v8/src/compiler.cc
bradnelson 29d793728a Eliminate use of CompilationInfo in several AstVisitor descendants.
We're moving away from using CompilationInfo as a big bag o' stuff.
Passing in just what we need to several AstVisitors to avoid
increasing the problem.

BUG=None
TEST=trybots
R=titzer@chromium.org
LOG=N

Review URL: https://codereview.chromium.org/1318823010

Cr-Commit-Position: refs/heads/master@{#30529}
2015-09-01 23:06:37 +00:00

1765 lines
64 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler.h"
#include <algorithm>
#include "src/ast-numbering.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/compilation-cache.h"
#include "src/compiler/pipeline.h"
#include "src/cpu-profiler.h"
#include "src/debug/debug.h"
#include "src/debug/liveedit.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/gdb-jit.h"
#include "src/hydrogen.h"
#include "src/interpreter/interpreter.h"
#include "src/isolate-inl.h"
#include "src/lithium.h"
#include "src/log-inl.h"
#include "src/messages.h"
#include "src/parser.h"
#include "src/prettyprinter.h"
#include "src/rewriter.h"
#include "src/runtime-profiler.h"
#include "src/scanner-character-streams.h"
#include "src/scopeinfo.h"
#include "src/scopes.h"
#include "src/snapshot/serialize.h"
#include "src/typing.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
std::ostream& operator<<(std::ostream& os, const SourcePosition& p) {
if (p.IsUnknown()) {
return os << "<?>";
} else if (FLAG_hydrogen_track_positions) {
return os << "<" << p.inlining_id() << ":" << p.position() << ">";
} else {
return os << "<0:" << p.raw() << ">";
}
}
#define PARSE_INFO_GETTER(type, name) \
type CompilationInfo::name() const { \
CHECK(parse_info()); \
return parse_info()->name(); \
}
#define PARSE_INFO_GETTER_WITH_DEFAULT(type, name, def) \
type CompilationInfo::name() const { \
return parse_info() ? parse_info()->name() : def; \
}
PARSE_INFO_GETTER(Handle<Script>, script)
PARSE_INFO_GETTER(bool, is_eval)
PARSE_INFO_GETTER(bool, is_native)
PARSE_INFO_GETTER(bool, is_module)
PARSE_INFO_GETTER(FunctionLiteral*, literal)
PARSE_INFO_GETTER_WITH_DEFAULT(LanguageMode, language_mode, STRICT)
PARSE_INFO_GETTER_WITH_DEFAULT(Handle<JSFunction>, closure,
Handle<JSFunction>::null())
PARSE_INFO_GETTER_WITH_DEFAULT(Scope*, scope, nullptr)
PARSE_INFO_GETTER(Handle<Context>, context)
PARSE_INFO_GETTER(Handle<SharedFunctionInfo>, shared_info)
#undef PARSE_INFO_GETTER
#undef PARSE_INFO_GETTER_WITH_DEFAULT
// Exactly like a CompilationInfo, except being allocated via {new} and it also
// creates and enters a Zone on construction and deallocates it on destruction.
class CompilationInfoWithZone : public CompilationInfo {
public:
explicit CompilationInfoWithZone(Handle<JSFunction> function)
: CompilationInfo(new ParseInfo(&zone_, function)) {}
// Virtual destructor because a CompilationInfoWithZone has to exit the
// zone scope and get rid of dependent maps even when the destructor is
// called when cast as a CompilationInfo.
virtual ~CompilationInfoWithZone() {
DisableFutureOptimization();
dependencies()->Rollback();
delete parse_info_;
parse_info_ = nullptr;
}
private:
Zone zone_;
};
bool CompilationInfo::has_shared_info() const {
return parse_info_ && !parse_info_->shared_info().is_null();
}
bool CompilationInfo::has_context() const {
return parse_info_ && !parse_info_->context().is_null();
}
bool CompilationInfo::has_literal() const {
return parse_info_ && parse_info_->literal() != nullptr;
}
bool CompilationInfo::has_scope() const {
return parse_info_ && parse_info_->scope() != nullptr;
}
CompilationInfo::CompilationInfo(ParseInfo* parse_info)
: CompilationInfo(parse_info, nullptr, nullptr, BASE, parse_info->isolate(),
parse_info->zone()) {
// Compiling for the snapshot typically results in different code than
// compiling later on. This means that code recompiled with deoptimization
// support won't be "equivalent" (as defined by SharedFunctionInfo::
// EnableDeoptimizationSupport), so it will replace the old code and all
// its type feedback. To avoid this, always compile functions in the snapshot
// with deoptimization support.
if (isolate_->serializer_enabled()) EnableDeoptimizationSupport();
if (FLAG_context_specialization) MarkAsContextSpecializing();
if (FLAG_turbo_inlining) MarkAsInliningEnabled();
if (FLAG_turbo_source_positions) MarkAsSourcePositionsEnabled();
if (FLAG_turbo_splitting) MarkAsSplittingEnabled();
if (FLAG_turbo_types) MarkAsTypingEnabled();
if (has_shared_info()) {
if (shared_info()->is_compiled()) {
// We should initialize the CompilationInfo feedback vector from the
// passed in shared info, rather than creating a new one.
feedback_vector_ = Handle<TypeFeedbackVector>(
shared_info()->feedback_vector(), parse_info->isolate());
}
if (shared_info()->never_compiled()) MarkAsFirstCompile();
}
}
CompilationInfo::CompilationInfo(CodeStub* stub, Isolate* isolate, Zone* zone)
: CompilationInfo(nullptr, stub, CodeStub::MajorName(stub->MajorKey()),
STUB, isolate, zone) {}
CompilationInfo::CompilationInfo(const char* debug_name, Isolate* isolate,
Zone* zone)
: CompilationInfo(nullptr, nullptr, debug_name, STUB, isolate, zone) {}
CompilationInfo::CompilationInfo(ParseInfo* parse_info, CodeStub* code_stub,
const char* debug_name, Mode mode,
Isolate* isolate, Zone* zone)
: parse_info_(parse_info),
isolate_(isolate),
flags_(0),
code_stub_(code_stub),
mode_(mode),
osr_ast_id_(BailoutId::None()),
zone_(zone),
deferred_handles_(nullptr),
dependencies_(isolate, zone),
bailout_reason_(kNoReason),
prologue_offset_(Code::kPrologueOffsetNotSet),
no_frame_ranges_(isolate->cpu_profiler()->is_profiling()
? new List<OffsetRange>(2)
: nullptr),
track_positions_(FLAG_hydrogen_track_positions ||
isolate->cpu_profiler()->is_profiling()),
opt_count_(has_shared_info() ? shared_info()->opt_count() : 0),
parameter_count_(0),
optimization_id_(-1),
osr_expr_stack_height_(0),
function_type_(nullptr),
debug_name_(debug_name) {
// Parameter count is number of stack parameters.
if (code_stub_ != NULL) {
CodeStubDescriptor descriptor(code_stub_);
parameter_count_ = descriptor.GetStackParameterCount();
if (descriptor.function_mode() == NOT_JS_FUNCTION_STUB_MODE) {
parameter_count_--;
}
}
}
CompilationInfo::~CompilationInfo() {
DisableFutureOptimization();
delete deferred_handles_;
delete no_frame_ranges_;
#ifdef DEBUG
// Check that no dependent maps have been added or added dependent maps have
// been rolled back or committed.
