v8/test/cctest/test-macro-assembler-riscv64.cc
Jakob Gruber 1ff685d8b1 [deoptimizer] Remove soft deopts
.. since they are the same as eager deopts (% an unused counter).

Fixed: v8:12765
Change-Id: I2be6210e476ead4ac6629a49259f28321e965867
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3565717
Reviewed-by: Tobias Tebbi <tebbi@chromium.org>
Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Commit-Queue: Jakob Linke <jgruber@chromium.org>
Cr-Commit-Position: refs/heads/main@{#79729}
2022-04-04 10:26:36 +00:00

1566 lines
51 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <iostream>
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/simulator.h"
#include "src/init/v8.h"
#include "src/objects/heap-number.h"
#include "src/objects/objects-inl.h"
#include "src/utils/ostreams.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/test-helper-riscv64.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
const float qnan_f = std::numeric_limits<float>::quiet_NaN();
const float snan_f = std::numeric_limits<float>::signaling_NaN();
const double qnan_d = std::numeric_limits<double>::quiet_NaN();
const double snan_d = std::numeric_limits<double>::signaling_NaN();
const float inf_f = std::numeric_limits<float>::infinity();
const double inf_d = std::numeric_limits<double>::infinity();
const float minf_f = -inf_f;
const double minf_d = -inf_d;
using FV = void*(int64_t x, int64_t y, int p2, int p3, int p4);
using F1 = void*(int x, int p1, int p2, int p3, int p4);
using F3 = void*(void* p, int p1, int p2, int p3, int p4);
using F4 = void*(void* p0, void* p1, int p2, int p3, int p4);
#define __ masm.
static uint64_t run_CalcScaledAddress(uint64_t rt, uint64_t rs, int8_t sa) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
auto fn = [sa](MacroAssembler& masm) {
__ CalcScaledAddress(a0, a0, a1, sa);
};
auto f = AssembleCode<FV>(fn);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(rt, rs, 0, 0, 0));
return res;
}
template <typename VTYPE, typename Func>
VTYPE run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
VTYPE value, Func GenerateUnalignedInstructionFunc) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
auto fn = [in_offset, out_offset,
GenerateUnalignedInstructionFunc](MacroAssembler& masm) {
GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
};
auto f = AssembleCode<int32_t(char*)>(fn);
MemCopy(memory_buffer + in_offset, &value, sizeof(VTYPE));
f.Call(memory_buffer);
VTYPE res;
MemCopy(&res, memory_buffer + out_offset, sizeof(VTYPE));
return res;
}
static const std::vector<int32_t> unsigned_test_offset() {
static const int32_t kValues[] = {// value, offset
-132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> unsigned_test_offset_increment() {
static const int32_t kValues[] = {-7, -6, -5, -4, -3, -2, -1, 0,
1, 2, 3, 4, 5, 6, 7};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
TEST(LoadConstants) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
int64_t refConstants[64];
int64_t result[64];
int64_t mask = 1;
for (int i = 0; i < 64; i++) {
refConstants[i] = ~(mask << i);
}
auto fn = [&refConstants](MacroAssembler& masm) {
__ mv(a4, a0);
for (int i = 0; i < 64; i++) {
// Load constant.
__ li(a5, Operand(refConstants[i]));
__ Sd(a5, MemOperand(a4));
__ Add64(a4, a4, Operand(kSystemPointerSize));
}
};
auto f = AssembleCode<FV>(fn);
(void)f.Call(reinterpret_cast<int64_t>(result), 0, 0, 0, 0);
// Check results.
for (int i = 0; i < 64; i++) {
CHECK(refConstants[i] == result[i]);
}
}
TEST(LoadAddress) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes);
Label to_jump, skip;
__ mv(a4, a0);
__ Branch(&skip);
__ bind(&to_jump);
__ nop();
__ nop();
__ jr(ra);
__ nop();
__ bind(&skip);
__ li(a4,
Operand(masm.jump_address(&to_jump),
RelocInfo::INTERNAL_REFERENCE_ENCODED),
ADDRESS_LOAD);
int check_size = masm.InstructionsGeneratedSince(&skip);
// NOTE (RISCV): current li generates 6 instructions, if the sequence is
// changed, need to adjust the CHECK_EQ value too
CHECK_EQ(6, check_size);
__ jr(a4);
__ nop();
__ stop();
__ stop();
__ stop();
__ stop();
__ stop();
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
(void)f.Call(0, 0, 0, 0, 0);
// Check results.
}
TEST(jump_tables4) {
// Similar to test-assembler-mips jump_tables1, with extra test for branch
// trampoline required before emission of the dd table (where trampolines are
// blocked), and proper transition to long-branch mode.
