0977c60984
R=jkummerow@chromium.org BUG= Review URL: https://codereview.chromium.org/17468003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15264 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
3142 lines
111 KiB
C++
3142 lines
111 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "accessors.h"
|
|
#include "api.h"
|
|
#include "arguments.h"
|
|
#include "codegen.h"
|
|
#include "execution.h"
|
|
#include "ic-inl.h"
|
|
#include "runtime.h"
|
|
#include "stub-cache.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
#ifdef DEBUG
|
|
char IC::TransitionMarkFromState(IC::State state) {
|
|
switch (state) {
|
|
case UNINITIALIZED: return '0';
|
|
case PREMONOMORPHIC: return '.';
|
|
case MONOMORPHIC: return '1';
|
|
case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
|
|
case POLYMORPHIC: return 'P';
|
|
case MEGAMORPHIC: return 'N';
|
|
case GENERIC: return 'G';
|
|
|
|
// We never see the debugger states here, because the state is
|
|
// computed from the original code - not the patched code. Let
|
|
// these cases fall through to the unreachable code below.
|
|
case DEBUG_STUB: break;
|
|
}
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
|
|
if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
|
|
if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
|
|
return ".IGNORE_OOB";
|
|
}
|
|
if (IsGrowStoreMode(mode)) return ".GROW";
|
|
return "";
|
|
}
|
|
|
|
|
|
void IC::TraceIC(const char* type,
|
|
Handle<Object> name,
|
|
State old_state,
|
|
Code* new_target) {
|
|
if (FLAG_trace_ic) {
|
|
Object* undef = new_target->GetHeap()->undefined_value();
|
|
State new_state = StateFrom(new_target, undef, undef);
|
|
PrintF("[%s in ", type);
|
|
Isolate* isolate = new_target->GetIsolate();
|
|
StackFrameIterator it(isolate);
|
|
while (it.frame()->fp() != this->fp()) it.Advance();
|
|
StackFrame* raw_frame = it.frame();
|
|
if (raw_frame->is_internal()) {
|
|
Code* apply_builtin = isolate->builtins()->builtin(
|
|
Builtins::kFunctionApply);
|
|
if (raw_frame->unchecked_code() == apply_builtin) {
|
|
PrintF("apply from ");
|
|
it.Advance();
|
|
raw_frame = it.frame();
|
|
}
|
|
}
|
|
JavaScriptFrame::PrintTop(isolate, stdout, false, true);
|
|
Code::ExtraICState state = new_target->extra_ic_state();
|
|
const char* modifier =
|
|
GetTransitionMarkModifier(Code::GetKeyedAccessStoreMode(state));
|
|
PrintF(" (%c->%c%s)",
|
|
TransitionMarkFromState(old_state),
|
|
TransitionMarkFromState(new_state),
|
|
modifier);
|
|
name->Print();
|
|
PrintF("]\n");
|
|
}
|
|
}
|
|
|
|
#define TRACE_GENERIC_IC(isolate, type, reason) \
|
|
do { \
|
|
if (FLAG_trace_ic) { \
|
|
PrintF("[%s patching generic stub in ", type); \
|
|
JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
|
|
PrintF(" (%s)]\n", reason); \
|
|
} \
|
|
} while (false)
|
|
|
|
#else
|
|
#define TRACE_GENERIC_IC(isolate, type, reason)
|
|
#endif // DEBUG
|
|
|
|
#define TRACE_IC(type, name, old_state, new_target) \
|
|
ASSERT((TraceIC(type, name, old_state, new_target), true))
|
|
|
|
IC::IC(FrameDepth depth, Isolate* isolate) : isolate_(isolate) {
|
|
// To improve the performance of the (much used) IC code, we unfold a few
|
|
// levels of the stack frame iteration code. This yields a ~35% speedup when
|
|
// running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
|
|
const Address entry =
|
|
Isolate::c_entry_fp(isolate->thread_local_top());
|
|
Address* pc_address =
|
|
reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
|
|
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
|
|
// If there's another JavaScript frame on the stack or a
|
|
// StubFailureTrampoline, we need to look one frame further down the stack to
|
|
// find the frame pointer and the return address stack slot.
|
|
if (depth == EXTRA_CALL_FRAME) {
|
|
const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
|
|
pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
|
|
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
|
|
}
|
|
#ifdef DEBUG
|
|
StackFrameIterator it(isolate);
|
|
for (int i = 0; i < depth + 1; i++) it.Advance();
|
|
StackFrame* frame = it.frame();
|
|
ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
|
|
#endif
|
|
fp_ = fp;
|
|
pc_address_ = pc_address;
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
Address IC::OriginalCodeAddress() const {
|
|
HandleScope scope(isolate());
|
|
// Compute the JavaScript frame for the frame pointer of this IC
|
|
// structure. We need this to be able to find the function
|
|
// corresponding to the frame.
|
|
StackFrameIterator it(isolate());
|
|
while (it.frame()->fp() != this->fp()) it.Advance();
|
|
JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
|
|
// Find the function on the stack and both the active code for the
|
|
// function and the original code.
|
|
JSFunction* function = JSFunction::cast(frame->function());
|
|
Handle<SharedFunctionInfo> shared(function->shared(), isolate());
|
|
Code* code = shared->code();
|
|
ASSERT(Debug::HasDebugInfo(shared));
|
|
Code* original_code = Debug::GetDebugInfo(shared)->original_code();
|
|
ASSERT(original_code->IsCode());
|
|
// Get the address of the call site in the active code. This is the
|
|
// place where the call to DebugBreakXXX is and where the IC
|
|
// normally would be.
|
|
Address addr = Assembler::target_address_from_return_address(pc());
|
|
// Return the address in the original code. This is the place where
|
|
// the call which has been overwritten by the DebugBreakXXX resides
|
|
// and the place where the inline cache system should look.
|
|
intptr_t delta =
|
|
original_code->instruction_start() - code->instruction_start();
|
|
return addr + delta;
|
|
}
|
|
#endif
|
|
|
|
|
|
static bool TryRemoveInvalidPrototypeDependentStub(Code* target,
|
|
Object* receiver,
|
|
Object* name) {
|
|
if (target->is_keyed_load_stub() ||
|
|
target->is_keyed_call_stub() ||
|
|
target->is_keyed_store_stub()) {
|
|
// Determine whether the failure is due to a name failure.
|
|
if (!name->IsName()) return false;
|
|
Name* stub_name = target->FindFirstName();
|
|
if (Name::cast(name) != stub_name) return false;
|
|
}
|
|
|
|
InlineCacheHolderFlag cache_holder =
|
|
Code::ExtractCacheHolderFromFlags(target->flags());
|
|
|
|
Isolate* isolate = target->GetIsolate();
|
|
if (cache_holder == OWN_MAP && !receiver->IsJSObject()) {
|
|
// The stub was generated for JSObject but called for non-JSObject.
|
|
// IC::GetCodeCacheHolder is not applicable.
|
|
return false;
|
|
} else if (cache_holder == PROTOTYPE_MAP &&
|
|
receiver->GetPrototype(isolate)->IsNull()) {
|
|
// IC::GetCodeCacheHolder is not applicable.
|
|
return false;
|
|
}
|
|
Map* map = IC::GetCodeCacheHolder(isolate, receiver, cache_holder)->map();
|
|
|
|
// Decide whether the inline cache failed because of changes to the
|
|
// receiver itself or changes to one of its prototypes.
|
|
//
|
|
// If there are changes to the receiver itself, the map of the
|
|
// receiver will have changed and the current target will not be in
|
|
// the receiver map's code cache. Therefore, if the current target
|
|
// is in the receiver map's code cache, the inline cache failed due
|
|
// to prototype check failure.
|
|
int index = map->IndexInCodeCache(name, target);
|
|
if (index >= 0) {
|
|
map->RemoveFromCodeCache(String::cast(name), target, index);
|
|
// For loads, handlers are stored in addition to the ICs on the map. Remove
|
|
// those, too.
|
|
if (target->is_load_stub() || target->is_keyed_load_stub()) {
|
|
Code* handler = target->FindFirstCode();
|
|
index = map->IndexInCodeCache(name, handler);
|
|
if (index >= 0) {
|
|
map->RemoveFromCodeCache(String::cast(name), handler, index);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If the IC is shared between multiple receivers (slow dictionary mode), then
|
|
// the map cannot be deprecated and the stub invalidated.
|
|
if (cache_holder != OWN_MAP) return false;
|
|
|
|
// The stub is not in the cache. We've ruled out all other kinds of failure
|
|
// except for proptotype chain changes, a deprecated map, or a map that's
|
|
// different from the one that the stub expects. If the map hasn't changed,
|
|
// assume it's a prototype failure. Treat deprecated maps in the same way as
|
|
// prototype failures (stay monomorphic if possible).
|
|
Map* old_map = target->FindFirstMap();
|
|
if (old_map == NULL) return false;
|
|
return old_map == map || old_map->is_deprecated();
|
|
}
|
|
|
|
|
|
IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) {
|
|
IC::State state = target->ic_state();
|
|
|
|
if (state != MONOMORPHIC || !name->IsString()) return state;
|
|
if (receiver->IsUndefined() || receiver->IsNull()) return state;
|
|
|
|
Code::Kind kind = target->kind();
|
|
// Remove the target from the code cache if it became invalid
|
|
// because of changes in the prototype chain to avoid hitting it
|
|
// again.
|
|
// Call stubs handle this later to allow extra IC state
|
|
// transitions.
|
|
if (kind != Code::CALL_IC && kind != Code::KEYED_CALL_IC &&
|
|
TryRemoveInvalidPrototypeDependentStub(target, receiver, name)) {
|
|
return MONOMORPHIC_PROTOTYPE_FAILURE;
|
|
}
|
|
|
|
// The builtins object is special. It only changes when JavaScript
|
|
// builtins are loaded lazily. It is important to keep inline
|
|
// caches for the builtins object monomorphic. Therefore, if we get
|
|
// an inline cache miss for the builtins object after lazily loading
|
|
// JavaScript builtins, we return uninitialized as the state to
|
|
// force the inline cache back to monomorphic state.
|
|
if (receiver->IsJSBuiltinsObject()) {
|
|
return UNINITIALIZED;
|
|
}
|
|
|
|
return MONOMORPHIC;
|
|
}
|
|
|
|
|
|
RelocInfo::Mode IC::ComputeMode() {
|
|
Address addr = address();
|
|
Code* code = Code::cast(isolate()->heap()->FindCodeObject(addr));
|
|
for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
|
|
!it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
if (info->pc() == addr) return info->rmode();
|
|
}
|
|
UNREACHABLE();
|
|
return RelocInfo::NONE32;
|
|
}
|
|
|
|
|
|
Failure* IC::TypeError(const char* type,
|
|
Handle<Object> object,
|
|
Handle<Object> key) {
|
|
HandleScope scope(isolate());
|
|
Handle<Object> args[2] = { key, object };
|
|
Handle<Object> error = isolate()->factory()->NewTypeError(
|
|
type, HandleVector(args, 2));
|
|
return isolate()->Throw(*error);
|
|
}
|
|
|
|
|
|
Failure* IC::ReferenceError(const char* type, Handle<String> name) {
|
|
HandleScope scope(isolate());
|
|
Handle<Object> error = isolate()->factory()->NewReferenceError(
|
|
type, HandleVector(&name, 1));
|
|
return isolate()->Throw(*error);
|
|
}
|
|
|
|
|
|
static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
|
|
bool was_uninitialized =
|
|
old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
|
|
bool is_uninitialized =
|
|
new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
|
|
return (was_uninitialized && !is_uninitialized) ? 1 :
|
|
(!was_uninitialized && is_uninitialized) ? -1 : 0;
|
|
}
|
|
|
|
|
|
void IC::PostPatching(Address address, Code* target, Code* old_target) {
|
|
if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
|
|
return;
|
|
}
|
|
Isolate* isolate = target->GetHeap()->isolate();
|
|
Code* host = isolate->
|
|
inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
|
|
if (host->kind() != Code::FUNCTION) return;
|
|
|
|
if (FLAG_type_info_threshold > 0 &&
|
|
old_target->is_inline_cache_stub() &&
|
|
target->is_inline_cache_stub()) {
|
|
int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
|
|
target->ic_state());
|
|
// Not all Code objects have TypeFeedbackInfo.
|
|
if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
|
|
TypeFeedbackInfo* info =
|
|
TypeFeedbackInfo::cast(host->type_feedback_info());
|
|
info->change_ic_with_type_info_count(delta);
|
|
}
|
|
}
|
|
if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
|
|
TypeFeedbackInfo* info =
|
|
TypeFeedbackInfo::cast(host->type_feedback_info());
|
|
info->change_own_type_change_checksum();
|
|
}
|
|
if (FLAG_watch_ic_patching) {
|
|
host->set_profiler_ticks(0);
|
|
isolate->runtime_profiler()->NotifyICChanged();
|
|
}
|
|
// TODO(2029): When an optimized function is patched, it would
|
|
// be nice to propagate the corresponding type information to its
|
|
// unoptimized version for the benefit of later inlining.
|
|
}
|
|
|
|
|
|
void IC::Clear(Address address) {
|
|
Code* target = GetTargetAtAddress(address);
|
|
|
|
// Don't clear debug break inline cache as it will remove the break point.
|
|
if (target->is_debug_break()) return;
|
|
|
|
switch (target->kind()) {
|
|
case Code::LOAD_IC: return LoadIC::Clear(address, target);
|
|
case Code::KEYED_LOAD_IC: return KeyedLoadIC::Clear(address, target);
|
|
case Code::STORE_IC: return StoreIC::Clear(address, target);
|
|
case Code::KEYED_STORE_IC: return KeyedStoreIC::Clear(address, target);
|
|
case Code::CALL_IC: return CallIC::Clear(address, target);
|
|
case Code::KEYED_CALL_IC: return KeyedCallIC::Clear(address, target);
|
|
case Code::COMPARE_IC: return CompareIC::Clear(address, target);
|
|
case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target);
|
|
case Code::UNARY_OP_IC:
|
|
case Code::BINARY_OP_IC:
|
|
case Code::TO_BOOLEAN_IC:
|
|
// Clearing these is tricky and does not
|
|
// make any performance difference.
|
|
return;
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void CallICBase::Clear(Address address, Code* target) {
|
|
if (target->ic_state() == UNINITIALIZED) return;
|
|
bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
|
|
Code* code =
|
|
Isolate::Current()->stub_cache()->FindCallInitialize(
|
|
target->arguments_count(),
|
|
contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
|
|
target->kind());
|
|
SetTargetAtAddress(address, code);
|
|
}
|
|
|
|
|
|
void KeyedLoadIC::Clear(Address address, Code* target) {
|
|
if (target->ic_state() == UNINITIALIZED) return;
|
|
// Make sure to also clear the map used in inline fast cases. If we
|
|
// do not clear these maps, cached code can keep objects alive
|
|
// through the embedded maps.
