v8/src/builtins.cc
2015-02-24 20:50:24 +00:00

1650 lines
54 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/api.h"
#include "src/api-natives.h"
#include "src/arguments.h"
#include "src/base/once.h"
#include "src/bootstrapper.h"
#include "src/builtins.h"
#include "src/cpu-profiler.h"
#include "src/gdb-jit.h"
#include "src/heap/mark-compact.h"
#include "src/heap-profiler.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/prototype.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
namespace {
// Arguments object passed to C++ builtins.
template <BuiltinExtraArguments extra_args>
class BuiltinArguments : public Arguments {
public:
BuiltinArguments(int length, Object** arguments)
: Arguments(length, arguments) { }
Object*& operator[] (int index) {
DCHECK(index < length());
return Arguments::operator[](index);
}
template <class S> Handle<S> at(int index) {
DCHECK(index < length());
return Arguments::at<S>(index);
}
Handle<Object> receiver() {
return Arguments::at<Object>(0);
}
Handle<JSFunction> called_function() {
STATIC_ASSERT(extra_args == NEEDS_CALLED_FUNCTION);
return Arguments::at<JSFunction>(Arguments::length() - 1);
}
// Gets the total number of arguments including the receiver (but
// excluding extra arguments).
int length() const {
STATIC_ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
return Arguments::length();
}
#ifdef DEBUG
void Verify() {
// Check we have at least the receiver.
DCHECK(Arguments::length() >= 1);
}
#endif
};
// Specialize BuiltinArguments for the called function extra argument.
template <>
int BuiltinArguments<NEEDS_CALLED_FUNCTION>::length() const {
return Arguments::length() - 1;
}
#ifdef DEBUG
template <>
void BuiltinArguments<NEEDS_CALLED_FUNCTION>::Verify() {
// Check we have at least the receiver and the called function.
DCHECK(Arguments::length() >= 2);
// Make sure cast to JSFunction succeeds.
called_function();
}
#endif
#define DEF_ARG_TYPE(name, spec) \
typedef BuiltinArguments<spec> name##ArgumentsType;
BUILTIN_LIST_C(DEF_ARG_TYPE)
#undef DEF_ARG_TYPE
} // namespace
// ----------------------------------------------------------------------------
// Support macro for defining builtins in C++.
// ----------------------------------------------------------------------------
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
//
// In the body of the builtin function the arguments can be accessed
// through the BuiltinArguments object args.
#ifdef DEBUG
#define BUILTIN(name) \
MUST_USE_RESULT static Object* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate); \
MUST_USE_RESULT static Object* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
args.Verify(); \
return Builtin_Impl_##name(args, isolate); \
} \
MUST_USE_RESULT static Object* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate)
#else // For release mode.
#define BUILTIN(name) \
static Object* Builtin_impl##name( \
name##ArgumentsType args, Isolate* isolate); \
static Object* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
return Builtin_impl##name(args, isolate); \
} \
static Object* Builtin_impl##name( \
name##ArgumentsType args, Isolate* isolate)
#endif
#ifdef DEBUG
static inline bool CalledAsConstructor(Isolate* isolate) {
// Calculate the result using a full stack frame iterator and check
// that the state of the stack is as we assume it to be in the
// code below.
StackFrameIterator it(isolate);
DCHECK(it.frame()->is_exit());
it.Advance();
StackFrame* frame = it.frame();
bool reference_result = frame->is_construct();
Address fp = Isolate::c_entry_fp(isolate->thread_local_top());
// Because we know fp points to an exit frame we can use the relevant
// part of ExitFrame::ComputeCallerState directly.
const int kCallerOffset = ExitFrameConstants::kCallerFPOffset;
Address caller_fp = Memory::Address_at(fp + kCallerOffset);
// This inlines the part of StackFrame::ComputeType that grabs the
// type of the current frame. Note that StackFrame::ComputeType
// has been specialized for each architecture so if any one of them
// changes this code has to be changed as well.
const int kMarkerOffset = StandardFrameConstants::kMarkerOffset;
const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT);
Object* marker = Memory::Object_at(caller_fp + kMarkerOffset);
bool result = (marker == kConstructMarker);
DCHECK_EQ(result, reference_result);
return result;
}
#endif
// ----------------------------------------------------------------------------
BUILTIN(Illegal) {
UNREACHABLE();
return isolate->heap()->undefined_value(); // Make compiler happy.
}
BUILTIN(EmptyFunction) {
return isolate->heap()->undefined_value();
}
static void MoveDoubleElements(FixedDoubleArray* dst, int dst_index,
FixedDoubleArray* src, int src_index, int len) {
if (len == 0) return;
MemMove(dst->data_start() + dst_index, src->data_start() + src_index,
len * kDoubleSize);
}
static bool ArrayPrototypeHasNoElements(Heap* heap, PrototypeIterator* iter) {
DisallowHeapAllocation no_gc;
for (; !iter->IsAtEnd(); iter->Advance()) {
if (iter->GetCurrent()->IsJSProxy()) return false;
if (JSObject::cast(iter->GetCurrent())->elements() !=
heap->empty_fixed_array()) {
return false;
}
}
return true;
}
static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap,
JSArray* receiver) {
DisallowHeapAllocation no_gc;
PrototypeIterator iter(heap->isolate(), receiver);
return ArrayPrototypeHasNoElements(heap, &iter);
}
// Returns empty handle if not applicable.
