v8/src/ia32/ic-ia32.cc
loislo@chromium.org d2c443b774 Extract hardcoded error strings into a single place and replace them with enum.
I'd like to propagate bailout reason to cpu profiler.
So I need to save it into heap object SharedFunctionInfo.
But:
1) all bailout reason strings spread across all the sources.
2) they are native strings and if I convert them into String then I may have a performance issue.
3) one byte is enough for 184 bailout reasons. Otherwise we need 8 bytes for the pointer.

Also I think it would be nice to have error strings collected in one place.
In that case we will get additional benefits:

It allows us to keep this set of messages under control.
It gives us a chance to internationalize them.
It slightly reduces the binary footprint.

From the other hand the developers have to add new strings into that enum.

BUG=
R=jkummerow@chromium.org

Review URL: https://codereview.chromium.org/20843012

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16024 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-08-02 09:53:11 +00:00

1668 lines
58 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_IA32
#include "codegen.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm,
Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ cmp(type, JS_GLOBAL_OBJECT_TYPE);
__ j(equal, global_object);
__ cmp(type, JS_BUILTINS_OBJECT_TYPE);
__ j(equal, global_object);
__ cmp(type, JS_GLOBAL_PROXY_TYPE);
__ j(equal, global_object);
}
// Generated code falls through if the receiver is a regular non-global
// JS object with slow properties and no interceptors.
static void GenerateNameDictionaryReceiverCheck(MacroAssembler* masm,
Register receiver,
Register r0,
Register r1,
Label* miss) {
// Register usage:
// receiver: holds the receiver on entry and is unchanged.
// r0: used to hold receiver instance type.
// Holds the property dictionary on fall through.
// r1: used to hold receivers map.
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the receiver is a valid JS object.
__ mov(r1, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzx_b(r0, FieldOperand(r1, Map::kInstanceTypeOffset));
__ cmp(r0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss);
// If this assert fails, we have to check upper bound too.
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
GenerateGlobalInstanceTypeCheck(masm, r0, miss);
// Check for non-global object that requires access check.
__ test_b(FieldOperand(r1, Map::kBitFieldOffset),
(1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasNamedInterceptor));
__ j(not_zero, miss);
__ mov(r0, FieldOperand(receiver, JSObject::kPropertiesOffset));
__ CheckMap(r0, masm->isolate()->factory()->hash_table_map(), miss,
DONT_DO_SMI_CHECK);
}
// Helper function used to load a property from a dictionary backing
// storage. This function may fail to load a property even though it is
// in the dictionary, so code at miss_label must always call a backup
// property load that is complete. This function is safe to call if
// name is not internalized, and will jump to the miss_label in that
// case. The generated code assumes that the receiver has slow
// properties, is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm,
Label* miss_label,
Register elements,
Register name,
Register r0,
Register r1,
Register result) {
// Register use:
//
// elements - holds the property dictionary on entry and is unchanged.
//
// name - holds the name of the property on entry and is unchanged.
//
// Scratch registers:
//
// r0 - used for the index into the property dictionary
//
// r1 - used to hold the capacity of the property dictionary.
//
// result - holds the result on exit.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm,
miss_label,
&done,
elements,
name,
r0,
r1);
// If probing finds an entry in the dictionary, r0 contains the
// index into the dictionary. Check that the value is a normal
// property.
__ bind(&done);
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
__ j(not_zero, miss_label);
// Get the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ mov(result, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
}
// Helper function used to store a property to a dictionary backing
// storage. This function may fail to store a property eventhough it
// is in the dictionary, so code at miss_label must always call a
// backup property store that is complete. This function is safe to
// call if name is not internalized, and will jump to the miss_label in
// that case. The generated code assumes that the receiver has slow
// properties, is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm,
Label* miss_label,
Register elements,
Register name,
Register value,
Register r0,
Register r1) {
// Register use:
//
// elements - holds the property dictionary on entry and is clobbered.
//
// name - holds the name of the property on entry and is unchanged.
//
// value - holds the value to store and is unchanged.
//
// r0 - used for index into the property dictionary and is clobbered.
//
// r1 - used to hold the capacity of the property dictionary and is clobbered.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm,
miss_label,
&done,
elements,
name,
r0,
r1);
// If probing finds an entry in the dictionary, r0 contains the
// index into the dictionary. Check that the value is a normal
// property that is not read only.
__ bind(&done);
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask =
(PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize;
__ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
Immediate(kTypeAndReadOnlyMask));
__ j(not_zero, miss_label);
// Store the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ lea(r0, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
__ mov(Operand(r0, 0), value);
// Update write barrier. Make sure not to clobber the value.
