v8/test/unittests/compiler/instruction-selector-unittest.cc
jarin 59c616ccd7 [turbofan] Introduce node regions for protection from scheduling.
This CL re-purposes ValueEffect and Finish as delimiters for regions
that are scheduled atomically (renamed to BeginRegion, FinishRegion).

The BeginRegion node takes and produces an effect. For the uses that do
not care about the placement in the effect chain, it is ok to feed
graph->start() as an effect input.

The FinishRegion takes a value and an effect and produces a value and
an effect. It is important that any value or effect produced inside the
region is not used outside the region. The FinishRegion node is the only
way to smuggle an effect and a value out.

At the moment, this does not support control flow inside the region. Control flow would be hard.

During scheduling we do some sanity check, but the checks are not exhaustive. Here is what we check:
- the effect chain between begin and finish is linear (no splitting,
  single effect input and output).
- any value produced is consumed by the FinishRegion node.
- no control flow outputs.

Review URL: https://codereview.chromium.org/1399423002

Cr-Commit-Position: refs/heads/master@{#31265}
2015-10-14 14:53:12 +00:00

622 lines
22 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/compiler/instruction-selector-unittest.h"
#include "src/compiler/graph.h"
#include "src/compiler/schedule.h"
#include "src/flags.h"
#include "test/unittests/compiler/compiler-test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
typedef RawMachineAssembler::Label MLabel;
} // namespace
InstructionSelectorTest::InstructionSelectorTest() : rng_(FLAG_random_seed) {}
InstructionSelectorTest::~InstructionSelectorTest() {}
InstructionSelectorTest::Stream InstructionSelectorTest::StreamBuilder::Build(
InstructionSelector::Features features,
InstructionSelectorTest::StreamBuilderMode mode,
InstructionSelector::SourcePositionMode source_position_mode) {
Schedule* schedule = Export();
if (FLAG_trace_turbo) {
OFStream out(stdout);
out << "=== Schedule before instruction selection ===" << std::endl
<< *schedule;
}
size_t const node_count = graph()->NodeCount();
EXPECT_NE(0u, node_count);
Linkage linkage(call_descriptor());
InstructionBlocks* instruction_blocks =
InstructionSequence::InstructionBlocksFor(test_->zone(), schedule);
InstructionSequence sequence(test_->isolate(), test_->zone(),
instruction_blocks);
SourcePositionTable source_position_table(graph());
InstructionSelector selector(test_->zone(), node_count, &linkage, &sequence,
schedule, &source_position_table,
source_position_mode, features);
selector.SelectInstructions();
if (FLAG_trace_turbo) {
OFStream out(stdout);
PrintableInstructionSequence printable = {
RegisterConfiguration::ArchDefault(), &sequence};
out << "=== Code sequence after instruction selection ===" << std::endl
<< printable;
}
Stream s;
s.virtual_registers_ = selector.GetVirtualRegistersForTesting();
// Map virtual registers.
for (Instruction* const instr : sequence) {
if (instr->opcode() < 0) continue;
if (mode == kTargetInstructions) {
switch (instr->arch_opcode()) {
#define CASE(Name) \
case k##Name: \
break;
TARGET_ARCH_OPCODE_LIST(CASE)
#undef CASE
default:
continue;
}
}
if (mode == kAllExceptNopInstructions && instr->arch_opcode() == kArchNop) {
continue;
}
for (size_t i = 0; i < instr->OutputCount(); ++i) {
InstructionOperand* output = instr->OutputAt(i);
EXPECT_NE(InstructionOperand::IMMEDIATE, output->kind());
if (output->IsConstant()) {
int vreg = ConstantOperand::cast(output)->virtual_register();
s.constants_.insert(std::make_pair(vreg, sequence.GetConstant(vreg)));
}
}
for (size_t i = 0; i < instr->InputCount(); ++i) {
InstructionOperand* input = instr->InputAt(i);
EXPECT_NE(InstructionOperand::CONSTANT, input->kind());
if (input->IsImmediate()) {
auto imm = ImmediateOperand::cast(input);
if (imm->type() == ImmediateOperand::INDEXED) {
int index = imm->indexed_value();
s.immediates_.insert(
std::make_pair(index, sequence.GetImmediate(imm)));
}
}
}
s.instructions_.push_back(instr);
}
for (auto i : s.virtual_registers_) {
int const virtual_register = i.second;
if (sequence.IsFloat(virtual_register)) {
EXPECT_FALSE(sequence.IsReference(virtual_register));
s.doubles_.insert(virtual_register);
}
if (sequence.IsReference(virtual_register)) {
EXPECT_FALSE(sequence.IsFloat(virtual_register));
s.references_.insert(virtual_register);
}
}
for (int i = 0; i < sequence.GetFrameStateDescriptorCount(); i++) {