MUST_USE_RESULT
static inline MaybeHandle<FixedArrayBase> EnsureJSArrayWithWritableFastElements(
Isolate* isolate,
Handle<Object> receiver,
Arguments* args,
int first_added_arg) {
if (!receiver->IsJSArray()) return MaybeHandle<FixedArrayBase>();
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
// If there may be elements accessors in the prototype chain, the fast path
// cannot be used if there arguments to add to the array.
Heap* heap = isolate->heap();
if (args != NULL && !IsJSArrayFastElementMovingAllowed(heap, *array)) {
return MaybeHandle<FixedArrayBase>();
}
if (array->map()->is_observed()) return MaybeHandle<FixedArrayBase>();
if (!array->map()->is_extensible()) return MaybeHandle<FixedArrayBase>();
Handle<FixedArrayBase> elms(array->elements(), isolate);
Map* map = elms->map();
if (map == heap->fixed_array_map()) {
if (args == NULL || array->HasFastObjectElements()) return elms;
} else if (map == heap->fixed_cow_array_map()) {
elms = JSObject::EnsureWritableFastElements(array);
if (args == NULL || array->HasFastObjectElements()) return elms;
} else if (map == heap->fixed_double_array_map()) {
if (args == NULL) return elms;
} else {
return MaybeHandle<FixedArrayBase>();
}
// Need to ensure that the arguments passed in args can be contained in
// the array.
int args_length = args->length();
if (first_added_arg >= args_length) return handle(array->elements(), isolate);
ElementsKind origin_kind = array->map()->elements_kind();
DCHECK(!IsFastObjectElementsKind(origin_kind));
ElementsKind target_kind = origin_kind;
{
DisallowHeapAllocation no_gc;
int arg_count = args->length() - first_added_arg;
Object** arguments = args->arguments() - first_added_arg - (arg_count - 1);
for (int i = 0; i < arg_count; i++) {
Object* arg = arguments[i];
if (arg->IsHeapObject()) {
if (arg->IsHeapNumber()) {
target_kind = FAST_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_ELEMENTS;
break;
}
}
}
}
if (target_kind != origin_kind) {
JSObject::TransitionElementsKind(array, target_kind);
return handle(array->elements(), isolate);
}
return elms;
}
MUST_USE_RESULT static Object* CallJsBuiltin(
Isolate* isolate,
const char* name,
BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
HandleScope handleScope(isolate);
Handle<Object> js_builtin = Object::GetProperty(
isolate,
handle(isolate->native_context()->builtins(), isolate),
name).ToHandleChecked();
Handle<JSFunction> function = Handle<JSFunction>::cast(js_builtin);
int argc = args.length() - 1;
ScopedVector<Handle<Object> > argv(argc);
for (int i = 0; i < argc; ++i) {
argv[i] = args.at<Object>(i + 1);
}
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Execution::Call(isolate,
function,
args.receiver(),
argc,
argv.start()));
return *result;
}
BUILTIN(ArrayPush) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsBuiltin(isolate, "ArrayPush", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
int len = Smi::cast(array->length())->value();
int to_add = args.length() - 1;
if (to_add > 0 && JSArray::WouldChangeReadOnlyLength(array, len + to_add)) {
return CallJsBuiltin(isolate, "ArrayPush", args);
}
DCHECK(!array->map()->is_observed());
ElementsKind kind = array->GetElementsKind();
if (IsFastSmiOrObjectElementsKind(kind)) {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
if (to_add == 0) {
return Smi::FromInt(len);
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
DCHECK(to_add <= (Smi::kMaxValue - len));
int new_length = len + to_add;
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
Handle<FixedArray> new_elms =
isolate->factory()->NewUninitializedFixedArray(capacity);
ElementsAccessor* accessor = array->GetElementsAccessor();
accessor->CopyElements(
elms_obj, 0, kind, new_elms, 0,
ElementsAccessor::kCopyToEndAndInitializeToHole);
elms = new_elms;
}
// Add the provided values.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int index = 0; index < to_add; index++) {
elms->set(index + len, args[index + 1], mode);
}
if (*elms != array->elements()) {
array->set_elements(*elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
} else {
int elms_len = elms_obj->length();
if (to_add == 0) {
return Smi::FromInt(len);
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
DCHECK(to_add <= (Smi::kMaxValue - len));
int new_length = len + to_add;
Handle<FixedDoubleArray> new_elms;
if (new_length > elms_len) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
// Create new backing store; since capacity > 0, we can
// safely cast to FixedDoubleArray.
new_elms = Handle<FixedDoubleArray>::cast(
isolate->factory()->NewFixedDoubleArray(capacity));
ElementsAccessor* accessor = array->GetElementsAccessor();
accessor->CopyElements(
elms_obj, 0, kind, new_elms, 0,
ElementsAccessor::kCopyToEndAndInitializeToHole);
} else {
// to_add is > 0 and new_length <= elms_len, so elms_obj cannot be the
// empty_fixed_array.
new_elms = Handle<FixedDoubleArray>::cast(elms_obj);
}
// Add the provided values.