__ mov(r1, value);
__ RecordWrite(elements, r0, r1, kDontSaveFPRegs);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver,
Register map,
int interceptor_bit,
Label* slow) {
// Register use:
// receiver - holds the receiver and is unchanged.
// Scratch registers:
// map - used to hold the map of the receiver.
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, slow);
// Get the map of the receiver.
__ mov(map, FieldOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ test_b(FieldOperand(map, Map::kBitFieldOffset),
(1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit));
__ j(not_zero, slow);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing
// into string objects works as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ CmpInstanceType(map, JS_OBJECT_TYPE);
__ j(below, slow);
}
// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
static void GenerateFastArrayLoad(MacroAssembler* masm,
Register receiver,
Register key,
Register scratch,
Register result,
Label* not_fast_array,
Label* out_of_range) {
// Register use:
// receiver - holds the receiver and is unchanged.
// key - holds the key and is unchanged (must be a smi).
// Scratch registers:
// scratch - used to hold elements of the receiver and the loaded value.
// result - holds the result on exit if the load succeeds and
// we fall through.
__ mov(scratch, FieldOperand(receiver, JSObject::kElementsOffset));
if (not_fast_array != NULL) {
// Check that the object is in fast mode and writable.
__ CheckMap(scratch,
masm->isolate()->factory()->fixed_array_map(),
not_fast_array,
DONT_DO_SMI_CHECK);
} else {
__ AssertFastElements(scratch);
}
// Check that the key (index) is within bounds.
__ cmp(key, FieldOperand(scratch, FixedArray::kLengthOffset));
__ j(above_equal, out_of_range);
// Fast case: Do the load.
STATIC_ASSERT((kPointerSize == 4) && (kSmiTagSize == 1) && (kSmiTag == 0));
__ mov(scratch, FieldOperand(scratch, key, times_2, FixedArray::kHeaderSize));
__ cmp(scratch, Immediate(masm->isolate()->factory()->the_hole_value()));
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ j(equal, out_of_range);
if (!result.is(scratch)) {
__ mov(result, scratch);
}
}
// Checks whether a key is an array index string or a unique name.
// Falls through if the key is a unique name.
static void GenerateKeyNameCheck(MacroAssembler* masm,
Register key,
Register map,
Register hash,
Label* index_string,
Label* not_unique) {
// Register use:
// key - holds the key and is unchanged. Assumed to be non-smi.
// Scratch registers:
// map - used to hold the map of the key.
// hash - used to hold the hash of the key.
Label unique;
__ CmpObjectType(key, LAST_UNIQUE_NAME_TYPE, map);
__ j(above, not_unique);
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
__ j(equal, &unique);
// Is the string an array index, with cached numeric value?
__ mov(hash, FieldOperand(key, Name::kHashFieldOffset));
__ test(hash, Immediate(Name::kContainsCachedArrayIndexMask));
__ j(zero, index_string);
// Is the string internalized? We already know it's a string so a single
// bit test is enough.
STATIC_ASSERT(kNotInternalizedTag != 0);
__ test_b(FieldOperand(map, Map::kInstanceTypeOffset),
kIsNotInternalizedMask);
__ j(not_zero, not_unique);
__ bind(&unique);
}
static Operand GenerateMappedArgumentsLookup(MacroAssembler* masm,
Register object,
Register key,
Register scratch1,
Register scratch2,
Label* unmapped_case,
Label* slow_case) {
Heap* heap = masm->isolate()->heap();
Factory* factory = masm->isolate()->factory();
// Check that the receiver is a JSObject. Because of the elements
// map check later, we do not need to check for interceptors or
// whether it requires access checks.
__ JumpIfSmi(object, slow_case);
// Check that the object is some kind of JSObject.
__ CmpObjectType(object, FIRST_JS_RECEIVER_TYPE, scratch1);
__ j(below, slow_case);
// Check that the key is a positive smi.
__ test(key, Immediate(0x80000001));
__ j(not_zero, slow_case);
// Load the elements into scratch1 and check its map.
Handle<Map> arguments_map(heap->non_strict_arguments_elements_map());
__ mov(scratch1, FieldOperand(object, JSObject::kElementsOffset));
__ CheckMap(scratch1, arguments_map, slow_case, DONT_DO_SMI_CHECK);
// Check if element is in the range of mapped arguments. If not, jump
// to the unmapped lookup with the parameter map in scratch1.