DCHECK(dependencies()->IsEmpty());
#endif // DEBUG
}
void CompilationInfo::SetStub(CodeStub* code_stub) {
SetMode(STUB);
code_stub_ = code_stub;
debug_name_ = CodeStub::MajorName(code_stub->MajorKey());
}
int CompilationInfo::num_parameters() const {
return has_scope() ? scope()->num_parameters() : parameter_count_;
}
int CompilationInfo::num_parameters_including_this() const {
return num_parameters() + (is_this_defined() ? 1 : 0);
}
bool CompilationInfo::is_this_defined() const { return !IsStub(); }
int CompilationInfo::num_heap_slots() const {
return has_scope() ? scope()->num_heap_slots() : 0;
}
// Primitive functions are unlikely to be picked up by the stack-walking
// profiler, so they trigger their own optimization when they're called
// for the SharedFunctionInfo::kCallsUntilPrimitiveOptimization-th time.
bool CompilationInfo::ShouldSelfOptimize() {
return FLAG_crankshaft &&
!(literal()->flags() & AstProperties::kDontSelfOptimize) &&
!literal()->dont_optimize() &&
literal()->scope()->AllowsLazyCompilation() &&
(!has_shared_info() || !shared_info()->optimization_disabled());
}
void CompilationInfo::EnsureFeedbackVector() {
if (feedback_vector_.is_null()) {
feedback_vector_ = isolate()->factory()->NewTypeFeedbackVector(
literal()->feedback_vector_spec());
}
// It's very important that recompiles do not alter the structure of the
// type feedback vector.
CHECK(!feedback_vector_->SpecDiffersFrom(literal()->feedback_vector_spec()));
}
bool CompilationInfo::has_simple_parameters() {
return scope()->has_simple_parameters();
}
int CompilationInfo::TraceInlinedFunction(Handle<SharedFunctionInfo> shared,
SourcePosition position,
int parent_id) {
DCHECK(track_positions_);
int inline_id = static_cast<int>(inlined_function_infos_.size());
InlinedFunctionInfo info(parent_id, position, UnboundScript::kNoScriptId,
shared->start_position());
if (!shared->script()->IsUndefined()) {
Handle<Script> script(Script::cast(shared->script()));
info.script_id = script->id()->value();
if (FLAG_hydrogen_track_positions && !script->source()->IsUndefined()) {
CodeTracer::Scope tracing_scope(isolate()->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "--- FUNCTION SOURCE (" << shared->DebugName()->ToCString().get()
<< ") id{" << optimization_id() << "," << inline_id << "} ---\n";
{
DisallowHeapAllocation no_allocation;
int start = shared->start_position();
int len = shared->end_position() - start;
String::SubStringRange source(String::cast(script->source()), start,
len);
for (const auto& c : source) {
os << AsReversiblyEscapedUC16(c);
}
}
os << "\n--- END ---\n";
}
}
inlined_function_infos_.push_back(info);
if (FLAG_hydrogen_track_positions && inline_id != 0) {
CodeTracer::Scope tracing_scope(isolate()->GetCodeTracer());
OFStream os(tracing_scope.file());
os << "INLINE (" << shared->DebugName()->ToCString().get() << ") id{"
<< optimization_id() << "," << inline_id << "} AS " << inline_id
<< " AT " << position << std::endl;
}
return inline_id;
}
void CompilationInfo::LogDeoptCallPosition(int pc_offset, int inlining_id) {
if (!track_positions_ || IsStub()) return;
DCHECK_LT(static_cast<size_t>(inlining_id), inlined_function_infos_.size());
inlined_function_infos_.at(inlining_id).deopt_pc_offsets.push_back(pc_offset);
}
base::SmartArrayPointer<char> CompilationInfo::GetDebugName() const {
if (parse_info()) {
AllowHandleDereference allow_deref;
return parse_info()->literal()->debug_name()->ToCString();
}
const char* str = debug_name_ ? debug_name_ : "unknown";
size_t len = strlen(str) + 1;
base::SmartArrayPointer<char> name(new char[len]);
memcpy(name.get(), str, len);
return name;
}
bool CompilationInfo::MustReplaceUndefinedReceiverWithGlobalProxy() {
return is_sloppy(language_mode()) && !is_native() &&
scope()->has_this_declaration() && scope()->receiver()->is_used();
}
class HOptimizedGraphBuilderWithPositions: public HOptimizedGraphBuilder {
public:
explicit HOptimizedGraphBuilderWithPositions(CompilationInfo* info)
: HOptimizedGraphBuilder(info) {
}
#define DEF_VISIT(type) \
void Visit##type(type* node) override { \
SourcePosition old_position = SourcePosition::Unknown(); \
if (node->position() != RelocInfo::kNoPosition) { \
old_position = source_position(); \
SetSourcePosition(node->position()); \
} \
HOptimizedGraphBuilder::Visit##type(node); \
if (!old_position.IsUnknown()) { \
set_source_position(old_position); \
} \
}
EXPRESSION_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
#define DEF_VISIT(type) \
void Visit##type(type* node) override { \
SourcePosition old_position = SourcePosition::Unknown(); \
if (node->position() != RelocInfo::kNoPosition) { \
old_position = source_position(); \
SetSourcePosition(node->position()); \
} \
HOptimizedGraphBuilder::Visit##type(node); \
if (!old_position.IsUnknown()) { \
set_source_position(old_position); \
} \
}
STATEMENT_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
#define DEF_VISIT(type) \
void Visit##type(type* node) override { \
HOptimizedGraphBuilder::Visit##type(node); \
}
DECLARATION_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
};
OptimizedCompileJob::Status OptimizedCompileJob::CreateGraph() {
DCHECK(info()->IsOptimizing());
// Do not use Crankshaft/TurboFan if we need to be able to set break points.
if (info()->shared_info()->HasDebugInfo()) {
return AbortOptimization(kFunctionBeingDebugged);
}
// Limit the number of times we try to optimize functions.
const int kMaxOptCount =
FLAG_deopt_every_n_times == 0 ? FLAG_max_opt_count : 1000;
if (info()->opt_count() > kMaxOptCount) {
return AbortOptimization(kOptimizedTooManyTimes);
}
// Check the whitelist for Crankshaft.
if (!info()->closure()->PassesFilter(FLAG_hydrogen_filter)) {
return AbortOptimization(kHydrogenFilter);
}
// Optimization requires a version of fullcode with deoptimization support.
// Recompile the unoptimized version of the code if the current version
// doesn't have deoptimization support already.
// Otherwise, if we are gathering compilation time and space statistics
// for hydrogen, gather baseline statistics for a fullcode compilation.
bool should_recompile = !info()->shared_info()->has_deoptimization_support();
if (should_recompile || FLAG_hydrogen_stats) {
base::ElapsedTimer timer;
if (FLAG_hydrogen_stats) {
timer.Start();
}
if (!Compiler::EnsureDeoptimizationSupport(info())) {
return SetLastStatus(FAILED);
}
if (FLAG_hydrogen_stats) {
isolate()->GetHStatistics()->IncrementFullCodeGen(timer.Elapsed());
}
}
DCHECK(info()->shared_info()->has_deoptimization_support());
DCHECK(!info()->is_first_compile());
// Check the enabling conditions for TurboFan.
bool dont_crankshaft = info()->shared_info()->dont_crankshaft();
if (((FLAG_turbo_asm && info()->shared_info()->asm_function()) ||
(dont_crankshaft && strcmp(FLAG_turbo_filter, "~~") == 0) ||
info()->closure()->PassesFilter(FLAG_turbo_filter)) &&
(FLAG_turbo_osr || !info()->is_osr())) {
// Use TurboFan for the compilation.
if (FLAG_trace_opt) {
OFStream os(stdout);
os << "[compiling method " << Brief(*info()->closure())
<< " using TurboFan";
if (info()->is_osr()) os << " OSR";
os << "]" << std::endl;
}
if (info()->shared_info()->asm_function()) {
if (info()->osr_frame()) info()->MarkAsFrameSpecializing();
info()->MarkAsContextSpecializing();
} else if (FLAG_turbo_type_feedback) {
info()->MarkAsTypeFeedbackEnabled();
info()->EnsureFeedbackVector();
}
if (!info()->shared_info()->asm_function() ||
FLAG_turbo_asm_deoptimization) {
info()->MarkAsDeoptimizationEnabled();
}
Timer t(this, &time_taken_to_create_graph_);
compiler::Pipeline pipeline(info());
pipeline.GenerateCode();
if (!info()->code().is_null()) {
return SetLastStatus(SUCCEEDED);
}
}
if (!isolate()->use_crankshaft() || dont_crankshaft) {
// Crankshaft is entirely disabled.
return SetLastStatus(FAILED);
}
Scope* scope = info()->scope();
if (LUnallocated::TooManyParameters(scope->num_parameters())) {
// Crankshaft would require too many Lithium operands.
return AbortOptimization(kTooManyParameters);
}
if (info()->is_osr() &&
LUnallocated::TooManyParametersOrStackSlots(scope->num_parameters(),
scope->num_stack_slots())) {
// Crankshaft would require too many Lithium operands.
return AbortOptimization(kTooManyParametersLocals);
}
if (scope->HasIllegalRedeclaration()) {
// Crankshaft cannot handle illegal redeclarations.
return AbortOptimization(kFunctionWithIllegalRedeclaration);
}
if (FLAG_trace_opt) {
OFStream os(stdout);
os << "[compiling method " << Brief(*info()->closure())
<< " using Crankshaft";
if (info()->is_osr()) os << " OSR";
os << "]" << std::endl;
}
if (FLAG_trace_hydrogen) {
isolate()->GetHTracer()->TraceCompilation(info());
}
// Type-check the function.