|
|
SetTargetAtAddress(address, *initialize_stub());
|
|
}
|
|
|
|
|
|
void LoadIC::Clear(Address address, Code* target) {
|
|
if (target->ic_state() == UNINITIALIZED) return;
|
|
SetTargetAtAddress(address, *initialize_stub());
|
|
}
|
|
|
|
|
|
void StoreIC::Clear(Address address, Code* target) {
|
|
if (target->ic_state() == UNINITIALIZED) return;
|
|
SetTargetAtAddress(address,
|
|
(Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
|
|
? *initialize_stub_strict()
|
|
: *initialize_stub());
|
|
}
|
|
|
|
|
|
void KeyedStoreIC::Clear(Address address, Code* target) {
|
|
if (target->ic_state() == UNINITIALIZED) return;
|
|
SetTargetAtAddress(address,
|
|
(Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
|
|
? *initialize_stub_strict()
|
|
: *initialize_stub());
|
|
}
|
|
|
|
|
|
void CompareIC::Clear(Address address, Code* target) {
|
|
ASSERT(target->major_key() == CodeStub::CompareIC);
|
|
CompareIC::State handler_state;
|
|
Token::Value op;
|
|
ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
|
|
&handler_state, &op);
|
|
// Only clear CompareICs that can retain objects.
|
|
if (handler_state != KNOWN_OBJECT) return;
|
|
SetTargetAtAddress(address, GetRawUninitialized(op));
|
|
PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
|
|
}
|
|
|
|
|
|
static bool HasInterceptorGetter(JSObject* object) {
|
|
return !object->GetNamedInterceptor()->getter()->IsUndefined();
|
|
}
|
|
|
|
|
|
static void LookupForRead(Handle<Object> object,
|
|
Handle<String> name,
|
|
LookupResult* lookup) {
|
|
// Skip all the objects with named interceptors, but
|
|
// without actual getter.
|
|
while (true) {
|
|
object->Lookup(*name, lookup);
|
|
// Besides normal conditions (property not found or it's not
|
|
// an interceptor), bail out if lookup is not cacheable: we won't
|
|
// be able to IC it anyway and regular lookup should work fine.
|
|
if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
|
|
return;
|
|
}
|
|
|
|
Handle<JSObject> holder(lookup->holder(), lookup->isolate());
|
|
if (HasInterceptorGetter(*holder)) {
|
|
return;
|
|
}
|
|
|
|
holder->LocalLookupRealNamedProperty(*name, lookup);
|
|
if (lookup->IsFound()) {
|
|
ASSERT(!lookup->IsInterceptor());
|
|
return;
|
|
}
|
|
|
|
Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
|
|
if (proto->IsNull()) {
|
|
ASSERT(!lookup->IsFound());
|
|
return;
|
|
}
|
|
|
|
object = proto;
|
|
}
|
|
}
|
|
|
|
|
|
Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
|
|
Handle<Object> delegate = Execution::GetFunctionDelegate(object);
|
|
|
|
if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
|
|
// Patch the receiver and use the delegate as the function to
|
|
// invoke. This is used for invoking objects as if they were functions.
|
|
const int argc = target()->arguments_count();
|
|
StackFrameLocator locator(isolate());
|
|
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
|
|
int index = frame->ComputeExpressionsCount() - (argc + 1);
|
|
frame->SetExpression(index, *object);
|
|
}
|
|
|
|
return delegate;
|
|
}
|
|
|
|
|
|
void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
|
|
Handle<Object> object) {
|
|
while (callee->IsJSFunctionProxy()) {
|
|
callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap(),
|
|
isolate());
|
|
}
|
|
|
|
if (callee->IsJSFunction()) {
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
|
|
if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
|
|
// Do not wrap receiver for strict mode functions or for builtins.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// And only wrap string, number or boolean.
|
|
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
|
|
// Change the receiver to the result of calling ToObject on it.
|
|
const int argc = this->target()->arguments_count();
|
|
StackFrameLocator locator(isolate());
|
|
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
|
|
int index = frame->ComputeExpressionsCount() - (argc + 1);
|
|
frame->SetExpression(index, *isolate()->factory()->ToObject(object));
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* CallICBase::LoadFunction(State state,
|
|
Code::ExtraICState extra_ic_state,
|
|
Handle<Object> object,
|
|
Handle<String> name) {
|
|
if (object->IsJSObject()) {
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
if (receiver->map()->is_deprecated()) {
|
|
JSObject::MigrateInstance(receiver);
|
|
}
|
|
}
|
|
|
|
// If the object is undefined or null it's illegal to try to get any
|
|
// of its properties; throw a TypeError in that case.
|
|
if (object->IsUndefined() || object->IsNull()) {
|
|
return TypeError("non_object_property_call", object, name);
|
|
}
|
|
|
|
// Check if the name is trivially convertible to an index and get
|
|
// the element if so.
|
|
uint32_t index;
|
|
if (name->AsArrayIndex(&index)) {
|
|
Handle<Object> result = Object::GetElement(object, index);
|
|
RETURN_IF_EMPTY_HANDLE(isolate(), result);
|
|
if (result->IsJSFunction()) return *result;
|
|
|
|
// Try to find a suitable function delegate for the object at hand.
|
|
result = TryCallAsFunction(result);
|
|
if (result->IsJSFunction()) return *result;
|
|
|
|
// Otherwise, it will fail in the lookup step.
|
|
}
|
|
|
|
// Lookup the property in the object.
|
|
LookupResult lookup(isolate());
|
|
LookupForRead(object, name, &lookup);
|
|
|
|
if (!lookup.IsFound()) {
|
|
// If the object does not have the requested property, check which
|
|
// exception we need to throw.
|
|
return IsUndeclaredGlobal(object)
|
|
? ReferenceError("not_defined", name)
|
|
: TypeError("undefined_method", object, name);
|
|
}
|
|
|
|
// Lookup is valid: Update inline cache and stub cache.
|
|
if (FLAG_use_ic) {
|
|
UpdateCaches(&lookup, state, extra_ic_state, object, name);
|
|
}
|
|
|
|
// Get the property.
|
|
PropertyAttributes attr;
|
|
Handle<Object> result =
|
|
Object::GetProperty(object, object, &lookup, name, &attr);
|
|
RETURN_IF_EMPTY_HANDLE(isolate(), result);
|
|
|
|
if (lookup.IsInterceptor() && attr == ABSENT) {
|
|
// If the object does not have the requested property, check which
|
|
// exception we need to throw.
|
|
return IsUndeclaredGlobal(object)
|
|
? ReferenceError("not_defined", name)
|
|
: TypeError("undefined_method", object, name);
|
|
}
|
|
|
|
ASSERT(!result->IsTheHole());
|
|
|
|
// Make receiver an object if the callee requires it. Strict mode or builtin
|
|
// functions do not wrap the receiver, non-strict functions and objects
|
|
// called as functions do.
|
|
ReceiverToObjectIfRequired(result, object);
|
|
|
|
if (result->IsJSFunction()) {
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(result);
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
// Handle stepping into a function if step into is active.
|
|
Debug* debug = isolate()->debug();
|
|
if (debug->StepInActive()) {
|
|
// Protect the result in a handle as the debugger can allocate and might
|
|
// cause GC.
|
|
debug->HandleStepIn(function, object, fp(), false);
|
|
}
|
|
#endif
|
|
return *function;
|
|
}
|
|
|
|
// Try to find a suitable function delegate for the object at hand.
|
|
result = TryCallAsFunction(result);
|
|
if (result->IsJSFunction()) return *result;
|
|
|
|
return TypeError("property_not_function", object, name);
|
|
}
|
|
|
|
|
|
bool CallICBase::TryUpdateExtraICState(LookupResult* lookup,
|
|
Handle<Object> object,
|
|
Code::ExtraICState* extra_ic_state) {
|
|
ASSERT(kind_ == Code::CALL_IC);
|
|
if (lookup->type() != CONSTANT_FUNCTION) return false;
|
|
JSFunction* function = lookup->GetConstantFunction();
|
|
if (!function->shared()->HasBuiltinFunctionId()) return false;
|
|
|
|
// Fetch the arguments passed to the called function.
|
|
const int argc = target()->arguments_count();
|
|
Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
|
|
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
|
|
Arguments args(argc + 1,
|
|
&Memory::Object_at(fp +
|
|
StandardFrameConstants::kCallerSPOffset +
|
|
argc * kPointerSize));
|
|
switch (function->shared()->builtin_function_id()) {
|
|
case kStringCharCodeAt:
|
|
case kStringCharAt:
|
|
if (object->IsString()) {
|
|
String* string = String::cast(*object);
|
|
// Check there's the right string value or wrapper in the receiver slot.
|
|
ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
|
|
// If we're in the default (fastest) state and the index is
|
|
// out of bounds, update the state to record this fact.
|
|
if (StringStubState::decode(*extra_ic_state) == DEFAULT_STRING_STUB &&
|
|
argc >= 1 && args[1]->IsNumber()) {
|
|
double index = DoubleToInteger(args.number_at(1));
|
|
if (index < 0 || index >= string->length()) {
|
|
*extra_ic_state =
|
|
StringStubState::update(*extra_ic_state,
|
|
STRING_INDEX_OUT_OF_BOUNDS);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
|
|
State state,
|
|
Code::ExtraICState extra_state,
|
|
Handle<Object> object,
|
|
Handle<String> name) {
|
|
int argc = target()->arguments_count();
|
|
Handle<JSObject> holder(lookup->holder(), isolate());
|
|
switch (lookup->type()) {
|
|
case FIELD: {
|
|
PropertyIndex index = lookup->GetFieldIndex();
|
|
return isolate()->stub_cache()->ComputeCallField(
|
|
argc, kind_, extra_state, name, object, holder, index);
|
|
}
|
|
case CONSTANT_FUNCTION: {
|
|
// Get the constant function and compute the code stub for this
|
|
// call; used for rewriting to monomorphic state and making sure
|
|
// that the code stub is in the stub cache.
|
|
Handle<JSFunction> function(lookup->GetConstantFunction(), isolate());
|
|
return isolate()->stub_cache()->ComputeCallConstant(
|
|
argc, kind_, extra_state, name, object, holder, function);
|
|
}
|
|
case NORMAL: {
|
|
// If we return a null handle, the IC will not be patched.
|
|
if (!object->IsJSObject()) return Handle<Code>::null();
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
|
|
if (holder->IsGlobalObject()) {
|
|
Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
|
|
Handle<PropertyCell> cell(
|
|
global->GetPropertyCell(lookup), isolate());
|
|
if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
|
|
Handle<JSFunction> function(JSFunction::cast(cell->value()));
|
|
return isolate()->stub_cache()->ComputeCallGlobal(
|
|
argc, kind_, extra_state, name, receiver, global, cell, function);
|
|
} else {
|
|
// There is only one shared stub for calling normalized
|
|
// properties. It does not traverse the prototype chain, so the
|
|
// property must be found in the receiver for the stub to be
|
|
// applicable.
|
|
if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
|
|
return isolate()->stub_cache()->ComputeCallNormal(
|
|
argc, kind_, extra_state);
|
|
}
|
|
break;
|
|
}
|
|
case INTERCEPTOR:
|
|
ASSERT(HasInterceptorGetter(*holder));
|
|
return isolate()->stub_cache()->ComputeCallInterceptor(
|
|
argc, kind_, extra_state, name, object, holder);
|
|
default:
|
|
return Handle<Code>::null();
|
|
}
|
|
}
|
|
|
|
|
|
void CallICBase::UpdateCaches(LookupResult* lookup,
|
|
State state,
|
|
Code::ExtraICState extra_ic_state,
|
|
Handle<Object> object,
|
|
Handle<String> name) {
|
|
// Bail out if we didn't find a result.
|
|
if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
|
|
|
|
// Compute the number of arguments.
|
|
int argc = target()->arguments_count();
|
|
Handle<Code> code;
|
|
if (state == UNINITIALIZED) {
|
|
// This is the first time we execute this inline cache.
|
|
// Set the target to the pre monomorphic stub to delay
|
|
// setting the monomorphic state.
|
|
code = isolate()->stub_cache()->ComputeCallPreMonomorphic(
|
|
argc, kind_, extra_ic_state);
|
|
} else if (state == MONOMORPHIC) {
|
|
if (kind_ == Code::CALL_IC &&
|
|
TryUpdateExtraICState(lookup, object, &extra_ic_state)) {
|
|
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
|
|
object, name);
|
|
} else if (TryRemoveInvalidPrototypeDependentStub(target(),
|
|
*object,
|
|
*name)) {
|
|
state = MONOMORPHIC_PROTOTYPE_FAILURE;
|
|
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
|
|
object, name);
|
|
} else {
|
|
code = isolate()->stub_cache()->ComputeCallMegamorphic(
|
|
argc, kind_, extra_ic_state);
|
|
}
|
|
} else {
|
|
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
|
|
object, name);
|
|
}
|
|
|
|
// If there's no appropriate stub we simply avoid updating the caches.
|
|
if (code.is_null()) return;
|
|
|
|
// Patch the call site depending on the state of the cache.
|
|
switch (state) {
|
|
case UNINITIALIZED:
|
|
case MONOMORPHIC_PROTOTYPE_FAILURE:
|
|
case PREMONOMORPHIC:
|
|
case MONOMORPHIC:
|
|
set_target(*code);
|
|
break;
|
|
case MEGAMORPHIC: {
|
|
// Cache code holding map should be consistent with
|
|
// GenerateMonomorphicCacheProbe. It is not the map which holds the stub.
|
|
Handle<JSObject> cache_object = object->IsJSObject()
|
|
? Handle<JSObject>::cast(object)
|
|
: Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate())),
|
|
isolate());
|
|
// Update the stub cache.
|
|
UpdateMegamorphicCache(cache_object->map(), *name, *code);
|
|
break;
|
|
}
|
|
case DEBUG_STUB:
|
|
break;
|
|
case POLYMORPHIC:
|
|
case GENERIC:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
TRACE_IC(kind_ == Code::CALL_IC ? "CallIC" : "KeyedCallIC",
|
|
name, state, target());
|
|
}
|
|
|
|
|
|
MaybeObject* KeyedCallIC::LoadFunction(State state,
|
|
Handle<Object> object,
|
|
Handle<Object> key) {
|
|
if (key->IsInternalizedString()) {
|
|
return CallICBase::LoadFunction(state,
|
|
Code::kNoExtraICState,
|
|
object,
|
|
Handle<String>::cast(key));
|
|
}
|
|
|
|
if (object->IsJSObject()) {
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
if (receiver->map()->is_deprecated()) {
|
|
JSObject::MigrateInstance(receiver);
|
|
}
|
|
}
|
|
|
|
if (object->IsUndefined() || object->IsNull()) {
|
|
return TypeError("non_object_property_call", object, key);
|
|
}
|
|
|
|
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
|
|
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
|
|
|
|
if (use_ic && state != MEGAMORPHIC) {
|
|
int argc = target()->arguments_count();
|
|
Handle<Code> stub = isolate()->stub_cache()->ComputeCallMegamorphic(
|
|
argc, Code::KEYED_CALL_IC, Code::kNoExtraICState);
|
|
if (object->IsJSObject()) {
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
if (receiver->elements()->map() ==
|
|
isolate()->heap()->non_strict_arguments_elements_map()) {
|
|
stub = isolate()->stub_cache()->ComputeCallArguments(argc);
|
|
}
|
|
}
|
|
ASSERT(!stub.is_null());
|
|
set_target(*stub);
|
|
TRACE_IC("KeyedCallIC", key, state, target());
|
|
}
|
|
|
|
Handle<Object> result = GetProperty(isolate(), object, key);
|
|
RETURN_IF_EMPTY_HANDLE(isolate(), result);
|
|
|
|
// Make receiver an object if the callee requires it. Strict mode or builtin
|
|
// functions do not wrap the receiver, non-strict functions and objects
|
|
// called as functions do.
