>(i_isolate, i_isolate->heap()->new_space());
// Old space is used but the code path is shared for all
// classes inheriting from PagedSpace.
testAllocationObserver<PagedSpace>(i_isolate,
i_isolate->heap()->old_space());
testAllocationObserver<OldLargeObjectSpace>(i_isolate,
i_isolate->heap()->lo_space());
}
isolate->Dispose();
}
UNINITIALIZED_TEST(InlineAllocationObserverCadence) {
if (FLAG_single_generation) return;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
// Clear out any pre-existing garbage to make the test consistent
// across snapshot/no-snapshot builds.
CcTest::CollectAllGarbage(i_isolate);
NewSpace* new_space = i_isolate->heap()->new_space();
Observer observer1(512);
new_space->AddAllocationObserver(&observer1);
Observer observer2(576);
new_space->AddAllocationObserver(&observer2);
for (int i = 0; i < 512; ++i) {
AllocateUnaligned(new_space, 32);
}
new_space->RemoveAllocationObserver(&observer1);
new_space->RemoveAllocationObserver(&observer2);
CHECK_EQ(observer1.count(), 32);
CHECK_EQ(observer2.count(), 28);
}
isolate->Dispose();
}
HEAP_TEST(Regress777177) {
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
PagedSpace* old_space = heap->old_space();
Observer observer(128);
old_space->AddAllocationObserver(&observer);
int area_size = old_space->AreaSize();
int max_object_size = kMaxRegularHeapObjectSize;
int filler_size = area_size - max_object_size;
{
// Ensure a new linear allocation area on a fresh page.
AlwaysAllocateScopeForTesting always_allocate(heap);
heap::SimulateFullSpace(old_space);
AllocationResult result = old_space->AllocateRaw(filler_size, kWordAligned);
HeapObject obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj.address(), filler_size,
ClearRecordedSlots::kNo);
}
{
// Allocate all bytes of the linear allocation area. This moves top_ and
// top_on_previous_step_ to the next page.
AllocationResult result =
old_space->AllocateRaw(max_object_size, kWordAligned);
HeapObject obj = result.ToObjectChecked();
// Simulate allocation folding moving the top pointer back.
old_space->SetTopAndLimit(obj.address(), old_space->limit());
}
{
// This triggers assert in crbug.com/777177.
AllocationResult result = old_space->AllocateRaw(filler_size, kWordAligned);
HeapObject obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj.address(), filler_size,
ClearRecordedSlots::kNo);
}
old_space->RemoveAllocationObserver(&observer);
}
HEAP_TEST(Regress791582) {
if (FLAG_single_generation) return;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
NewSpace* new_space = heap->new_space();
GrowNewSpace(heap);
int until_page_end = static_cast<int>(new_space->limit() - new_space->top());
if (!IsAligned(until_page_end, kTaggedSize)) {
// The test works if the size of allocation area size is a multiple of
// pointer size. This is usually the case unless some allocation observer
// is already active (e.g. incremental marking observer).
return;
}
Observer observer(128);
new_space->AddAllocationObserver(&observer);
{
AllocationResult result =
new_space->AllocateRaw(until_page_end, kWordAligned);
HeapObject obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj.address(), until_page_end,
ClearRecordedSlots::kNo);
// Simulate allocation folding moving the top pointer back.
*new_space->allocation_top_address() = obj.address();
}
{
// This triggers assert in crbug.com/791582
AllocationResult result = new_space->AllocateRaw(256, kWordAligned);
HeapObject obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj.address(), 256, ClearRecordedSlots::kNo);
}
new_space->RemoveAllocationObserver(&observer);
}
TEST(ShrinkPageToHighWaterMarkFreeSpaceEnd) {
FLAG_stress_incremental_marking = false;
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
// Prepare page that only contains a single object and a trailing FreeSpace
// filler.
Handle<FixedArray> array =
isolate->factory()->NewFixedArray(128, AllocationType::kOld);
Page* page = Page::FromHeapObject(*array);
// Reset space so high water mark is consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
CHECK(filler.IsFreeSpace());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
size_t should_have_shrunk = RoundDown(
static_cast<size_t>(MemoryChunkLayout::AllocatableMemoryInDataPage() -
array->Size()),
CommitPageSize());
CHECK_EQ(should_have_shrunk, shrunk);
}
TEST(ShrinkPageToHighWaterMarkNoFiller) {
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = 0;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromHeapObject(*array);
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->ResetFreeList();
old_space->FreeLinearAllocationArea();
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
TEST(ShrinkPageToHighWaterMarkOneWordFiller) {
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = kTaggedSize;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromHeapObject(*array);
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
CHECK_EQ(filler.map(),
ReadOnlyRoots(CcTest::heap()).one_pointer_filler_map());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
TEST(ShrinkPageToHighWaterMarkTwoWordFiller) {
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = 2 * kTaggedSize;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromHeapObject(*array);
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
CHECK_EQ(filler.map(),
ReadOnlyRoots(CcTest::heap()).two_pointer_filler_map());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
namespace {
// PageAllocator that always fails.
class FailingPageAllocator : public v8::PageAllocator {
public:
size_t AllocatePageSize() override { return 1024; }
size_t CommitPageSize() override { return 1024; }
void SetRandomMmapSeed(int64_t seed) override {}
void* GetRandomMmapAddr() override { return nullptr; }
void* AllocatePages(void* address, size_t length, size_t alignment,
Permission permissions) override {
return nullptr;
}
bool FreePages(void* address, size_t length) override { return false; }
bool ReleasePages(void* address, size_t length, size_t new_length) override {
return false;
}
bool SetPermissions(void* address, size_t length,
Permission permissions) override {
return false;
}
};
} // namespace
TEST(NoMemoryForNewPage) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
// Memory allocator that will fail to allocate any pages.