__ mov(scratch2, FieldOperand(scratch1, FixedArray::kLengthOffset));
__ sub(scratch2, Immediate(Smi::FromInt(2)));
__ cmp(key, scratch2);
__ j(above_equal, unmapped_case);
// Load element index and check whether it is the hole.
const int kHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize;
__ mov(scratch2, FieldOperand(scratch1,
key,
times_half_pointer_size,
kHeaderSize));
__ cmp(scratch2, factory->the_hole_value());
__ j(equal, unmapped_case);
// Load value from context and return it. We can reuse scratch1 because
// we do not jump to the unmapped lookup (which requires the parameter
// map in scratch1).
const int kContextOffset = FixedArray::kHeaderSize;
__ mov(scratch1, FieldOperand(scratch1, kContextOffset));
return FieldOperand(scratch1,
scratch2,
times_half_pointer_size,
Context::kHeaderSize);
}
static Operand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
Register key,
Register parameter_map,
Register scratch,
Label* slow_case) {
// Element is in arguments backing store, which is referenced by the
// second element of the parameter_map.
const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
Register backing_store = parameter_map;
__ mov(backing_store, FieldOperand(parameter_map, kBackingStoreOffset));
Handle<Map> fixed_array_map(masm->isolate()->heap()->fixed_array_map());
__ CheckMap(backing_store, fixed_array_map, slow_case, DONT_DO_SMI_CHECK);
__ mov(scratch, FieldOperand(backing_store, FixedArray::kLengthOffset));
__ cmp(key, scratch);
__ j(greater_equal, slow_case);
return FieldOperand(backing_store,
key,
times_half_pointer_size,
FixedArray::kHeaderSize);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, check_name, index_smi, index_name, property_array_property;
Label probe_dictionary, check_number_dictionary;
// Check that the key is a smi.
__ JumpIfNotSmi(ecx, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, edx, eax, Map::kHasIndexedInterceptor, &slow);
// Check the receiver's map to see if it has fast elements.
__ CheckFastElements(eax, &check_number_dictionary);
GenerateFastArrayLoad(masm, edx, ecx, eax, eax, NULL, &slow);
Isolate* isolate = masm->isolate();
Counters* counters = isolate->counters();
__ IncrementCounter(counters->keyed_load_generic_smi(), 1);
__ ret(0);
__ bind(&check_number_dictionary);
__ mov(ebx, ecx);
__ SmiUntag(ebx);
__ mov(eax, FieldOperand(edx, JSObject::kElementsOffset));
// Check whether the elements is a number dictionary.
// edx: receiver
// ebx: untagged index
// ecx: key
// eax: elements
__ CheckMap(eax,
isolate->factory()->hash_table_map(),
&slow,
DONT_DO_SMI_CHECK);
Label slow_pop_receiver;
// Push receiver on the stack to free up a register for the dictionary
// probing.
__ push(edx);
__ LoadFromNumberDictionary(&slow_pop_receiver, eax, ecx, ebx, edx, edi, eax);
// Pop receiver before returning.
__ pop(edx);
__ ret(0);
__ bind(&slow_pop_receiver);
// Pop the receiver from the stack and jump to runtime.
__ pop(edx);
__ bind(&slow);
// Slow case: jump to runtime.
// edx: receiver
// ecx: key
__ IncrementCounter(counters->keyed_load_generic_slow(), 1);
GenerateRuntimeGetProperty(masm);
__ bind(&check_name);
GenerateKeyNameCheck(masm, ecx, eax, ebx, &index_name, &slow);
GenerateKeyedLoadReceiverCheck(
masm, edx, eax, Map::kHasNamedInterceptor, &slow);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary.
__ mov(ebx, FieldOperand(edx, JSObject::kPropertiesOffset));
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(isolate->factory()->hash_table_map()));
__ j(equal, &probe_dictionary);
// The receiver's map is still in eax, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the string hash.
if (FLAG_debug_code) {
__ cmp(eax, FieldOperand(edx, HeapObject::kMapOffset));
__ Check(equal, kMapIsNoLongerInEax);
}
__ mov(ebx, eax); // Keep the map around for later.
__ shr(eax, KeyedLookupCache::kMapHashShift);
__ mov(edi, FieldOperand(ecx, String::kHashFieldOffset));
__ shr(edi, String::kHashShift);
__ xor_(eax, edi);
__ and_(eax, KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
// Load the key (consisting of map and internalized string) from the cache and
// check for match.