|
|
ReceiverToObjectIfRequired(result, object);
|
|
if (result->IsJSFunction()) return *result;
|
|
|
|
result = TryCallAsFunction(result);
|
|
if (result->IsJSFunction()) return *result;
|
|
|
|
return TypeError("property_not_function", object, key);
|
|
}
|
|
|
|
|
|
MaybeObject* LoadIC::Load(State state,
|
|
Handle<Object> object,
|
|
Handle<String> name) {
|
|
// If the object is undefined or null it's illegal to try to get any
|
|
// of its properties; throw a TypeError in that case.
|
|
if (object->IsUndefined() || object->IsNull()) {
|
|
return TypeError("non_object_property_load", object, name);
|
|
}
|
|
|
|
if (FLAG_use_ic) {
|
|
// Use specialized code for getting the length of strings and
|
|
// string wrapper objects. The length property of string wrapper
|
|
// objects is read-only and therefore always returns the length of
|
|
// the underlying string value. See ECMA-262 15.5.5.1.
|
|
if ((object->IsString() || object->IsStringWrapper()) &&
|
|
name->Equals(isolate()->heap()->length_string())) {
|
|
Handle<Code> stub;
|
|
if (state == UNINITIALIZED) {
|
|
stub = pre_monomorphic_stub();
|
|
} else if (state == PREMONOMORPHIC) {
|
|
StringLengthStub string_length_stub(kind(), !object->IsString());
|
|
stub = string_length_stub.GetCode(isolate());
|
|
} else if (state == MONOMORPHIC && object->IsStringWrapper()) {
|
|
StringLengthStub string_length_stub(kind(), true);
|
|
stub = string_length_stub.GetCode(isolate());
|
|
} else if (state != MEGAMORPHIC) {
|
|
ASSERT(state != GENERIC);
|
|
stub = megamorphic_stub();
|
|
}
|
|
if (!stub.is_null()) {
|
|
set_target(*stub);
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n");
|
|
#endif
|
|
}
|
|
// Get the string if we have a string wrapper object.
|
|
Handle<Object> string = object->IsJSValue()
|
|
? Handle<Object>(Handle<JSValue>::cast(object)->value(), isolate())
|
|
: object;
|
|
return Smi::FromInt(String::cast(*string)->length());
|
|
}
|
|
|
|
// Use specialized code for getting prototype of functions.
|
|
if (object->IsJSFunction() &&
|
|
name->Equals(isolate()->heap()->prototype_string()) &&
|
|
Handle<JSFunction>::cast(object)->should_have_prototype()) {
|
|
Handle<Code> stub;
|
|
if (state == UNINITIALIZED) {
|
|
stub = pre_monomorphic_stub();
|
|
} else if (state == PREMONOMORPHIC) {
|
|
FunctionPrototypeStub function_prototype_stub(kind());
|
|
stub = function_prototype_stub.GetCode(isolate());
|
|
} else if (state != MEGAMORPHIC) {
|
|
ASSERT(state != GENERIC);
|
|
stub = megamorphic_stub();
|
|
}
|
|
if (!stub.is_null()) {
|
|
set_target(*stub);
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
|
|
#endif
|
|
}
|
|
return *Accessors::FunctionGetPrototype(object);
|
|
}
|
|
}
|
|
|
|
// Check if the name is trivially convertible to an index and get
|
|
// the element or char if so.
|
|
uint32_t index;
|
|
if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
|
|
// Rewrite to the generic keyed load stub.
|
|
if (FLAG_use_ic) set_target(*generic_stub());
|
|
return Runtime::GetElementOrCharAtOrFail(isolate(), object, index);
|
|
}
|
|
|
|
if (object->IsJSObject()) {
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
if (receiver->map()->is_deprecated()) {
|
|
JSObject::MigrateInstance(receiver);
|
|
}
|
|
}
|
|
|
|
// Named lookup in the object.
|
|
LookupResult lookup(isolate());
|
|
LookupForRead(object, name, &lookup);
|
|
|
|
// If we did not find a property, check if we need to throw an exception.
|
|
if (!lookup.IsFound()) {
|
|
if (IsUndeclaredGlobal(object)) {
|
|
return ReferenceError("not_defined", name);
|
|
}
|
|
LOG(isolate(), SuspectReadEvent(*name, *object));
|
|
}
|
|
|
|
// Update inline cache and stub cache.
|
|
if (FLAG_use_ic) UpdateCaches(&lookup, state, object, name);
|
|
|
|
PropertyAttributes attr;
|
|
if (lookup.IsInterceptor() || lookup.IsHandler()) {
|
|
// Get the property.
|
|
Handle<Object> result =
|
|
Object::GetProperty(object, object, &lookup, name, &attr);
|
|
RETURN_IF_EMPTY_HANDLE(isolate(), result);
|
|
// If the property is not present, check if we need to throw an
|
|
// exception.
|
|
if (attr == ABSENT && IsUndeclaredGlobal(object)) {
|
|
return ReferenceError("not_defined", name);
|
|
}
|
|
return *result;
|
|
}
|
|
|
|
// Get the property.
|
|
return Object::GetPropertyOrFail(object, object, &lookup, name, &attr);
|
|
}
|
|
|
|
|
|
static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
|
|
Handle<Map> new_receiver_map) {
|
|
ASSERT(!new_receiver_map.is_null());
|
|
for (int current = 0; current < receiver_maps->length(); ++current) {
|
|
if (!receiver_maps->at(current).is_null() &&
|
|
receiver_maps->at(current).is_identical_to(new_receiver_map)) {
|
|
return false;
|
|
}
|
|
}
|
|
receiver_maps->Add(new_receiver_map);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool IC::UpdatePolymorphicIC(State state,
|
|
StrictModeFlag strict_mode,
|
|
Handle<JSObject> receiver,
|
|
Handle<String> name,
|
|
Handle<Code> code) {
|
|
if (code->type() == Code::NORMAL) return false;
|
|
if (target()->ic_state() == MONOMORPHIC &&
|
|
target()->type() == Code::NORMAL) {
|
|
return false;
|
|
}
|
|
|
|
MapHandleList receiver_maps;
|
|
CodeHandleList handlers;
|
|
|
|
int number_of_valid_maps;
|
|
int handler_to_overwrite = -1;
|
|
Handle<Map> new_receiver_map(receiver->map());
|
|
{
|
|
DisallowHeapAllocation no_gc;
|
|
target()->FindAllMaps(&receiver_maps);
|
|
int number_of_maps = receiver_maps.length();
|
|
number_of_valid_maps = number_of_maps;
|
|
|
|
for (int i = 0; i < number_of_maps; i++) {
|
|
Handle<Map> map = receiver_maps.at(i);
|
|
// Filter out deprecated maps to ensure its instances get migrated.
|
|
if (map->is_deprecated()) {
|
|
number_of_valid_maps--;
|
|
// If the receiver map is already in the polymorphic IC, this indicates
|
|
// there was a prototoype chain failure. In that case, just overwrite the
|
|
// handler.
|
|
} else if (map.is_identical_to(new_receiver_map)) {
|
|
number_of_valid_maps--;
|
|
handler_to_overwrite = i;
|
|
}
|
|
}
|
|
|
|
if (number_of_valid_maps >= 4) return false;
|
|
|
|
// Only allow 0 maps in case target() was reset to UNINITIALIZED by the GC.
|
|
// In that case, allow the IC to go back monomorphic.
|
|
if (number_of_maps == 0 && target()->ic_state() != UNINITIALIZED) {
|
|
return false;
|
|
}
|
|
target()->FindAllCode(&handlers, receiver_maps.length());
|
|
}
|
|
|
|
number_of_valid_maps++;
|
|
if (handler_to_overwrite >= 0) {
|
|
handlers.Set(handler_to_overwrite, code);
|
|
} else {
|
|
receiver_maps.Add(new_receiver_map);
|
|
handlers.Add(code);
|
|
}
|
|
|
|
Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
|
|
&receiver_maps, &handlers, number_of_valid_maps, name);
|
|
set_target(*ic);
|
|
return true;
|
|
}
|
|
|
|
|
|
void LoadIC::UpdateMonomorphicIC(Handle<JSObject> receiver,
|
|
Handle<Code> handler,
|
|
Handle<String> name) {
|
|
if (handler->type() == Code::NORMAL) return set_target(*handler);
|
|
Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
|
|
receiver, handler, name);
|
|
set_target(*ic);
|
|
}
|
|
|
|
|
|
void KeyedLoadIC::UpdateMonomorphicIC(Handle<JSObject> receiver,
|
|
Handle<Code> handler,
|
|
Handle<String> name) {
|
|
if (handler->type() == Code::NORMAL) return set_target(*handler);
|
|
Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedMonomorphicIC(
|
|
receiver, handler, name);
|
|
set_target(*ic);
|
|
}
|
|
|
|
|
|
void IC::CopyICToMegamorphicCache(Handle<String> name) {
|
|
MapHandleList receiver_maps;
|
|
CodeHandleList handlers;
|
|
{
|
|
DisallowHeapAllocation no_gc;
|
|
target()->FindAllMaps(&receiver_maps);
|
|
target()->FindAllCode(&handlers, receiver_maps.length());
|
|
}
|
|
for (int i = 0; i < receiver_maps.length(); i++) {
|
|
UpdateMegamorphicCache(*receiver_maps.at(i), *name, *handlers.at(i));
|
|
}
|
|
}
|
|
|
|
|
|
bool IC::IsTransitionedMapOfMonomorphicTarget(Map* receiver_map) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
Map* current_map = target()->FindFirstMap();
|
|
ElementsKind receiver_elements_kind = receiver_map->elements_kind();
|
|
bool more_general_transition =
|
|
IsMoreGeneralElementsKindTransition(
|
|
current_map->elements_kind(), receiver_elements_kind);
|
|
Map* transitioned_map = more_general_transition
|
|
? current_map->LookupElementsTransitionMap(receiver_elements_kind)
|
|
: NULL;
|
|
|
|
return transitioned_map == receiver_map;
|
|
}
|
|
|
|
|
|
// Since GC may have been invoked, by the time PatchCache is called, |state| is
|
|
// not necessarily equal to target()->state().
|
|
void IC::PatchCache(State state,
|
|
StrictModeFlag strict_mode,
|
|
Handle<JSObject> receiver,
|
|
Handle<String> name,
|
|
Handle<Code> code) {
|
|
switch (state) {
|
|
case UNINITIALIZED:
|
|
case PREMONOMORPHIC:
|
|
case MONOMORPHIC_PROTOTYPE_FAILURE:
|
|
UpdateMonomorphicIC(receiver, code, name);
|
|
break;
|
|
case MONOMORPHIC:
|
|
// Only move to megamorphic if the target changes.
|
|
if (target() != *code) {
|
|
if (target()->is_load_stub()) {
|
|
bool is_same_handler = false;
|
|
{
|
|
DisallowHeapAllocation no_allocation;
|
|
Code* old_handler = target()->FindFirstCode();
|
|
is_same_handler = old_handler == *code;
|
|
}
|
|
if (is_same_handler
|
|
&& IsTransitionedMapOfMonomorphicTarget(receiver->map())) {
|
|
UpdateMonomorphicIC(receiver, code, name);
|
|
break;
|
|
}
|
|
if (UpdatePolymorphicIC(state, strict_mode, receiver, name, code)) {
|
|
break;
|
|
}
|
|
|
|
if (target()->type() != Code::NORMAL) {
|
|
CopyICToMegamorphicCache(name);
|
|
}
|
|
}
|
|
|
|
UpdateMegamorphicCache(receiver->map(), *name, *code);
|
|
set_target((strict_mode == kStrictMode)
|
|
? *megamorphic_stub_strict()
|
|
: *megamorphic_stub());
|
|
}
|
|
break;
|
|
case MEGAMORPHIC:
|
|
// Update the stub cache.
|
|
UpdateMegamorphicCache(receiver->map(), *name, *code);
|
|
break;
|
|
case POLYMORPHIC:
|
|
if (target()->is_load_stub()) {
|
|
if (UpdatePolymorphicIC(state, strict_mode, receiver, name, code)) {
|
|
break;
|
|
}
|
|
CopyICToMegamorphicCache(name);
|
|
UpdateMegamorphicCache(receiver->map(), *name, *code);
|
|
set_target(*megamorphic_stub());
|
|
} else {
|
|
// When trying to patch a polymorphic keyed load/store element stub
|
|
// with anything other than another polymorphic stub, go generic.
|
|
set_target((strict_mode == kStrictMode)
|
|
? *generic_stub_strict()
|
|
: *generic_stub());
|
|
}
|
|
break;
|
|
case DEBUG_STUB:
|
|
break;
|
|
case GENERIC:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void GetReceiverMapsForStub(Handle<Code> stub,
|
|
MapHandleList* result) {
|
|
ASSERT(stub->is_inline_cache_stub());
|
|
switch (stub->ic_state()) {
|
|
case MONOMORPHIC: {
|
|
Map* map = stub->FindFirstMap();
|
|
if (map != NULL) {
|
|
result->Add(Handle<Map>(map));
|
|
}
|
|
break;
|
|
}
|
|
case POLYMORPHIC: {
|
|
DisallowHeapAllocation no_allocation;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
|
|
for (RelocIterator it(*stub, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
Handle<Object> object(info->target_object(), stub->GetIsolate());
|
|
if (object->IsString()) break;
|
|
ASSERT(object->IsMap());
|
|
AddOneReceiverMapIfMissing(result, Handle<Map>::cast(object));
|
|
}
|
|
break;
|
|
}
|
|
case MEGAMORPHIC:
|
|
break;
|
|
case UNINITIALIZED:
|
|
case PREMONOMORPHIC:
|
|
case MONOMORPHIC_PROTOTYPE_FAILURE:
|
|
case GENERIC:
|
|
case DEBUG_STUB:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void LoadIC::UpdateCaches(LookupResult* lookup,
|
|
State state,
|
|
Handle<Object> object,
|
|
Handle<String> name) {
|
|
// Bail out if the result is not cacheable.