DisallowHeapAllocation no_gc;
int index;
for (index = 0; index < to_add; index++) {
Object* arg = args[index + 1];
new_elms->set(index + len, arg->Number());
}
if (*new_elms != array->elements()) {
array->set_elements(*new_elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
}
}
BUILTIN(ArrayPop) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsBuiltin(isolate, "ArrayPop", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
DCHECK(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return isolate->heap()->undefined_value();
if (JSArray::HasReadOnlyLength(array)) {
return CallJsBuiltin(isolate, "ArrayPop", args);
}
ElementsAccessor* accessor = array->GetElementsAccessor();
int new_length = len - 1;
Handle<Object> element =
accessor->Get(array, array, new_length, elms_obj).ToHandleChecked();
if (element->IsTheHole()) {
return CallJsBuiltin(isolate, "ArrayPop", args);
}
RETURN_FAILURE_ON_EXCEPTION(
isolate,
accessor->SetLength(array, handle(Smi::FromInt(new_length), isolate)));
return *element;
}
BUILTIN(ArrayShift) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj) ||
!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(*receiver))) {
return CallJsBuiltin(isolate, "ArrayShift", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
DCHECK(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return heap->undefined_value();
if (JSArray::HasReadOnlyLength(array)) {
return CallJsBuiltin(isolate, "ArrayShift", args);
}
// Get first element
ElementsAccessor* accessor = array->GetElementsAccessor();
Handle<Object> first =
accessor->Get(array, array, 0, elms_obj).ToHandleChecked();
if (first->IsTheHole()) {
return CallJsBuiltin(isolate, "ArrayShift", args);
}
if (heap->CanMoveObjectStart(*elms_obj)) {
array->set_elements(heap->LeftTrimFixedArray(*elms_obj, 1));
} else {
// Shift the elements.
if (elms_obj->IsFixedArray()) {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, 0, 1, len - 1);
elms->set(len - 1, heap->the_hole_value());
} else {
Handle<FixedDoubleArray> elms = Handle<FixedDoubleArray>::cast(elms_obj);
MoveDoubleElements(*elms, 0, *elms, 1, len - 1);
elms->set_the_hole(len - 1);
}
}
// Set the length.
array->set_length(Smi::FromInt(len - 1));
return *first;
}
BUILTIN(ArrayUnshift) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
DCHECK(!array->map()->is_observed());
if (!array->HasFastSmiOrObjectElements()) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
int len = Smi::cast(array->length())->value();
int to_add = args.length() - 1;
int new_length = len + to_add;
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
DCHECK(to_add <= (Smi::kMaxValue - len));
if (to_add > 0 && JSArray::WouldChangeReadOnlyLength(array, len + to_add)) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
Handle<FixedArray> new_elms =
isolate->factory()->NewUninitializedFixedArray(capacity);
ElementsKind kind = array->GetElementsKind();
ElementsAccessor* accessor = array->GetElementsAccessor();
accessor->CopyElements(
elms, 0, kind, new_elms, to_add,
ElementsAccessor::kCopyToEndAndInitializeToHole);
elms = new_elms;
array->set_elements(*elms);
} else {
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, to_add, 0, len);
}
// Add the provided values.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int i = 0; i < to_add; i++) {
elms->set(i, args[i + 1], mode);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
}
BUILTIN(ArraySlice) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
int len = -1;
int relative_start = 0;
int relative_end = 0;
{
DisallowHeapAllocation no_gc;
if (receiver->IsJSArray()) {
JSArray* array = JSArray::cast(*receiver);
if (!IsJSArrayFastElementMovingAllowed(heap, array)) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
if (!array->HasFastElements()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
len = Smi::cast(array->length())->value();
} else {
// Array.slice(arguments, ...) is quite a common idiom (notably more
// than 50% of invocations in Web apps). Treat it in C++ as well.
Map* arguments_map =
isolate->context()->native_context()->sloppy_arguments_map();
bool is_arguments_object_with_fast_elements =
receiver->IsJSObject() &&
JSObject::cast(*receiver)->map() == arguments_map;
if (!is_arguments_object_with_fast_elements) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
JSObject* object = JSObject::cast(*receiver);
if (!object->HasFastElements()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
Object* len_obj = object->InObjectPropertyAt(Heap::kArgumentsLengthIndex);
if (!len_obj->IsSmi()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
len = Smi::cast(len_obj)->value();
if (len > object->elements()->length()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
DCHECK(len >= 0);
int n_arguments = args.length() - 1;
// Note carefully choosen defaults---if argument is missing,
// it's undefined which gets converted to 0 for relative_start
// and to len for relative_end.
