v8/include/v8-internal.h
Samuel Groß 32e2584405 [sandbox][x64] Access external pointer through a table
This change moves external pointers into a separate table and turns
external pointers in heap objects into indices into that table.

This CL implements one of two possible ownership models for the table
entries. With this one, every heap object owns its table entries, and
they are allocated when the owning object is allocated. As such, setting
external pointer fields does not require allocation of table entries. On
the other hand, table indices cannot be shared between multiple objects.

This CL does not yet implement freeing of external pointer table
entires. This will later happen by a table garbage collector.

Bug: v8:10391
Change-Id: I4d37785295c25a7d1dcbc9871dd5887b9d788a4f
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2235700
Reviewed-by: Igor Sheludko <ishell@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Commit-Queue: Samuel Groß <saelo@google.com>
Cr-Commit-Position: refs/heads/master@{#70204}
2020-09-29 17:13:43 +00:00

441 lines
16 KiB
C++

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDE_V8_INTERNAL_H_
#define INCLUDE_V8_INTERNAL_H_
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <type_traits>
#include "v8-version.h" // NOLINT(build/include_directory)
#include "v8config.h" // NOLINT(build/include_directory)
namespace v8 {
class Context;
class Data;
class Isolate;
namespace internal {
class Isolate;
typedef uintptr_t Address;
static const Address kNullAddress = 0;
/**
* Configuration of tagging scheme.
*/
const int kApiSystemPointerSize = sizeof(void*);
const int kApiDoubleSize = sizeof(double);
const int kApiInt32Size = sizeof(int32_t);
const int kApiInt64Size = sizeof(int64_t);
// Tag information for HeapObject.
const int kHeapObjectTag = 1;
const int kWeakHeapObjectTag = 3;
const int kHeapObjectTagSize = 2;
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
// Tag information for Smi.
const int kSmiTag = 0;
const int kSmiTagSize = 1;
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
template <size_t tagged_ptr_size>
struct SmiTagging;
constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1};
constexpr uintptr_t kUintptrAllBitsSet =
static_cast<uintptr_t>(kIntptrAllBitsSet);
// Smi constants for systems where tagged pointer is a 32-bit value.
template <>
struct SmiTagging<4> {
enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
static constexpr intptr_t kSmiMinValue =
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
V8_INLINE static int SmiToInt(const internal::Address value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Truncate and shift down (requires >> to be sign extending).
return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits;
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
// Is value in range [kSmiMinValue, kSmiMaxValue].
// Use unsigned operations in order to avoid undefined behaviour in case of
// signed integer overflow.
return (static_cast<uintptr_t>(value) -
static_cast<uintptr_t>(kSmiMinValue)) <=
(static_cast<uintptr_t>(kSmiMaxValue) -
static_cast<uintptr_t>(kSmiMinValue));
}
};
// Smi constants for systems where tagged pointer is a 64-bit value.
template <>
struct SmiTagging<8> {
enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
static constexpr intptr_t kSmiMinValue =
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
V8_INLINE static int SmiToInt(const internal::Address value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Shift down and throw away top 32 bits.
return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits);
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
// To be representable as a long smi, the value must be a 32-bit integer.
return (value == static_cast<int32_t>(value));
}
};
#ifdef V8_COMPRESS_POINTERS
static_assert(
kApiSystemPointerSize == kApiInt64Size,
"Pointer compression can be enabled only for 64-bit architectures");
const int kApiTaggedSize = kApiInt32Size;
#else
const int kApiTaggedSize = kApiSystemPointerSize;
#endif
constexpr bool PointerCompressionIsEnabled() {
return kApiTaggedSize != kApiSystemPointerSize;
}
constexpr bool HeapSandboxIsEnabled() {
#ifdef V8_HEAP_SANDBOX
return true;
#else
return false;
#endif
}
using ExternalPointer_t = Address;
#ifdef V8_31BIT_SMIS_ON_64BIT_ARCH
using PlatformSmiTagging = SmiTagging<kApiInt32Size>;
#else
using PlatformSmiTagging = SmiTagging<kApiTaggedSize>;
#endif
// TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize
// since it's used much more often than the inividual constants.
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue);
const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue);
constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
V8_INLINE static constexpr internal::Address IntToSmi(int value) {
return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) |
kSmiTag;
}
// Converts encoded external pointer to address.
V8_EXPORT Address DecodeExternalPointerImpl(const Isolate* isolate,