|
|
if (!lookup->IsCacheable()) {
|
|
set_target(*generic_stub());
|
|
return;
|
|
}
|
|
|
|
// TODO(jkummerow): It would be nice to support non-JSObjects in
|
|
// UpdateCaches, then we wouldn't need to go generic here.
|
|
if (!object->IsJSObject()) {
|
|
set_target(*generic_stub());
|
|
return;
|
|
}
|
|
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
Handle<Code> code;
|
|
if (state == UNINITIALIZED) {
|
|
// This is the first time we execute this inline cache.
|
|
// Set the target to the pre monomorphic stub to delay
|
|
// setting the monomorphic state.
|
|
code = pre_monomorphic_stub();
|
|
} else {
|
|
code = ComputeLoadHandler(lookup, receiver, name);
|
|
if (code.is_null()) {
|
|
set_target(*generic_stub());
|
|
return;
|
|
}
|
|
}
|
|
|
|
PatchCache(state, kNonStrictMode, receiver, name, code);
|
|
TRACE_IC("LoadIC", name, state, target());
|
|
}
|
|
|
|
|
|
void IC::UpdateMegamorphicCache(Map* map, Name* name, Code* code) {
|
|
// Cache code holding map should be consistent with
|
|
// GenerateMonomorphicCacheProbe.
|
|
isolate()->stub_cache()->Set(name, map, code);
|
|
}
|
|
|
|
|
|
Handle<Code> LoadIC::ComputeLoadHandler(LookupResult* lookup,
|
|
Handle<JSObject> receiver,
|
|
Handle<String> name) {
|
|
if (!lookup->IsProperty()) {
|
|
// Nonexistent property. The result is undefined.
|
|
return isolate()->stub_cache()->ComputeLoadNonexistent(name, receiver);
|
|
}
|
|
|
|
// Compute monomorphic stub.
|
|
Handle<JSObject> holder(lookup->holder());
|
|
switch (lookup->type()) {
|
|
case FIELD:
|
|
return isolate()->stub_cache()->ComputeLoadField(
|
|
name, receiver, holder,
|
|
lookup->GetFieldIndex(), lookup->representation());
|
|
case CONSTANT_FUNCTION: {
|
|
Handle<JSFunction> constant(lookup->GetConstantFunction());
|
|
return isolate()->stub_cache()->ComputeLoadConstant(
|
|
name, receiver, holder, constant);
|
|
}
|
|
case NORMAL:
|
|
if (holder->IsGlobalObject()) {
|
|
Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
|
|
Handle<PropertyCell> cell(
|
|
global->GetPropertyCell(lookup), isolate());
|
|
return isolate()->stub_cache()->ComputeLoadGlobal(
|
|
name, receiver, global, cell, lookup->IsDontDelete());
|
|
}
|
|
// There is only one shared stub for loading normalized
|
|
// properties. It does not traverse the prototype chain, so the
|
|
// property must be found in the receiver for the stub to be
|
|
// applicable.
|
|
if (!holder.is_identical_to(receiver)) break;
|
|
return isolate()->stub_cache()->ComputeLoadNormal(name, receiver);
|
|
case CALLBACKS: {
|
|
Handle<Object> callback(lookup->GetCallbackObject(), isolate());
|
|
if (callback->IsExecutableAccessorInfo()) {
|
|
Handle<ExecutableAccessorInfo> info =
|
|
Handle<ExecutableAccessorInfo>::cast(callback);
|
|
if (v8::ToCData<Address>(info->getter()) == 0) break;
|
|
if (!info->IsCompatibleReceiver(*receiver)) break;
|
|
return isolate()->stub_cache()->ComputeLoadCallback(
|
|
name, receiver, holder, info);
|
|
} else if (callback->IsAccessorPair()) {
|
|
Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
|
|
isolate());
|
|
if (!getter->IsJSFunction()) break;
|
|
if (holder->IsGlobalObject()) break;
|
|
if (!holder->HasFastProperties()) break;
|
|
return isolate()->stub_cache()->ComputeLoadViaGetter(
|
|
name, receiver, holder, Handle<JSFunction>::cast(getter));
|
|
} else if (receiver->IsJSArray() &&
|
|
name->Equals(isolate()->heap()->length_string())) {
|
|
PropertyIndex lengthIndex =
|
|
PropertyIndex::NewHeaderIndex(JSArray::kLengthOffset / kPointerSize);
|
|
return isolate()->stub_cache()->ComputeLoadField(
|
|
name, receiver, holder, lengthIndex, Representation::Tagged());
|
|
}
|
|
// TODO(dcarney): Handle correctly.
|
|
if (callback->IsDeclaredAccessorInfo()) break;
|
|
ASSERT(callback->IsForeign());
|
|
// No IC support for old-style native accessors.
|
|
break;
|
|
}
|
|
case INTERCEPTOR:
|
|
ASSERT(HasInterceptorGetter(*holder));
|
|
return isolate()->stub_cache()->ComputeLoadInterceptor(
|
|
name, receiver, holder);
|
|
default:
|
|
break;
|
|
}
|
|
return Handle<Code>::null();
|
|
}
|
|
|
|
|
|
static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
|
|
// This helper implements a few common fast cases for converting
|
|
// non-smi keys of keyed loads/stores to a smi or a string.
|
|
if (key->IsHeapNumber()) {
|
|
double value = Handle<HeapNumber>::cast(key)->value();
|
|
if (std::isnan(value)) {
|
|
key = isolate->factory()->nan_string();
|
|
} else {
|
|
int int_value = FastD2I(value);
|
|
if (value == int_value && Smi::IsValid(int_value)) {
|
|
key = Handle<Smi>(Smi::FromInt(int_value), isolate);
|
|
}
|
|
}
|
|
} else if (key->IsUndefined()) {
|
|
key = isolate->factory()->undefined_string();
|
|
}
|
|
return key;
|
|
}
|
|
|
|
|
|
Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
|
|
State ic_state = target()->ic_state();
|
|
|
|
// Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
|
|
// via megamorphic stubs, since they don't have a map in their relocation info
|
|
// and so the stubs can't be harvested for the object needed for a map check.
|
|
if (target()->type() != Code::NORMAL) {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
|
|
return generic_stub();
|
|
}
|
|
|
|
Handle<Map> receiver_map(receiver->map(), isolate());
|
|
MapHandleList target_receiver_maps;
|
|
if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
|
|
// Optimistically assume that ICs that haven't reached the MONOMORPHIC state
|
|
// yet will do so and stay there.
|
|
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
|
|
}
|
|
|
|
if (target() == *string_stub()) {
|
|
target_receiver_maps.Add(isolate()->factory()->string_map());
|
|
} else {
|
|
GetReceiverMapsForStub(Handle<Code>(target(), isolate()),
|
|
&target_receiver_maps);
|
|
if (target_receiver_maps.length() == 0) {
|
|
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
|
|
}
|
|
}
|
|
|
|
// The first time a receiver is seen that is a transitioned version of the
|
|
// previous monomorphic receiver type, assume the new ElementsKind is the
|
|
// monomorphic type. This benefits global arrays that only transition
|
|
// once, and all call sites accessing them are faster if they remain
|
|
// monomorphic. If this optimistic assumption is not true, the IC will
|
|
// miss again and it will become polymorphic and support both the
|
|
// untransitioned and transitioned maps.
|
|
if (ic_state == MONOMORPHIC &&
|
|
IsMoreGeneralElementsKindTransition(
|
|
target_receiver_maps.at(0)->elements_kind(),
|
|
receiver->GetElementsKind())) {
|
|
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
|
|
}
|
|
|
|
ASSERT(ic_state != GENERIC);
|
|
|
|
// Determine the list of receiver maps that this call site has seen,
|
|
// adding the map that was just encountered.
|
|
if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
|
|
// If the miss wasn't due to an unseen map, a polymorphic stub
|
|
// won't help, use the generic stub.
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
|
|
return generic_stub();
|
|
}
|
|
|
|
// If the maximum number of receiver maps has been exceeded, use the generic
|
|
// version of the IC.
|
|
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
|
|
return generic_stub();
|
|
}
|
|
|
|
return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
|
|
&target_receiver_maps);
|
|
}
|
|
|
|
|
|
MaybeObject* KeyedLoadIC::Load(State state,
|
|
Handle<Object> object,
|
|
Handle<Object> key,
|
|
ICMissMode miss_mode) {
|
|
// Check for values that can be converted into an internalized string directly
|
|
// or is representable as a smi.
|
|
key = TryConvertKey(key, isolate());
|
|
|
|
if (key->IsInternalizedString()) {
|
|
return LoadIC::Load(state, object, Handle<String>::cast(key));
|
|
}
|
|
|
|
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
|
|
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
|
|
|
|
if (use_ic) {
|
|
Handle<Code> stub = generic_stub();
|
|
if (miss_mode != MISS_FORCE_GENERIC) {
|
|
if (object->IsString() && key->IsNumber()) {
|
|
if (state == UNINITIALIZED) {
|
|
stub = string_stub();
|
|
}
|
|
} else if (object->IsJSObject()) {
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
if (receiver->map()->is_deprecated()) {
|
|
JSObject::MigrateInstance(receiver);
|
|
}
|
|
|
|
if (receiver->elements()->map() ==
|
|
isolate()->heap()->non_strict_arguments_elements_map()) {
|
|
stub = non_strict_arguments_stub();
|
|
} else if (receiver->HasIndexedInterceptor()) {
|
|
stub = indexed_interceptor_stub();
|
|
} else if (!key->ToSmi()->IsFailure() &&
|
|
(target() != *non_strict_arguments_stub())) {
|
|
stub = LoadElementStub(receiver);
|
|
}
|
|
}
|
|
} else {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "force generic");
|
|
}
|
|
ASSERT(!stub.is_null());
|
|
set_target(*stub);
|
|
TRACE_IC("KeyedLoadIC", key, state, target());
|
|
}
|
|
|
|
|
|
return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
|
|
}
|
|
|
|
|
|
Handle<Code> KeyedLoadIC::ComputeLoadHandler(LookupResult* lookup,
|
|
Handle<JSObject> receiver,
|
|
Handle<String> name) {
|
|
// Bail out if we didn't find a result.
|
|
if (!lookup->IsProperty()) return Handle<Code>::null();
|
|
|
|
// Compute a monomorphic stub.
|
|
Handle<JSObject> holder(lookup->holder(), isolate());
|
|
switch (lookup->type()) {
|
|
case FIELD:
|
|
return isolate()->stub_cache()->ComputeKeyedLoadField(
|
|
name, receiver, holder,
|
|
lookup->GetFieldIndex(), lookup->representation());
|
|
case CONSTANT_FUNCTION: {
|
|
Handle<JSFunction> constant(lookup->GetConstantFunction(), isolate());
|
|
return isolate()->stub_cache()->ComputeKeyedLoadConstant(
|
|
name, receiver, holder, constant);
|
|
}
|
|
case CALLBACKS: {
|
|
Handle<Object> callback_object(lookup->GetCallbackObject(), isolate());
|
|
// TODO(dcarney): Handle DeclaredAccessorInfo correctly.
|
|
if (!callback_object->IsExecutableAccessorInfo()) break;
|
|
Handle<ExecutableAccessorInfo> callback =
|
|
Handle<ExecutableAccessorInfo>::cast(callback_object);
|
|
if (v8::ToCData<Address>(callback->getter()) == 0) break;
|
|
if (!callback->IsCompatibleReceiver(*receiver)) break;
|
|
return isolate()->stub_cache()->ComputeKeyedLoadCallback(
|
|
name, receiver, holder, callback);
|
|
}
|
|
case INTERCEPTOR:
|
|
ASSERT(HasInterceptorGetter(lookup->holder()));
|
|
return isolate()->stub_cache()->ComputeKeyedLoadInterceptor(
|
|
name, receiver, holder);
|
|
default:
|
|
// Always rewrite to the generic case so that we do not
|
|
// repeatedly try to rewrite.
|
|
return generic_stub();
|
|
}
|
|
return Handle<Code>::null();
|
|
}
|
|
|
|
|
|
static bool LookupForWrite(Handle<JSObject> receiver,
|
|
Handle<String> name,
|
|
Handle<Object> value,
|
|
LookupResult* lookup,
|
|
IC::State* state) {
|
|
Handle<JSObject> holder = receiver;
|
|
receiver->Lookup(*name, lookup);
|
|
if (lookup->IsFound()) {
|
|
if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
|
|
|
|
if (lookup->holder() == *receiver) {
|
|
if (lookup->IsInterceptor() &&
|
|
receiver->GetNamedInterceptor()->setter()->IsUndefined()) {
|
|
receiver->LocalLookupRealNamedProperty(*name, lookup);
|
|
return lookup->IsFound() &&
|
|
!lookup->IsReadOnly() &&
|
|
lookup->CanHoldValue(value) &&
|
|
lookup->IsCacheable();
|
|
}
|
|
return lookup->CanHoldValue(value);
|
|
}
|
|
|
|
if (lookup->IsPropertyCallbacks()) return true;
|
|
|
|
// Currently normal holders in the prototype chain are not supported. They
|
|
// would require a runtime positive lookup and verification that the details
|
|
// have not changed.
|
|
if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
|
|
holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
|
|
}
|
|
|
|
// While normally LookupTransition gets passed the receiver, in this case we
|
|
// pass the holder of the property that we overwrite. This keeps the holder in
|
|
// the LookupResult intact so we can later use it to generate a prototype
|
|
// chain check. This avoids a double lookup, but requires us to pass in the
|
|
// receiver when trying to fetch extra information from the transition.
|
|
receiver->map()->LookupTransition(*holder, *name, lookup);
|
|
if (!lookup->IsTransition()) return false;
|
|
PropertyDetails target_details =
|
|
lookup->GetTransitionDetails(receiver->map());
|
|
if (target_details.IsReadOnly()) return false;
|
|
|
|
// If the value that's being stored does not fit in the field that the
|
|
// instance would transition to, create a new transition that fits the value.
|
|
// This has to be done before generating the IC, since that IC will embed the
|
|
// transition target.
|
|
// Ensure the instance and its map were migrated before trying to update the
|
|
// transition target.
|
|
ASSERT(!receiver->map()->is_deprecated());
|
|
if (!value->FitsRepresentation(target_details.representation())) {
|
|
Handle<Map> target(lookup->GetTransitionMapFromMap(receiver->map()));
|
|
Map::GeneralizeRepresentation(
|
|
target, target->LastAdded(), value->OptimalRepresentation());
|
|
// Lookup the transition again since the transition tree may have changed
|
|
// entirely by the migration above.