AstTyper(info()->isolate(), info()->zone(), info()->closure(),
info()->scope(), info()->osr_ast_id(), info()->literal())
.Run();
// Optimization could have been disabled by the parser. Note that this check
// is only needed because the Hydrogen graph builder is missing some bailouts.
if (info()->shared_info()->optimization_disabled()) {
return AbortOptimization(
info()->shared_info()->disable_optimization_reason());
}
graph_builder_ = (info()->is_tracking_positions() || FLAG_trace_ic)
? new (info()->zone())
HOptimizedGraphBuilderWithPositions(info())
: new (info()->zone()) HOptimizedGraphBuilder(info());
Timer t(this, &time_taken_to_create_graph_);
graph_ = graph_builder_->CreateGraph();
if (isolate()->has_pending_exception()) {
return SetLastStatus(FAILED);
}
if (graph_ == NULL) return SetLastStatus(BAILED_OUT);
if (info()->dependencies()->HasAborted()) {
// Dependency has changed during graph creation. Let's try again later.
return RetryOptimization(kBailedOutDueToDependencyChange);
}
return SetLastStatus(SUCCEEDED);
}
OptimizedCompileJob::Status OptimizedCompileJob::OptimizeGraph() {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
DisallowCodeDependencyChange no_dependency_change;
DCHECK(last_status() == SUCCEEDED);
// TODO(turbofan): Currently everything is done in the first phase.
if (!info()->code().is_null()) {
return last_status();
}
Timer t(this, &time_taken_to_optimize_);
DCHECK(graph_ != NULL);
BailoutReason bailout_reason = kNoReason;
if (graph_->Optimize(&bailout_reason)) {
chunk_ = LChunk::NewChunk(graph_);
if (chunk_ != NULL) return SetLastStatus(SUCCEEDED);
} else if (bailout_reason != kNoReason) {
graph_builder_->Bailout(bailout_reason);
}
return SetLastStatus(BAILED_OUT);
}
OptimizedCompileJob::Status OptimizedCompileJob::GenerateCode() {
DCHECK(last_status() == SUCCEEDED);
// TODO(turbofan): Currently everything is done in the first phase.
if (!info()->code().is_null()) {
info()->dependencies()->Commit(info()->code());
if (info()->is_deoptimization_enabled()) {
info()->parse_info()->context()->native_context()->AddOptimizedCode(
*info()->code());
}
RecordOptimizationStats();
return last_status();
}
DCHECK(!info()->dependencies()->HasAborted());
DisallowCodeDependencyChange no_dependency_change;
DisallowJavascriptExecution no_js(isolate());
{ // Scope for timer.
Timer timer(this, &time_taken_to_codegen_);
DCHECK(chunk_ != NULL);
DCHECK(graph_ != NULL);
// Deferred handles reference objects that were accessible during
// graph creation. To make sure that we don't encounter inconsistencies
// between graph creation and code generation, we disallow accessing
// objects through deferred handles during the latter, with exceptions.
DisallowDeferredHandleDereference no_deferred_handle_deref;
Handle<Code> optimized_code = chunk_->Codegen();
if (optimized_code.is_null()) {
if (info()->bailout_reason() == kNoReason) {
return AbortOptimization(kCodeGenerationFailed);
}
return SetLastStatus(BAILED_OUT);
}
info()->SetCode(optimized_code);
}
RecordOptimizationStats();
// Add to the weak list of optimized code objects.
info()->context()->native_context()->AddOptimizedCode(*info()->code());
return SetLastStatus(SUCCEEDED);
}
void OptimizedCompileJob::RecordOptimizationStats() {
Handle<JSFunction> function = info()->closure();
if (!function->IsOptimized()) {
// Concurrent recompilation and OSR may race. Increment only once.
int opt_count = function->shared()->opt_count();
function->shared()->set_opt_count(opt_count + 1);
}
double ms_creategraph = time_taken_to_create_graph_.InMillisecondsF();
double ms_optimize = time_taken_to_optimize_.InMillisecondsF();
double ms_codegen = time_taken_to_codegen_.InMillisecondsF();
if (FLAG_trace_opt) {
PrintF("[optimizing ");
function->ShortPrint();
PrintF(" - took %0.3f, %0.3f, %0.3f ms]\n", ms_creategraph, ms_optimize,
ms_codegen);
}
if (FLAG_trace_opt_stats) {
static double compilation_time = 0.0;
static int compiled_functions = 0;
static int code_size = 0;
compilation_time += (ms_creategraph + ms_optimize + ms_codegen);
compiled_functions++;
code_size += function->shared()->SourceSize();
PrintF("Compiled: %d functions with %d byte source size in %fms.\n",
compiled_functions,
code_size,
compilation_time);
}
if (FLAG_hydrogen_stats) {
isolate()->GetHStatistics()->IncrementSubtotals(time_taken_to_create_graph_,
time_taken_to_optimize_,
time_taken_to_codegen_);
}
}
// Sets the expected number of properties based on estimate from compiler.
void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
int estimate) {
// If no properties are added in the constructor, they are more likely
// to be added later.
if (estimate == 0) estimate = 2;
// TODO(yangguo): check whether those heuristics are still up-to-date.
// We do not shrink objects that go into a snapshot (yet), so we adjust
// the estimate conservatively.
if (shared->GetIsolate()->serializer_enabled()) {
estimate += 2;
} else {
// Inobject slack tracking will reclaim redundant inobject space later,
// so we can afford to adjust the estimate generously.
estimate += 8;
}
shared->set_expected_nof_properties(estimate);
}
static void MaybeDisableOptimization(Handle<SharedFunctionInfo> shared_info,
BailoutReason bailout_reason) {
if (bailout_reason != kNoReason) {
shared_info->DisableOptimization(bailout_reason);
}
}
static void RecordFunctionCompilation(Logger::LogEventsAndTags tag,
CompilationInfo* info,
Handle<SharedFunctionInfo> shared) {
// SharedFunctionInfo is passed separately, because if CompilationInfo
// was created using Script object, it will not have it.