relative_start = 0;
relative_end = len;
if (n_arguments > 0) {
Object* arg1 = args[1];
if (arg1->IsSmi()) {
relative_start = Smi::cast(arg1)->value();
} else if (arg1->IsHeapNumber()) {
double start = HeapNumber::cast(arg1)->value();
if (start < kMinInt || start > kMaxInt) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
} else if (!arg1->IsUndefined()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
if (n_arguments > 1) {
Object* arg2 = args[2];
if (arg2->IsSmi()) {
relative_end = Smi::cast(arg2)->value();
} else if (arg2->IsHeapNumber()) {
double end = HeapNumber::cast(arg2)->value();
if (end < kMinInt || end > kMaxInt) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
relative_end = std::isnan(end) ? 0 : static_cast<int>(end);
} else if (!arg2->IsUndefined()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
}
}
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
int k = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
int final = (relative_end < 0) ? Max(len + relative_end, 0)
: Min(relative_end, len);
// Calculate the length of result array.
int result_len = Max(final - k, 0);
Handle<JSObject> object = Handle<JSObject>::cast(receiver);
Handle<FixedArrayBase> elms(object->elements(), isolate);
ElementsKind kind = object->GetElementsKind();
if (IsHoleyElementsKind(kind)) {
DisallowHeapAllocation no_gc;
bool packed = true;
ElementsAccessor* accessor = ElementsAccessor::ForKind(kind);
for (int i = k; i < final; i++) {
if (!accessor->HasElement(object, i, elms)) {
packed = false;
break;
}
}
if (packed) {
kind = GetPackedElementsKind(kind);
} else if (!receiver->IsJSArray()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
Handle<JSArray> result_array =
isolate->factory()->NewJSArray(kind, result_len, result_len);
DisallowHeapAllocation no_gc;
if (result_len == 0) return *result_array;
ElementsAccessor* accessor = object->GetElementsAccessor();
accessor->CopyElements(
elms, k, kind, handle(result_array->elements(), isolate), 0, result_len);
return *result_array;
}
BUILTIN(ArraySplice) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
MaybeHandle<FixedArrayBase> maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3);
Handle<FixedArrayBase> elms_obj;
if (!maybe_elms_obj.ToHandle(&elms_obj)) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
DCHECK(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
int n_arguments = args.length() - 1;
int relative_start = 0;
if (n_arguments > 0) {
DisallowHeapAllocation no_gc;
Object* arg1 = args[1];
if (arg1->IsSmi()) {
relative_start = Smi::cast(arg1)->value();
} else if (arg1->IsHeapNumber()) {
double start = HeapNumber::cast(arg1)->value();
if (start < kMinInt || start > kMaxInt) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySplice", args);
}
relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
} else if (!arg1->IsUndefined()) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySplice", args);
}
}
int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
// given as a request to delete all the elements from the start.
// And it differs from the case of undefined delete count.
// This does not follow ECMA-262, but we do the same for
// compatibility.
int actual_delete_count;
if (n_arguments == 1) {
DCHECK(len - actual_start >= 0);
actual_delete_count = len - actual_start;
} else {
int value = 0; // ToInteger(undefined) == 0
if (n_arguments > 1) {
DisallowHeapAllocation no_gc;
Object* arg2 = args[2];
if (arg2->IsSmi()) {
value = Smi::cast(arg2)->value();
} else {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySplice", args);
}
}
actual_delete_count = Min(Max(value, 0), len - actual_start);
}
ElementsKind elements_kind = array->GetElementsKind();
int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0;
int new_length = len - actual_delete_count + item_count;
// For double mode we do not support changing the length.
if (new_length > len && IsFastDoubleElementsKind(elements_kind)) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
if (new_length != len && JSArray::HasReadOnlyLength(array)) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArraySplice", args);
}
if (new_length == 0) {
Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(
elms_obj, elements_kind, actual_delete_count);
array->set_elements(heap->empty_fixed_array());
array->set_length(Smi::FromInt(0));
return *result;
}
Handle<JSArray> result_array =
isolate->factory()->NewJSArray(elements_kind,
actual_delete_count,
actual_delete_count);
if (actual_delete_count > 0) {
DisallowHeapAllocation no_gc;
ElementsAccessor* accessor = array->GetElementsAccessor();
accessor->CopyElements(
elms_obj, actual_start, elements_kind,
handle(result_array->elements(), isolate), 0, actual_delete_count);
}
bool elms_changed = false;
if (item_count < actual_delete_count) {
// Shrink the array.
const bool trim_array = !heap->lo_space()->Contains(*elms_obj) &&
((actual_start + item_count) <
(len - actual_delete_count - actual_start));
if (trim_array) {
const int delta = actual_delete_count - item_count;
if (elms_obj->IsFixedDoubleArray()) {
Handle<FixedDoubleArray> elms =
Handle<FixedDoubleArray>::cast(elms_obj);
MoveDoubleElements(*elms, delta, *elms, 0, actual_start);
} else {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, delta, 0, actual_start);
}
if (heap->CanMoveObjectStart(*elms_obj)) {
// On the fast path we move the start of the object in memory.
elms_obj = handle(heap->LeftTrimFixedArray(*elms_obj, delta));
} else {
// This is the slow path. We are going to move the elements to the left
// by copying them. For trimmed values we store the hole.