// Regression test for v8:4294.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes);
const int kNumCases = 128;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label near_start, end, done;
__ Push(ra);
__ mv(a1, zero_reg);
__ Branch(&end);
__ bind(&near_start);
// Generate slightly less than 32K instructions, which will soon require
// trampoline for branch distance fixup.
for (int i = 0; i < 32768 - 256; ++i) {
__ addi(a1, a1, 1);
}
__ GenerateSwitchTable(a0, kNumCases,
[&labels](size_t i) { return labels + i; });
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ RV_li(a0, values[i]);
__ Branch(&done);
}
__ bind(&done);
__ Pop(ra);
__ jr(ra);
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F1>::FromCode(*code);
for (int i = 0; i < kNumCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
// ::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables6) {
// Similar to test-assembler-mips jump_tables1, with extra test for branch
// trampoline required after emission of the dd table (where trampolines are
// blocked). This test checks if number of really generated instructions is
// greater than number of counted instructions from code, as we are expecting
// generation of trampoline in this case (when number of kFillInstr
// instructions is close to 32K)
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes);
const int kSwitchTableCases = 40;
const int kMaxBranchOffset = Assembler::kMaxBranchOffset;
const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;
const int kMaxOffsetForTrampolineStart =
kMaxBranchOffset - 16 * kTrampolineSlotsSize;
const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
(kSwitchTablePrologueSize + 2 * kSwitchTableCases) -
20;
int values[kSwitchTableCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kSwitchTableCases];
Label near_start, end, done;
__ Push(ra);
__ mv(a1, zero_reg);
int offs1 = masm.pc_offset();
int gen_insn = 0;
__ Branch(&end);
gen_insn += 1;
__ bind(&near_start);
// Generate slightly less than 32K instructions, which will soon require
// trampoline for branch distance fixup.
for (int i = 0; i < kFillInstr; ++i) {
__ addi(a1, a1, 1);
}
gen_insn += kFillInstr;
__ GenerateSwitchTable(a0, kSwitchTableCases,
[&labels](size_t i) { return labels + i; });
gen_insn += (kSwitchTablePrologueSize + 2 * kSwitchTableCases);
for (int i = 0; i < kSwitchTableCases; ++i) {
__ bind(&labels[i]);
__ li(a0, Operand(values[i]));
__ Branch(&done);
}
gen_insn += 3 * kSwitchTableCases;
// If offset from here to first branch instr is greater than max allowed
// offset for trampoline ...
CHECK_LT(kMaxOffsetForTrampolineStart, masm.pc_offset() - offs1);
// ... number of generated instructions must be greater then "gen_insn",
// as we are expecting trampoline generation
CHECK_LT(gen_insn, (masm.pc_offset() - offs1) / kInstrSize);
__ bind(&done);
__ Pop(ra);
__ jr(ra);
__ nop();
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F1>::FromCode(*code);
for (int i = 0; i < kSwitchTableCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
// ::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(CalcScaledAddress) {
CcTest::InitializeVM();
struct TestCaseLsa {
int64_t rt;
int64_t rs;
uint8_t sa;
uint64_t expected_res;
};
struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
{0x4, 0x1, 1, 0x6},
{0x4, 0x1, 2, 0x8},
{0x4, 0x1, 3, 0xC},
{0x4, 0x1, 4, 0x14},
{0x4, 0x1, 5, 0x24},
{0x0, 0x1, 1, 0x2},
{0x0, 0x1, 2, 0x4},
{0x0, 0x1, 3, 0x8},
{0x0, 0x1, 4, 0x10},
{0x0, 0x1, 5, 0x20},
{0x4, 0x0, 1, 0x4},
{0x4, 0x0, 2, 0x4},
{0x4, 0x0, 3, 0x4},
{0x4, 0x0, 4, 0x4},
{0x4, 0x0, 5, 0x4},
// Shift overflow.
{0x4, INT64_MAX, 1, 0x2},
{0x4, INT64_MAX >> 1, 2, 0x0},
{0x4, INT64_MAX >> 2, 3, 0xFFFFFFFFFFFFFFFC},
{0x4, INT64_MAX >> 3, 4, 0xFFFFFFFFFFFFFFF4},
{0x4, INT64_MAX >> 4, 5, 0xFFFFFFFFFFFFFFE4},
// Signed addition overflow.
{INT64_MAX - 1, 0x1, 1, 0x8000000000000000},
{INT64_MAX - 3, 0x1, 2, 0x8000000000000000},
{INT64_MAX - 7, 0x1, 3, 0x8000000000000000},
{INT64_MAX - 15, 0x1, 4, 0x8000000000000000},
{INT64_MAX - 31, 0x1, 5, 0x8000000000000000},
// Addition overflow.