// Log the code generation. If source information is available include
// script name and line number. Check explicitly whether logging is
// enabled as finding the line number is not free.
if (info->isolate()->logger()->is_logging_code_events() ||
info->isolate()->cpu_profiler()->is_profiling()) {
Handle<Script> script = info->parse_info()->script();
Handle<Code> code = info->code();
if (code.is_identical_to(info->isolate()->builtins()->CompileLazy())) {
return;
}
int line_num = Script::GetLineNumber(script, shared->start_position()) + 1;
int column_num =
Script::GetColumnNumber(script, shared->start_position()) + 1;
String* script_name = script->name()->IsString()
? String::cast(script->name())
: info->isolate()->heap()->empty_string();
Logger::LogEventsAndTags log_tag = Logger::ToNativeByScript(tag, *script);
PROFILE(info->isolate(),
CodeCreateEvent(log_tag, *code, *shared, info, script_name,
line_num, column_num));
}
}
static bool CompileUnoptimizedCode(CompilationInfo* info) {
DCHECK(AllowCompilation::IsAllowed(info->isolate()));
if (!Compiler::Analyze(info->parse_info()) ||
!FullCodeGenerator::MakeCode(info)) {
Isolate* isolate = info->isolate();
if (!isolate->has_pending_exception()) isolate->StackOverflow();
return false;
}
return true;
}
static bool GenerateBytecode(CompilationInfo* info) {
DCHECK(AllowCompilation::IsAllowed(info->isolate()));
if (!Compiler::Analyze(info->parse_info()) ||
!interpreter::Interpreter::MakeBytecode(info)) {
Isolate* isolate = info->isolate();
if (!isolate->has_pending_exception()) isolate->StackOverflow();
return false;
}
return true;
}
MUST_USE_RESULT static MaybeHandle<Code> GetUnoptimizedCodeCommon(
CompilationInfo* info) {
VMState<COMPILER> state(info->isolate());
PostponeInterruptsScope postpone(info->isolate());
// Parse and update CompilationInfo with the results.
if (!Parser::ParseStatic(info->parse_info())) return MaybeHandle<Code>();
Handle<SharedFunctionInfo> shared = info->shared_info();
FunctionLiteral* lit = info->literal();
shared->set_language_mode(lit->language_mode());
SetExpectedNofPropertiesFromEstimate(shared, lit->expected_property_count());
MaybeDisableOptimization(shared, lit->dont_optimize_reason());
if (FLAG_ignition && info->closure()->PassesFilter(FLAG_ignition_filter)) {
// Compile bytecode for the interpreter.
if (!GenerateBytecode(info)) return MaybeHandle<Code>();
} else {
// Compile unoptimized code.
if (!CompileUnoptimizedCode(info)) return MaybeHandle<Code>();
CHECK_EQ(Code::FUNCTION, info->code()->kind());
RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, info, shared);
}
// Update the shared function info with the scope info. Allocating the
// ScopeInfo object may cause a GC.
Handle<ScopeInfo> scope_info =
ScopeInfo::Create(info->isolate(), info->zone(), info->scope());
shared->set_scope_info(*scope_info);
// Update the code and feedback vector for the shared function info.
shared->ReplaceCode(*info->code());
shared->set_feedback_vector(*info->feedback_vector());
return info->code();
}
MUST_USE_RESULT static MaybeHandle<Code> GetCodeFromOptimizedCodeMap(
Handle<JSFunction> function, BailoutId osr_ast_id) {
Handle<SharedFunctionInfo> shared(function->shared());
DisallowHeapAllocation no_gc;
CodeAndLiterals cached = shared->SearchOptimizedCodeMap(
function->context()->native_context(), osr_ast_id);
if (cached.code != nullptr) {
// Caching of optimized code enabled and optimized code found.
if (cached.literals != nullptr) function->set_literals(cached.literals);
DCHECK(!cached.code->marked_for_deoptimization());
DCHECK(function->shared()->is_compiled());
return Handle<Code>(cached.code);
}
return MaybeHandle<Code>();
}
static void InsertCodeIntoOptimizedCodeMap(CompilationInfo* info) {
Handle<Code> code = info->code();
if (code->kind() != Code::OPTIMIZED_FUNCTION) return; // Nothing to do.
// Context specialization folds-in the context, so no sharing can occur.
if (info->is_context_specializing()) return;
// Frame specialization implies context specialization.
DCHECK(!info->is_frame_specializing());
// Do not cache bound functions.
Handle<JSFunction> function = info->closure();
if (function->shared()->bound()) return;
// Cache optimized context-specific code.
if (FLAG_cache_optimized_code) {
Handle<SharedFunctionInfo> shared(function->shared());
Handle<FixedArray> literals(function->literals());
Handle<Context> native_context(function->context()->native_context());
SharedFunctionInfo::AddToOptimizedCodeMap(shared, native_context, code,
literals, info->osr_ast_id());
}
// Do not cache context-independent code compiled for OSR.
if (code->is_turbofanned() && info->is_osr()) return;
// Cache optimized context-independent code.
if (FLAG_turbo_cache_shared_code && code->is_turbofanned()) {
DCHECK(!info->is_context_specializing());
DCHECK(info->osr_ast_id().IsNone());
Handle<SharedFunctionInfo> shared(function->shared());
SharedFunctionInfo::AddSharedCodeToOptimizedCodeMap(shared, code);
}
}
static bool Renumber(ParseInfo* parse_info) {
if (!AstNumbering::Renumber(parse_info->isolate(), parse_info->zone(),
parse_info->literal())) {
return false;
}
Handle<SharedFunctionInfo> shared_info = parse_info->shared_info();
if (!shared_info.is_null()) {
FunctionLiteral* lit = parse_info->literal();
shared_info->set_ast_node_count(lit->ast_node_count());
MaybeDisableOptimization(shared_info, lit->dont_optimize_reason());
shared_info->set_dont_crankshaft(lit->flags() &
AstProperties::kDontCrankshaft);
}
return true;
}
bool Compiler::Analyze(ParseInfo* info) {
DCHECK_NOT_NULL(info->literal());
if (!Rewriter::Rewrite(info)) return false;
if (!Scope::Analyze(info)) return false;
if (!Renumber(info)) return false;
DCHECK_NOT_NULL(info->scope());
return true;
}
bool Compiler::ParseAndAnalyze(ParseInfo* info) {
if (!Parser::ParseStatic(info)) return false;
return Compiler::Analyze(info);
}
static bool GetOptimizedCodeNow(CompilationInfo* info) {
if (!Compiler::ParseAndAnalyze(info->parse_info())) return false;
TimerEventScope<TimerEventRecompileSynchronous> timer(info->isolate());
OptimizedCompileJob job(info);
if (job.CreateGraph() != OptimizedCompileJob::SUCCEEDED ||
job.OptimizeGraph() != OptimizedCompileJob::SUCCEEDED ||
job.GenerateCode() != OptimizedCompileJob::SUCCEEDED) {
if (FLAG_trace_opt) {
PrintF("[aborted optimizing ");
info->closure()->ShortPrint();
PrintF(" because: %s]\n", GetBailoutReason(info->bailout_reason()));
}
return false;
}
// Success!
DCHECK(!info->isolate()->has_pending_exception());
InsertCodeIntoOptimizedCodeMap(info);
RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, info,
info->shared_info());
return true;
}
static bool GetOptimizedCodeLater(CompilationInfo* info) {
Isolate* isolate = info->isolate();
if (!isolate->optimizing_compile_dispatcher()->IsQueueAvailable()) {
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Compilation queue full, will retry optimizing ");
info->closure()->ShortPrint();
PrintF(" later.\n");
}
return false;
}
CompilationHandleScope handle_scope(info);
if (!Compiler::ParseAndAnalyze(info->parse_info())) return false;
// Reopen handles in the new CompilationHandleScope.
info->ReopenHandlesInNewHandleScope();
info->parse_info()->ReopenHandlesInNewHandleScope();
TimerEventScope<TimerEventRecompileSynchronous> timer(info->isolate());
OptimizedCompileJob* job = new (info->zone()) OptimizedCompileJob(info);
OptimizedCompileJob::Status status = job->CreateGraph();
if (status != OptimizedCompileJob::SUCCEEDED) return false;
isolate->optimizing_compile_dispatcher()->QueueForOptimization(job);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Queued ");
info->closure()->ShortPrint();
if (info->is_osr()) {
PrintF(" for concurrent OSR at %d.\n", info->osr_ast_id().ToInt());
} else {
PrintF(" for concurrent optimization.\n");
}
}
return true;
}
MaybeHandle<Code> Compiler::GetUnoptimizedCode(Handle<JSFunction> function) {
DCHECK(!function->GetIsolate()->has_pending_exception());
DCHECK(!function->is_compiled());
if (function->shared()->is_compiled()) {
return Handle<Code>(function->shared()->code());
}
CompilationInfoWithZone info(function);
Handle<Code> result;
ASSIGN_RETURN_ON_EXCEPTION(info.isolate(), result,
GetUnoptimizedCodeCommon(&info),
Code);
return result;
}
MaybeHandle<Code> Compiler::GetLazyCode(Handle<JSFunction> function) {
Isolate* isolate = function->GetIsolate();
DCHECK(!isolate->has_pending_exception());
DCHECK(!function->is_compiled());
AggregatedHistogramTimerScope timer(isolate->counters()->compile_lazy());
// If the debugger is active, do not compile with turbofan unless we can
// deopt from turbofan code.