|
|
receiver->map()->LookupTransition(*holder, *name, lookup);
|
|
if (!lookup->IsTransition()) return false;
|
|
*state = MONOMORPHIC_PROTOTYPE_FAILURE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
MaybeObject* StoreIC::Store(State state,
|
|
StrictModeFlag strict_mode,
|
|
Handle<Object> object,
|
|
Handle<String> name,
|
|
Handle<Object> value,
|
|
JSReceiver::StoreFromKeyed store_mode) {
|
|
// Handle proxies.
|
|
if (object->IsJSProxy()) {
|
|
return JSReceiver::SetPropertyOrFail(
|
|
Handle<JSReceiver>::cast(object), name, value, NONE, strict_mode);
|
|
}
|
|
|
|
// If the object is undefined or null it's illegal to try to set any
|
|
// properties on it; throw a TypeError in that case.
|
|
if (object->IsUndefined() || object->IsNull()) {
|
|
return TypeError("non_object_property_store", object, name);
|
|
}
|
|
|
|
// The length property of string values is read-only. Throw in strict mode.
|
|
if (strict_mode == kStrictMode && object->IsString() &&
|
|
name->Equals(isolate()->heap()->length_string())) {
|
|
return TypeError("strict_read_only_property", object, name);
|
|
}
|
|
|
|
// Ignore other stores where the receiver is not a JSObject.
|
|
// TODO(1475): Must check prototype chains of object wrappers.
|
|
if (!object->IsJSObject()) return *value;
|
|
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
|
|
if (receiver->map()->is_deprecated()) {
|
|
JSObject::MigrateInstance(receiver);
|
|
}
|
|
|
|
// Check if the given name is an array index.
|
|
uint32_t index;
|
|
if (name->AsArrayIndex(&index)) {
|
|
Handle<Object> result =
|
|
JSObject::SetElement(receiver, index, value, NONE, strict_mode);
|
|
RETURN_IF_EMPTY_HANDLE(isolate(), result);
|
|
return *value;
|
|
}
|
|
|
|
// Observed objects are always modified through the runtime.
|
|
if (FLAG_harmony_observation && receiver->map()->is_observed()) {
|
|
return JSReceiver::SetPropertyOrFail(
|
|
receiver, name, value, NONE, strict_mode, store_mode);
|
|
}
|
|
|
|
// Use specialized code for setting the length of arrays with fast
|
|
// properties. Slow properties might indicate redefinition of the length
|
|
// property.
|
|
if (FLAG_use_ic &&
|
|
receiver->IsJSArray() &&
|
|
name->Equals(isolate()->heap()->length_string()) &&
|
|
Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
|
|
receiver->HasFastProperties()) {
|
|
Handle<Code> stub =
|
|
StoreArrayLengthStub(kind(), strict_mode).GetCode(isolate());
|
|
set_target(*stub);
|
|
TRACE_IC("StoreIC", name, state, *stub);
|
|
return JSReceiver::SetPropertyOrFail(
|
|
receiver, name, value, NONE, strict_mode, store_mode);
|
|
}
|
|
|
|
if (receiver->IsJSGlobalProxy()) {
|
|
if (FLAG_use_ic && kind() != Code::KEYED_STORE_IC) {
|
|
// Generate a generic stub that goes to the runtime when we see a global
|
|
// proxy as receiver.
|
|
Handle<Code> stub = (strict_mode == kStrictMode)
|
|
? global_proxy_stub_strict()
|
|
: global_proxy_stub();
|
|
set_target(*stub);
|
|
TRACE_IC("StoreIC", name, state, *stub);
|
|
}
|
|
return JSReceiver::SetPropertyOrFail(
|
|
receiver, name, value, NONE, strict_mode, store_mode);
|
|
}
|
|
|
|
LookupResult lookup(isolate());
|
|
if (LookupForWrite(receiver, name, value, &lookup, &state)) {
|
|
if (FLAG_use_ic) {
|
|
UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
|
|
}
|
|
} else if (strict_mode == kStrictMode &&
|
|
!(lookup.IsProperty() && lookup.IsReadOnly()) &&
|
|
IsUndeclaredGlobal(object)) {
|
|
// Strict mode doesn't allow setting non-existent global property.
|
|
return ReferenceError("not_defined", name);
|
|
} else if (FLAG_use_ic &&
|
|
(lookup.IsNormal() ||
|
|
(lookup.IsField() && lookup.CanHoldValue(value)))) {
|
|
Handle<Code> stub = strict_mode == kStrictMode
|
|
? generic_stub_strict() : generic_stub();
|
|
set_target(*stub);
|
|
}
|
|
|
|
// Set the property.
|
|
return JSReceiver::SetPropertyOrFail(
|
|
receiver, name, value, NONE, strict_mode, store_mode);
|
|
}
|
|
|
|
|
|
void StoreIC::UpdateCaches(LookupResult* lookup,
|
|
State state,
|
|
StrictModeFlag strict_mode,
|
|
Handle<JSObject> receiver,
|
|
Handle<String> name,
|
|
Handle<Object> value) {
|
|
ASSERT(!receiver->IsJSGlobalProxy());
|
|
ASSERT(lookup->IsFound());
|
|
|
|
// These are not cacheable, so we never see such LookupResults here.
|
|
ASSERT(!lookup->IsHandler());
|
|
|
|
Handle<Code> code = ComputeStoreMonomorphic(
|
|
lookup, strict_mode, receiver, name);
|
|
if (code.is_null()) {
|
|
Handle<Code> stub = strict_mode == kStrictMode
|
|
? generic_stub_strict() : generic_stub();
|
|
set_target(*stub);
|
|
return;
|
|
}
|
|
|
|
PatchCache(state, strict_mode, receiver, name, code);
|
|
TRACE_IC("StoreIC", name, state, target());
|
|
}
|
|
|
|
|
|
Handle<Code> StoreIC::ComputeStoreMonomorphic(LookupResult* lookup,
|
|
StrictModeFlag strict_mode,
|
|
Handle<JSObject> receiver,
|
|
Handle<String> name) {
|
|
Handle<JSObject> holder(lookup->holder());
|
|
switch (lookup->type()) {
|
|
case FIELD:
|
|
return isolate()->stub_cache()->ComputeStoreField(
|
|
name, receiver, lookup, strict_mode);
|
|
case NORMAL:
|
|
if (receiver->IsGlobalObject()) {
|
|
// The stub generated for the global object picks the value directly
|
|
// from the property cell. So the property must be directly on the
|
|
// global object.
|
|
Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
|
|
Handle<PropertyCell> cell(
|
|
global->GetPropertyCell(lookup), isolate());
|
|
return isolate()->stub_cache()->ComputeStoreGlobal(
|
|
name, global, cell, strict_mode);
|
|
}
|
|
ASSERT(holder.is_identical_to(receiver));
|
|
return isolate()->stub_cache()->ComputeStoreNormal(strict_mode);
|
|
case CALLBACKS: {
|
|
Handle<Object> callback(lookup->GetCallbackObject(), isolate());
|
|
if (callback->IsExecutableAccessorInfo()) {
|
|
Handle<ExecutableAccessorInfo> info =
|
|
Handle<ExecutableAccessorInfo>::cast(callback);
|
|
if (v8::ToCData<Address>(info->setter()) == 0) break;
|
|
if (!holder->HasFastProperties()) break;
|
|
if (!info->IsCompatibleReceiver(*receiver)) break;
|
|
return isolate()->stub_cache()->ComputeStoreCallback(
|
|
name, receiver, holder, info, strict_mode);
|
|
} else if (callback->IsAccessorPair()) {
|
|
Handle<Object> setter(
|
|
Handle<AccessorPair>::cast(callback)->setter(), isolate());
|
|
if (!setter->IsJSFunction()) break;
|
|
if (holder->IsGlobalObject()) break;
|
|
if (!holder->HasFastProperties()) break;
|
|
return isolate()->stub_cache()->ComputeStoreViaSetter(
|
|
name, receiver, holder, Handle<JSFunction>::cast(setter),
|
|
strict_mode);
|
|
}
|
|
// TODO(dcarney): Handle correctly.
|
|
if (callback->IsDeclaredAccessorInfo()) break;
|
|
ASSERT(callback->IsForeign());
|
|
// No IC support for old-style native accessors.
|
|
break;
|
|
}
|
|
case INTERCEPTOR:
|
|
ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined());
|
|
return isolate()->stub_cache()->ComputeStoreInterceptor(
|
|
name, receiver, strict_mode);
|
|
case CONSTANT_FUNCTION:
|
|
break;
|
|
case TRANSITION: {
|
|
// Explicitly pass in the receiver map since LookupForWrite may have
|
|
// stored something else than the receiver in the holder.
|
|
Handle<Map> transition(
|
|
lookup->GetTransitionTarget(receiver->map()), isolate());
|
|
int descriptor = transition->LastAdded();
|
|
|
|
DescriptorArray* target_descriptors = transition->instance_descriptors();
|
|
PropertyDetails details = target_descriptors->GetDetails(descriptor);
|
|
|
|
if (details.type() == CALLBACKS || details.attributes() != NONE) break;
|
|
|
|
return isolate()->stub_cache()->ComputeStoreTransition(
|
|
name, receiver, lookup, transition, strict_mode);
|
|
}
|
|
case NONEXISTENT:
|
|
case HANDLER:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return Handle<Code>::null();
|
|
}
|
|
|
|
|
|
Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
|
|
KeyedAccessStoreMode store_mode,
|
|
StrictModeFlag strict_mode) {
|
|
// Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
|
|
// via megamorphic stubs, since they don't have a map in their relocation info
|
|
// and so the stubs can't be harvested for the object needed for a map check.
|
|
if (target()->type() != Code::NORMAL) {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
|
|
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
|
|
}
|
|
|
|
if (!FLAG_compiled_keyed_stores &&
|
|
(store_mode == STORE_NO_TRANSITION_HANDLE_COW ||
|
|
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS)) {
|
|
// TODO(danno): We'll soon handle MONOMORPHIC ICs that also support
|
|
// copying COW arrays and silently ignoring some OOB stores into external
|
|
// arrays, but for now use the generic.
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC", "COW/OOB external array");
|
|
return strict_mode == kStrictMode
|
|
? generic_stub_strict()
|
|
: generic_stub();
|
|
}
|
|
|
|
State ic_state = target()->ic_state();
|
|
Handle<Map> receiver_map(receiver->map(), isolate());
|
|
if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
|
|
// Optimistically assume that ICs that haven't reached the MONOMORPHIC state
|
|
// yet will do so and stay there.
|
|
Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver, store_mode);
|
|
store_mode = GetNonTransitioningStoreMode(store_mode);
|
|
return isolate()->stub_cache()->ComputeKeyedStoreElement(
|
|
monomorphic_map, strict_mode, store_mode);
|
|
}
|
|
|
|
MapHandleList target_receiver_maps;
|
|
target()->FindAllMaps(&target_receiver_maps);
|
|
if (target_receiver_maps.length() == 0) {
|
|
// In the case that there is a non-map-specific IC is installed (e.g. keyed
|
|
// stores into properties in dictionary mode), then there will be not
|
|
// receiver maps in the target.
|
|
return strict_mode == kStrictMode
|
|
? generic_stub_strict()
|
|
: generic_stub();
|
|
}
|
|
|
|
// There are several special cases where an IC that is MONOMORPHIC can still
|
|
// transition to a different GetNonTransitioningStoreMode IC that handles a
|
|
// superset of the original IC. Handle those here if the receiver map hasn't
|
|
// changed or it has transitioned to a more general kind.
|
|
KeyedAccessStoreMode old_store_mode =
|
|
Code::GetKeyedAccessStoreMode(target()->extra_ic_state());
|
|
Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
|
|
if (ic_state == MONOMORPHIC && old_store_mode == STANDARD_STORE) {
|
|
// If the "old" and "new" maps are in the same elements map family, stay
|
|
// MONOMORPHIC and use the map for the most generic ElementsKind.
|
|
Handle<Map> transitioned_receiver_map = receiver_map;
|
|
if (IsTransitionStoreMode(store_mode)) {
|
|
transitioned_receiver_map =
|
|
ComputeTransitionedMap(receiver, store_mode);
|
|
}
|
|
if (IsTransitionedMapOfMonomorphicTarget(*transitioned_receiver_map)) {
|
|
// Element family is the same, use the "worst" case map.
|
|
store_mode = GetNonTransitioningStoreMode(store_mode);
|
|
return isolate()->stub_cache()->ComputeKeyedStoreElement(
|
|
transitioned_receiver_map, strict_mode, store_mode);
|
|
} else if (*previous_receiver_map == receiver->map()) {
|
|
if (IsGrowStoreMode(store_mode) ||
|
|
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
|
|
store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
|
|
// A "normal" IC that handles stores can switch to a version that can
|
|
// grow at the end of the array, handle OOB accesses or copy COW arrays
|
|
// and still stay MONOMORPHIC.
|
|
return isolate()->stub_cache()->ComputeKeyedStoreElement(
|
|
receiver_map, strict_mode, store_mode);
|
|
}
|
|
}
|
|
}
|
|
|
|
ASSERT(ic_state != GENERIC);
|
|
|
|
bool map_added =
|
|
AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
|
|
|
|
if (IsTransitionStoreMode(store_mode)) {
|
|
Handle<Map> transitioned_receiver_map =
|
|
ComputeTransitionedMap(receiver, store_mode);
|
|
map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
|
|
transitioned_receiver_map);
|
|
}
|
|
|
|
if (!map_added) {
|
|
// If the miss wasn't due to an unseen map, a polymorphic stub
|
|
// won't help, use the generic stub.
