v8/test/common/value-helper.h
George Wort 0d591e919d Reland "[turbofan][arm64] Emit Lsl for Int32MulWithOverflow when possible"
This is a reland of commit aa541f1c9c

Original change's description:
> [turbofan][arm64] Emit Lsl for Int32MulWithOverflow when possible
>
> Int32MulWithOverflow on arm64 uses a cmp to set flags rather than
> the multiply instruction itself, thus we can use a left shift when
> the multiplication is by a power of two.
>
> This provides 0.15% for Speedometer2 on a Neoverse-N1 machine,
> with React being improved by 0.45%.
>
> Change-Id: Ic8db42ecc7cb14cf1ac7bbbeab0e9d8359104351
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3829472
> Commit-Queue: George Wort <george.wort@arm.com>
> Reviewed-by: Nico Hartmann <nicohartmann@chromium.org>
> Cr-Commit-Position: refs/heads/main@{#82499}

Change-Id: Ib8f387bd41d283df551299f7ee98e72d39e2a3bd
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3865484
Commit-Queue: George Wort <george.wort@arm.com>
Reviewed-by: Nico Hartmann <nicohartmann@chromium.org>
Cr-Commit-Position: refs/heads/main@{#82909}
2022-09-01 11:40:02 +00:00

402 lines
12 KiB
C++

// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMMON_VALUE_HELPER_H_
#define V8_COMMON_VALUE_HELPER_H_
#include <stdint.h>
#include "src/base/template-utils.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node.h"
#include "src/execution/isolate.h"
#include "src/objects/objects.h"
namespace v8 {
namespace internal {
namespace compiler {
// A collection of utilities related to numerical and heap values, including
// example input values of various types, including int32_t, uint32_t, double,
// etc.
class ValueHelper {
public:
static constexpr float float32_array[] = {
-std::numeric_limits<float>::infinity(),
-2.70497e+38f,
-1.4698e+37f,
-1.22813e+35f,
-1.20555e+35f,
-1.34584e+34f,
-1.0079e+32f,
-6.49364e+26f,
-3.06077e+25f,
-1.46821e+25f,
-1.17658e+23f,
-1.9617e+22f,
-2.7357e+20f,
-9223372036854775808.0f, // INT64_MIN
-1.48708e+13f,
-1.89633e+12f,
-4.66622e+11f,
-2.22581e+11f,
-1.45381e+10f,
-2147483904.0f, // First float32 after INT32_MIN
-2147483648.0f, // INT32_MIN
-2147483520.0f, // Last float32 before INT32_MIN
-1.3956e+09f,
-1.32951e+09f,
-1.30721e+09f,
-1.19756e+09f,
-9.26822e+08f,
-6.35647e+08f,
-4.00037e+08f,
-1.81227e+08f,
-5.09256e+07f,
-964300.0f,
-192446.0f,
-28455.0f,
-27194.0f,
-26401.0f,
-20575.0f,
-17069.0f,
-9167.0f,
-960.178f,
-113.0f,
-62.0f,
-15.0f,
-7.0f,
-1.0f,
-0.0256635f,
-4.60374e-07f,
-3.63759e-10f,
-4.30175e-14f,
-5.27385e-15f,
-1.5707963267948966f,
-1.48084e-15f,
-2.220446049250313e-16f,
-1.05755e-19f,
-3.2995e-21f,
-1.67354e-23f,
-1.11885e-23f,
-1.78506e-30f,
-5.07594e-31f,
-3.65799e-31f,
-1.43718e-34f,
-1.27126e-38f,
-0.0f,
0.0f,
1.17549e-38f,
1.56657e-37f,
4.08512e-29f,
3.31357e-28f,
6.25073e-22f,
4.1723e-13f,
1.44343e-09f,
1.5707963267948966f,
5.27004e-08f,
9.48298e-08f,
5.57888e-07f,
4.89988e-05f,
0.244326f,
1.0f,
12.4895f,
19.0f,
47.0f,
106.0f,
538.324f,
564.536f,
819.124f,
7048.0f,
12611.0f,
19878.0f,
20309.0f,
797056.0f,
1.77219e+09f,
2147483648.0f, // INT32_MAX + 1
2147483904.0f, // INT32_MAX + 1 and significand = 1.