ExternalPointer_t pointer);
// {obj} must be the raw tagged pointer representation of a HeapObject
// that's guaranteed to never be in ReadOnlySpace.
V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj);
// Returns if we need to throw when an error occurs. This infers the language
// mode based on the current context and the closure. This returns true if the
// language mode is strict.
V8_EXPORT bool ShouldThrowOnError(v8::internal::Isolate* isolate);
/**
* This class exports constants and functionality from within v8 that
* is necessary to implement inline functions in the v8 api. Don't
* depend on functions and constants defined here.
*/
class Internals {
public:
// These values match non-compiler-dependent values defined within
// the implementation of v8.
static const int kHeapObjectMapOffset = 0;
static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size;
static const int kStringResourceOffset =
1 * kApiTaggedSize + 2 * kApiInt32Size;
static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize;
static const int kJSObjectHeaderSize = 3 * kApiTaggedSize;
static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize;
static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize;
static const int kEmbedderDataSlotSize = kApiSystemPointerSize;
#ifdef V8_HEAP_SANDBOX
static const int kEmbedderDataSlotRawPayloadOffset = kApiTaggedSize;
#endif
static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize;
static const int kFullStringRepresentationMask = 0x0f;
static const int kStringEncodingMask = 0x8;
static const int kExternalTwoByteRepresentationTag = 0x02;
static const int kExternalOneByteRepresentationTag = 0x0a;
static const uint32_t kNumIsolateDataSlots = 4;
// IsolateData layout guarantees.
static const int kIsolateEmbedderDataOffset = 0;
static const int kIsolateFastCCallCallerFpOffset =
kNumIsolateDataSlots * kApiSystemPointerSize;
static const int kIsolateFastCCallCallerPcOffset =
kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize;
static const int kIsolateStackGuardOffset =
kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize;
static const int kIsolateRootsOffset =
kIsolateStackGuardOffset + 7 * kApiSystemPointerSize;
static const int kExternalPointerTableBufferOffset = 0;
static const int kExternalPointerTableLengthOffset =
kExternalPointerTableBufferOffset + kApiSystemPointerSize;
static const int kExternalPointerTableCapacityOffset =
kExternalPointerTableLengthOffset + kApiInt32Size;
static const int kUndefinedValueRootIndex = 4;
static const int kTheHoleValueRootIndex = 5;
static const int kNullValueRootIndex = 6;
static const int kTrueValueRootIndex = 7;
static const int kFalseValueRootIndex = 8;
static const int kEmptyStringRootIndex = 9;
static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize;
static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3;
static const int kNodeStateMask = 0x7;
static const int kNodeStateIsWeakValue = 2;
static const int kNodeStateIsPendingValue = 3;
static const int kFirstNonstringType = 0x40;
static const int kOddballType = 0x43;
static const int kForeignType = 0x46;
static const int kJSSpecialApiObjectType = 0x410;
static const int kJSApiObjectType = 0x420;
static const int kJSObjectType = 0x421;
static const int kUndefinedOddballKind = 5;
static const int kNullOddballKind = 3;
// Constants used by PropertyCallbackInfo to check if we should throw when an
// error occurs.
static const int kThrowOnError = 0;
static const int kDontThrow = 1;
static const int kInferShouldThrowMode = 2;
// Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an
// incremental GC once the external memory reaches this limit.
static constexpr int kExternalAllocationSoftLimit = 64 * 1024 * 1024;
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
#ifdef V8_ENABLE_CHECKS
CheckInitializedImpl(isolate);
#endif
}
V8_INLINE static bool HasHeapObjectTag(const internal::Address value) {
return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag);
}
V8_INLINE static int SmiValue(const internal::Address value) {
return PlatformSmiTagging::SmiToInt(value);
}
V8_INLINE static constexpr internal::Address IntToSmi(int value) {
return internal::IntToSmi(value);
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
return PlatformSmiTagging::IsValidSmi(value);
}
V8_INLINE static int GetInstanceType(const internal::Address obj) {
typedef internal::Address A;
A map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset);
}
V8_INLINE static int GetOddballKind(const internal::Address obj) {
return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset));
}
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
int representation = (instance_type & kFullStringRepresentationMask);
return representation == kExternalTwoByteRepresentationTag;
}
V8_INLINE static uint8_t GetNodeFlag(internal::Address* obj, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & static_cast<uint8_t>(1U << shift);
}