Label load_in_object_property;
static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
Label hit_on_nth_entry[kEntriesPerBucket];
ExternalReference cache_keys =
ExternalReference::keyed_lookup_cache_keys(masm->isolate());
for (int i = 0; i < kEntriesPerBucket - 1; i++) {
Label try_next_entry;
__ mov(edi, eax);
__ shl(edi, kPointerSizeLog2 + 1);
if (i != 0) {
__ add(edi, Immediate(kPointerSize * i * 2));
}
__ cmp(ebx, Operand::StaticArray(edi, times_1, cache_keys));
__ j(not_equal, &try_next_entry);
__ add(edi, Immediate(kPointerSize));
__ cmp(ecx, Operand::StaticArray(edi, times_1, cache_keys));
__ j(equal, &hit_on_nth_entry[i]);
__ bind(&try_next_entry);
}
__ lea(edi, Operand(eax, 1));
__ shl(edi, kPointerSizeLog2 + 1);
__ add(edi, Immediate(kPointerSize * (kEntriesPerBucket - 1) * 2));
__ cmp(ebx, Operand::StaticArray(edi, times_1, cache_keys));
__ j(not_equal, &slow);
__ add(edi, Immediate(kPointerSize));
__ cmp(ecx, Operand::StaticArray(edi, times_1, cache_keys));
__ j(not_equal, &slow);
// Get field offset.
// edx : receiver
// ebx : receiver's map
// ecx : key
// eax : lookup cache index
ExternalReference cache_field_offsets =
ExternalReference::keyed_lookup_cache_field_offsets(masm->isolate());
// Hit on nth entry.
for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
__ bind(&hit_on_nth_entry[i]);
if (i != 0) {
__ add(eax, Immediate(i));
}
__ mov(edi,
Operand::StaticArray(eax, times_pointer_size, cache_field_offsets));
__ movzx_b(eax, FieldOperand(ebx, Map::kInObjectPropertiesOffset));
__ sub(edi, eax);
__ j(above_equal, &property_array_property);
if (i != 0) {
__ jmp(&load_in_object_property);
}
}
// Load in-object property.
__ bind(&load_in_object_property);
__ movzx_b(eax, FieldOperand(ebx, Map::kInstanceSizeOffset));
__ add(eax, edi);
__ mov(eax, FieldOperand(edx, eax, times_pointer_size, 0));
__ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1);
__ ret(0);
// Load property array property.
__ bind(&property_array_property);
__ mov(eax, FieldOperand(edx, JSObject::kPropertiesOffset));
__ mov(eax, FieldOperand(eax, edi, times_pointer_size,
FixedArray::kHeaderSize));
__ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1);
__ ret(0);
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
__ mov(eax, FieldOperand(edx, JSObject::kMapOffset));
__ movzx_b(eax, FieldOperand(eax, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, eax, &slow);
GenerateDictionaryLoad(masm, &slow, ebx, ecx, eax, edi, eax);
__ IncrementCounter(counters->keyed_load_generic_symbol(), 1);
__ ret(0);
__ bind(&index_name);
__ IndexFromHash(ebx, ecx);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key (index)
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Register receiver = edx;
Register index = ecx;
Register scratch = ebx;
Register result = eax;
StringCharAtGenerator char_at_generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
STRING_INDEX_IS_ARRAY_INDEX);
char_at_generator.GenerateFast(masm);
__ ret(0);
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, call_helper);
__ bind(&miss);
GenerateMiss(masm, MISS);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow;
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &slow);
// Check that the key is an array index, that is Uint32.
__ test(ecx, Immediate(kSmiTagMask | kSmiSignMask));
__ j(not_zero, &slow);
// Get the map of the receiver.
__ mov(eax, FieldOperand(edx, HeapObject::kMapOffset));
// Check that it has indexed interceptor and access checks
// are not enabled for this object.
__ movzx_b(eax, FieldOperand(eax, Map::kBitFieldOffset));
__ and_(eax, Immediate(kSlowCaseBitFieldMask));
__ cmp(eax, Immediate(1 << Map::kHasIndexedInterceptor));
__ j(not_zero, &slow);
// Everything is fine, call runtime.
__ pop(eax);
__ push(edx); // receiver
__ push(ecx); // key
__ push(eax); // return address
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedLoadPropertyWithInterceptor),
masm->isolate());
__ TailCallExternalReference(ref, 2, 1);
__ bind(&slow);
GenerateMiss(masm, MISS);
}
void KeyedLoadIC::GenerateNonStrictArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, notin;
Factory* factory = masm->isolate()->factory();
Operand mapped_location =
GenerateMappedArgumentsLookup(masm, edx, ecx, ebx, eax, &notin, &slow);
__ mov(eax, mapped_location);
__ Ret();
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in ebx.
Operand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, ecx, ebx, eax, &slow);
__ cmp(unmapped_location, factory->the_hole_value());
__ j(equal, &slow);
__ mov(eax, unmapped_location);
__ Ret();
__ bind(&slow);
GenerateMiss(masm, MISS);
}
void KeyedStoreIC::GenerateNonStrictArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, notin;
Operand mapped_location =
GenerateMappedArgumentsLookup(masm, edx, ecx, ebx, edi, &notin, &slow);
__ mov(mapped_location, eax);
__ lea(ecx, mapped_location);
__ mov(edx, eax);
__ RecordWrite(ebx, ecx, edx, kDontSaveFPRegs);
__ Ret();
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in ebx.