if (elms_obj->IsFixedDoubleArray()) {
Handle<FixedDoubleArray> elms =
Handle<FixedDoubleArray>::cast(elms_obj);
MoveDoubleElements(*elms, 0, *elms, delta, len - delta);
elms->FillWithHoles(len - delta, len);
} else {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, 0, delta, len - delta);
elms->FillWithHoles(len - delta, len);
}
}
elms_changed = true;
} else {
if (elms_obj->IsFixedDoubleArray()) {
Handle<FixedDoubleArray> elms =
Handle<FixedDoubleArray>::cast(elms_obj);
MoveDoubleElements(*elms, actual_start + item_count,
*elms, actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
elms->FillWithHoles(new_length, len);
} else {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, actual_start + item_count,
actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
elms->FillWithHoles(new_length, len);
}
}
} else if (item_count > actual_delete_count) {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
DCHECK((item_count - actual_delete_count) <= (Smi::kMaxValue - len));
// Check if array need to grow.
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
Handle<FixedArray> new_elms =
isolate->factory()->NewUninitializedFixedArray(capacity);
DisallowHeapAllocation no_gc;
ElementsKind kind = array->GetElementsKind();
ElementsAccessor* accessor = array->GetElementsAccessor();
if (actual_start > 0) {
// Copy the part before actual_start as is.
accessor->CopyElements(
elms, 0, kind, new_elms, 0, actual_start);
}
accessor->CopyElements(
elms, actual_start + actual_delete_count, kind,
new_elms, actual_start + item_count,
ElementsAccessor::kCopyToEndAndInitializeToHole);
elms_obj = new_elms;
elms_changed = true;
} else {
DisallowHeapAllocation no_gc;
heap->MoveElements(*elms, actual_start + item_count,
actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
}
}
if (IsFastDoubleElementsKind(elements_kind)) {
Handle<FixedDoubleArray> elms = Handle<FixedDoubleArray>::cast(elms_obj);
for (int k = actual_start; k < actual_start + item_count; k++) {
Object* arg = args[3 + k - actual_start];
if (arg->IsSmi()) {
elms->set(k, Smi::cast(arg)->value());
} else {
elms->set(k, HeapNumber::cast(arg)->value());
}
}
} else {
Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int k = actual_start; k < actual_start + item_count; k++) {
elms->set(k, args[3 + k - actual_start], mode);
}
}
if (elms_changed) {
array->set_elements(*elms_obj);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return *result_array;
}
BUILTIN(ArrayConcat) {
HandleScope scope(isolate);
int n_arguments = args.length();
int result_len = 0;
ElementsKind elements_kind = GetInitialFastElementsKind();
bool has_double = false;
{
DisallowHeapAllocation no_gc;
Heap* heap = isolate->heap();
Context* native_context = isolate->context()->native_context();
Object* array_proto = native_context->array_function()->prototype();
PrototypeIterator iter(isolate, array_proto,
PrototypeIterator::START_AT_RECEIVER);
if (!ArrayPrototypeHasNoElements(heap, &iter)) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArrayConcatJS", args);
}
// Iterate through all the arguments performing checks
// and calculating total length.
bool is_holey = false;
for (int i = 0; i < n_arguments; i++) {
Object* arg = args[i];
PrototypeIterator iter(isolate, arg);
if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastElements() ||
iter.GetCurrent() != array_proto) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArrayConcatJS", args);
}
int len = Smi::cast(JSArray::cast(arg)->length())->value();
// We shouldn't overflow when adding another len.
const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
USE(kHalfOfMaxInt);
result_len += len;
DCHECK(result_len >= 0);
if (result_len > FixedDoubleArray::kMaxLength) {
AllowHeapAllocation allow_allocation;
return CallJsBuiltin(isolate, "ArrayConcatJS", args);
}
ElementsKind arg_kind = JSArray::cast(arg)->map()->elements_kind();
has_double = has_double || IsFastDoubleElementsKind(arg_kind);
is_holey = is_holey || IsFastHoleyElementsKind(arg_kind);
if (IsMoreGeneralElementsKindTransition(elements_kind, arg_kind)) {
elements_kind = arg_kind;
}
}
if (is_holey) elements_kind = GetHoleyElementsKind(elements_kind);
}
// If a double array is concatted into a fast elements array, the fast
// elements array needs to be initialized to contain proper holes, since
// boxing doubles may cause incremental marking.
ArrayStorageAllocationMode mode =
has_double && IsFastObjectElementsKind(elements_kind)
? INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE : DONT_INITIALIZE_ARRAY_ELEMENTS;
Handle<JSArray> result_array =
isolate->factory()->NewJSArray(elements_kind,
result_len,
result_len,
mode);
if (result_len == 0) return *result_array;
int j = 0;
Handle<FixedArrayBase> storage(result_array->elements(), isolate);
ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind);
for (int i = 0; i < n_arguments; i++) {
// It is crucial to keep |array| in a raw pointer form to avoid performance
// degradation.