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
|
|
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
|
|
}
|
|
|
|
// If the maximum number of receiver maps has been exceeded, use the generic
|
|
// version of the IC.
|
|
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
|
|
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
|
|
}
|
|
|
|
// Make sure all polymorphic handlers have the same store mode, otherwise the
|
|
// generic stub must be used.
|
|
store_mode = GetNonTransitioningStoreMode(store_mode);
|
|
if (old_store_mode != STANDARD_STORE) {
|
|
if (store_mode == STANDARD_STORE) {
|
|
store_mode = old_store_mode;
|
|
} else if (store_mode != old_store_mode) {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
|
|
return strict_mode == kStrictMode
|
|
? generic_stub_strict()
|
|
: generic_stub();
|
|
}
|
|
}
|
|
|
|
// If the store mode isn't the standard mode, make sure that all polymorphic
|
|
// receivers are either external arrays, or all "normal" arrays. Otherwise,
|
|
// use the generic stub.
|
|
if (store_mode != STANDARD_STORE) {
|
|
int external_arrays = 0;
|
|
for (int i = 0; i < target_receiver_maps.length(); ++i) {
|
|
if (target_receiver_maps[i]->has_external_array_elements()) {
|
|
external_arrays++;
|
|
}
|
|
}
|
|
if (external_arrays != 0 &&
|
|
external_arrays != target_receiver_maps.length()) {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedIC",
|
|
"unsupported combination of external and normal arrays");
|
|
return strict_mode == kStrictMode
|
|
? generic_stub_strict()
|
|
: generic_stub();
|
|
}
|
|
}
|
|
|
|
return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
|
|
&target_receiver_maps, store_mode, strict_mode);
|
|
}
|
|
|
|
|
|
Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
|
|
Handle<JSObject> receiver,
|
|
KeyedAccessStoreMode store_mode) {
|
|
switch (store_mode) {
|
|
case STORE_TRANSITION_SMI_TO_OBJECT:
|
|
case STORE_TRANSITION_DOUBLE_TO_OBJECT:
|
|
case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
|
|
case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
|
|
return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
|
|
case STORE_TRANSITION_SMI_TO_DOUBLE:
|
|
case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
|
|
return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
|
|
case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
|
|
case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
|
|
case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
|
|
case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
|
|
return JSObject::GetElementsTransitionMap(receiver,
|
|
FAST_HOLEY_ELEMENTS);
|
|
case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
|
|
case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
|
|
return JSObject::GetElementsTransitionMap(receiver,
|
|
FAST_HOLEY_DOUBLE_ELEMENTS);
|
|
case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
|
|
ASSERT(receiver->map()->has_external_array_elements());
|
|
// Fall through
|
|
case STORE_NO_TRANSITION_HANDLE_COW:
|
|
case STANDARD_STORE:
|
|
case STORE_AND_GROW_NO_TRANSITION:
|
|
return Handle<Map>(receiver->map(), isolate());
|
|
}
|
|
return Handle<Map>::null();
|
|
}
|
|
|
|
|
|
bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
|
|
int index) {
|
|
if (receiver->IsJSArray()) {
|
|
return JSArray::cast(*receiver)->length()->IsSmi() &&
|
|
index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
|
|
}
|
|
return index >= receiver->elements()->length();
|
|
}
|
|
|
|
|
|
KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
|
|
Handle<Object> key,
|
|
Handle<Object> value) {
|
|
ASSERT(!key->ToSmi()->IsFailure());
|
|
Smi* smi_key = NULL;
|
|
key->ToSmi()->To(&smi_key);
|
|
int index = smi_key->value();
|
|
bool oob_access = IsOutOfBoundsAccess(receiver, index);
|
|
bool allow_growth = receiver->IsJSArray() && oob_access;
|
|
if (allow_growth) {
|
|
// Handle growing array in stub if necessary.
|
|
if (receiver->HasFastSmiElements()) {
|
|
if (value->IsHeapNumber()) {
|
|
if (receiver->HasFastHoleyElements()) {
|
|
return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
|
|
} else {
|
|
return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
|
|
}
|
|
}
|
|
if (value->IsHeapObject()) {
|
|
if (receiver->HasFastHoleyElements()) {
|
|
return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
|
|
} else {
|
|
return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
|
|
}
|
|
}
|
|
} else if (receiver->HasFastDoubleElements()) {
|
|
if (!value->IsSmi() && !value->IsHeapNumber()) {
|
|
if (receiver->HasFastHoleyElements()) {
|
|
return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
|
|
} else {
|
|
return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
|
|
}
|
|
}
|
|
}
|
|
return STORE_AND_GROW_NO_TRANSITION;
|
|
} else {
|
|
// Handle only in-bounds elements accesses.
|
|
if (receiver->HasFastSmiElements()) {
|
|
if (value->IsHeapNumber()) {
|
|
if (receiver->HasFastHoleyElements()) {
|
|
return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
|
|
} else {
|
|
return STORE_TRANSITION_SMI_TO_DOUBLE;
|
|
}
|
|
} else if (value->IsHeapObject()) {
|
|
if (receiver->HasFastHoleyElements()) {
|
|
return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
|
|
} else {
|
|
return STORE_TRANSITION_SMI_TO_OBJECT;
|
|
}
|
|
}
|
|
} else if (receiver->HasFastDoubleElements()) {
|
|
if (!value->IsSmi() && !value->IsHeapNumber()) {
|
|
if (receiver->HasFastHoleyElements()) {
|
|
return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
|
|
} else {
|
|
return STORE_TRANSITION_DOUBLE_TO_OBJECT;
|
|
}
|
|
}
|
|
}
|
|
if (!FLAG_trace_external_array_abuse &&
|
|
receiver->map()->has_external_array_elements() && oob_access) {
|
|
return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
|
|
}
|
|
Heap* heap = receiver->GetHeap();
|
|
if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
|
|
return STORE_NO_TRANSITION_HANDLE_COW;
|
|
} else {
|
|
return STANDARD_STORE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* KeyedStoreIC::Store(State state,
|
|
StrictModeFlag strict_mode,
|
|
Handle<Object> object,
|
|
Handle<Object> key,
|
|
Handle<Object> value,
|
|
ICMissMode miss_mode) {
|
|
// Check for values that can be converted into an internalized string directly
|
|
// or is representable as a smi.
|
|
key = TryConvertKey(key, isolate());
|
|
|
|
if (key->IsInternalizedString()) {
|
|
return StoreIC::Store(state,
|
|
strict_mode,
|
|
object,
|
|
Handle<String>::cast(key),
|
|
value,
|
|
JSReceiver::MAY_BE_STORE_FROM_KEYED);
|
|
}
|
|
|
|
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded() &&
|
|
!(FLAG_harmony_observation && object->IsJSObject() &&
|
|
JSObject::cast(*object)->map()->is_observed());
|
|
if (use_ic && !object->IsSmi()) {
|
|
// Don't use ICs for maps of the objects in Array's prototype chain. We
|
|
// expect to be able to trap element sets to objects with those maps in the
|
|
// runtime to enable optimization of element hole access.
|
|
Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
|
|
if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
|
|
}
|
|
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
|
|
|
|
if (use_ic) {
|
|
Handle<Code> stub = (strict_mode == kStrictMode)
|
|
? generic_stub_strict()
|
|
: generic_stub();
|
|
if (miss_mode != MISS_FORCE_GENERIC) {
|
|
if (object->IsJSObject()) {
|
|
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
|
|
if (receiver->map()->is_deprecated()) {
|
|
JSObject::MigrateInstance(receiver);
|
|
}
|
|
bool key_is_smi_like = key->IsSmi() ||
|
|
(FLAG_compiled_keyed_stores && !key->ToSmi()->IsFailure());
|
|
if (receiver->elements()->map() ==
|
|
isolate()->heap()->non_strict_arguments_elements_map()) {
|
|
stub = non_strict_arguments_stub();
|
|
} else if (key_is_smi_like &&
|
|
(target() != *non_strict_arguments_stub())) {
|
|
KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value);
|
|
stub = StoreElementStub(receiver, store_mode, strict_mode);
|
|
} else {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "key not a number");
|
|
}
|
|
} else {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "not an object");
|
|
}
|
|
} else {
|
|
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "force generic");
|
|
}
|
|
ASSERT(!stub.is_null());
|
|
set_target(*stub);
|
|
TRACE_IC("KeyedStoreIC", key, state, target());
|
|
}
|
|
|
|
return Runtime::SetObjectPropertyOrFail(
|
|
isolate(), object , key, value, NONE, strict_mode);
|
|
}
|
|
|
|
|
|
Handle<Code> KeyedStoreIC::ComputeStoreMonomorphic(LookupResult* lookup,
|
|
StrictModeFlag strict_mode,
|
|
Handle<JSObject> receiver,
|
|
Handle<String> name) {
|
|
// If the property has a non-field type allowing map transitions
|
|
// where there is extra room in the object, we leave the IC in its
|
|
// current state.
|
|
switch (lookup->type()) {
|
|
case FIELD:
|
|
return isolate()->stub_cache()->ComputeKeyedStoreField(
|
|
name, receiver, lookup, strict_mode);
|
|
case TRANSITION: {
|
|
// Explicitly pass in the receiver map since LookupForWrite may have
|
|
// stored something else than the receiver in the holder.
|
|
Handle<Map> transition(
|
|
lookup->GetTransitionTarget(receiver->map()), isolate());
|
|
int descriptor = transition->LastAdded();
|
|
|
|
DescriptorArray* target_descriptors = transition->instance_descriptors();
|
|
PropertyDetails details = target_descriptors->GetDetails(descriptor);
|
|
|
|
if (details.type() != CALLBACKS && details.attributes() == NONE) {
|
|
return isolate()->stub_cache()->ComputeKeyedStoreTransition(
|
|
name, receiver, lookup, transition, strict_mode);
|
|
}
|
|
// fall through.
|
|
}
|
|
case NORMAL:
|
|
case CONSTANT_FUNCTION:
|
|
case CALLBACKS:
|
|
case INTERCEPTOR:
|
|
// Always rewrite to the generic case so that we do not
|
|
// repeatedly try to rewrite.
|
|
return (strict_mode == kStrictMode)
|
|
? generic_stub_strict()
|
|
: generic_stub();
|
|
case HANDLER:
|
|
case NONEXISTENT:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return Handle<Code>::null();
|
|
}
|
|
|
|
|
|
#undef TRACE_IC
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Static IC stub generators.
|
|
//
|
|
|
|
// Used from ic-<arch>.cc.
|
|
RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 2);
|
|
CallIC ic(isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
|
|
MaybeObject* maybe_result = ic.LoadFunction(state,
|
|
extra_ic_state,
|
|
args.at<Object>(0),
|
|
args.at<String>(1));
|
|
JSFunction* raw_function;
|
|
if (!maybe_result->To(&raw_function)) return maybe_result;
|
|
|
|
// The first time the inline cache is updated may be the first time the
|
|
// function it references gets called. If the function is lazily compiled
|
|
// then the first call will trigger a compilation. We check for this case
|
|
// and we do the compilation immediately, instead of waiting for the stub
|
|
// currently attached to the JSFunction object to trigger compilation.
|
|
if (raw_function->is_compiled()) return raw_function;
|
|
|
|
Handle<JSFunction> function(raw_function);
|
|
JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
|
|
return *function;
|
|
}
|
|
|
|
|
|
// Used from ic-<arch>.cc.
|
|
RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 2);
|
|
KeyedCallIC ic(isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
MaybeObject* maybe_result =
|
|
ic.LoadFunction(state, args.at<Object>(0), args.at<Object>(1));
|
|
// Result could be a function or a failure.
|
|
JSFunction* raw_function = NULL;
|
|
if (!maybe_result->To(&raw_function)) return maybe_result;
|
|
|
|
if (raw_function->is_compiled()) return raw_function;
|
|
|
|
Handle<JSFunction> function(raw_function, isolate);
|
|
JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
|
|
return *function;
|
|
}
|
|
|
|
|
|
// Used from ic-<arch>.cc.
|
|
RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 2);
|
|
LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
return ic.Load(state, args.at<Object>(0), args.at<String>(1));
|
|
}
|
|
|
|
|
|
// Used from ic-<arch>.cc
|
|
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 2);
|
|
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
return ic.Load(state, args.at<Object>(0), args.at<Object>(1), MISS);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 2);
|
|
KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
return ic.Load(state, args.at<Object>(0), args.at<Object>(1), MISS);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissForceGeneric) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 2);
|
|
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
return ic.Load(state,
|
|
args.at<Object>(0),
|
|
args.at<Object>(1),
|
|
MISS_FORCE_GENERIC);
|
|
}
|
|
|
|
|
|
// Used from ic-<arch>.cc.
|
|
RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 3);
|
|
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
|
|
return ic.Store(state,
|
|
Code::GetStrictMode(extra_ic_state),
|
|
args.at<Object>(0),
|
|
args.at<String>(1),
|
|
args.at<Object>(2));
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
|
|
SealHandleScope shs(isolate);
|
|
|
|
ASSERT(args.length() == 2);
|
|
JSArray* receiver = JSArray::cast(args[0]);
|
|
Object* len = args[1];
|
|
|
|
// The generated code should filter out non-Smis before we get here.
|
|
ASSERT(len->IsSmi());
|
|
|
|
#ifdef DEBUG
|
|
// The length property has to be a writable callback property.
|
|
LookupResult debug_lookup(isolate);
|
|
receiver->LocalLookup(isolate->heap()->length_string(), &debug_lookup);
|
|
ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
|
|
#endif
|
|
|
|
Object* result;
|
|
MaybeObject* maybe_result = receiver->SetElementsLength(len);
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
// Extend storage is called in a store inline cache when
|
|
// it is necessary to extend the properties array of a
|
|
// JSObject.
|
|
RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
|
|
SealHandleScope shs(isolate);
|
|
ASSERT(args.length() == 3);
|
|
|
|
// Convert the parameters
|
|
JSObject* object = JSObject::cast(args[0]);
|
|
Map* transition = Map::cast(args[1]);
|
|
Object* value = args[2];
|
|
|
|
// Check the object has run out out property space.
|
|
ASSERT(object->HasFastProperties());
|
|
ASSERT(object->map()->unused_property_fields() == 0);
|
|
|
|
// Expand the properties array.
|
|
FixedArray* old_storage = object->properties();
|
|
int new_unused = transition->unused_property_fields();
|
|
int new_size = old_storage->length() + new_unused + 1;
|
|
Object* result;
|
|
MaybeObject* maybe_result = old_storage->CopySize(new_size);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
FixedArray* new_storage = FixedArray::cast(result);
|
|
|
|
Object* to_store = value;
|
|
|
|
if (FLAG_track_double_fields) {
|
|
DescriptorArray* descriptors = transition->instance_descriptors();
|
|
PropertyDetails details = descriptors->GetDetails(transition->LastAdded());
|
|
if (details.representation().IsDouble()) {
|
|
MaybeObject* maybe_storage =
|
|
isolate->heap()->AllocateHeapNumber(value->Number());
|
|
if (!maybe_storage->To(&to_store)) return maybe_storage;
|
|
}
|
|
}
|
|
|
|
new_storage->set(old_storage->length(), to_store);
|
|
|
|
// Set the new property value and do the map transition.
|
|
object->set_properties(new_storage);
|
|
object->set_map(transition);
|
|
|
|
// Return the stored value.
|
|
return value;
|
|
}
|
|
|
|
|
|
// Used from ic-<arch>.cc.