Operand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, ecx, ebx, edi, &slow);
__ mov(unmapped_location, eax);
__ lea(edi, unmapped_location);
__ mov(edx, eax);
__ RecordWrite(ebx, edi, edx, kDontSaveFPRegs);
__ Ret();
__ bind(&slow);
GenerateMiss(masm, MISS);
}
static void KeyedStoreGenerateGenericHelper(
MacroAssembler* masm,
Label* fast_object,
Label* fast_double,
Label* slow,
KeyedStoreCheckMap check_map,
KeyedStoreIncrementLength increment_length) {
Label transition_smi_elements;
Label finish_object_store, non_double_value, transition_double_elements;
Label fast_double_without_map_check;
// eax: value
// ecx: key (a smi)
// edx: receiver
// ebx: FixedArray receiver->elements
// edi: receiver map
// Fast case: Do the store, could either Object or double.
__ bind(fast_object);
if (check_map == kCheckMap) {
__ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
__ cmp(edi, masm->isolate()->factory()->fixed_array_map());
__ j(not_equal, fast_double);
}
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(eax, &non_smi_value);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(FieldOperand(edx, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
}
// It's irrelevant whether array is smi-only or not when writing a smi.
__ mov(CodeGenerator::FixedArrayElementOperand(ebx, ecx), eax);
__ ret(0);
__ bind(&non_smi_value);
// Escape to elements kind transition case.
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
__ CheckFastObjectElements(edi, &transition_smi_elements);
// Fast elements array, store the value to the elements backing store.
__ bind(&finish_object_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(FieldOperand(edx, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
}
__ mov(CodeGenerator::FixedArrayElementOperand(ebx, ecx), eax);
// Update write barrier for the elements array address.
__ mov(edx, eax); // Preserve the value which is returned.
__ RecordWriteArray(
ebx, edx, ecx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ ret(0);
__ bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
__ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
__ j(not_equal, slow);
// If the value is a number, store it as a double in the FastDoubleElements
// array.
}
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(eax, ebx, ecx, edi, xmm0,
&transition_double_elements, false);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(FieldOperand(edx, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
}
__ ret(0);
__ bind(&transition_smi_elements);
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
// Transition the array appropriately depending on the value type.
__ CheckMap(eax,
masm->isolate()->factory()->heap_number_map(),
&non_double_value,
DONT_DO_SMI_CHECK);
// Value is a double. Transition FAST_SMI_ELEMENTS -> FAST_DOUBLE_ELEMENTS
// and complete the store.
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS,
ebx,
edi,
slow);
AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, mode, slow);
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
__ jmp(&fast_double_without_map_check);
__ bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS,
ebx,
edi,
slow);
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(masm, mode,
slow);
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
__ bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS,
FAST_ELEMENTS,
ebx,
edi,
slow);
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(masm, mode, slow);
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, fast_object, fast_object_grow;
Label fast_double, fast_double_grow;
Label array, extra, check_if_double_array;
// Check that the object isn't a smi.
__ JumpIfSmi(edx, &slow);
// Get the map from the receiver.
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ test_b(FieldOperand(edi, Map::kBitFieldOffset),
1 << Map::kIsAccessCheckNeeded);
__ j(not_zero, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(ecx, &slow);
__ CmpInstanceType(edi, JS_ARRAY_TYPE);
__ j(equal, &array);
// Check that the object is some kind of JSObject.
__ CmpInstanceType(edi, FIRST_JS_OBJECT_TYPE);
__ j(below, &slow);
// Object case: Check key against length in the elements array.
// eax: value
// edx: JSObject
// ecx: key (a smi)
// edi: receiver map
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
// Check array bounds. Both the key and the length of FixedArray are smis.
__ cmp(ecx, FieldOperand(ebx, FixedArray::kLengthOffset));
__ j(below, &fast_object);
// Slow case: call runtime.
__ bind(&slow);
GenerateRuntimeSetProperty(masm, strict_mode);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// eax: value
// edx: receiver, a JSArray
// ecx: key, a smi.
// ebx: receiver->elements, a FixedArray
// edi: receiver map
// flags: compare (ecx, edx.length())
// do not leave holes in the array:
__ j(not_equal, &slow);
__ cmp(ecx, FieldOperand(ebx, FixedArray::kLengthOffset));
__ j(above_equal, &slow);
__ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
__ cmp(edi, masm->isolate()->factory()->fixed_array_map());
__ j(not_equal, &check_if_double_array);
__ jmp(&fast_object_grow);
__ bind(&check_if_double_array);
__ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
__ j(not_equal, &slow);
__ jmp(&fast_double_grow);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
// eax: value
// edx: receiver, a JSArray
// ecx: key, a smi.