s.deoptimization_entries_.push_back(sequence.GetFrameStateDescriptor(
InstructionSequence::StateId::FromInt(i)));
}
return s;
}
int InstructionSelectorTest::Stream::ToVreg(const Node* node) const {
VirtualRegisters::const_iterator i = virtual_registers_.find(node->id());
CHECK(i != virtual_registers_.end());
return i->second;
}
bool InstructionSelectorTest::Stream::IsFixed(const InstructionOperand* operand,
Register reg) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
if (!unallocated->HasFixedRegisterPolicy()) return false;
return unallocated->fixed_register_index() == reg.code();
}
bool InstructionSelectorTest::Stream::IsSameAsFirst(
const InstructionOperand* operand) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->HasSameAsInputPolicy();
}
bool InstructionSelectorTest::Stream::IsUsedAtStart(
const InstructionOperand* operand) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->IsUsedAtStart();
}
const FrameStateFunctionInfo*
InstructionSelectorTest::StreamBuilder::GetFrameStateFunctionInfo(
int parameter_count, int local_count) {
return common()->CreateFrameStateFunctionInfo(
FrameStateType::kJavaScriptFunction, parameter_count, local_count,
Handle<SharedFunctionInfo>(), CALL_MAINTAINS_NATIVE_CONTEXT);
}
// -----------------------------------------------------------------------------
// Return.
TARGET_TEST_F(InstructionSelectorTest, ReturnFloat32Constant) {
const float kValue = 4.2f;
StreamBuilder m(this, kMachFloat32);
m.Return(m.Float32Constant(kValue));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_FLOAT_EQ(kValue, s.ToFloat32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnParameter) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Parameter(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnZero) {
StreamBuilder m(this, kMachInt32);
m.Return(m.Int32Constant(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_EQ(0, s.ToInt32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
// -----------------------------------------------------------------------------
// Conversions.
TARGET_TEST_F(InstructionSelectorTest, TruncateFloat64ToInt32WithParameter) {
StreamBuilder m(this, kMachInt32, kMachFloat64);
m.Return(
m.TruncateFloat64ToInt32(TruncationMode::kJavaScript, m.Parameter(0)));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
EXPECT_EQ(kArchTruncateDoubleToI, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
EXPECT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArchRet, s[2]->arch_opcode());
}
// -----------------------------------------------------------------------------
// Parameters.
TARGET_TEST_F(InstructionSelectorTest, DoubleParameter) {
StreamBuilder m(this, kMachFloat64, kMachFloat64);
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsDouble(param));
}
TARGET_TEST_F(InstructionSelectorTest, ReferenceParameter) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged);
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsReference(param));
}
// -----------------------------------------------------------------------------
// FinishRegion.
TARGET_TEST_F(InstructionSelectorTest, FinishRegion) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged);
Node* param = m.Parameter(0);
Node* finish =
m.AddNode(m.common()->FinishRegion(), param, m.graph()->start());
m.Return(finish);
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_TRUE(s[0]->Output()->IsUnallocated());
EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kArchNop, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->InputCount());
ASSERT_TRUE(s[1]->InputAt(0)->IsUnallocated());
EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[1]->InputAt(0)));
ASSERT_EQ(1U, s[1]->OutputCount());
ASSERT_TRUE(s[1]->Output()->IsUnallocated());
EXPECT_TRUE(UnallocatedOperand::cast(s[1]->Output())->HasSameAsInputPolicy());
EXPECT_EQ(s.ToVreg(finish), s.ToVreg(s[1]->Output()));
EXPECT_TRUE(s.IsReference(finish));
}
// -----------------------------------------------------------------------------
// Phi.
typedef InstructionSelectorTestWithParam<MachineType>
InstructionSelectorPhiTest;
TARGET_TEST_P(InstructionSelectorPhiTest, Doubleness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
MLabel a, b, c;
m.Branch(m.Int32Constant(0), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type, param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param0));
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param1));
}
TARGET_TEST_P(InstructionSelectorPhiTest, Referenceness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
MLabel a, b, c;