{-2, 0x1, 1, 0x0},
{-4, 0x1, 2, 0x0},
{-8, 0x1, 3, 0x0},
{-16, 0x1, 4, 0x0},
{-32, 0x1, 5, 0x0}};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_CalcScaledAddress(tc[i].rt, tc[i].rs, tc[i].sa);
CHECK_EQ(tc[i].expected_res, res);
}
}
static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
0x7FFFFFFF, 0x80000000, 0x80000001,
0x80FFFF00, 0x8FFFFFFF};
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> cvt_trunc_int32_test_values() {
static const int32_t kValues[] = {
static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
static_cast<int32_t>(0xFFFFFFFF)};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<uint64_t> cvt_trunc_uint64_test_values() {
static const uint64_t kValues[] = {
0x0000000000000000, 0x0000000000000001, 0x0000FFFFFFFF0000,
0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001,
0x8000FFFFFFFF0000, 0x8FFFFFFFFFFFFFFF /*, 0xFFFFFFFFFFFFFFFF*/};
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int64_t> cvt_trunc_int64_test_values() {
static const int64_t kValues[] = {static_cast<int64_t>(0x0000000000000000),
static_cast<int64_t>(0x0000000000000001),
static_cast<int64_t>(0x0000FFFFFFFF0000),
// static_cast<int64_t>(0x7FFFFFFFFFFFFFFF),
static_cast<int64_t>(0x8000000000000000),
static_cast<int64_t>(0x8000000000000001),
static_cast<int64_t>(0x8000FFFFFFFF0000),
static_cast<int64_t>(0x8FFFFFFFFFFFFFFF),
static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
#define FOR_INPUTS3(ctype, var, test_vector) \
std::vector<ctype> var##_vec = test_vector(); \
for (ctype var : var##_vec)
#define FOR_INT32_INPUTS3(var, test_vector) \
FOR_INPUTS3(int32_t, var, test_vector)
#define FOR_INT64_INPUTS3(var, test_vector) \
FOR_INPUTS3(int64_t, var, test_vector)
#define FOR_UINT32_INPUTS3(var, test_vector) \
FOR_INPUTS3(uint32_t, var, test_vector)
#define FOR_UINT64_INPUTS3(var, test_vector) \
FOR_INPUTS3(uint64_t, var, test_vector)
#define FOR_TWO_INPUTS(ctype, var1, var2, test_vector) \
std::vector<ctype> var##_vec = test_vector(); \
std::vector<ctype>::iterator var1; \
std::vector<ctype>::reverse_iterator var2; \
for (var1 = var##_vec.begin(), var2 = var##_vec.rbegin(); \
var1 != var##_vec.end(); ++var1, ++var2)
#define FOR_INT32_TWO_INPUTS(var1, var2, test_vector) \
FOR_TWO_INPUTS(int32_t, var1, var2, test_vector)
TEST(Cvt_s_uw_Trunc_uw_s) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) {
__ Cvt_s_uw(fa0, a0);
__ Trunc_uw_s(a0, fa0);
};
FOR_UINT32_INPUTS3(i, cvt_trunc_uint32_test_values) {
// some integers cannot be represented precisely in float, input may
// not directly match the return value of GenAndRunTest
CHECK_EQ(static_cast<uint32_t>(static_cast<float>(i)),
GenAndRunTest<uint32_t>(i, fn));
}
}
TEST(Cvt_s_ul_Trunc_ul_s) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) {
__ Cvt_s_ul(fa0, a0);
__ Trunc_ul_s(a0, fa0);
};
FOR_UINT64_INPUTS3(i, cvt_trunc_uint64_test_values) {
CHECK_EQ(static_cast<uint64_t>(static_cast<float>(i)),
GenAndRunTest<uint64_t>(i, fn));
}
}
TEST(Cvt_d_ul_Trunc_ul_d) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) {
__ Cvt_d_ul(fa0, a0);
__ Trunc_ul_d(a0, fa0);
};
FOR_UINT64_INPUTS3(i, cvt_trunc_uint64_test_values) {
CHECK_EQ(static_cast<uint64_t>(static_cast<double>(i)),
GenAndRunTest<uint64_t>(i, fn));
}
}
TEST(cvt_d_l_Trunc_l_d) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) {
__ fcvt_d_l(fa0, a0);
__ Trunc_l_d(a0, fa0);
};
FOR_INT64_INPUTS3(i, cvt_trunc_int64_test_values) {
CHECK_EQ(static_cast<int64_t>(static_cast<double>(i)),
GenAndRunTest<int64_t>(i, fn));
}
}
TEST(cvt_d_w_Trunc_w_d) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) {
__ fcvt_d_w(fa0, a0);
__ Trunc_w_d(a0, fa0);
};
FOR_INT32_INPUTS3(i, cvt_trunc_int32_test_values) {
CHECK_EQ(static_cast<int32_t>(static_cast<double>(i)),
GenAndRunTest<int32_t>(i, fn));
}
}
static const std::vector<int64_t> overflow_int64_test_values() {
static const int64_t kValues[] = {static_cast<int64_t>(0xF000000000000000),
static_cast<int64_t>(0x0000000000000001),
static_cast<int64_t>(0xFF00000000000000),
static_cast<int64_t>(0x0000F00111111110),
static_cast<int64_t>(0x0F00001000000000),
static_cast<int64_t>(0x991234AB12A96731),
static_cast<int64_t>(0xB0FFFF0F0F0F0F01),
static_cast<int64_t>(0x00006FFFFFFFFFFF),
static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
TEST(OverflowInstructions) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
struct T {
int64_t lhs;
int64_t rhs;
int64_t output_add;
int64_t output_add2;
int64_t output_sub;
int64_t output_sub2;
int64_t output_mul;
int64_t output_mul2;
int64_t overflow_add;
int64_t overflow_add2;
int64_t overflow_sub;
int64_t overflow_sub2;
int64_t overflow_mul;
int64_t overflow_mul2;
} t;
FOR_INT64_INPUTS3(i, overflow_int64_test_values) {
FOR_INT64_INPUTS3(j, overflow_int64_test_values) {
auto ii = i;
auto jj = j;
int64_t expected_add, expected_sub;
int32_t ii32 = static_cast<int32_t>(ii);
int32_t jj32 = static_cast<int32_t>(jj);
int32_t expected_mul;
int64_t expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
auto fn = [](MacroAssembler& masm) {