JSArray* array = JSArray::cast(args[i]);
int len = Smi::cast(array->length())->value();
if (len > 0) {
ElementsKind from_kind = array->GetElementsKind();
accessor->CopyElements(array, 0, from_kind, storage, j, len);
j += len;
}
}
DCHECK(j == result_len);
return *result_array;
}
// -----------------------------------------------------------------------------
// Generator and strict mode poison pills
BUILTIN(StrictModePoisonPill) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError("strict_poison_pill", HandleVector<Object>(NULL, 0)));
}
BUILTIN(GeneratorPoisonPill) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError("generator_poison_pill", HandleVector<Object>(NULL, 0)));
}
// -----------------------------------------------------------------------------
//
template <bool is_construct>
MUST_USE_RESULT static MaybeHandle<Object> HandleApiCallHelper(
Isolate* isolate, BuiltinArguments<NEEDS_CALLED_FUNCTION>& args) {
HandleScope scope(isolate);
Handle<JSFunction> function = args.called_function();
// TODO(ishell): turn this back to a DCHECK.
CHECK(function->shared()->IsApiFunction());
Handle<FunctionTemplateInfo> fun_data(
function->shared()->get_api_func_data(), isolate);
if (is_construct) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate, fun_data,
ApiNatives::ConfigureInstance(isolate, fun_data,
Handle<JSObject>::cast(args.receiver())),
Object);
}
DCHECK(!args[0]->IsNull());
if (args[0]->IsUndefined()) args[0] = function->global_proxy();
Object* raw_holder = fun_data->GetCompatibleReceiver(isolate, args[0]);
if (raw_holder->IsNull()) {
// This function cannot be called with the given receiver. Abort!
THROW_NEW_ERROR(
isolate, NewTypeError("illegal_invocation", HandleVector(&function, 1)),
Object);
}
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined()) {
// TODO(ishell): remove this debugging code.
CHECK(raw_call_data->IsCallHandlerInfo());
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
Object* data_obj = call_data->data();
LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver())));
DCHECK(raw_holder->IsJSObject());
FunctionCallbackArguments custom(isolate,
data_obj,
*function,
raw_holder,
&args[0] - 1,
args.length() - 1,
is_construct);
v8::Handle<v8::Value> value = custom.Call(callback);
Handle<Object> result;
if (value.IsEmpty()) {
result = isolate->factory()->undefined_value();
} else {
result = v8::Utils::OpenHandle(*value);
result->VerifyApiCallResultType();
}
RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (!is_construct || result->IsJSObject()) {
return scope.CloseAndEscape(result);
}
}
return scope.CloseAndEscape(args.receiver());
}
BUILTIN(HandleApiCall) {
HandleScope scope(isolate);
DCHECK(!CalledAsConstructor(isolate));
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
HandleApiCallHelper<false>(isolate, args));
return *result;
}
BUILTIN(HandleApiCallConstruct) {
HandleScope scope(isolate);
DCHECK(CalledAsConstructor(isolate));
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
HandleApiCallHelper<true>(isolate, args));
return *result;
}
namespace {
class RelocatableArguments : public BuiltinArguments<NEEDS_CALLED_FUNCTION>,
public Relocatable {
public:
RelocatableArguments(Isolate* isolate, int length, Object** arguments)
: BuiltinArguments<NEEDS_CALLED_FUNCTION>(length, arguments),
Relocatable(isolate) {}
virtual inline void IterateInstance(ObjectVisitor* v) {
if (length() == 0) return;
v->VisitPointers(lowest_address(), highest_address() + 1);
}
private:
DISALLOW_COPY_AND_ASSIGN(RelocatableArguments);
};
} // namespace
MaybeHandle<Object> Builtins::InvokeApiFunction(Handle<JSFunction> function,
Handle<Object> receiver,
int argc,
Handle<Object> args[]) {
// Construct BuiltinArguments object: function, arguments reversed, receiver.
const int kBufferSize = 32;
Object* small_argv[kBufferSize];
Object** argv;
if (argc + 2 <= kBufferSize) {
argv = small_argv;
} else {
argv = new Object* [argc + 2];
}
argv[argc + 1] = *receiver;
for (int i = 0; i < argc; ++i) {
argv[argc - i] = *args[i];
}
argv[0] = *function;
MaybeHandle<Object> result;
{
auto isolate = function->GetIsolate();
RelocatableArguments arguments(isolate, argc + 2, &argv[argc + 1]);
result = HandleApiCallHelper<false>(isolate, arguments);
}
if (argv != small_argv) {
delete[] argv;
}
return result;
}
// Helper function to handle calls to non-function objects created through the
// API. The object can be called as either a constructor (using new) or just as
// a function (without new).
MUST_USE_RESULT static Object* HandleApiCallAsFunctionOrConstructor(
Isolate* isolate,
bool is_construct_call,
BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
// Non-functions are never called as constructors. Even if this is an object
// called as a constructor the delegate call is not a construct call.
DCHECK(!CalledAsConstructor(isolate));
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
// Get the object called.
JSObject* obj = JSObject::cast(*receiver);
// Get the invocation callback from the function descriptor that was
// used to create the called object.