4294967296.0f, // UINT32_MAX + 1
1.51116e+11f,
4.18193e+13f,
3.59167e+16f,
9223372036854775808.0f, // INT64_MAX + 1
18446744073709551616.0f, // UINT64_MAX + 1
3.38211e+19f,
2.67488e+20f,
1.78831e+21f,
9.20914e+21f,
8.35654e+23f,
1.4495e+24f,
5.94015e+25f,
4.43608e+30f,
2.44502e+33f,
2.61152e+33f,
1.38178e+37f,
1.71306e+37f,
3.31899e+38f,
3.40282e+38f,
std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::quiet_NaN(),
-std::numeric_limits<float>::quiet_NaN()};
static constexpr base::Vector<const float> float32_vector() {
return base::ArrayVector(float32_array);
}
static constexpr double float64_array[] = {
-2e66,
-2.220446049250313e-16,
-9223373136366403584.0,
-9223372036854775808.0, // INT64_MIN
-2147483649.5,
-2147483648.25,
-2147483648.0,
-2147483647.875,
-2147483647.125,
-2147483647.0,
-999.75,
-2e66,
-1.75,
-1.5707963267948966,
-1.0,
-0.5,
-0.0,
0.0,
3e-88,
0.125,
0.25,
0.375,
0.5,
1.0,
1.17549e-38,
1.56657e-37,
1.0000001,
1.25,
1.5707963267948966,
2,
3.1e7,
5.125,
6.25,
888,
982983.25,
2147483647.0,
2147483647.375,
2147483647.75,
2147483648.0,
2147483648.25,
2147483649.25,
9223372036854775808.0, // INT64_MAX + 1
9223373136366403584.0,
18446744073709551616.0, // UINT64_MAX + 1
2e66,
V8_INFINITY,
-V8_INFINITY,
std::numeric_limits<double>::quiet_NaN(),
-std::numeric_limits<double>::quiet_NaN()};
static constexpr base::Vector<const double> float64_vector() {
return base::ArrayVector(float64_array);
}
static constexpr uint32_t uint32_array[] = {
0x00000000, 0x00000001, 0xFFFFFFFF, 0x1B09788B, 0x04C5FCE8, 0xCC0DE5BF,
// This row is useful for testing lea optimizations on intel.
0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009,
0x273A798E, 0x187937A3, 0xECE3AF83, 0x5495A16B, 0x0B668ECC, 0x11223344,
0x0000009E, 0x00000043, 0x0000AF73, 0x0000116B, 0x00658ECC, 0x002B3B4C,
0x88776655, 0x70000000, 0x07200000, 0x7FFFFFFF, 0x56123761, 0x7FFFFF00,
0x761C4761, 0x80000000, 0x88888888, 0xA0000000, 0xDDDDDDDD, 0xE0000000,
0xEEEEEEEE, 0xFFFFFFFD, 0xF0000000, 0x007FFFFF, 0x003FFFFF, 0x001FFFFF,
0x000FFFFF, 0x0007FFFF, 0x0003FFFF, 0x0001FFFF, 0x0000FFFF, 0x00007FFF,
0x00003FFF, 0x00001FFF, 0x00000FFF, 0x000007FF, 0x000003FF, 0x000001FF,
// Bit pattern of a quiet NaN and signaling NaN, with or without
// additional payload.
0x7FC00000, 0x7F800000, 0x7FFFFFFF, 0x7F876543};
static constexpr base::Vector<const uint32_t> uint32_vector() {
return base::ArrayVector(uint32_array);
}
static base::Vector<const int32_t> int32_vector() {
return base::Vector<const int32_t>::cast(uint32_vector());
}
static constexpr uint64_t uint64_array[] = {
0x00000000, 0x00000001, 0xFFFFFFFF, 0x1B09788B, 0x04C5FCE8, 0xCC0DE5BF,
0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009,
0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFD,
0x0000000000000000, 0x0000000100000000, 0xFFFFFFFF00000000,
0x1B09788B00000000, 0x04C5FCE800000000, 0xCC0DE5BF00000000,
0x0000000200000000, 0x0000000300000000, 0x0000000400000000,
0x0000000500000000, 0x0000000800000000, 0x0000000900000000,
0x273A798E187937A3, 0xECE3AF835495A16B, 0x0B668ECC11223344, 0x0000009E,
0x00000043, 0x0000AF73, 0x0000116B, 0x00658ECC, 0x002B3B4C, 0x88776655,
0x70000000, 0x07200000, 0x7FFFFFFF, 0x56123761, 0x7FFFFF00,
0x761C4761EEEEEEEE, 0x80000000EEEEEEEE, 0x88888888DDDDDDDD,
0xA0000000DDDDDDDD, 0xDDDDDDDDAAAAAAAA, 0xE0000000AAAAAAAA,
0xEEEEEEEEEEEEEEEE, 0xFFFFFFFDEEEEEEEE, 0xF0000000DDDDDDDD,
0x007FFFFFDDDDDDDD, 0x003FFFFFAAAAAAAA, 0x001FFFFFAAAAAAAA, 0x000FFFFF,
0x0007FFFF, 0x0003FFFF, 0x0001FFFF, 0x0000FFFF, 0x00007FFF, 0x00003FFF,
0x00001FFF, 0x00000FFF, 0x000007FF, 0x000003FF, 0x000001FF,
0x00003FFFFFFFFFFF, 0x00001FFFFFFFFFFF, 0x00000FFFFFFFFFFF,
0x000007FFFFFFFFFF, 0x000003FFFFFFFFFF, 0x000001FFFFFFFFFF,
0x8000008000000000, 0x8000008000000001, 0x8000000000000400,
0x8000000000000401, 0x0000000000000020,
0x8000000000000000, // int64_t min
0x7FFFFFFFFFFFFFFF, // int64_t max
// Bit pattern of a quiet NaN and signaling NaN, with or without
// additional payload.