__ Ld(t0, MemOperand(a0, offsetof(T, lhs)));
__ Ld(t1, MemOperand(a0, offsetof(T, rhs)));
__ AddOverflow64(t2, t0, Operand(t1), a1);
__ Sd(t2, MemOperand(a0, offsetof(T, output_add)));
__ Sd(a1, MemOperand(a0, offsetof(T, overflow_add)));
__ mv(a1, zero_reg);
__ AddOverflow64(t0, t0, Operand(t1), a1);
__ Sd(t0, MemOperand(a0, offsetof(T, output_add2)));
__ Sd(a1, MemOperand(a0, offsetof(T, overflow_add2)));
__ Ld(t0, MemOperand(a0, offsetof(T, lhs)));
__ Ld(t1, MemOperand(a0, offsetof(T, rhs)));
__ SubOverflow64(t2, t0, Operand(t1), a1);
__ Sd(t2, MemOperand(a0, offsetof(T, output_sub)));
__ Sd(a1, MemOperand(a0, offsetof(T, overflow_sub)));
__ mv(a1, zero_reg);
__ SubOverflow64(t0, t0, Operand(t1), a1);
__ Sd(t0, MemOperand(a0, offsetof(T, output_sub2)));
__ Sd(a1, MemOperand(a0, offsetof(T, overflow_sub2)));
__ Ld(t0, MemOperand(a0, offsetof(T, lhs)));
__ Ld(t1, MemOperand(a0, offsetof(T, rhs)));
__ SignExtendWord(t0, t0);
__ SignExtendWord(t1, t1);
__ MulOverflow32(t2, t0, Operand(t1), a1);
__ Sd(t2, MemOperand(a0, offsetof(T, output_mul)));
__ Sd(a1, MemOperand(a0, offsetof(T, overflow_mul)));
__ mv(a1, zero_reg);
__ MulOverflow32(t0, t0, Operand(t1), a1);
__ Sd(t0, MemOperand(a0, offsetof(T, output_mul2)));
__ Sd(a1, MemOperand(a0, offsetof(T, overflow_mul2)));
};
auto f = AssembleCode<F3>(fn);
t.lhs = ii;
t.rhs = jj;
f.Call(&t, 0, 0, 0, 0);
expected_add_ovf = base::bits::SignedAddOverflow64(ii, jj, &expected_add);
expected_sub_ovf = base::bits::SignedSubOverflow64(ii, jj, &expected_sub);
expected_mul_ovf =
base::bits::SignedMulOverflow32(ii32, jj32, &expected_mul);
CHECK_EQ(expected_add_ovf, t.overflow_add < 0);
CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0);
CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0);
CHECK_EQ(t.overflow_add, t.overflow_add2);
CHECK_EQ(t.overflow_sub, t.overflow_sub2);
CHECK_EQ(t.overflow_mul, t.overflow_mul2);
CHECK_EQ(expected_add, t.output_add);
CHECK_EQ(expected_add, t.output_add2);
CHECK_EQ(expected_sub, t.output_sub);
CHECK_EQ(expected_sub, t.output_sub2);
if (!expected_mul_ovf) {
CHECK_EQ(expected_mul, t.output_mul);
CHECK_EQ(expected_mul, t.output_mul2);
}
}
}
}
TEST(min_max_nan) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct TestFloat {
double a;
double b;
double c;
double d;
float e;
float f;
float g;
float h;
} test;
const int kTableLength = 13;
double inputsa[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0,
inf_d, minf_d, inf_d, qnan_d, 3.0,
inf_d, qnan_d, qnan_d};
double inputsb[kTableLength] = {3.0, 2.0, 0.0, -0.0, inf_d,
42.0, inf_d, minf_d, 3.0, qnan_d,
qnan_d, inf_d, qnan_d};
double outputsdmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0,
42.0, minf_d, minf_d, qnan_d, qnan_d,
qnan_d, qnan_d, qnan_d};
double outputsdmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, inf_d,
inf_d, inf_d, inf_d, qnan_d, qnan_d,
qnan_d, qnan_d, qnan_d};
float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0,
inf_f, minf_f, inf_f, qnan_f, 3.0,
inf_f, qnan_f, qnan_f};
float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, inf_f,
42.0, inf_f, minf_f, 3.0, qnan_f,
qnan_f, inf_f, qnan_f};
float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0,
42.0, minf_f, minf_f, qnan_f, qnan_f,
qnan_f, qnan_f, qnan_f};
float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, inf_f,
inf_f, inf_f, inf_f, qnan_f, qnan_f,
qnan_f, qnan_f, qnan_f};
auto fn = [](MacroAssembler& masm) {
__ push(s6);
__ InitializeRootRegister();
__ LoadDouble(fa3, MemOperand(a0, offsetof(TestFloat, a)));
__ LoadDouble(fa4, MemOperand(a0, offsetof(TestFloat, b)));
__ LoadFloat(fa1, MemOperand(a0, offsetof(TestFloat, e)));
__ LoadFloat(fa2, MemOperand(a0, offsetof(TestFloat, f)));
__ Float64Min(fa5, fa3, fa4);
__ Float64Max(fa6, fa3, fa4);
__ Float32Min(fa7, fa1, fa2);
__ Float32Max(fa0, fa1, fa2);
__ StoreDouble(fa5, MemOperand(a0, offsetof(TestFloat, c)));
__ StoreDouble(fa6, MemOperand(a0, offsetof(TestFloat, d)));
__ StoreFloat(fa7, MemOperand(a0, offsetof(TestFloat, g)));
__ StoreFloat(fa0, MemOperand(a0, offsetof(TestFloat, h)));
__ pop(s6);
};
auto f = AssembleCode<F3>(fn);
for (int i = 0; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.e = inputse[i];
test.f = inputsf[i];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
}
}
TEST(Ulh) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
auto fn1 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ Ulh(t0, MemOperand(a0, in_offset));
__ Ush(t0, MemOperand(a0, out_offset));
};
auto fn2 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ mv(t0, a0);
__ Ulh(a0, MemOperand(a0, in_offset));
__ Ush(a0, MemOperand(t0, out_offset));
};
auto fn3 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ mv(t0, a0);
__ Ulhu(a0, MemOperand(a0, in_offset));
__ Ush(a0, MemOperand(t0, out_offset));
};
auto fn4 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ Ulhu(t0, MemOperand(a0, in_offset));
__ Ush(t0, MemOperand(a0, out_offset));
};
FOR_UINT16_INPUTS(i) {
FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) {
FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) {
auto value = i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn1));
// test when loaded value overwrites base-register of load address
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn2));
// test when loaded value overwrites base-register of load address
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn3));
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn4));
}
}
}
}
TEST(Ulh_bitextension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
auto fn = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
Label success, fail, end, different;
__ Ulh(t0, MemOperand(a0, in_offset));
__ Ulhu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ sraiw(t0, t0, 15);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ sraiw(t1, t1, 15);
__ Branch(&fail, ne, t1, Operand(1));
__ sraiw(t0, t0, 15);
__ addiw(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ulh(t0, MemOperand(a0, in_offset));
__ Ush(t0, MemOperand(a0, out_offset));
__ Branch(&end);
__ bind(&fail);
__ Ush(zero_reg, MemOperand(a0, out_offset));
__ bind(&end);
};
FOR_UINT16_INPUTS(i) {
FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) {
FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) {
auto value = i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn));
}
}
}
}
TEST(Ulw) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
auto fn_1 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ Ulw(t0, MemOperand(a0, in_offset));
__ Usw(t0, MemOperand(a0, out_offset));
};
auto fn_2 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ mv(t0, a0);
__ Ulw(a0, MemOperand(a0, in_offset));
__ Usw(a0, MemOperand(t0, out_offset));
};
auto fn_3 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ Ulwu(t0, MemOperand(a0, in_offset));
__ Usw(t0, MemOperand(a0, out_offset));
};
auto fn_4 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ mv(t0, a0);
__ Ulwu(a0, MemOperand(a0, in_offset));
__ Usw(a0, MemOperand(t0, out_offset));
};
FOR_UINT32_INPUTS(i) {
FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) {
FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) {
auto value = i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn_1));
// test when loaded value overwrites base-register of load address
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn_2));
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn_3));
// test when loaded value overwrites base-register of load address
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn_4));
}
}
}
}
TEST(Ulw_extension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
auto fn = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
Label success, fail, end, different;
__ Ulw(t0, MemOperand(a0, in_offset));
__ Ulwu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ srai(t0, t0, 31);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ srai(t1, t1, 31);
__ Branch(&fail, ne, t1, Operand(1));
__ srai(t0, t0, 31);
__ addi(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ulw(t0, MemOperand(a0, in_offset));
__ Usw(t0, MemOperand(a0, out_offset));
__ Branch(&end);
__ bind(&fail);
__ Usw(zero_reg, MemOperand(a0, out_offset));
__ bind(&end);
};
FOR_UINT32_INPUTS(i) {
FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) {
FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) {
auto value = i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn));
}
}
}
}
TEST(Uld) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
auto fn_1 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ Uld(t0, MemOperand(a0, in_offset));
__ Usd(t0, MemOperand(a0, out_offset));
};
auto fn_2 = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ mv(t0, a0);
__ Uld(a0, MemOperand(a0, in_offset));
__ Usd(a0, MemOperand(t0, out_offset));
};
FOR_UINT64_INPUTS(i) {
FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) {
FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) {
auto value = i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn_1));
// test when loaded value overwrites base-register of load address
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn_2));
}
}
}
}
auto fn = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ ULoadFloat(fa0, MemOperand(a0, in_offset), t0);
__ UStoreFloat(fa0, MemOperand(a0, out_offset), t0);
};
TEST(ULoadFloat) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_FLOAT32_INPUTS(i) {
// skip nan because CHECK_EQ cannot handle NaN
if (std::isnan(i)) continue;
FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) {
FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) {
auto value = i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn));
}
}
}
}
TEST(ULoadDouble) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
auto fn = [](MacroAssembler& masm, int32_t in_offset, int32_t out_offset) {
__ ULoadDouble(fa0, MemOperand(a0, in_offset), t0);
__ UStoreDouble(fa0, MemOperand(a0, out_offset), t0);
};
FOR_FLOAT64_INPUTS(i) {
// skip nan because CHECK_EQ cannot handle NaN
if (std::isnan(i)) continue;
FOR_INT32_TWO_INPUTS(j1, j2, unsigned_test_offset) {
FOR_INT32_TWO_INPUTS(k1, k2, unsigned_test_offset_increment) {
auto value = i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(value, run_Unaligned(buffer_middle, in_offset, out_offset,
value, fn));
}
}
}
}
TEST(Sltu) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
// compare against immediate value
auto fn_1 = [j](MacroAssembler& masm) { __ Sltu(a0, a0, Operand(j)); };
CHECK_EQ(i < j, GenAndRunTest<int32_t>(i, fn_1));
// compare against registers
auto fn_2 = [](MacroAssembler& masm) { __ Sltu(a0, a0, a1); };
CHECK_EQ(i < j, GenAndRunTest<int32_t>(i, j, fn_2));
}
}
}
template <typename T, typename Inputs, typename Results>
static void GenerateMacroFloat32MinMax(MacroAssembler& masm) {
T a = T::from_code(4); // f4
T b = T::from_code(6); // f6
T c = T::from_code(8); // f8
#define FLOAT_MIN_MAX(fminmax, res, x, y, res_field) \
__ LoadFloat(x, MemOperand(a0, offsetof(Inputs, src1_))); \
__ LoadFloat(y, MemOperand(a0, offsetof(Inputs, src2_))); \
__ fminmax(res, x, y); \
__ StoreFloat(a, MemOperand(a1, offsetof(Results, res_field)))
// a = min(b, c);
FLOAT_MIN_MAX(Float32Min, a, b, c, min_abc_);
// a = min(a, b);
FLOAT_MIN_MAX(Float32Min, a, a, b, min_aab_);
// a = min(b, a);
FLOAT_MIN_MAX(Float32Min, a, b, a, min_aba_);
// a = max(b, c);
FLOAT_MIN_MAX(Float32Max, a, b, c, max_abc_);
// a = max(a, b);
FLOAT_MIN_MAX(Float32Max, a, a, b, max_aab_);
// a = max(b, a);
FLOAT_MIN_MAX(Float32Max, a, b, a, max_aba_);
#undef FLOAT_MIN_MAX
}
TEST(macro_float_minmax_f32) {
// Test the Float32Min and Float32Max macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct Inputs {
float src1_;
float src2_;
};
struct Results {
// Check all register aliasing possibilities in order to exercise all
// code-paths in the macro masm.