DCHECK(obj->map()->has_instance_call_handler());
JSFunction* constructor = JSFunction::cast(obj->map()->GetConstructor());
// TODO(ishell): turn this back to a DCHECK.
CHECK(constructor->shared()->IsApiFunction());
Object* handler =
constructor->shared()->get_api_func_data()->instance_call_handler();
DCHECK(!handler->IsUndefined());
// TODO(ishell): remove this debugging code.
CHECK(handler->IsCallHandlerInfo());
CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
// Get the data for the call and perform the callback.
Object* result;
{
HandleScope scope(isolate);
LOG(isolate, ApiObjectAccess("call non-function", obj));
FunctionCallbackArguments custom(isolate,
call_data->data(),
constructor,
obj,
&args[0] - 1,
args.length() - 1,
is_construct_call);
v8::Handle<v8::Value> value = custom.Call(callback);
if (value.IsEmpty()) {
result = heap->undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
result->VerifyApiCallResultType();
}
}
// Check for exceptions and return result.
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return result;
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a normal function call.
BUILTIN(HandleApiCallAsFunction) {
return HandleApiCallAsFunctionOrConstructor(isolate, false, args);
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a construct call.
BUILTIN(HandleApiCallAsConstructor) {
return HandleApiCallAsFunctionOrConstructor(isolate, true, args);
}
static void Generate_LoadIC_Miss(MacroAssembler* masm) {
LoadIC::GenerateMiss(masm);
}
static void Generate_LoadIC_Normal(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm);
}
static void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) {
NamedLoadHandlerCompiler::GenerateLoadViaGetterForDeopt(masm);
}
static void Generate_LoadIC_Slow(MacroAssembler* masm) {
LoadIC::GenerateRuntimeGetProperty(masm);
}
static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) {
KeyedLoadIC::GenerateInitialize(masm);
}
static void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) {
KeyedLoadIC::GenerateRuntimeGetProperty(masm);
}
static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm);
}
static void Generate_KeyedLoadIC_Megamorphic(MacroAssembler* masm) {
KeyedLoadIC::GenerateMegamorphic(masm);
}
static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) {
KeyedLoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_StoreIC_Miss(MacroAssembler* masm) {
StoreIC::GenerateMiss(masm);
}
static void Generate_StoreIC_Normal(MacroAssembler* masm) {
StoreIC::GenerateNormal(masm);
}
static void Generate_StoreIC_Slow(MacroAssembler* masm) {
NamedStoreHandlerCompiler::GenerateSlow(masm);
}
static void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) {
ElementHandlerCompiler::GenerateStoreSlow(masm);
}
static void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) {
NamedStoreHandlerCompiler::GenerateStoreViaSetterForDeopt(masm);
}
static void Generate_KeyedStoreIC_Megamorphic(MacroAssembler* masm) {
KeyedStoreIC::GenerateMegamorphic(masm, SLOPPY);
}
static void Generate_KeyedStoreIC_Megamorphic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateMegamorphic(masm, STRICT);
}
static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm);
}
static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_Initialize_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_SloppyArguments(MacroAssembler* masm) {
KeyedStoreIC::GenerateSloppyArguments(masm);
}
static void Generate_CallICStub_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateCallICStubDebugBreak(masm);
}
static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateLoadICDebugBreak(masm);
}
static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateStoreICDebugBreak(masm);
}
static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateKeyedLoadICDebugBreak(masm);
}
static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateKeyedStoreICDebugBreak(masm);
}
static void Generate_CompareNilIC_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateCompareNilICDebugBreak(masm);
}
static void Generate_Return_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateReturnDebugBreak(masm);
}
static void Generate_CallFunctionStub_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateCallFunctionStubDebugBreak(masm);
}
static void Generate_CallConstructStub_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateCallConstructStubDebugBreak(masm);
}
static void Generate_CallConstructStub_Recording_DebugBreak(
MacroAssembler* masm) {
DebugCodegen::GenerateCallConstructStubRecordDebugBreak(masm);
}
static void Generate_Slot_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateSlotDebugBreak(masm);
}
static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) {
DebugCodegen::GeneratePlainReturnLiveEdit(masm);
}
static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) {
DebugCodegen::GenerateFrameDropperLiveEdit(masm);
}
Builtins::Builtins() : initialized_(false) {
memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count);
memset(names_, 0, sizeof(names_[0]) * builtin_count);
}
Builtins::~Builtins() {
}
#define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name),
Address const Builtins::c_functions_[cfunction_count] = {
BUILTIN_LIST_C(DEF_ENUM_C)
};
#undef DEF_ENUM_C
#define DEF_JS_NAME(name, ignore) #name,
#define DEF_JS_ARGC(ignore, argc) argc,
const char* const Builtins::javascript_names_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_NAME)
};
int const Builtins::javascript_argc_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_ARGC)
};
#undef DEF_JS_NAME
#undef DEF_JS_ARGC
struct BuiltinDesc {
byte* generator;
byte* c_code;
const char* s_name; // name is only used for generating log information.
int name;
Code::Flags flags;
BuiltinExtraArguments extra_args;
};
#define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} }
class BuiltinFunctionTable {
public:
BuiltinDesc* functions() {
base::CallOnce(&once_, &Builtins::InitBuiltinFunctionTable);
return functions_;
}
base::OnceType once_;
BuiltinDesc functions_[Builtins::builtin_count + 1];
friend class Builtins;
};
static BuiltinFunctionTable builtin_function_table =
BUILTIN_FUNCTION_TABLE_INIT;
// Define array of pointers to generators and C builtin functions.