m.Branch(m.Int32Constant(1), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type, param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsReference(phi), s.IsReference(param0));
EXPECT_EQ(s.IsReference(phi), s.IsReference(param1));
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorPhiTest,
::testing::Values(kMachFloat64, kMachInt8, kMachUint8,
kMachInt16, kMachUint16, kMachInt32,
kMachUint32, kMachInt64, kMachUint64,
kMachPtr, kMachAnyTagged));
// -----------------------------------------------------------------------------
// ValueEffect.
TARGET_TEST_F(InstructionSelectorTest, ValueEffect) {
StreamBuilder m1(this, kMachInt32, kMachPtr);
Node* p1 = m1.Parameter(0);
m1.Return(m1.Load(kMachInt32, p1, m1.Int32Constant(0)));
Stream s1 = m1.Build(kAllInstructions);
StreamBuilder m2(this, kMachInt32, kMachPtr);
Node* p2 = m2.Parameter(0);
m2.Return(
m2.AddNode(m2.machine()->Load(kMachInt32), p2, m2.Int32Constant(0),
m2.AddNode(m2.common()->BeginRegion(), m2.graph()->start())));
Stream s2 = m2.Build(kAllInstructions);
EXPECT_LE(3U, s1.size());
ASSERT_EQ(s1.size(), s2.size());
TRACED_FORRANGE(size_t, i, 0, s1.size() - 1) {
const Instruction* i1 = s1[i];
const Instruction* i2 = s2[i];
EXPECT_EQ(i1->arch_opcode(), i2->arch_opcode());
EXPECT_EQ(i1->InputCount(), i2->InputCount());
EXPECT_EQ(i1->OutputCount(), i2->OutputCount());
}
}
// -----------------------------------------------------------------------------
// Calls with deoptimization.
TARGET_TEST_F(InstructionSelectorTest, CallJSFunctionWithDeopt) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id(42);
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Parameter(2);
ZoneVector<MachineType> int32_type(1, kMachInt32, zone());
ZoneVector<MachineType> empty_types(zone());
CallDescriptor* descriptor = Linkage::GetJSCallDescriptor(
zone(), false, 1, CallDescriptor::kNeedsFrameState);
Node* parameters =
m.AddNode(m.common()->TypedStateValues(&int32_type), m.Int32Constant(1));
Node* locals = m.AddNode(m.common()->TypedStateValues(&empty_types));
Node* stack = m.AddNode(m.common()->TypedStateValues(&empty_types));
Node* context_dummy = m.Int32Constant(0);
Node* state_node = m.AddNode(
m.common()->FrameState(bailout_id, OutputFrameStateCombine::Push(),
m.GetFrameStateFunctionInfo(1, 0)),
parameters, locals, stack, context_dummy, function_node,
m.UndefinedConstant());
Node* args[] = {receiver, context};
Node* call =
m.CallNWithFrameState(descriptor, function_node, args, state_node);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallJSFunction;
index++) {
}
// Now we should have two instructions: call and return.
ASSERT_EQ(index + 2, s.size());
EXPECT_EQ(kArchCallJSFunction, s[index++]->arch_opcode());
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
// TODO(jarin) Check deoptimization table.
}
TARGET_TEST_F(InstructionSelectorTest, CallFunctionStubWithDeopt) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id_before(42);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(1); // Context is ignored.
ZoneVector<MachineType> int32_type(1, kMachInt32, zone());
ZoneVector<MachineType> float64_type(1, kMachFloat64, zone());
ZoneVector<MachineType> tagged_type(1, kMachAnyTagged, zone());
// Build frame state for the state before the call.
Node* parameters =
m.AddNode(m.common()->TypedStateValues(&int32_type), m.Int32Constant(43));
Node* locals = m.AddNode(m.common()->TypedStateValues(&float64_type),
m.Float64Constant(0.5));
Node* stack = m.AddNode(m.common()->TypedStateValues(&tagged_type),
m.UndefinedConstant());
Node* context_sentinel = m.Int32Constant(0);
Node* frame_state_before = m.AddNode(
m.common()->FrameState(bailout_id_before, OutputFrameStateCombine::Push(),
m.GetFrameStateFunctionInfo(1, 1)),
parameters, locals, stack, context_sentinel, function_node,
m.UndefinedConstant());
// Build the call.
Node* call = m.CallFunctionStub0(function_node, receiver, context,
frame_state_before, CALL_AS_METHOD);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have two instructions: call, return.
ASSERT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 +
5 + // Frame state deopt id + one input for each value in frame state.
1 + // Function.
1; // Context.
ASSERT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(OutputFrameStateCombine::kPushOutput,
desc_before->state_combine().kind());
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(1u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(3)));
EXPECT_EQ(0, s.ToInt32(call_instr->InputAt(4))); // This should be a context.