FailingPageAllocator failing_allocator;
TestMemoryAllocatorScope test_allocator_scope(isolate, 0, &failing_allocator);
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
OldSpace faked_space(heap);
Page* page = memory_allocator->AllocatePage(
faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space),
NOT_EXECUTABLE);
CHECK_NULL(page);
}
namespace {
// ReadOnlySpace cannot be torn down by a destructor because the destructor
// cannot take an argument. Since these tests create ReadOnlySpaces not attached
// to the Heap directly, they need to be destroyed to ensure the
// MemoryAllocator's stats are all 0 at exit.
class V8_NODISCARD ReadOnlySpaceScope {
public:
explicit ReadOnlySpaceScope(Heap* heap) : ro_space_(heap) {}
~ReadOnlySpaceScope() {
ro_space_.TearDown(CcTest::heap()->memory_allocator());
}
ReadOnlySpace* space() { return &ro_space_; }
private:
ReadOnlySpace ro_space_;
};
} // namespace
TEST(ReadOnlySpaceMetrics_OnePage) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
// Create a read-only space and allocate some memory, shrink the pages and
// check the allocated object size is as expected.
ReadOnlySpaceScope scope(heap);
ReadOnlySpace* faked_space = scope.space();
// Initially no memory.
CHECK_EQ(faked_space->Size(), 0);
CHECK_EQ(faked_space->Capacity(), 0);
CHECK_EQ(faked_space->CommittedMemory(), 0);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
faked_space->AllocateRaw(16, kWordAligned);
faked_space->ShrinkPages();
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
MemoryAllocator* allocator = heap->memory_allocator();
// Allocated objects size.
CHECK_EQ(faked_space->Size(), 16);
size_t committed_memory = RoundUp(
MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(),
allocator->GetCommitPageSize());
// Amount of OS allocated memory.
CHECK_EQ(faked_space->CommittedMemory(), committed_memory);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory);
// Capacity will be one OS page minus the page header.
CHECK_EQ(faked_space->Capacity(),
committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage());
}
TEST(ReadOnlySpaceMetrics_AlignedAllocations) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
// Create a read-only space and allocate some memory, shrink the pages and
// check the allocated object size is as expected.
ReadOnlySpaceScope scope(heap);
ReadOnlySpace* faked_space = scope.space();
// Initially no memory.
CHECK_EQ(faked_space->Size(), 0);
CHECK_EQ(faked_space->Capacity(), 0);
CHECK_EQ(faked_space->CommittedMemory(), 0);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
MemoryAllocator* allocator = heap->memory_allocator();
// Allocate an object just under an OS page in size.
int object_size =
static_cast<int>(allocator->GetCommitPageSize() - kApiTaggedSize);
// TODO(v8:8875): Pointer compression does not enable aligned memory allocation
// yet.
#ifdef V8_COMPRESS_POINTERS
int alignment = kInt32Size;
#else
int alignment = kDoubleSize;
#endif
HeapObject object =
faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked();
CHECK_EQ(object.address() % alignment, 0);
object =
faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked();
CHECK_EQ(object.address() % alignment, 0);
// Calculate size of allocations based on area_start.
Address area_start = faked_space->pages().back()->GetAreaStart();
Address top = RoundUp(area_start, alignment) + object_size;
top = RoundUp(top, alignment) + object_size;
size_t expected_size = top - area_start;
faked_space->ShrinkPages();
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
// Allocated objects size may will contain 4 bytes of padding on 32-bit or
// with pointer compression.
CHECK_EQ(faked_space->Size(), expected_size);
size_t committed_memory = RoundUp(
MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(),
allocator->GetCommitPageSize());
CHECK_EQ(faked_space->CommittedMemory(), committed_memory);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory);
// Capacity will be 3 OS pages minus the page header.
CHECK_EQ(faked_space->Capacity(),
committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage());
}
TEST(ReadOnlySpaceMetrics_TwoPages) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
// Create a read-only space and allocate some memory, shrink the pages and
// check the allocated object size is as expected.
ReadOnlySpaceScope scope(heap);
ReadOnlySpace* faked_space = scope.space();
// Initially no memory.
CHECK_EQ(faked_space->Size(), 0);
CHECK_EQ(faked_space->Capacity(), 0);
CHECK_EQ(faked_space->CommittedMemory(), 0);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
MemoryAllocator* allocator = heap->memory_allocator();
// Allocate an object that's too big to have more than one on a page.
int object_size = RoundUp(
static_cast<int>(
MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE) / 2 + 16),
kTaggedSize);
CHECK_GT(object_size * 2,
MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE));
faked_space->AllocateRaw(object_size, kWordAligned);
// Then allocate another so it expands the space to two pages.
faked_space->AllocateRaw(object_size, kWordAligned);
faked_space->ShrinkPages();
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
// Allocated objects size.
CHECK_EQ(faked_space->Size(), object_size * 2);
// Amount of OS allocated memory.
size_t committed_memory_per_page =
RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size,
allocator->GetCommitPageSize());
CHECK_EQ(faked_space->CommittedMemory(), 2 * committed_memory_per_page);
CHECK_EQ(faked_space->CommittedPhysicalMemory(),
2 * committed_memory_per_page);
// Capacity will be the space up to the amount of committed memory minus the
// page headers.
size_t capacity_per_page =
RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size,
allocator->GetCommitPageSize()) -
MemoryChunkLayout::ObjectStartOffsetInDataPage();
CHECK_EQ(faked_space->Capacity(), 2 * capacity_per_page);
}
} // namespace heap
} // namespace internal
} // namespace v8