if (FLAG_turbo_asm && function->shared()->asm_function() &&
(FLAG_turbo_asm_deoptimization || !isolate->debug()->is_active()) &&
!FLAG_turbo_osr) {
CompilationInfoWithZone info(function);
VMState<COMPILER> state(isolate);
PostponeInterruptsScope postpone(isolate);
info.SetOptimizing(BailoutId::None(), handle(function->shared()->code()));
if (GetOptimizedCodeNow(&info)) {
DCHECK(function->shared()->is_compiled());
return info.code();
}
// We have failed compilation. If there was an exception clear it so that
// we can compile unoptimized code.
if (isolate->has_pending_exception()) isolate->clear_pending_exception();
}
if (function->shared()->is_compiled()) {
return Handle<Code>(function->shared()->code());
}
CompilationInfoWithZone info(function);
Handle<Code> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate, result, GetUnoptimizedCodeCommon(&info),
Code);
if (FLAG_always_opt) {
Handle<Code> opt_code;
if (Compiler::GetOptimizedCode(
function, result,
Compiler::NOT_CONCURRENT).ToHandle(&opt_code)) {
result = opt_code;
}
}
return result;
}
MaybeHandle<Code> Compiler::GetStubCode(Handle<JSFunction> function,
CodeStub* stub) {
// Build a "hybrid" CompilationInfo for a JSFunction/CodeStub pair.
Zone zone;
ParseInfo parse_info(&zone, function);
CompilationInfo info(&parse_info);
info.SetFunctionType(stub->GetCallInterfaceDescriptor().GetFunctionType());
info.MarkAsContextSpecializing();
info.MarkAsDeoptimizationEnabled();
info.SetStub(stub);
// Run a "mini pipeline", extracted from compiler.cc.
if (!ParseAndAnalyze(&parse_info)) return MaybeHandle<Code>();
return compiler::Pipeline(&info).GenerateCode();
}
bool Compiler::Compile(Handle<JSFunction> function, ClearExceptionFlag flag) {
if (function->is_compiled()) return true;
MaybeHandle<Code> maybe_code = Compiler::GetLazyCode(function);
Handle<Code> code;
if (!maybe_code.ToHandle(&code)) {
if (flag == CLEAR_EXCEPTION) {
function->GetIsolate()->clear_pending_exception();
}
return false;
}
function->ReplaceCode(*code);
DCHECK(function->is_compiled());
return true;
}
// TODO(turbofan): In the future, unoptimized code with deopt support could
// be generated lazily once deopt is triggered.
bool Compiler::EnsureDeoptimizationSupport(CompilationInfo* info) {
DCHECK_NOT_NULL(info->literal());
DCHECK(info->has_scope());
Handle<SharedFunctionInfo> shared = info->shared_info();
if (!shared->has_deoptimization_support()) {
// TODO(titzer): just reuse the ParseInfo for the unoptimized compile.
CompilationInfoWithZone unoptimized(info->closure());
// Note that we use the same AST that we will use for generating the
// optimized code.
ParseInfo* parse_info = unoptimized.parse_info();
parse_info->set_literal(info->literal());
parse_info->set_scope(info->scope());
parse_info->set_context(info->context());
unoptimized.EnableDeoptimizationSupport();
// If the current code has reloc info for serialization, also include
// reloc info for serialization for the new code, so that deopt support
// can be added without losing IC state.
if (shared->code()->kind() == Code::FUNCTION &&
shared->code()->has_reloc_info_for_serialization()) {
unoptimized.PrepareForSerializing();
}
if (!FullCodeGenerator::MakeCode(&unoptimized)) return false;
shared->EnableDeoptimizationSupport(*unoptimized.code());
shared->set_feedback_vector(*unoptimized.feedback_vector());
info->MarkAsCompiled();
// The scope info might not have been set if a lazily compiled
// function is inlined before being called for the first time.
if (shared->scope_info() == ScopeInfo::Empty(info->isolate())) {
Handle<ScopeInfo> target_scope_info =
ScopeInfo::Create(info->isolate(), info->zone(), info->scope());
shared->set_scope_info(*target_scope_info);
}
// The existing unoptimized code was replaced with the new one.
RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, &unoptimized, shared);
}
return true;
}
bool CompileEvalForDebugging(Handle<JSFunction> function,
Handle<SharedFunctionInfo> shared) {
Handle<Script> script(Script::cast(shared->script()));
Handle<Context> context(function->context());
Zone zone;
ParseInfo parse_info(&zone, script);
CompilationInfo info(&parse_info);
Isolate* isolate = info.isolate();
parse_info.set_eval();
parse_info.set_context(context);
if (context->IsNativeContext()) parse_info.set_global();
parse_info.set_toplevel();
parse_info.set_allow_lazy_parsing(false);
parse_info.set_language_mode(shared->language_mode());
parse_info.set_parse_restriction(NO_PARSE_RESTRICTION);
info.MarkAsDebug();
VMState<COMPILER> state(info.isolate());
if (!Parser::ParseStatic(&parse_info)) {
isolate->clear_pending_exception();
return false;
}
FunctionLiteral* lit = parse_info.literal();
LiveEditFunctionTracker live_edit_tracker(isolate, lit);
if (!CompileUnoptimizedCode(&info)) {
isolate->clear_pending_exception();
return false;
}
shared->ReplaceCode(*info.code());
return true;
}
bool CompileForDebugging(CompilationInfo* info) {
info->MarkAsDebug();
if (GetUnoptimizedCodeCommon(info).is_null()) {
info->isolate()->clear_pending_exception();
return false;
}
return true;
}
static inline bool IsEvalToplevel(Handle<SharedFunctionInfo> shared) {
return shared->is_toplevel() && shared->script()->IsScript() &&
Script::cast(shared->script())->compilation_type() ==
Script::COMPILATION_TYPE_EVAL;
}
bool Compiler::CompileDebugCode(Handle<JSFunction> function) {
Handle<SharedFunctionInfo> shared(function->shared());
if (IsEvalToplevel(shared)) {
return CompileEvalForDebugging(function, shared);
} else {
CompilationInfoWithZone info(function);
return CompileForDebugging(&info);
}
}
bool Compiler::CompileDebugCode(Handle<SharedFunctionInfo> shared) {
DCHECK(shared->allows_lazy_compilation_without_context());
DCHECK(!IsEvalToplevel(shared));
Zone zone;
ParseInfo parse_info(&zone, shared);
CompilationInfo info(&parse_info);
return CompileForDebugging(&info);
}
void Compiler::CompileForLiveEdit(Handle<Script> script) {
// TODO(635): support extensions.
Zone zone;
ParseInfo parse_info(&zone, script);
CompilationInfo info(&parse_info);
PostponeInterruptsScope postpone(info.isolate());
VMState<COMPILER> state(info.isolate());
// Get rid of old list of shared function infos.
info.MarkAsFirstCompile();
info.parse_info()->set_global();
if (!Parser::ParseStatic(info.parse_info())) return;
LiveEditFunctionTracker tracker(info.isolate(), parse_info.literal());
if (!CompileUnoptimizedCode(&info)) return;
if (info.has_shared_info()) {
Handle<ScopeInfo> scope_info =
ScopeInfo::Create(info.isolate(), info.zone(), info.scope());
info.shared_info()->set_scope_info(*scope_info);
}
tracker.RecordRootFunctionInfo(info.code());
}
static Handle<SharedFunctionInfo> CompileToplevel(CompilationInfo* info) {
Isolate* isolate = info->isolate();
PostponeInterruptsScope postpone(isolate);
DCHECK(!isolate->native_context().is_null());
ParseInfo* parse_info = info->parse_info();
Handle<Script> script = parse_info->script();
// TODO(svenpanne) Obscure place for this, perhaps move to OnBeforeCompile?