float min_abc_;
float min_aab_;
float min_aba_;
float max_abc_;
float max_aab_;
float max_aba_;
};
auto f = AssembleCode<F4>(
GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>);
#define CHECK_MINMAX(src1, src2, min, max) \
do { \
Inputs inputs = {src1, src2}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
CHECK_EQ( \
bit_cast<uint32_t>(max), \
bit_cast<uint32_t>(results.max_aba_)); /* Use a bit_cast to correctly \
identify -0.0 and NaNs. */ \
} while (0)
float nan_a = std::numeric_limits<float>::quiet_NaN();
float nan_b = std::numeric_limits<float>::quiet_NaN();
CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);
CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);
CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_MINMAX
}
template <typename T, typename Inputs, typename Results>
static void GenerateMacroFloat64MinMax(MacroAssembler& masm) {
T a = T::from_code(4); // f4
T b = T::from_code(6); // f6
T c = T::from_code(8); // f8
#define FLOAT_MIN_MAX(fminmax, res, x, y, res_field) \
__ LoadDouble(x, MemOperand(a0, offsetof(Inputs, src1_))); \
__ LoadDouble(y, MemOperand(a0, offsetof(Inputs, src2_))); \
__ fminmax(res, x, y); \
__ StoreDouble(a, MemOperand(a1, offsetof(Results, res_field)))
// a = min(b, c);
FLOAT_MIN_MAX(Float64Min, a, b, c, min_abc_);
// a = min(a, b);
FLOAT_MIN_MAX(Float64Min, a, a, b, min_aab_);
// a = min(b, a);
FLOAT_MIN_MAX(Float64Min, a, b, a, min_aba_);
// a = max(b, c);
FLOAT_MIN_MAX(Float64Max, a, b, c, max_abc_);
// a = max(a, b);
FLOAT_MIN_MAX(Float64Max, a, a, b, max_aab_);
// a = max(b, a);
FLOAT_MIN_MAX(Float64Max, a, b, a, max_aba_);
#undef FLOAT_MIN_MAX
}
TEST(macro_float_minmax_f64) {
// Test the Float64Min and Float64Max macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct Inputs {
double src1_;
double src2_;
};
struct Results {
// Check all register aliasing possibilities in order to exercise all
// code-paths in the macro masm.