// We inserted 0 here.
EXPECT_EQ(0.5, s.ToFloat64(call_instr->InputAt(5)));
EXPECT_TRUE(s.ToHeapObject(call_instr->InputAt(6))->IsUndefined());
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(0)); // function is always
// tagged/any.
EXPECT_EQ(kMachInt32, desc_before->GetType(1));
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(2)); // context is always
// tagged/any.
EXPECT_EQ(kMachFloat64, desc_before->GetType(3));
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(4));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(7)));
// Context.
EXPECT_EQ(s.ToVreg(context), s.ToVreg(call_instr->InputAt(8)));
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
TARGET_TEST_F(InstructionSelectorTest,
CallFunctionStubDeoptRecursiveFrameState) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id_before(42);
BailoutId bailout_id_parent(62);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(66);
ZoneVector<MachineType> int32_type(1, kMachInt32, zone());
ZoneVector<MachineType> int32x2_type(2, kMachInt32, zone());
ZoneVector<MachineType> float64_type(1, kMachFloat64, zone());
// Build frame state for the state before the call.
Node* parameters =
m.AddNode(m.common()->TypedStateValues(&int32_type), m.Int32Constant(63));
Node* locals =
m.AddNode(m.common()->TypedStateValues(&int32_type), m.Int32Constant(64));
Node* stack =
m.AddNode(m.common()->TypedStateValues(&int32_type), m.Int32Constant(65));
Node* frame_state_parent = m.AddNode(
m.common()->FrameState(bailout_id_parent,
OutputFrameStateCombine::Ignore(),
m.GetFrameStateFunctionInfo(1, 1)),
parameters, locals, stack, context, function_node, m.UndefinedConstant());
Node* context2 = m.Int32Constant(46);
Node* parameters2 =
m.AddNode(m.common()->TypedStateValues(&int32_type), m.Int32Constant(43));
Node* locals2 = m.AddNode(m.common()->TypedStateValues(&float64_type),
m.Float64Constant(0.25));
Node* stack2 = m.AddNode(m.common()->TypedStateValues(&int32x2_type),
m.Int32Constant(44), m.Int32Constant(45));
Node* frame_state_before = m.AddNode(
m.common()->FrameState(bailout_id_before, OutputFrameStateCombine::Push(),
m.GetFrameStateFunctionInfo(1, 1)),
parameters2, locals2, stack2, context2, function_node,
frame_state_parent);
// Build the call.
Node* call = m.CallFunctionStub0(function_node, receiver, context2,
frame_state_before, CALL_AS_METHOD);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have three instructions: call, return.
EXPECT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 + // Frame state deopt id
6 + // One input for each value in frame state + context.
5 + // One input for each value in the parent frame state + context.
1 + // Function.
1; // Context.
EXPECT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
FrameStateDescriptor* desc_before_outer = desc_before->outer_state();
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before_outer->parameters_count());
EXPECT_EQ(1u, desc_before_outer->locals_count());
EXPECT_EQ(1u, desc_before_outer->stack_count());
// Values from parent environment.
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(0));
EXPECT_EQ(63, s.ToInt32(call_instr->InputAt(3)));
EXPECT_EQ(kMachInt32, desc_before_outer->GetType(1));
// Context:
EXPECT_EQ(66, s.ToInt32(call_instr->InputAt(4)));
EXPECT_EQ(kMachAnyTagged, desc_before_outer->GetType(2));
EXPECT_EQ(64, s.ToInt32(call_instr->InputAt(5)));
EXPECT_EQ(kMachInt32, desc_before_outer->GetType(3));
EXPECT_EQ(65, s.ToInt32(call_instr->InputAt(6)));
EXPECT_EQ(kMachInt32, desc_before_outer->GetType(4));
// Values from the nested frame.
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(2u, desc_before->stack_count());
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(0));
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(8)));
EXPECT_EQ(kMachInt32, desc_before->GetType(1));
EXPECT_EQ(46, s.ToInt32(call_instr->InputAt(9)));
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(2));
EXPECT_EQ(0.25, s.ToFloat64(call_instr->InputAt(10)));
EXPECT_EQ(kMachFloat64, desc_before->GetType(3));
EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(11)));
EXPECT_EQ(kMachInt32, desc_before->GetType(4));
EXPECT_EQ(45, s.ToInt32(call_instr->InputAt(12)));
EXPECT_EQ(kMachInt32, desc_before->GetType(5));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(13)));
// Context.
EXPECT_EQ(s.ToVreg(context2), s.ToVreg(call_instr->InputAt(14)));
// Continuation.
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
} // namespace compiler
} // namespace internal
} // namespace v8