FixedArray* array = isolate->native_context()->embedder_data();
script->set_context_data(array->get(v8::Context::kDebugIdIndex));
isolate->debug()->OnBeforeCompile(script);
DCHECK(parse_info->is_eval() || parse_info->is_global() ||
parse_info->is_module());
parse_info->set_toplevel();
Handle<SharedFunctionInfo> result;
{ VMState<COMPILER> state(info->isolate());
if (parse_info->literal() == NULL) {
// Parse the script if needed (if it's already parsed, literal() is
// non-NULL). If compiling for debugging, we may eagerly compile inner
// functions, so do not parse lazily in that case.
ScriptCompiler::CompileOptions options = parse_info->compile_options();
bool parse_allow_lazy = (options == ScriptCompiler::kConsumeParserCache ||
String::cast(script->source())->length() >
FLAG_min_preparse_length) &&
!info->is_debug();
parse_info->set_allow_lazy_parsing(parse_allow_lazy);
if (!parse_allow_lazy &&
(options == ScriptCompiler::kProduceParserCache ||
options == ScriptCompiler::kConsumeParserCache)) {
// We are going to parse eagerly, but we either 1) have cached data
// produced by lazy parsing or 2) are asked to generate cached data.
// Eager parsing cannot benefit from cached data, and producing cached
// data while parsing eagerly is not implemented.
parse_info->set_cached_data(nullptr);
parse_info->set_compile_options(ScriptCompiler::kNoCompileOptions);
}
if (!Parser::ParseStatic(parse_info)) {
return Handle<SharedFunctionInfo>::null();
}
}
DCHECK(!info->is_debug() || !parse_info->allow_lazy_parsing());
info->MarkAsFirstCompile();
FunctionLiteral* lit = parse_info->literal();
LiveEditFunctionTracker live_edit_tracker(isolate, lit);
// Measure how long it takes to do the compilation; only take the
// rest of the function into account to avoid overlap with the
// parsing statistics.
HistogramTimer* rate = info->is_eval()
? info->isolate()->counters()->compile_eval()
: info->isolate()->counters()->compile();
HistogramTimerScope timer(rate);
// Compile the code.
if (!CompileUnoptimizedCode(info)) {
return Handle<SharedFunctionInfo>::null();
}
// Allocate function.
DCHECK(!info->code().is_null());
result = isolate->factory()->NewSharedFunctionInfo(
lit->name(), lit->materialized_literal_count(), lit->kind(),
info->code(),
ScopeInfo::Create(info->isolate(), info->zone(), info->scope()),
info->feedback_vector());
DCHECK_EQ(RelocInfo::kNoPosition, lit->function_token_position());
SharedFunctionInfo::InitFromFunctionLiteral(result, lit);
SharedFunctionInfo::SetScript(result, script);
result->set_is_toplevel(true);
if (info->is_eval()) {
// Eval scripts cannot be (re-)compiled without context.
result->set_allows_lazy_compilation_without_context(false);
}
Handle<String> script_name = script->name()->IsString()
? Handle<String>(String::cast(script->name()))
: isolate->factory()->empty_string();
Logger::LogEventsAndTags log_tag = info->is_eval()
? Logger::EVAL_TAG
: Logger::ToNativeByScript(Logger::SCRIPT_TAG, *script);
PROFILE(isolate, CodeCreateEvent(
log_tag, *info->code(), *result, info, *script_name));
// Hint to the runtime system used when allocating space for initial
// property space by setting the expected number of properties for
// the instances of the function.
SetExpectedNofPropertiesFromEstimate(result,
lit->expected_property_count());
if (!script.is_null())
script->set_compilation_state(Script::COMPILATION_STATE_COMPILED);
live_edit_tracker.RecordFunctionInfo(result, lit, info->zone());
}
return result;
}
MaybeHandle<JSFunction> Compiler::GetFunctionFromEval(
Handle<String> source, Handle<SharedFunctionInfo> outer_info,
Handle<Context> context, LanguageMode language_mode,
ParseRestriction restriction, int line_offset, int column_offset,
Handle<Object> script_name, ScriptOriginOptions options) {
Isolate* isolate = source->GetIsolate();
int source_length = source->length();
isolate->counters()->total_eval_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
CompilationCache* compilation_cache = isolate->compilation_cache();
MaybeHandle<SharedFunctionInfo> maybe_shared_info =
compilation_cache->LookupEval(source, outer_info, context, language_mode,
line_offset);
Handle<SharedFunctionInfo> shared_info;
Handle<Script> script;
if (!maybe_shared_info.ToHandle(&shared_info)) {
script = isolate->factory()->NewScript(source);
if (!script_name.is_null()) {
script->set_name(*script_name);
script->set_line_offset(Smi::FromInt(line_offset));
script->set_column_offset(Smi::FromInt(column_offset));
}
script->set_origin_options(options);
Zone zone;
ParseInfo parse_info(&zone, script);
CompilationInfo info(&parse_info);
parse_info.set_eval();
if (context->IsNativeContext()) parse_info.set_global();
parse_info.set_language_mode(language_mode);
parse_info.set_parse_restriction(restriction);
parse_info.set_context(context);
Debug::RecordEvalCaller(script);
shared_info = CompileToplevel(&info);
if (shared_info.is_null()) {
return MaybeHandle<JSFunction>();
} else {
// Explicitly disable optimization for eval code. We're not yet prepared
// to handle eval-code in the optimizing compiler.
if (restriction != ONLY_SINGLE_FUNCTION_LITERAL) {
shared_info->DisableOptimization(kEval);
}
// If caller is strict mode, the result must be in strict mode as well.
DCHECK(is_sloppy(language_mode) ||
is_strict(shared_info->language_mode()));
compilation_cache->PutEval(source, outer_info, context, shared_info,
line_offset);
}
} else if (shared_info->ic_age() != isolate->heap()->global_ic_age()) {
shared_info->ResetForNewContext(isolate->heap()->global_ic_age());
}
Handle<JSFunction> result =
isolate->factory()->NewFunctionFromSharedFunctionInfo(
shared_info, context, NOT_TENURED);
// OnAfterCompile has to be called after we create the JSFunction, which we
// may require to recompile the eval for debugging, if we find a function
// that contains break points in the eval script.
isolate->debug()->OnAfterCompile(script);
return result;
}
Handle<SharedFunctionInfo> Compiler::CompileScript(
Handle<String> source, Handle<Object> script_name, int line_offset,
int column_offset, ScriptOriginOptions resource_options,
Handle<Object> source_map_url, Handle<Context> context,
v8::Extension* extension, ScriptData** cached_data,
ScriptCompiler::CompileOptions compile_options, NativesFlag natives,
bool is_module) {
Isolate* isolate = source->GetIsolate();
if (compile_options == ScriptCompiler::kNoCompileOptions) {
cached_data = NULL;
} else if (compile_options == ScriptCompiler::kProduceParserCache ||
compile_options == ScriptCompiler::kProduceCodeCache) {
DCHECK(cached_data && !*cached_data);
DCHECK(extension == NULL);
DCHECK(!isolate->debug()->is_loaded());
} else {
DCHECK(compile_options == ScriptCompiler::kConsumeParserCache ||
compile_options == ScriptCompiler::kConsumeCodeCache);
DCHECK(cached_data && *cached_data);
DCHECK(extension == NULL);
}
int source_length = source->length();
isolate->counters()->total_load_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
// TODO(rossberg): The natives do not yet obey strong mode rules
// (for example, some macros use '==').
bool use_strong = FLAG_use_strong && !isolate->bootstrapper()->IsActive();
LanguageMode language_mode =
construct_language_mode(FLAG_use_strict, use_strong);
CompilationCache* compilation_cache = isolate->compilation_cache();
// Do a lookup in the compilation cache but not for extensions.