|
|
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 3);
|
|
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
|
|
return ic.Store(state,
|
|
Code::GetStrictMode(extra_ic_state),
|
|
args.at<Object>(0),
|
|
args.at<Object>(1),
|
|
args.at<Object>(2),
|
|
MISS);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 3);
|
|
KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
|
|
return ic.Store(state,
|
|
Code::GetStrictMode(extra_ic_state),
|
|
args.at<Object>(0),
|
|
args.at<Object>(1),
|
|
args.at<Object>(2),
|
|
MISS);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, StoreIC_Slow) {
|
|
SealHandleScope shs(isolate);
|
|
ASSERT(args.length() == 3);
|
|
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
|
|
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
|
|
Handle<Object> object = args.at<Object>(0);
|
|
Handle<Object> key = args.at<Object>(1);
|
|
Handle<Object> value = args.at<Object>(2);
|
|
StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
|
|
return Runtime::SetObjectProperty(isolate,
|
|
object,
|
|
key,
|
|
value,
|
|
NONE,
|
|
strict_mode);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
|
|
SealHandleScope shs(isolate);
|
|
ASSERT(args.length() == 3);
|
|
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
|
|
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
|
|
Handle<Object> object = args.at<Object>(0);
|
|
Handle<Object> key = args.at<Object>(1);
|
|
Handle<Object> value = args.at<Object>(2);
|
|
StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
|
|
return Runtime::SetObjectProperty(isolate,
|
|
object,
|
|
key,
|
|
value,
|
|
NONE,
|
|
strict_mode);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissForceGeneric) {
|
|
HandleScope scope(isolate);
|
|
ASSERT(args.length() == 3);
|
|
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
|
|
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
|
|
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
|
|
return ic.Store(state,
|
|
Code::GetStrictMode(extra_ic_state),
|
|
args.at<Object>(0),
|
|
args.at<Object>(1),
|
|
args.at<Object>(2),
|
|
MISS_FORCE_GENERIC);
|
|
}
|
|
|
|
|
|
void UnaryOpIC::patch(Code* code) {
|
|
set_target(code);
|
|
}
|
|
|
|
|
|
const char* UnaryOpIC::GetName(TypeInfo type_info) {
|
|
switch (type_info) {
|
|
case UNINITIALIZED: return "Uninitialized";
|
|
case SMI: return "Smi";
|
|
case NUMBER: return "Number";
|
|
case GENERIC: return "Generic";
|
|
default: return "Invalid";
|
|
}
|
|
}
|
|
|
|
|
|
UnaryOpIC::State UnaryOpIC::ToState(TypeInfo type_info) {
|
|
switch (type_info) {
|
|
case UNINITIALIZED:
|
|
return v8::internal::UNINITIALIZED;
|
|
case SMI:
|
|
case NUMBER:
|
|
return MONOMORPHIC;
|
|
case GENERIC:
|
|
return v8::internal::GENERIC;
|
|
}
|
|
UNREACHABLE();
|
|
return v8::internal::UNINITIALIZED;
|
|
}
|
|
|
|
|
|
Handle<Type> UnaryOpIC::TypeInfoToType(TypeInfo type_info, Isolate* isolate) {
|
|
switch (type_info) {
|
|
case UNINITIALIZED:
|
|
return handle(Type::None(), isolate);
|
|
case SMI:
|
|
return handle(Type::Integer31(), isolate);
|
|
case NUMBER:
|
|
return handle(Type::Number(), isolate);
|
|
case GENERIC:
|
|
return handle(Type::Any(), isolate);
|
|
}
|
|
UNREACHABLE();
|
|
return handle(Type::Any(), isolate);
|
|
}
|
|
|
|
|
|
UnaryOpIC::TypeInfo UnaryOpIC::GetTypeInfo(Handle<Object> operand) {
|
|
v8::internal::TypeInfo operand_type =
|
|
v8::internal::TypeInfo::FromValue(operand);
|
|
if (operand_type.IsSmi()) {
|
|
return SMI;
|
|
} else if (operand_type.IsNumber()) {
|
|
return NUMBER;
|
|
} else {
|
|
return GENERIC;
|
|
}
|
|
}
|
|
|
|
|
|
UnaryOpIC::TypeInfo UnaryOpIC::ComputeNewType(
|
|
TypeInfo current_type,
|
|
TypeInfo previous_type) {
|
|
switch (previous_type) {
|
|
case UNINITIALIZED:
|
|
return current_type;
|
|
case SMI:
|
|
return (current_type == GENERIC) ? GENERIC : NUMBER;
|
|
case NUMBER:
|
|
return GENERIC;
|
|
case GENERIC:
|
|
// We should never do patching if we are in GENERIC state.
|
|
UNREACHABLE();
|
|
return GENERIC;
|
|
}
|
|
UNREACHABLE();
|
|
return GENERIC;
|
|
}
|
|
|
|
|
|
void BinaryOpIC::patch(Code* code) {
|
|
set_target(code);
|
|
}
|
|
|
|
|
|
const char* BinaryOpIC::GetName(TypeInfo type_info) {
|
|
switch (type_info) {
|
|
case UNINITIALIZED: return "Uninitialized";
|
|
case SMI: return "Smi";
|
|
case INT32: return "Int32";
|
|
case NUMBER: return "Number";
|
|
case ODDBALL: return "Oddball";
|
|
case STRING: return "String";
|
|
case GENERIC: return "Generic";
|
|
default: return "Invalid";
|
|
}
|
|
}
|
|
|
|
|
|
BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) {
|
|
switch (type_info) {
|
|
case UNINITIALIZED:
|
|
return ::v8::internal::UNINITIALIZED;
|
|
case SMI:
|
|
case INT32:
|
|
case NUMBER:
|
|
case ODDBALL:
|
|
case STRING:
|
|
return MONOMORPHIC;
|
|
case GENERIC:
|
|
return ::v8::internal::GENERIC;
|
|
}
|
|
UNREACHABLE();
|
|
return ::v8::internal::UNINITIALIZED;
|
|
}
|
|
|
|
|
|
Handle<Type> BinaryOpIC::TypeInfoToType(BinaryOpIC::TypeInfo binary_type,
|
|
Isolate* isolate) {
|
|
switch (binary_type) {
|
|
case UNINITIALIZED:
|
|
return handle(Type::None(), isolate);
|
|
case SMI:
|
|
return handle(Type::Integer31(), isolate);
|
|
case INT32:
|
|
return handle(Type::Integer32(), isolate);
|
|
case NUMBER:
|
|
return handle(Type::Number(), isolate);
|
|
case ODDBALL:
|
|
return handle(Type::Optional(
|
|
handle(Type::Union(
|
|
handle(Type::Number(), isolate),
|
|
handle(Type::String(), isolate)), isolate)), isolate);
|
|
case STRING:
|
|
return handle(Type::String(), isolate);
|
|
case GENERIC:
|
|
return handle(Type::Any(), isolate);
|
|
}
|
|
UNREACHABLE();
|
|
return handle(Type::Any(), isolate);
|
|
}
|
|
|
|
|
|
void BinaryOpIC::StubInfoToType(int minor_key,
|
|
Handle<Type>* left,
|
|
Handle<Type>* right,
|
|
Handle<Type>* result,
|
|
Isolate* isolate) {
|
|
TypeInfo left_typeinfo, right_typeinfo, result_typeinfo;
|
|
BinaryOpStub::decode_types_from_minor_key(
|
|
minor_key, &left_typeinfo, &right_typeinfo, &result_typeinfo);
|
|
*left = TypeInfoToType(left_typeinfo, isolate);
|
|
*right = TypeInfoToType(right_typeinfo, isolate);
|
|
*result = TypeInfoToType(result_typeinfo, isolate);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, UnaryOp_Patch) {
|
|
ASSERT(args.length() == 4);
|
|
|
|
HandleScope scope(isolate);
|
|
Handle<Object> operand = args.at<Object>(0);
|
|
Token::Value op = static_cast<Token::Value>(args.smi_at(1));
|
|
UnaryOverwriteMode mode = static_cast<UnaryOverwriteMode>(args.smi_at(2));
|
|
UnaryOpIC::TypeInfo previous_type =
|
|
static_cast<UnaryOpIC::TypeInfo>(args.smi_at(3));
|
|
|
|
UnaryOpIC::TypeInfo type = UnaryOpIC::GetTypeInfo(operand);
|
|
type = UnaryOpIC::ComputeNewType(type, previous_type);
|
|
|
|
UnaryOpStub stub(op, mode, type);
|
|
Handle<Code> code = stub.GetCode(isolate);
|
|
if (!code.is_null()) {
|
|
if (FLAG_trace_ic) {
|
|
PrintF("[UnaryOpIC in ");
|
|
JavaScriptFrame::PrintTop(isolate, stdout, false, true);
|
|
PrintF(" %s => %s #%s @ %p]\n",
|
|
UnaryOpIC::GetName(previous_type),
|
|
UnaryOpIC::GetName(type),
|
|
Token::Name(op),
|
|
static_cast<void*>(*code));
|
|
}
|
|
UnaryOpIC ic(isolate);
|
|
ic.patch(*code);
|
|
}
|
|
|
|
Handle<JSBuiltinsObject> builtins(isolate->js_builtins_object());
|
|
Object* builtin = NULL; // Initialization calms down the compiler.
|
|
switch (op) {
|
|
case Token::SUB:
|
|
builtin = builtins->javascript_builtin(Builtins::UNARY_MINUS);
|
|
break;
|
|
case Token::BIT_NOT:
|
|
builtin = builtins->javascript_builtin(Builtins::BIT_NOT);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
|
|
|
|
bool caught_exception;
|
|
Handle<Object> result = Execution::Call(builtin_function, operand, 0, NULL,
|
|
&caught_exception);
|
|
if (caught_exception) {
|
|
return Failure::Exception();
|
|
}
|
|
return *result;
|
|
}
|
|
|
|
|
|
static BinaryOpIC::TypeInfo TypeInfoFromValue(Handle<Object> value,
|
|
Token::Value op) {
|
|
v8::internal::TypeInfo type = v8::internal::TypeInfo::FromValue(value);
|
|
if (type.IsSmi()) return BinaryOpIC::SMI;
|
|
if (type.IsInteger32()) {
|
|
if (kSmiValueSize == 32) return BinaryOpIC::SMI;
|
|
return BinaryOpIC::INT32;
|
|
}
|
|
if (type.IsNumber()) return BinaryOpIC::NUMBER;
|
|
if (type.IsString()) return BinaryOpIC::STRING;
|
|
if (value->IsUndefined()) {
|
|
if (op == Token::BIT_AND ||
|
|
op == Token::BIT_OR ||
|
|
op == Token::BIT_XOR ||
|
|
op == Token::SAR ||
|
|
op == Token::SHL ||
|
|
op == Token::SHR) {
|
|
if (kSmiValueSize == 32) return BinaryOpIC::SMI;
|
|
return BinaryOpIC::INT32;
|
|
}
|
|
return BinaryOpIC::ODDBALL;
|
|
}
|
|
return BinaryOpIC::GENERIC;
|
|
}
|
|
|
|
|
|
static BinaryOpIC::TypeInfo InputState(BinaryOpIC::TypeInfo old_type,
|
|
Handle<Object> value,
|
|
Token::Value op) {
|
|
BinaryOpIC::TypeInfo new_type = TypeInfoFromValue(value, op);
|
|
if (old_type == BinaryOpIC::STRING) {
|
|
if (new_type == BinaryOpIC::STRING) return new_type;
|
|
return BinaryOpIC::GENERIC;
|
|
}
|
|
return Max(old_type, new_type);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
static void TraceBinaryOp(BinaryOpIC::TypeInfo left,
|
|
BinaryOpIC::TypeInfo right,
|
|
Maybe<int32_t> fixed_right_arg,
|
|
BinaryOpIC::TypeInfo result) {
|
|
PrintF("%s*%s", BinaryOpIC::GetName(left), BinaryOpIC::GetName(right));
|
|
if (fixed_right_arg.has_value) PrintF("{%d}", fixed_right_arg.value);
|
|
PrintF("->%s", BinaryOpIC::GetName(result));
|
|
}
|
|
#endif
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, BinaryOp_Patch) {
|
|
ASSERT(args.length() == 3);
|
|
|
|
HandleScope scope(isolate);
|
|
Handle<Object> left = args.at<Object>(0);
|
|
Handle<Object> right = args.at<Object>(1);
|
|
int key = args.smi_at(2);
|
|
Token::Value op = BinaryOpStub::decode_op_from_minor_key(key);
|
|
|
|
BinaryOpIC::TypeInfo previous_left, previous_right, previous_result;
|
|
BinaryOpStub::decode_types_from_minor_key(
|
|
key, &previous_left, &previous_right, &previous_result);
|
|
|
|
BinaryOpIC::TypeInfo new_left = InputState(previous_left, left, op);
|
|
BinaryOpIC::TypeInfo new_right = InputState(previous_right, right, op);
|
|
BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED;
|
|
|
|
// STRING is only used for ADD operations.
|
|
if ((new_left == BinaryOpIC::STRING || new_right == BinaryOpIC::STRING) &&
|
|
op != Token::ADD) {
|
|
new_left = new_right = BinaryOpIC::GENERIC;
|
|
}
|
|
|
|
BinaryOpIC::TypeInfo new_overall = Max(new_left, new_right);
|
|
BinaryOpIC::TypeInfo previous_overall = Max(previous_left, previous_right);
|
|
|
|
Maybe<int> previous_fixed_right_arg =
|
|
BinaryOpStub::decode_fixed_right_arg_from_minor_key(key);
|
|
|
|
int32_t value;
|
|
bool new_has_fixed_right_arg =
|
|
op == Token::MOD &&
|
|
right->ToInt32(&value) &&
|
|
BinaryOpStub::can_encode_arg_value(value) &&
|
|
(previous_overall == BinaryOpIC::UNINITIALIZED ||
|
|
(previous_fixed_right_arg.has_value &&
|
|
previous_fixed_right_arg.value == value));
|
|
Maybe<int32_t> new_fixed_right_arg(
|
|
new_has_fixed_right_arg, new_has_fixed_right_arg ? value : 1);
|
|
|
|
if (previous_fixed_right_arg.has_value == new_fixed_right_arg.has_value) {
|
|
if (new_overall == BinaryOpIC::SMI && previous_overall == BinaryOpIC::SMI) {
|
|
if (op == Token::DIV ||
|
|
op == Token::MUL ||
|
|
op == Token::SHR ||
|
|
kSmiValueSize == 32) {
|
|
// Arithmetic on two Smi inputs has yielded a heap number.
|
|
// That is the only way to get here from the Smi stub.
|
|
// With 32-bit Smis, all overflows give heap numbers, but with
|
|
// 31-bit Smis, most operations overflow to int32 results.
|
|
result_type = BinaryOpIC::NUMBER;
|
|
} else {
|
|
// Other operations on SMIs that overflow yield int32s.
|
|
result_type = BinaryOpIC::INT32;
|
|
}
|
|
}
|
|
if (new_overall == BinaryOpIC::INT32 &&
|
|
previous_overall == BinaryOpIC::INT32) {
|
|
if (new_left == previous_left && new_right == previous_right) {
|
|
result_type = BinaryOpIC::NUMBER;
|
|
}
|
|
}
|
|
}
|
|
|
|
BinaryOpStub stub(key, new_left, new_right, result_type, new_fixed_right_arg);
|
|
Handle<Code> code = stub.GetCode(isolate);
|
|
if (!code.is_null()) {
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_ic) {
|
|
PrintF("[BinaryOpIC in ");
|
|
JavaScriptFrame::PrintTop(isolate, stdout, false, true);
|
|
PrintF(" ");
|
|
TraceBinaryOp(previous_left, previous_right, previous_fixed_right_arg,
|
|
previous_result);
|
|
PrintF(" => ");
|
|
TraceBinaryOp(new_left, new_right, new_fixed_right_arg, result_type);
|
|
PrintF(" #%s @ %p]\n", Token::Name(op), static_cast<void*>(*code));
|
|
}
|
|
#endif
|
|
BinaryOpIC ic(isolate);
|
|
ic.patch(*code);
|
|
|
|
// Activate inlined smi code.