0x7FF8000000000000, 0x7FF0000000000000, 0x7FF8123456789ABC,
0x7FF7654321FEDCBA};
static constexpr base::Vector<const uint64_t> uint64_vector() {
return base::ArrayVector(uint64_array);
}
static base::Vector<const int64_t> int64_vector() {
return base::Vector<const int64_t>::cast(uint64_vector());
}
static constexpr int16_t int16_array[] = {
0, 1, 2, INT16_MAX - 1, INT16_MAX, INT16_MIN, INT16_MIN + 1, -2, -1};
static constexpr base::Vector<const int16_t> int16_vector() {
return base::ArrayVector(int16_array);
}
static base::Vector<const uint16_t> uint16_vector() {
return base::Vector<const uint16_t>::cast(int16_vector());
}
static constexpr int8_t int8_array[] = {
0, 1, 2, INT8_MAX - 1, INT8_MAX, INT8_MIN, INT8_MIN + 1, -2, -1};
static constexpr base::Vector<const int8_t> int8_vector() {
return base::ArrayVector(int8_array);
}
static base::Vector<const uint8_t> uint8_vector() {
return base::Vector<const uint8_t>::cast(base::ArrayVector(int8_array));
}
static constexpr uint32_t ror_array[31] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
static constexpr base::Vector<const uint32_t> ror_vector() {
return base::ArrayVector(ror_array);
}
template <typename T>
static inline base::Vector<const T> GetVector();
};
template <>
inline base::Vector<const int8_t> ValueHelper::GetVector() {
return int8_vector();
}
template <>
inline base::Vector<const uint8_t> ValueHelper::GetVector() {
return uint8_vector();
}
template <>
inline base::Vector<const int16_t> ValueHelper::GetVector() {
return int16_vector();
}
template <>
inline base::Vector<const uint16_t> ValueHelper::GetVector() {
return uint16_vector();
}
template <>
inline base::Vector<const int32_t> ValueHelper::GetVector() {
return int32_vector();
}
template <>
inline base::Vector<const uint32_t> ValueHelper::GetVector() {
return uint32_vector();
}
template <>
inline base::Vector<const int64_t> ValueHelper::GetVector() {
return int64_vector();
}
template <>
inline base::Vector<const float> ValueHelper::GetVector() {
return float32_vector();
}
template <>
inline base::Vector<const double> ValueHelper::GetVector() {
return float64_vector();
}
// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... i ... }
#define FOR_INPUTS(ctype, itype, var) \
for (ctype var : ::v8::internal::compiler::ValueHelper::itype##_vector())
#define FOR_INT32_INPUTS(var) FOR_INPUTS(int32_t, int32, var)
#define FOR_UINT32_INPUTS(var) FOR_INPUTS(uint32_t, uint32, var)
#define FOR_INT16_INPUTS(var) FOR_INPUTS(int16_t, int16, var)
#define FOR_UINT16_INPUTS(var) FOR_INPUTS(uint16_t, uint16, var)
#define FOR_INT8_INPUTS(var) FOR_INPUTS(int8_t, int8, var)
#define FOR_UINT8_INPUTS(var) FOR_INPUTS(uint8_t, uint8, var)
#define FOR_INT64_INPUTS(var) FOR_INPUTS(int64_t, int64, var)
#define FOR_UINT64_INPUTS(var) FOR_INPUTS(uint64_t, uint64, var)
#define FOR_FLOAT32_INPUTS(var) FOR_INPUTS(float, float32, var)
#define FOR_FLOAT64_INPUTS(var) FOR_INPUTS(double, float64, var)
#define FOR_INT32_SHIFTS(var) for (int32_t var = 0; var < 32; var++)
#define FOR_UINT32_SHIFTS(var) for (uint32_t var = 0; var < 32; var++)
template <typename type>
struct FloatCompareWrapper {
type value;
explicit FloatCompareWrapper(type x) : value(x) {}
bool operator==(FloatCompareWrapper<type> const& other) const {
return std::isnan(value)
? std::isnan(other.value)
: value == other.value &&
std::signbit(value) == std::signbit(other.value);
}
};
template <typename type>
std::ostream& operator<<(std::ostream& out, FloatCompareWrapper<type> wrapper) {
uint8_t bytes[sizeof(type)];
memcpy(bytes, &wrapper.value, sizeof(type));
out << wrapper.value << " (0x";
const char* kHexDigits = "0123456789ABCDEF";
for (unsigned i = 0; i < sizeof(type); ++i) {
out << kHexDigits[bytes[i] >> 4] << kHexDigits[bytes[i] & 15];
}
return out << ")";
}
#define CHECK_FLOAT_EQ(lhs, rhs) \
do { \
using FloatWrapper = ::v8::internal::compiler::FloatCompareWrapper<float>; \
CHECK_EQ(FloatWrapper(lhs), FloatWrapper(rhs)); \
} while (false)
#define CHECK_DOUBLE_EQ(lhs, rhs) \
do { \
using DoubleWrapper = \
::v8::internal::compiler::FloatCompareWrapper<double>; \
CHECK_EQ(DoubleWrapper(lhs), DoubleWrapper(rhs)); \
} while (false)
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMMON_VALUE_HELPER_H_