// We do this in a sort of roundabout way so that we can do the initialization
// within the lexical scope of Builtins:: and within a context where
// Code::Flags names a non-abstract type.
void Builtins::InitBuiltinFunctionTable() {
BuiltinDesc* functions = builtin_function_table.functions_;
functions[builtin_count].generator = NULL;
functions[builtin_count].c_code = NULL;
functions[builtin_count].s_name = NULL;
functions[builtin_count].name = builtin_count;
functions[builtin_count].flags = static_cast<Code::Flags>(0);
functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS;
#define DEF_FUNCTION_PTR_C(aname, aextra_args) \
functions->generator = FUNCTION_ADDR(Generate_Adaptor); \
functions->c_code = FUNCTION_ADDR(Builtin_##aname); \
functions->s_name = #aname; \
functions->name = c_##aname; \
functions->flags = Code::ComputeFlags(Code::BUILTIN); \
functions->extra_args = aextra_args; \
++functions;
#define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags(Code::kind, \
state, \
extra); \
functions->extra_args = NO_EXTRA_ARGUMENTS; \
++functions;
#define DEF_FUNCTION_PTR_H(aname, kind) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeHandlerFlags(Code::kind); \
functions->extra_args = NO_EXTRA_ARGUMENTS; \
++functions;
BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
BUILTIN_LIST_H(DEF_FUNCTION_PTR_H)
BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
#undef DEF_FUNCTION_PTR_C
#undef DEF_FUNCTION_PTR_A
}
void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) {
DCHECK(!initialized_);
// Create a scope for the handles in the builtins.
HandleScope scope(isolate);
const BuiltinDesc* functions = builtin_function_table.functions();
// For now we generate builtin adaptor code into a stack-allocated
// buffer, before copying it into individual code objects. Be careful
// with alignment, some platforms don't like unaligned code.
#ifdef DEBUG
// We can generate a lot of debug code on Arm64.
const size_t buffer_size = 32*KB;
#else
const size_t buffer_size = 8*KB;
#endif
union { int force_alignment; byte buffer[buffer_size]; } u;
// Traverse the list of builtins and generate an adaptor in a
// separate code object for each one.
for (int i = 0; i < builtin_count; i++) {
if (create_heap_objects) {
MacroAssembler masm(isolate, u.buffer, sizeof u.buffer);
// Generate the code/adaptor.
typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments);
Generator g = FUNCTION_CAST<Generator>(functions[i].generator);
// We pass all arguments to the generator, but it may not use all of
// them. This works because the first arguments are on top of the
// stack.
DCHECK(!masm.has_frame());
g(&masm, functions[i].name, functions[i].extra_args);
// Move the code into the object heap.
CodeDesc desc;
masm.GetCode(&desc);
Code::Flags flags = functions[i].flags;
Handle<Code> code =
isolate->factory()->NewCode(desc, flags, masm.CodeObject());
// Log the event and add the code to the builtins array.
PROFILE(isolate,
CodeCreateEvent(Logger::BUILTIN_TAG, *code, functions[i].s_name));
builtins_[i] = *code;
code->set_builtin_index(i);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_builtin_code) {
CodeTracer::Scope trace_scope(isolate->GetCodeTracer());
OFStream os(trace_scope.file());
os << "Builtin: " << functions[i].s_name << "\n";
code->Disassemble(functions[i].s_name, os);
os << "\n";
}
#endif
} else {
// Deserializing. The values will be filled in during IterateBuiltins.
builtins_[i] = NULL;
}
names_[i] = functions[i].s_name;
}
// Mark as initialized.
initialized_ = true;
}
void Builtins::TearDown() {
initialized_ = false;
}
void Builtins::IterateBuiltins(ObjectVisitor* v) {
v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
}
const char* Builtins::Lookup(byte* pc) {
// may be called during initialization (disassembler!)
if (initialized_) {
for (int i = 0; i < builtin_count; i++) {
Code* entry = Code::cast(builtins_[i]);
if (entry->contains(pc)) {
return names_[i];
}
}
}
return NULL;
}
void Builtins::Generate_InterruptCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kInterrupt, 0, 1);
}
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
#define DEFINE_BUILTIN_ACCESSOR_C(name, ignore) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_A(name, kind, state, extra) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_H(name, kind) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C)
BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A)
BUILTIN_LIST_H(DEFINE_BUILTIN_ACCESSOR_H)
BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A)
#undef DEFINE_BUILTIN_ACCESSOR_C
#undef DEFINE_BUILTIN_ACCESSOR_A
} } // namespace v8::internal