|
|
if (previous_overall == BinaryOpIC::UNINITIALIZED) {
|
|
PatchInlinedSmiCode(ic.address(), ENABLE_INLINED_SMI_CHECK);
|
|
}
|
|
}
|
|
|
|
Handle<JSBuiltinsObject> builtins(isolate->js_builtins_object());
|
|
Object* builtin = NULL; // Initialization calms down the compiler.
|
|
switch (op) {
|
|
case Token::ADD:
|
|
builtin = builtins->javascript_builtin(Builtins::ADD);
|
|
break;
|
|
case Token::SUB:
|
|
builtin = builtins->javascript_builtin(Builtins::SUB);
|
|
break;
|
|
case Token::MUL:
|
|
builtin = builtins->javascript_builtin(Builtins::MUL);
|
|
break;
|
|
case Token::DIV:
|
|
builtin = builtins->javascript_builtin(Builtins::DIV);
|
|
break;
|
|
case Token::MOD:
|
|
builtin = builtins->javascript_builtin(Builtins::MOD);
|
|
break;
|
|
case Token::BIT_AND:
|
|
builtin = builtins->javascript_builtin(Builtins::BIT_AND);
|
|
break;
|
|
case Token::BIT_OR:
|
|
builtin = builtins->javascript_builtin(Builtins::BIT_OR);
|
|
break;
|
|
case Token::BIT_XOR:
|
|
builtin = builtins->javascript_builtin(Builtins::BIT_XOR);
|
|
break;
|
|
case Token::SHR:
|
|
builtin = builtins->javascript_builtin(Builtins::SHR);
|
|
break;
|
|
case Token::SAR:
|
|
builtin = builtins->javascript_builtin(Builtins::SAR);
|
|
break;
|
|
case Token::SHL:
|
|
builtin = builtins->javascript_builtin(Builtins::SHL);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
|
|
|
|
bool caught_exception;
|
|
Handle<Object> builtin_args[] = { right };
|
|
Handle<Object> result = Execution::Call(builtin_function,
|
|
left,
|
|
ARRAY_SIZE(builtin_args),
|
|
builtin_args,
|
|
&caught_exception);
|
|
if (caught_exception) {
|
|
return Failure::Exception();
|
|
}
|
|
return *result;
|
|
}
|
|
|
|
|
|
Code* CompareIC::GetRawUninitialized(Token::Value op) {
|
|
ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
|
|
Code* code = NULL;
|
|
CHECK(stub.FindCodeInCache(&code, Isolate::Current()));
|
|
return code;
|
|
}
|
|
|
|
|
|
Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
|
|
ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
|
|
return stub.GetCode(isolate);
|
|
}
|
|
|
|
|
|
const char* CompareIC::GetStateName(State state) {
|
|
switch (state) {
|
|
case UNINITIALIZED: return "UNINITIALIZED";
|
|
case SMI: return "SMI";
|
|
case NUMBER: return "NUMBER";
|
|
case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
|
|
case STRING: return "STRING";
|
|
case UNIQUE_NAME: return "UNIQUE_NAME";
|
|
case OBJECT: return "OBJECT";
|
|
case KNOWN_OBJECT: return "KNOWN_OBJECT";
|
|
case GENERIC: return "GENERIC";
|
|
}
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
Handle<Type> CompareIC::StateToType(
|
|
Isolate* isolate,
|
|
CompareIC::State state,
|
|
Handle<Map> map) {
|
|
switch (state) {
|
|
case CompareIC::UNINITIALIZED:
|
|
return handle(Type::None(), isolate);
|
|
case CompareIC::SMI:
|
|
return handle(Type::Integer31(), isolate);
|
|
case CompareIC::NUMBER:
|
|
return handle(Type::Number(), isolate);
|
|
case CompareIC::STRING:
|
|
return handle(Type::String(), isolate);
|
|
case CompareIC::INTERNALIZED_STRING:
|
|
return handle(Type::InternalizedString(), isolate);
|
|
case CompareIC::UNIQUE_NAME:
|
|
return handle(Type::UniqueName(), isolate);
|
|
case CompareIC::OBJECT:
|
|
return handle(Type::Receiver(), isolate);
|
|
case CompareIC::KNOWN_OBJECT:
|
|
return handle(
|
|
map.is_null() ? Type::Receiver() : Type::Class(map), isolate);
|
|
case CompareIC::GENERIC:
|
|
return handle(Type::Any(), isolate);
|
|
}
|
|
UNREACHABLE();
|
|
return Handle<Type>();
|
|
}
|
|
|
|
|
|
void CompareIC::StubInfoToType(int stub_minor_key,
|
|
Handle<Type>* left_type,
|
|
Handle<Type>* right_type,
|
|
Handle<Type>* overall_type,
|
|
Handle<Map> map,
|
|
Isolate* isolate) {
|
|
State left_state, right_state, handler_state;
|
|
ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state,
|
|
&handler_state, NULL);
|
|
*left_type = StateToType(isolate, left_state);
|
|
*right_type = StateToType(isolate, right_state);
|
|
*overall_type = StateToType(isolate, handler_state, map);
|
|
}
|
|
|
|
|
|
CompareIC::State CompareIC::NewInputState(State old_state,
|
|
Handle<Object> value) {
|
|
switch (old_state) {
|
|
case UNINITIALIZED:
|
|
if (value->IsSmi()) return SMI;
|
|
if (value->IsHeapNumber()) return NUMBER;
|
|
if (value->IsInternalizedString()) return INTERNALIZED_STRING;
|
|
if (value->IsString()) return STRING;
|
|
if (value->IsSymbol()) return UNIQUE_NAME;
|
|
if (value->IsJSObject()) return OBJECT;
|
|
break;
|
|
case SMI:
|
|
if (value->IsSmi()) return SMI;
|
|
if (value->IsHeapNumber()) return NUMBER;
|
|
break;
|
|
case NUMBER:
|
|
if (value->IsNumber()) return NUMBER;
|
|
break;
|
|
case INTERNALIZED_STRING:
|
|
if (value->IsInternalizedString()) return INTERNALIZED_STRING;
|
|
if (value->IsString()) return STRING;
|
|
if (value->IsSymbol()) return UNIQUE_NAME;
|
|
break;
|
|
case STRING:
|
|
if (value->IsString()) return STRING;
|
|
break;
|
|
case UNIQUE_NAME:
|
|
if (value->IsUniqueName()) return UNIQUE_NAME;
|
|
break;
|
|
case OBJECT:
|
|
if (value->IsJSObject()) return OBJECT;
|
|
break;
|
|
case GENERIC:
|
|
break;
|
|
case KNOWN_OBJECT:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return GENERIC;
|
|
}
|
|
|
|
|
|
CompareIC::State CompareIC::TargetState(State old_state,
|
|
State old_left,
|
|
State old_right,
|
|
bool has_inlined_smi_code,
|
|
Handle<Object> x,
|
|
Handle<Object> y) {
|
|
switch (old_state) {
|
|
case UNINITIALIZED:
|
|
if (x->IsSmi() && y->IsSmi()) return SMI;
|
|
if (x->IsNumber() && y->IsNumber()) return NUMBER;
|
|
if (Token::IsOrderedRelationalCompareOp(op_)) {
|
|
// Ordered comparisons treat undefined as NaN, so the
|
|
// NUMBER stub will do the right thing.
|
|
if ((x->IsNumber() && y->IsUndefined()) ||
|
|
(y->IsNumber() && x->IsUndefined())) {
|
|
return NUMBER;
|
|
}
|
|
}
|
|
if (x->IsInternalizedString() && y->IsInternalizedString()) {
|
|
// We compare internalized strings as plain ones if we need to determine
|
|
// the order in a non-equality compare.
|
|
return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
|
|
}
|
|
if (x->IsString() && y->IsString()) return STRING;
|
|
if (!Token::IsEqualityOp(op_)) return GENERIC;
|
|
if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
|
|
if (x->IsJSObject() && y->IsJSObject()) {
|
|
if (Handle<JSObject>::cast(x)->map() ==
|
|
Handle<JSObject>::cast(y)->map()) {
|
|
return KNOWN_OBJECT;
|
|
} else {
|
|
return OBJECT;
|
|
}
|
|
}
|
|
return GENERIC;
|
|
case SMI:
|
|
return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
|
|
case INTERNALIZED_STRING:
|
|
ASSERT(Token::IsEqualityOp(op_));
|
|
if (x->IsString() && y->IsString()) return STRING;
|
|
if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
|
|
return GENERIC;
|
|
case NUMBER:
|
|
// If the failure was due to one side changing from smi to heap number,
|
|
// then keep the state (if other changed at the same time, we will get
|
|
// a second miss and then go to generic).
|
|
if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
|
|
if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
|
|
return GENERIC;
|
|
case KNOWN_OBJECT:
|
|
ASSERT(Token::IsEqualityOp(op_));
|
|
if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
|
|
return GENERIC;
|
|
case STRING:
|
|
case UNIQUE_NAME:
|
|
case OBJECT:
|
|
case GENERIC:
|
|
return GENERIC;
|
|
}
|
|
UNREACHABLE();
|
|
return GENERIC; // Make the compiler happy.
|
|
}
|
|
|
|
|
|
void CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
|
|
HandleScope scope(isolate());
|
|
State previous_left, previous_right, previous_state;
|
|
ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
|
|
&previous_right, &previous_state, NULL);
|
|
State new_left = NewInputState(previous_left, x);
|
|
State new_right = NewInputState(previous_right, y);
|
|
State state = TargetState(previous_state, previous_left, previous_right,
|
|
HasInlinedSmiCode(address()), x, y);
|
|
ICCompareStub stub(op_, new_left, new_right, state);
|
|
if (state == KNOWN_OBJECT) {
|
|
stub.set_known_map(
|
|
Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
|
|
}
|
|
set_target(*stub.GetCode(isolate()));
|
|
|
|
#ifdef DEBUG
|
|
if (FLAG_trace_ic) {
|
|
PrintF("[CompareIC in ");
|
|
JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
|
|
PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
|
|
GetStateName(previous_left),
|
|
GetStateName(previous_right),
|
|
GetStateName(previous_state),
|
|
GetStateName(new_left),
|
|
GetStateName(new_right),
|
|
GetStateName(state),
|
|
Token::Name(op_),
|
|
static_cast<void*>(*stub.GetCode(isolate())));
|
|
}
|
|
#endif
|
|
|
|
// Activate inlined smi code.
|
|
if (previous_state == UNINITIALIZED) {
|
|
PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
|
|
}
|
|
}
|
|
|
|
|
|
// Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
|
|
RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
|
|
SealHandleScope shs(isolate);
|
|
ASSERT(args.length() == 3);
|
|
CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
|
|
ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
|
|
return ic.target();
|
|
}
|
|
|
|
|
|
void CompareNilIC::Clear(Address address, Code* target) {
|
|
if (target->ic_state() == UNINITIALIZED) return;
|
|
Code::ExtraICState state = target->extended_extra_ic_state();
|
|
|
|
CompareNilICStub stub(state, HydrogenCodeStub::UNINITIALIZED);
|
|
stub.ClearState();
|
|
|
|
Code* code = NULL;
|
|
CHECK(stub.FindCodeInCache(&code, target->GetIsolate()));
|
|
|
|
SetTargetAtAddress(address, code);
|
|
}
|
|
|
|
|
|
MaybeObject* CompareNilIC::DoCompareNilSlow(NilValue nil,
|
|
Handle<Object> object) {
|
|
if (object->IsNull() || object->IsUndefined()) {
|
|
return Smi::FromInt(true);
|
|
}
|
|
return Smi::FromInt(object->IsUndetectableObject());
|
|
}
|
|
|
|
|
|
MaybeObject* CompareNilIC::CompareNil(Handle<Object> object) {
|
|
Code::ExtraICState extra_ic_state = target()->extended_extra_ic_state();
|
|
|
|
CompareNilICStub stub(extra_ic_state);
|
|
|
|
// Extract the current supported types from the patched IC and calculate what
|
|
// types must be supported as a result of the miss.
|
|
bool already_monomorphic = stub.IsMonomorphic();
|
|
|
|
CompareNilICStub::State old_state = stub.GetState();
|
|
stub.Record(object);
|
|
old_state.TraceTransition(stub.GetState());
|
|
|
|
NilValue nil = stub.GetNilValue();
|
|
|
|
// Find or create the specialized stub to support the new set of types.
|
|
Handle<Code> code;
|
|
if (stub.IsMonomorphic()) {
|
|
Handle<Map> monomorphic_map(already_monomorphic
|
|
? target()->FindFirstMap()
|
|
: HeapObject::cast(*object)->map());
|
|
code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, stub);
|
|
} else {
|
|
code = stub.GetCode(isolate());
|
|
}
|
|
set_target(*code);
|
|
return DoCompareNilSlow(nil, object);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss) {
|
|
HandleScope scope(isolate);
|
|
Handle<Object> object = args.at<Object>(0);
|
|
CompareNilIC ic(isolate);
|
|
return ic.CompareNil(object);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, Unreachable) {
|
|
UNREACHABLE();
|
|
CHECK(false);
|
|
return isolate->heap()->undefined_value();
|
|
}
|
|
|
|
|
|
MaybeObject* ToBooleanIC::ToBoolean(Handle<Object> object,
|
|
Code::ExtraICState extra_ic_state) {
|
|
ToBooleanStub stub(extra_ic_state);
|
|
bool to_boolean_value = stub.Record(object);
|
|
Handle<Code> code = stub.GetCode(isolate());
|
|
set_target(*code);
|
|
return Smi::FromInt(to_boolean_value ? 1 : 0);
|
|
}
|
|
|
|
|
|
RUNTIME_FUNCTION(MaybeObject*, ToBooleanIC_Miss) {
|
|
ASSERT(args.length() == 1);
|
|
HandleScope scope(isolate);
|
|
Handle<Object> object = args.at<Object>(0);
|
|
ToBooleanIC ic(isolate);
|
|
Code::ExtraICState ic_state = ic.target()->extended_extra_ic_state();
|
|
return ic.ToBoolean(object, ic_state);
|
|
}
|
|
|
|
|
|
static const Address IC_utilities[] = {
|
|
#define ADDR(name) FUNCTION_ADDR(name),
|
|
IC_UTIL_LIST(ADDR)
|
|
NULL
|
|
#undef ADDR
|
|
};
|
|
|
|
|
|
Address IC::AddressFromUtilityId(IC::UtilityId id) {
|
|
return IC_utilities[id];
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|