// edi: receiver map
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
// Check the key against the length in the array and fall through to the
// common store code.
__ cmp(ecx, FieldOperand(edx, JSArray::kLengthOffset)); // Compare smis.
__ j(above_equal, &extra);
KeyedStoreGenerateGenericHelper(masm, &fast_object, &fast_double,
&slow, kCheckMap, kDontIncrementLength);
KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow,
&slow, kDontCheckMap, kIncrementLength);
}
// The generated code does not accept smi keys.
// The generated code falls through if both probes miss.
void CallICBase::GenerateMonomorphicCacheProbe(MacroAssembler* masm,
int argc,
Code::Kind kind,
Code::ExtraICState extra_state) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -----------------------------------
Label number, non_number, non_string, boolean, probe, miss;
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(kind,
MONOMORPHIC,
extra_state,
Code::NORMAL,
argc);
Isolate* isolate = masm->isolate();
isolate->stub_cache()->GenerateProbe(masm, flags, edx, ecx, ebx, eax);
// If the stub cache probing failed, the receiver might be a value.
// For value objects, we use the map of the prototype objects for
// the corresponding JSValue for the cache and that is what we need
// to probe.
//
// Check for number.
__ JumpIfSmi(edx, &number);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, ebx);
__ j(not_equal, &non_number);
__ bind(&number);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::NUMBER_FUNCTION_INDEX, edx);
__ jmp(&probe);
// Check for string.
__ bind(&non_number);
__ CmpInstanceType(ebx, FIRST_NONSTRING_TYPE);
__ j(above_equal, &non_string);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::STRING_FUNCTION_INDEX, edx);
__ jmp(&probe);
// Check for boolean.
__ bind(&non_string);
__ cmp(edx, isolate->factory()->true_value());
__ j(equal, &boolean);
__ cmp(edx, isolate->factory()->false_value());
__ j(not_equal, &miss);
__ bind(&boolean);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::BOOLEAN_FUNCTION_INDEX, edx);
// Probe the stub cache for the value object.
__ bind(&probe);
isolate->stub_cache()->GenerateProbe(masm, flags, edx, ecx, ebx, no_reg);
__ bind(&miss);
}
static void GenerateFunctionTailCall(MacroAssembler* masm,
int argc,
Label* miss) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edi : function
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Check that the result is not a smi.
__ JumpIfSmi(edi, miss);
// Check that the value is a JavaScript function, fetching its map into eax.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, eax);
__ j(not_equal, miss);
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(edi, actual, JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
// The generated code falls through if the call should be handled by runtime.
void CallICBase::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
GenerateNameDictionaryReceiverCheck(masm, edx, eax, ebx, &miss);
// eax: elements
// Search the dictionary placing the result in edi.
GenerateDictionaryLoad(masm, &miss, eax, ecx, edi, ebx, edi);
GenerateFunctionTailCall(masm, argc, &miss);
__ bind(&miss);
}
void CallICBase::GenerateMiss(MacroAssembler* masm,
int argc,
IC::UtilityId id,
Code::ExtraICState extra_state) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
if (id == IC::kCallIC_Miss) {
__ IncrementCounter(counters->call_miss(), 1);
} else {
__ IncrementCounter(counters->keyed_call_miss(), 1);
}
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the receiver and the name of the function.
__ push(edx);
__ push(ecx);
// Call the entry.
CEntryStub stub(1);
__ mov(eax, Immediate(2));
__ mov(ebx, Immediate(ExternalReference(IC_Utility(id), masm->isolate())));
__ CallStub(&stub);
// Move result to edi and exit the internal frame.
__ mov(edi, eax);
}
// Check if the receiver is a global object of some sort.
// This can happen only for regular CallIC but not KeyedCallIC.
if (id == IC::kCallIC_Miss) {
Label invoke, global;
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // receiver
__ JumpIfSmi(edx, &invoke, Label::kNear);
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ cmp(ebx, JS_GLOBAL_OBJECT_TYPE);
__ j(equal, &global, Label::kNear);
__ cmp(ebx, JS_BUILTINS_OBJECT_TYPE);
__ j(not_equal, &invoke, Label::kNear);
// Patch the receiver on the stack.
__ bind(&global);
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
__ bind(&invoke);
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_state)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
ParameterCount actual(argc);
__ InvokeFunction(edi,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
call_kind);
}
void CallIC::GenerateMegamorphic(MacroAssembler* masm,
int argc,
Code::ExtraICState extra_state) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
CallICBase::GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC,
extra_state);
GenerateMiss(masm, argc, extra_state);
}
void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
Label do_call, slow_call, slow_load, slow_reload_receiver;
Label check_number_dictionary, check_name, lookup_monomorphic_cache;
Label index_smi, index_name;
// Check that the key is a smi.