V8_INLINE static void UpdateNodeFlag(internal::Address* obj, bool value,
int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
uint8_t mask = static_cast<uint8_t>(1U << shift);
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
}
V8_INLINE static uint8_t GetNodeState(internal::Address* obj) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & kNodeStateMask;
}
V8_INLINE static void UpdateNodeState(internal::Address* obj, uint8_t value) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
}
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot,
void* data) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateEmbedderDataOffset +
slot * kApiSystemPointerSize;
*reinterpret_cast<void**>(addr) = data;
}
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
uint32_t slot) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateEmbedderDataOffset +
slot * kApiSystemPointerSize;
return *reinterpret_cast<void* const*>(addr);
}
V8_INLINE static internal::Address* GetRoot(v8::Isolate* isolate, int index) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateRootsOffset +
index * kApiSystemPointerSize;
return reinterpret_cast<internal::Address*>(addr);
}
template <typename T>
V8_INLINE static T ReadRawField(internal::Address heap_object_ptr,
int offset) {
internal::Address addr = heap_object_ptr + offset - kHeapObjectTag;
#ifdef V8_COMPRESS_POINTERS
if (sizeof(T) > kApiTaggedSize) {
// TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size
// fields (external pointers, doubles and BigInt data) are only
// kTaggedSize aligned so we have to use unaligned pointer friendly way of
// accessing them in order to avoid undefined behavior in C++ code.
T r;
memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T));
return r;
}
#endif
return *reinterpret_cast<const T*>(addr);
}
V8_INLINE static internal::Address ReadTaggedPointerField(
internal::Address heap_object_ptr, int offset) {
#ifdef V8_COMPRESS_POINTERS
uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
internal::Address root = GetRootFromOnHeapAddress(heap_object_ptr);
return root + static_cast<internal::Address>(static_cast<uintptr_t>(value));
#else
return ReadRawField<internal::Address>(heap_object_ptr, offset);
#endif
}
V8_INLINE static internal::Address ReadTaggedSignedField(
internal::Address heap_object_ptr, int offset) {
#ifdef V8_COMPRESS_POINTERS
uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
return static_cast<internal::Address>(static_cast<uintptr_t>(value));
#else
return ReadRawField<internal::Address>(heap_object_ptr, offset);
#endif
}
V8_INLINE static internal::Isolate* GetIsolateForHeapSandbox(
internal::Address obj) {
#ifdef V8_HEAP_SANDBOX
return internal::IsolateFromNeverReadOnlySpaceObject(obj);
#else
// Not used in non-sandbox mode.
return nullptr;
#endif
}
V8_INLINE static Address DecodeExternalPointer(
const Isolate* isolate, ExternalPointer_t encoded_pointer) {
#ifdef V8_HEAP_SANDBOX
return internal::DecodeExternalPointerImpl(isolate, encoded_pointer);
#else
return encoded_pointer;
#endif
}
V8_INLINE static internal::Address ReadExternalPointerField(
internal::Isolate* isolate, internal::Address heap_object_ptr,
int offset) {
#ifdef V8_HEAP_SANDBOX
internal::ExternalPointer_t encoded_value =
ReadRawField<uint32_t>(heap_object_ptr, offset);
// We currently have to treat zero as nullptr in embedder slots.
return encoded_value ? DecodeExternalPointer(isolate, encoded_value) : 0;
#else
return ReadRawField<Address>(heap_object_ptr, offset);
#endif
}
#ifdef V8_COMPRESS_POINTERS
// See v8:7703 or src/ptr-compr.* for details about pointer compression.
static constexpr size_t kPtrComprHeapReservationSize = size_t{1} << 32;
static constexpr size_t kPtrComprIsolateRootAlignment = size_t{1} << 32;
V8_INLINE static internal::Address GetRootFromOnHeapAddress(
internal::Address addr) {
return addr & -static_cast<intptr_t>(kPtrComprIsolateRootAlignment);
}
V8_INLINE static internal::Address DecompressTaggedAnyField(
internal::Address heap_object_ptr, uint32_t value) {
internal::Address root = GetRootFromOnHeapAddress(heap_object_ptr);
return root + static_cast<internal::Address>(static_cast<uintptr_t>(value));
}
#endif // V8_COMPRESS_POINTERS
};
// Only perform cast check for types derived from v8::Data since
// other types do not implement the Cast method.
template <bool PerformCheck>
struct CastCheck {
template <class T>
static void Perform(T* data);
};
template <>
template <class T>
void CastCheck<true>::Perform(T* data) {
T::Cast(data);
}
template <>
template <class T>
void CastCheck<false>::Perform(T* data) {}
template <class T>
V8_INLINE void PerformCastCheck(T* data) {
CastCheck<std::is_base_of<Data, T>::value &&
!std::is_same<Data, std::remove_cv_t<T>>::value>::Perform(data);
}
// A base class for backing stores, which is needed due to vagaries of
// how static casts work with std::shared_ptr.
class BackingStoreBase {};
} // namespace internal
} // namespace v8
#endif // INCLUDE_V8_INTERNAL_H_