double min_abc_;
double min_aab_;
double min_aba_;
double max_abc_;
double max_aab_;
double max_aba_;
};
auto f = AssembleCode<F4>(
GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>);
#define CHECK_MINMAX(src1, src2, min, max) \
do { \
Inputs inputs = {src1, src2}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
/* Use a bit_cast to correctly identify -0.0 and NaNs. */ \
} while (0)
double nan_a = qnan_d;
double nan_b = qnan_d;
CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);
CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);
CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_MINMAX
}
template <typename T>
static bool CompareF(T input1, T input2, FPUCondition cond) {
switch (cond) {
case EQ:
return (input1 == input2);
case LT:
return (input1 < input2);
case LE:
return (input1 <= input2);
case NE:
return (input1 != input2);
case GT:
return (input1 > input2);
case GE:
return (input1 >= input2);
default:
UNREACHABLE();
}
}
static bool CompareU(uint64_t input1, uint64_t input2, Condition cond) {
switch (cond) {
case eq:
return (input1 == input2);
case ne:
return (input1 != input2);
case Uless:
return (input1 < input2);
case Uless_equal:
return (input1 <= input2);
case Ugreater:
return (input1 > input2);
case Ugreater_equal:
return (input1 >= input2);
case less:
return (static_cast<int64_t>(input1) < static_cast<int64_t>(input2));
case less_equal:
return (static_cast<int64_t>(input1) <= static_cast<int64_t>(input2));
case greater:
return (static_cast<int64_t>(input1) > static_cast<int64_t>(input2));
case greater_equal:
return (static_cast<int64_t>(input1) >= static_cast<int64_t>(input2));
default:
UNREACHABLE();
}
}
static void FCompare32Helper(FPUCondition cond) {
auto fn = [cond](MacroAssembler& masm) { __ CompareF32(a0, cond, fa0, fa1); };
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) {
bool comp_res = CompareF(i, j, cond);
CHECK_EQ(comp_res, GenAndRunTest<int32_t>(i, j, fn));
}
}
}
static void FCompare64Helper(FPUCondition cond) {
auto fn = [cond](MacroAssembler& masm) { __ CompareF64(a0, cond, fa0, fa1); };
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
bool comp_res = CompareF(i, j, cond);
CHECK_EQ(comp_res, GenAndRunTest<int32_t>(i, j, fn));
}
}
}
TEST(FCompare32_Branch) {
CcTest::InitializeVM();
FCompare32Helper(EQ);
FCompare32Helper(LT);
FCompare32Helper(LE);
FCompare32Helper(NE);
FCompare32Helper(GT);
FCompare32Helper(GE);
// test CompareIsNanF32: return true if any operand isnan
auto fn = [](MacroAssembler& masm) { __ CompareIsNanF32(a0, fa0, fa1); };
CHECK_EQ(false, GenAndRunTest<int32_t>(1023.01f, -100.23f, fn));
CHECK_EQ(true, GenAndRunTest<int32_t>(1023.01f, snan_f, fn));
CHECK_EQ(true, GenAndRunTest<int32_t>(snan_f, -100.23f, fn));
CHECK_EQ(true, GenAndRunTest<int32_t>(snan_f, qnan_f, fn));
}
TEST(FCompare64_Branch) {
CcTest::InitializeVM();
FCompare64Helper(EQ);
FCompare64Helper(LT);
FCompare64Helper(LE);
FCompare64Helper(NE);
FCompare64Helper(GT);
FCompare64Helper(GE);
// test CompareIsNanF64: return true if any operand isnan
auto fn = [](MacroAssembler& masm) { __ CompareIsNanF64(a0, fa0, fa1); };
CHECK_EQ(false, GenAndRunTest<int32_t>(1023.01, -100.23, fn));
CHECK_EQ(true, GenAndRunTest<int32_t>(1023.01, snan_d, fn));
CHECK_EQ(true, GenAndRunTest<int32_t>(snan_d, -100.23, fn));
CHECK_EQ(true, GenAndRunTest<int32_t>(snan_d, qnan_d, fn));
}
static void CompareIHelper(Condition cond) {
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
auto input1 = i;
auto input2 = j;
bool comp_res = CompareU(input1, input2, cond);
// test compare against immediate value
auto fn1 = [cond, input2](MacroAssembler& masm) {
__ CompareI(a0, a0, Operand(input2), cond);
};
CHECK_EQ(comp_res, GenAndRunTest<int32_t>(input1, fn1));
// test compare registers
auto fn2 = [cond](MacroAssembler& masm) {
__ CompareI(a0, a0, Operand(a1), cond);
};
CHECK_EQ(comp_res, GenAndRunTest<int32_t>(input1, input2, fn2));
}
}
}
TEST(CompareI) {
CcTest::InitializeVM();
CompareIHelper(eq);
CompareIHelper(ne);
CompareIHelper(greater);
CompareIHelper(greater_equal);
CompareIHelper(less);
CompareIHelper(less_equal);
CompareIHelper(Ugreater);
CompareIHelper(Ugreater_equal);
CompareIHelper(Uless);
CompareIHelper(Uless_equal);
}
TEST(Clz32) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) { __ Clz32(a0, a0); };
FOR_UINT32_INPUTS(i) {
// __builtin_clzll(0) is undefined
if (i == 0) continue;
CHECK_EQ(__builtin_clz(i), GenAndRunTest<int>(i, fn));
}
}
TEST(Ctz32) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) { __ Ctz32(a0, a0); };
FOR_UINT32_INPUTS(i) {
// __builtin_clzll(0) is undefined
if (i == 0) continue;
CHECK_EQ(__builtin_ctz(i), GenAndRunTest<int>(i, fn));
}
}
TEST(Clz64) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) { __ Clz64(a0, a0); };
FOR_UINT64_INPUTS(i) {
// __builtin_clzll(0) is undefined
if (i == 0) continue;
CHECK_EQ(__builtin_clzll(i), GenAndRunTest<int>(i, fn));
}
}
TEST(Ctz64) {
CcTest::InitializeVM();
auto fn = [](MacroAssembler& masm) { __ Ctz64(a0, a0); };
FOR_UINT64_INPUTS(i) {
// __builtin_clzll(0) is undefined
if (i == 0) continue;
CHECK_EQ(__builtin_ctzll(i), GenAndRunTest<int>(i, fn));
}
}
TEST(ByteSwap) {
CcTest::InitializeVM();
auto fn0 = [](MacroAssembler& masm) { __ ByteSwap(a0, a0, 4, t0); };
CHECK_EQ((int32_t)0x89ab'cdef, GenAndRunTest<int32_t>(0xefcd'ab89, fn0));
auto fn1 = [](MacroAssembler& masm) { __ ByteSwap(a0, a0, 8, t0); };
CHECK_EQ((int64_t)0x0123'4567'89ab'cdef,
GenAndRunTest<int64_t>(0xefcd'ab89'6745'2301, fn1));
}
TEST(Dpopcnt) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
uint64_t in[9];
uint64_t out[9];
uint64_t result[9];
uint64_t val = 0xffffffffffffffffl;
uint64_t cnt = 64;
for (int i = 0; i < 7; i++) {
in[i] = val;
out[i] = cnt;
cnt >>= 1;
val >>= cnt;
}
in[7] = 0xaf1000000000000bl;
out[7] = 10;
in[8] = 0xe030000f00003000l;
out[8] = 11;
auto fn = [&in](MacroAssembler& masm) {
__ mv(a4, a0);
for (int i = 0; i < 7; i++) {
// Load constant.