__ JumpIfNotSmi(ecx, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, edx, eax, Map::kHasIndexedInterceptor, &slow_call);
GenerateFastArrayLoad(
masm, edx, ecx, eax, edi, &check_number_dictionary, &slow_load);
Isolate* isolate = masm->isolate();
Counters* counters = isolate->counters();
__ IncrementCounter(counters->keyed_call_generic_smi_fast(), 1);
__ bind(&do_call);
// receiver in edx is not used after this point.
// ecx: key
// edi: function
GenerateFunctionTailCall(masm, argc, &slow_call);
__ bind(&check_number_dictionary);
// eax: elements
// ecx: smi key
// Check whether the elements is a number dictionary.
__ CheckMap(eax,
isolate->factory()->hash_table_map(),
&slow_load,
DONT_DO_SMI_CHECK);
__ mov(ebx, ecx);
__ SmiUntag(ebx);
// ebx: untagged index
// Receiver in edx will be clobbered, need to reload it on miss.
__ LoadFromNumberDictionary(
&slow_reload_receiver, eax, ecx, ebx, edx, edi, edi);
__ IncrementCounter(counters->keyed_call_generic_smi_dict(), 1);
__ jmp(&do_call);
__ bind(&slow_reload_receiver);
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
__ bind(&slow_load);
// This branch is taken when calling KeyedCallIC_Miss is neither required
// nor beneficial.
__ IncrementCounter(counters->keyed_call_generic_slow_load(), 1);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(ecx); // save the key
__ push(edx); // pass the receiver
__ push(ecx); // pass the key
__ CallRuntime(Runtime::kKeyedGetProperty, 2);
__ pop(ecx); // restore the key
// Leave the internal frame.
}
__ mov(edi, eax);
__ jmp(&do_call);
__ bind(&check_name);
GenerateKeyNameCheck(masm, ecx, eax, ebx, &index_name, &slow_call);
// The key is known to be a unique name.
// If the receiver is a regular JS object with slow properties then do
// a quick inline probe of the receiver's dictionary.
// Otherwise do the monomorphic cache probe.
GenerateKeyedLoadReceiverCheck(
masm, edx, eax, Map::kHasNamedInterceptor, &lookup_monomorphic_cache);
__ mov(ebx, FieldOperand(edx, JSObject::kPropertiesOffset));
__ CheckMap(ebx,
isolate->factory()->hash_table_map(),
&lookup_monomorphic_cache,
DONT_DO_SMI_CHECK);
GenerateDictionaryLoad(masm, &slow_load, ebx, ecx, eax, edi, edi);
__ IncrementCounter(counters->keyed_call_generic_lookup_dict(), 1);
__ jmp(&do_call);
__ bind(&lookup_monomorphic_cache);
__ IncrementCounter(counters->keyed_call_generic_lookup_cache(), 1);
CallICBase::GenerateMonomorphicCacheProbe(masm, argc, Code::KEYED_CALL_IC,
Code::kNoExtraICState);
// Fall through on miss.
__ bind(&slow_call);
// This branch is taken if:
// - the receiver requires boxing or access check,
// - the key is neither smi nor a unique name,
// - the value loaded is not a function,
// - there is hope that the runtime will create a monomorphic call stub
// that will get fetched next time.
__ IncrementCounter(counters->keyed_call_generic_slow(), 1);
GenerateMiss(masm, argc);
__ bind(&index_name);
__ IndexFromHash(ebx, ecx);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedCallIC::GenerateNonStrictArguments(MacroAssembler* masm,
int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label slow, notin;
Factory* factory = masm->isolate()->factory();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
Operand mapped_location =
GenerateMappedArgumentsLookup(masm, edx, ecx, ebx, eax, &notin, &slow);
__ mov(edi, mapped_location);
GenerateFunctionTailCall(masm, argc, &slow);
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in ebx.
Operand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, ecx, ebx, eax, &slow);
__ cmp(unmapped_location, factory->the_hole_value());
__ j(equal, &slow);
__ mov(edi, unmapped_location);
GenerateFunctionTailCall(masm, argc, &slow);
__ bind(&slow);
GenerateMiss(masm, argc);
}
void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Check if the name is really a name.
Label miss;
__ JumpIfSmi(ecx, &miss);
Condition cond = masm->IsObjectNameType(ecx, eax, eax);
__ j(NegateCondition(cond), &miss);
CallICBase::GenerateNormal(masm, argc);
__ bind(&miss);
GenerateMiss(masm, argc);
}
void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(
Code::STUB, MONOMORPHIC, Code::kNoExtraICState,
Code::NORMAL, Code::LOAD_IC);
Isolate::Current()->stub_cache()->GenerateProbe(
masm, flags, edx, ecx, ebx, eax);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
GenerateNameDictionaryReceiverCheck(masm, edx, eax, ebx, &miss);
// eax: elements
// Search the dictionary placing the result in eax.