MaybeHandle<SharedFunctionInfo> maybe_result;
Handle<SharedFunctionInfo> result;
if (extension == NULL) {
// First check per-isolate compilation cache.
maybe_result = compilation_cache->LookupScript(
source, script_name, line_offset, column_offset, resource_options,
context, language_mode);
if (maybe_result.is_null() && FLAG_serialize_toplevel &&
compile_options == ScriptCompiler::kConsumeCodeCache &&
!isolate->debug()->is_loaded()) {
// Then check cached code provided by embedder.
HistogramTimerScope timer(isolate->counters()->compile_deserialize());
Handle<SharedFunctionInfo> result;
if (CodeSerializer::Deserialize(isolate, *cached_data, source)
.ToHandle(&result)) {
// Promote to per-isolate compilation cache.
compilation_cache->PutScript(source, context, language_mode, result);
return result;
}
// Deserializer failed. Fall through to compile.
}
}
base::ElapsedTimer timer;
if (FLAG_profile_deserialization && FLAG_serialize_toplevel &&
compile_options == ScriptCompiler::kProduceCodeCache) {
timer.Start();
}
if (!maybe_result.ToHandle(&result)) {
// No cache entry found. Compile the script.
// Create a script object describing the script to be compiled.
Handle<Script> script = isolate->factory()->NewScript(source);
if (natives == NATIVES_CODE) {
script->set_type(Smi::FromInt(Script::TYPE_NATIVE));
script->set_hide_source(true);
}
if (!script_name.is_null()) {
script->set_name(*script_name);
script->set_line_offset(Smi::FromInt(line_offset));
script->set_column_offset(Smi::FromInt(column_offset));
}
script->set_origin_options(resource_options);
if (!source_map_url.is_null()) {
script->set_source_mapping_url(*source_map_url);
}
// Compile the function and add it to the cache.
Zone zone;
ParseInfo parse_info(&zone, script);
CompilationInfo info(&parse_info);
if (FLAG_harmony_modules && is_module) {
parse_info.set_module();
} else {
parse_info.set_global();
}
if (compile_options != ScriptCompiler::kNoCompileOptions) {
parse_info.set_cached_data(cached_data);
}
parse_info.set_compile_options(compile_options);
parse_info.set_extension(extension);
parse_info.set_context(context);
if (FLAG_serialize_toplevel &&
compile_options == ScriptCompiler::kProduceCodeCache) {
info.PrepareForSerializing();
}
parse_info.set_language_mode(
static_cast<LanguageMode>(info.language_mode() | language_mode));
result = CompileToplevel(&info);
if (extension == NULL && !result.is_null()) {
compilation_cache->PutScript(source, context, language_mode, result);
if (FLAG_serialize_toplevel &&
compile_options == ScriptCompiler::kProduceCodeCache) {
HistogramTimerScope histogram_timer(
isolate->counters()->compile_serialize());
*cached_data = CodeSerializer::Serialize(isolate, result, source);
if (FLAG_profile_deserialization) {
PrintF("[Compiling and serializing took %0.3f ms]\n",
timer.Elapsed().InMillisecondsF());
}
}
}
if (result.is_null()) {
isolate->ReportPendingMessages();
} else {
isolate->debug()->OnAfterCompile(script);
}
} else if (result->ic_age() != isolate->heap()->global_ic_age()) {
result->ResetForNewContext(isolate->heap()->global_ic_age());
}
return result;
}
Handle<SharedFunctionInfo> Compiler::CompileStreamedScript(
Handle<Script> script, ParseInfo* parse_info, int source_length) {
Isolate* isolate = script->GetIsolate();
// TODO(titzer): increment the counters in caller.
isolate->counters()->total_load_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
LanguageMode language_mode =
construct_language_mode(FLAG_use_strict, FLAG_use_strong);
parse_info->set_language_mode(
static_cast<LanguageMode>(parse_info->language_mode() | language_mode));
CompilationInfo compile_info(parse_info);
// The source was parsed lazily, so compiling for debugging is not possible.
DCHECK(!compile_info.is_debug());
Handle<SharedFunctionInfo> result = CompileToplevel(&compile_info);
if (!result.is_null()) isolate->debug()->OnAfterCompile(script);
return result;
}
Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfo(
FunctionLiteral* literal, Handle<Script> script,
CompilationInfo* outer_info) {
// Precondition: code has been parsed and scopes have been analyzed.
Isolate* isolate = outer_info->isolate();
MaybeHandle<SharedFunctionInfo> maybe_existing;
if (outer_info->is_first_compile()) {
// On the first compile, there are no existing shared function info for
// inner functions yet, so do not try to find them. All bets are off for
// live edit though.
DCHECK(script->FindSharedFunctionInfo(literal).is_null() ||
isolate->debug()->live_edit_enabled());
} else {
maybe_existing = script->FindSharedFunctionInfo(literal);
}
// We found an existing shared function info. If it's already compiled,
// don't worry about compiling it, and simply return it. If it's not yet
// compiled, continue to decide whether to eagerly compile.
// Carry on if we are compiling eager to obtain code for debugging,
// unless we already have code with debut break slots.
Handle<SharedFunctionInfo> existing;
if (maybe_existing.ToHandle(&existing) && existing->is_compiled()) {
if (!outer_info->is_debug() || existing->HasDebugCode()) {
return existing;
}
}
Zone zone;
ParseInfo parse_info(&zone, script);
CompilationInfo info(&parse_info);
parse_info.set_literal(literal);
parse_info.set_scope(literal->scope());
parse_info.set_language_mode(literal->scope()->language_mode());
if (outer_info->will_serialize()) info.PrepareForSerializing();
if (outer_info->is_first_compile()) info.MarkAsFirstCompile();
if (outer_info->is_debug()) info.MarkAsDebug();
LiveEditFunctionTracker live_edit_tracker(isolate, literal);
// Determine if the function can be lazily compiled. This is necessary to
// allow some of our builtin JS files to be lazily compiled. These
// builtins cannot be handled lazily by the parser, since we have to know
// if a function uses the special natives syntax, which is something the
// parser records.
// If the debugger requests compilation for break points, we cannot be
// aggressive about lazy compilation, because it might trigger compilation
// of functions without an outer context when setting a breakpoint through
// Debug::FindSharedFunctionInfoInScript.
bool allow_lazy_without_ctx = literal->AllowsLazyCompilationWithoutContext();
// Compile eagerly for live edit. When compiling debug code, eagerly compile
// unless we can lazily compile without the context.
bool allow_lazy = literal->AllowsLazyCompilation() &&
!LiveEditFunctionTracker::IsActive(isolate) &&
(!info.is_debug() || allow_lazy_without_ctx);
if (outer_info->parse_info()->is_toplevel() && outer_info->will_serialize()) {
// Make sure that if the toplevel code (possibly to be serialized),
// the inner function must be allowed to be compiled lazily.
// This is necessary to serialize toplevel code without inner functions.
DCHECK(allow_lazy);
}
bool lazy = FLAG_lazy && allow_lazy && !literal->should_eager_compile();
// Generate code
Handle<ScopeInfo> scope_info;
if (lazy) {
Handle<Code> code = isolate->builtins()->CompileLazy();
info.SetCode(code);
// There's no need in theory for a lazy-compiled function to have a type
// feedback vector, but some parts of the system expect all
// SharedFunctionInfo instances to have one. The size of the vector depends
// on how many feedback-needing nodes are in the tree, and when lazily
// parsing we might not know that, if this function was never parsed before.