__ li(a3, Operand(in[i]));
__ Popcnt64(a5, a3, t0);
__ Sd(a5, MemOperand(a4));
__ Add64(a4, a4, Operand(kSystemPointerSize));
}
__ li(a3, Operand(in[7]));
__ Popcnt64(a5, a3, t0);
__ Sd(a5, MemOperand(a4));
__ Add64(a4, a4, Operand(kSystemPointerSize));
__ li(a3, Operand(in[8]));
__ Popcnt64(a5, a3, t0);
__ Sd(a5, MemOperand(a4));
__ Add64(a4, a4, Operand(kSystemPointerSize));
};
auto f = AssembleCode<FV>(fn);
(void)f.Call(reinterpret_cast<int64_t>(result), 0, 0, 0, 0);
// Check results.
for (int i = 0; i < 9; i++) {
CHECK(out[i] == result[i]);
}
}
TEST(Popcnt) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
uint64_t in[8];
uint64_t out[8];
uint64_t result[8];
uint64_t val = 0xffffffff;
uint64_t cnt = 32;
for (int i = 0; i < 6; i++) {
in[i] = val;
out[i] = cnt;
cnt >>= 1;
val >>= cnt;
}
in[6] = 0xaf10000b;
out[6] = 10;
in[7] = 0xe03f3000;
out[7] = 11;
auto fn = [&in](MacroAssembler& masm) {
__ mv(a4, a0);
for (int i = 0; i < 6; i++) {
// Load constant.
__ li(a3, Operand(in[i]));
__ Popcnt32(a5, a3, t0);
__ Sd(a5, MemOperand(a4));
__ Add64(a4, a4, Operand(kSystemPointerSize));
}
__ li(a3, Operand(in[6]));
__ Popcnt64(a5, a3, t0);
__ Sd(a5, MemOperand(a4));
__ Add64(a4, a4, Operand(kSystemPointerSize));
__ li(a3, Operand(in[7]));
__ Popcnt64(a5, a3, t0);
__ Sd(a5, MemOperand(a4));
__ Add64(a4, a4, Operand(kSystemPointerSize));
};
auto f = AssembleCode<FV>(fn);
(void)f.Call(reinterpret_cast<int64_t>(result), 0, 0, 0, 0);
// Check results.
for (int i = 0; i < 8; i++) {
CHECK(out[i] == result[i]);
}
}
TEST(Move) {
CcTest::InitializeVM();
union {
double dval;
int32_t ival[2];
} t;
{
auto fn = [](MacroAssembler& masm) { __ ExtractHighWordFromF64(a0, fa0); };
t.ival[0] = 256;
t.ival[1] = -123;
CHECK_EQ(static_cast<int64_t>(t.ival[1]),
GenAndRunTest<int64_t>(t.dval, fn));
t.ival[0] = 645;
t.ival[1] = 127;
CHECK_EQ(static_cast<int64_t>(t.ival[1]),
GenAndRunTest<int64_t>(t.dval, fn));
}
{
auto fn = [](MacroAssembler& masm) { __ ExtractLowWordFromF64(a0, fa0); };
t.ival[0] = 256;
t.ival[1] = -123;
CHECK_EQ(static_cast<int64_t>(t.ival[0]),
GenAndRunTest<int64_t>(t.dval, fn));
t.ival[0] = -645;
t.ival[1] = 127;
CHECK_EQ(static_cast<int64_t>(t.ival[0]),
GenAndRunTest<int64_t>(t.dval, fn));
}
}
TEST(DeoptExitSizeIsFixed) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
STATIC_ASSERT(static_cast<int>(kFirstDeoptimizeKind) == 0);
for (int i = 0; i < kDeoptimizeKindCount; i++) {
DeoptimizeKind kind = static_cast<DeoptimizeKind>(i);
Label before_exit;
Builtin target = Deoptimizer::GetDeoptimizationEntry(kind);
// Mirroring logic in code-generator.cc.
if (kind == DeoptimizeKind::kLazy) {
// CFI emits an extra instruction here.
masm.BindExceptionHandler(&before_exit);
} else {
masm.bind(&before_exit);
}
masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
&before_exit);
CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
kind == DeoptimizeKind::kLazy ? Deoptimizer::kLazyDeoptExitSize
: Deoptimizer::kEagerDeoptExitSize);
}
}
TEST(AddWithImm) {
CcTest::InitializeVM();
#define Test(Op, Input, Expected) \
{ \
auto fn = [](MacroAssembler& masm) { __ Op(a0, zero_reg, Input); }; \
CHECK_EQ(static_cast<int64_t>(Expected), GenAndRunTest(fn)); \
}
Test(Add64, 4095, 4095);
Test(Add32, 4095, 4095);
Test(Sub64, 4095, -4095);
Test(Sub32, 4095, -4095);
#undef Test
}
#undef __
} // namespace internal
} // namespace v8