GenerateDictionaryLoad(masm, &miss, eax, ecx, edi, ebx, eax);
__ ret(0);
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ IncrementCounter(masm->isolate()->counters()->load_miss(), 1);
__ pop(ebx);
__ push(edx); // receiver
__ push(ecx); // name
__ push(ebx); // return address
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kLoadIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 2, 1);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx); // receiver
__ push(ecx); // name
__ push(ebx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kGetProperty, 2, 1);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm, ICMissMode miss_mode) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ IncrementCounter(masm->isolate()->counters()->keyed_load_miss(), 1);
__ pop(ebx);
__ push(edx); // receiver
__ push(ecx); // name
__ push(ebx); // return address
// Perform tail call to the entry.
ExternalReference ref = miss_mode == MISS_FORCE_GENERIC
? ExternalReference(IC_Utility(kKeyedLoadIC_MissForceGeneric),
masm->isolate())
: ExternalReference(IC_Utility(kKeyedLoadIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 2, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx); // receiver
__ push(ecx); // name
__ push(ebx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Code::Flags flags = Code::ComputeFlags(
Code::STUB, MONOMORPHIC, strict_mode,
Code::NORMAL, Code::STORE_IC);
Isolate::Current()->stub_cache()->GenerateProbe(masm, flags, edx, ecx, ebx,
no_reg);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(ebx);
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss, restore_miss;
GenerateNameDictionaryReceiverCheck(masm, edx, ebx, edi, &miss);
// A lot of registers are needed for storing to slow case
// objects. Push and restore receiver but rely on
// GenerateDictionaryStore preserving the value and name.
__ push(edx);
GenerateDictionaryStore(masm, &restore_miss, ebx, ecx, eax, edx, edi);
__ Drop(1);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->store_normal_hit(), 1);
__ ret(0);
__ bind(&restore_miss);
__ pop(edx);
__ bind(&miss);
__ IncrementCounter(counters->store_normal_miss(), 1);
GenerateMiss(masm);
}
void StoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(Immediate(Smi::FromInt(NONE))); // PropertyAttributes
__ push(Immediate(Smi::FromInt(strict_mode)));
__ push(ebx); // return address
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}
void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(Immediate(Smi::FromInt(NONE))); // PropertyAttributes
__ push(Immediate(Smi::FromInt(strict_mode))); // Strict mode.
__ push(ebx); // return address
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm, ICMissMode miss_mode) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(ebx);
// Do tail-call to runtime routine.
ExternalReference ref = miss_mode == MISS_FORCE_GENERIC
? ExternalReference(IC_Utility(kKeyedStoreIC_MissForceGeneric),
masm->isolate())
: ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateSlow(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(ebx); // return address
// Do tail-call to runtime routine.
ExternalReference ref(IC_Utility(kStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(ebx); // return address
// Do tail-call to runtime routine.
ExternalReference ref(IC_Utility(kKeyedStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return equal;
case Token::LT:
return less;
case Token::GT:
return greater;
case Token::LTE:
return less_equal;
case Token::GTE:
return greater_equal;
default:
UNREACHABLE();
return no_condition;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test al, nothing
// was inlined.
return *test_instruction_address == Assembler::kTestAlByte;
}
void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test al, nothing
// was inlined.
if (*test_instruction_address != Assembler::kTestAlByte) {
ASSERT(*test_instruction_address == Assembler::kNopByte);
return;
}
Address delta_address = test_instruction_address + 1;
// The delta to the start of the map check instruction and the
// condition code uses at the patched jump.
int8_t delta = *reinterpret_cast<int8_t*>(delta_address);
if (FLAG_trace_ic) {
PrintF("[ patching ic at %p, test=%p, delta=%d\n",
address, test_instruction_address, delta);
}
// Patch with a short conditional jump. Enabling means switching from a short
// jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the
// reverse operation of that.
Address jmp_address = test_instruction_address - delta;
ASSERT((check == ENABLE_INLINED_SMI_CHECK)
? (*jmp_address == Assembler::kJncShortOpcode ||
*jmp_address == Assembler::kJcShortOpcode)
: (*jmp_address == Assembler::kJnzShortOpcode ||
*jmp_address == Assembler::kJzShortOpcode));
Condition cc = (check == ENABLE_INLINED_SMI_CHECK)
? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero)
: (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry);
*jmp_address = static_cast<byte>(Assembler::kJccShortPrefix | cc);
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32