// In that case the vector will be replaced the next time MakeCode is
// called.
info.EnsureFeedbackVector();
scope_info = Handle<ScopeInfo>(ScopeInfo::Empty(isolate));
} else if (Renumber(info.parse_info()) &&
FullCodeGenerator::MakeCode(&info)) {
// MakeCode will ensure that the feedback vector is present and
// appropriately sized.
DCHECK(!info.code().is_null());
scope_info = ScopeInfo::Create(info.isolate(), info.zone(), info.scope());
if (literal->should_eager_compile() &&
literal->should_be_used_once_hint()) {
info.code()->MarkToBeExecutedOnce(isolate);
}
} else {
return Handle<SharedFunctionInfo>::null();
}
if (maybe_existing.is_null()) {
// Create a shared function info object.
Handle<SharedFunctionInfo> result =
isolate->factory()->NewSharedFunctionInfo(
literal->name(), literal->materialized_literal_count(),
literal->kind(), info.code(), scope_info, info.feedback_vector());
SharedFunctionInfo::InitFromFunctionLiteral(result, literal);
SharedFunctionInfo::SetScript(result, script);
result->set_is_toplevel(false);
// If the outer function has been compiled before, we cannot be sure that
// shared function info for this function literal has been created for the
// first time. It may have already been compiled previously.
result->set_never_compiled(outer_info->is_first_compile() && lazy);
RecordFunctionCompilation(Logger::FUNCTION_TAG, &info, result);
result->set_allows_lazy_compilation(literal->AllowsLazyCompilation());
result->set_allows_lazy_compilation_without_context(allow_lazy_without_ctx);
// Set the expected number of properties for instances and return
// the resulting function.
SetExpectedNofPropertiesFromEstimate(result,
literal->expected_property_count());
live_edit_tracker.RecordFunctionInfo(result, literal, info.zone());
return result;
} else if (!lazy) {
// Assert that we are not overwriting (possibly patched) debug code.
DCHECK(!existing->HasDebugCode());
existing->ReplaceCode(*info.code());
existing->set_scope_info(*scope_info);
existing->set_feedback_vector(*info.feedback_vector());
}
return existing;
}
MaybeHandle<Code> Compiler::GetOptimizedCode(Handle<JSFunction> function,
Handle<Code> current_code,
ConcurrencyMode mode,
BailoutId osr_ast_id,
JavaScriptFrame* osr_frame) {
Isolate* isolate = function->GetIsolate();
Handle<SharedFunctionInfo> shared(function->shared(), isolate);
if (shared->HasDebugInfo()) return MaybeHandle<Code>();
Handle<Code> cached_code;
if (GetCodeFromOptimizedCodeMap(
function, osr_ast_id).ToHandle(&cached_code)) {
if (FLAG_trace_opt) {
PrintF("[found optimized code for ");
function->ShortPrint();
if (!osr_ast_id.IsNone()) {
PrintF(" at OSR AST id %d", osr_ast_id.ToInt());
}
PrintF("]\n");
}
return cached_code;
}
DCHECK(AllowCompilation::IsAllowed(isolate));
if (!shared->is_compiled() ||
shared->scope_info() == ScopeInfo::Empty(isolate)) {
// The function was never compiled. Compile it unoptimized first.
// TODO(titzer): reuse the AST and scope info from this compile.
CompilationInfoWithZone unoptimized(function);
unoptimized.EnableDeoptimizationSupport();
if (!GetUnoptimizedCodeCommon(&unoptimized).ToHandle(&current_code)) {
return MaybeHandle<Code>();
}
shared->ReplaceCode(*current_code);
}
current_code->set_profiler_ticks(0);
// TODO(mstarzinger): We cannot properly deserialize a scope chain containing
// an eval scope and hence would fail at parsing the eval source again.
if (shared->disable_optimization_reason() == kEval) {
return MaybeHandle<Code>();
}
// TODO(mstarzinger): We cannot properly deserialize a scope chain for the
// builtin context, hence Genesis::InstallExperimentalNatives would fail.
if (shared->is_toplevel() && isolate->bootstrapper()->IsActive()) {
return MaybeHandle<Code>();
}
base::SmartPointer<CompilationInfo> info(
new CompilationInfoWithZone(function));
VMState<COMPILER> state(isolate);
DCHECK(!isolate->has_pending_exception());
PostponeInterruptsScope postpone(isolate);
info->SetOptimizing(osr_ast_id, current_code);
if (mode == CONCURRENT) {
if (GetOptimizedCodeLater(info.get())) {
info.Detach(); // The background recompile job owns this now.
return isolate->builtins()->InOptimizationQueue();
}
} else {
info->set_osr_frame(osr_frame);
if (GetOptimizedCodeNow(info.get())) return info->code();
}
if (isolate->has_pending_exception()) isolate->clear_pending_exception();
return MaybeHandle<Code>();
}
Handle<Code> Compiler::GetConcurrentlyOptimizedCode(OptimizedCompileJob* job) {
// Take ownership of compilation info. Deleting compilation info
// also tears down the zone and the recompile job.
base::SmartPointer<CompilationInfo> info(job->info());
Isolate* isolate = info->isolate();
VMState<COMPILER> state(isolate);
TimerEventScope<TimerEventRecompileSynchronous> timer(info->isolate());
Handle<SharedFunctionInfo> shared = info->shared_info();
shared->code()->set_profiler_ticks(0);
DCHECK(!shared->HasDebugInfo());
// 1) Optimization on the concurrent thread may have failed.
// 2) The function may have already been optimized by OSR. Simply continue.
// Except when OSR already disabled optimization for some reason.
// 3) The code may have already been invalidated due to dependency change.
// 4) Code generation may have failed.
if (job->last_status() == OptimizedCompileJob::SUCCEEDED) {
if (shared->optimization_disabled()) {
job->RetryOptimization(kOptimizationDisabled);
} else if (info->dependencies()->HasAborted()) {
job->RetryOptimization(kBailedOutDueToDependencyChange);
} else if (job->GenerateCode() == OptimizedCompileJob::SUCCEEDED) {
RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, info.get(), shared);
if (shared->SearchOptimizedCodeMap(info->context()->native_context(),
info->osr_ast_id()).code == nullptr) {
InsertCodeIntoOptimizedCodeMap(info.get());
}
if (FLAG_trace_opt) {
PrintF("[completed optimizing ");
info->closure()->ShortPrint();
PrintF("]\n");
}
return Handle<Code>(*info->code());
}
}
DCHECK(job->last_status() != OptimizedCompileJob::SUCCEEDED);
if (FLAG_trace_opt) {
PrintF("[aborted optimizing ");
info->closure()->ShortPrint();
PrintF(" because: %s]\n", GetBailoutReason(info->bailout_reason()));
}
return Handle<Code>::null();
}
CompilationPhase::CompilationPhase(const char* name, CompilationInfo* info)
: name_(name), info_(info) {
if (FLAG_hydrogen_stats) {
info_zone_start_allocation_size_ = info->zone()->allocation_size();
timer_.Start();
}
}
CompilationPhase::~CompilationPhase() {
if (FLAG_hydrogen_stats) {
size_t size = zone()->allocation_size();
size += info_->zone()->allocation_size() - info_zone_start_allocation_size_;
isolate()->GetHStatistics()->SaveTiming(name_, timer_.Elapsed(), size);
}
}
bool CompilationPhase::ShouldProduceTraceOutput() const {
// Trace if the appropriate trace flag is set and the phase name's first
// character is in the FLAG_trace_phase command line parameter.
AllowHandleDereference allow_deref;
bool tracing_on = info()->IsStub()
? FLAG_trace_hydrogen_stubs
: (FLAG_trace_hydrogen &&
info()->closure()->PassesFilter(FLAG_trace_hydrogen_filter));
return (tracing_on &&
base::OS::StrChr(const_cast<char*>(FLAG_trace_phase), name_[0]) != NULL);
}
#if DEBUG
void CompilationInfo::PrintAstForTesting() {
PrintF("--- Source from AST ---\n%s\n",
PrettyPrinter(isolate(), zone()).PrintProgram(literal()));
}
#endif
} // namespace internal
} // namespace v8