2ce0bebba1
BUG=354405 R=ulan@chromium.org, rodolph.perfetta@arm.com LOG=y Review URL: https://codereview.chromium.org/207823003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@20148 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2222 lines
74 KiB
C++
2222 lines
74 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
#include "lithium-allocator-inl.h"
|
|
|
|
#include "hydrogen.h"
|
|
#include "string-stream.h"
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
#include "ia32/lithium-ia32.h"
|
|
#elif V8_TARGET_ARCH_X64
|
|
#include "x64/lithium-x64.h"
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
#include "arm64/lithium-arm64.h"
|
|
#elif V8_TARGET_ARCH_ARM
|
|
#include "arm/lithium-arm.h"
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
#include "mips/lithium-mips.h"
|
|
#else
|
|
#error "Unknown architecture."
|
|
#endif
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
|
|
return a.Value() < b.Value() ? a : b;
|
|
}
|
|
|
|
|
|
static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
|
|
return a.Value() > b.Value() ? a : b;
|
|
}
|
|
|
|
|
|
UsePosition::UsePosition(LifetimePosition pos,
|
|
LOperand* operand,
|
|
LOperand* hint)
|
|
: operand_(operand),
|
|
hint_(hint),
|
|
pos_(pos),
|
|
next_(NULL),
|
|
requires_reg_(false),
|
|
register_beneficial_(true) {
|
|
if (operand_ != NULL && operand_->IsUnallocated()) {
|
|
LUnallocated* unalloc = LUnallocated::cast(operand_);
|
|
requires_reg_ = unalloc->HasRegisterPolicy();
|
|
register_beneficial_ = !unalloc->HasAnyPolicy();
|
|
}
|
|
ASSERT(pos_.IsValid());
|
|
}
|
|
|
|
|
|
bool UsePosition::HasHint() const {
|
|
return hint_ != NULL && !hint_->IsUnallocated();
|
|
}
|
|
|
|
|
|
bool UsePosition::RequiresRegister() const {
|
|
return requires_reg_;
|
|
}
|
|
|
|
|
|
bool UsePosition::RegisterIsBeneficial() const {
|
|
return register_beneficial_;
|
|
}
|
|
|
|
|
|
void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
|
|
ASSERT(Contains(pos) && pos.Value() != start().Value());
|
|
UseInterval* after = new(zone) UseInterval(pos, end_);
|
|
after->next_ = next_;
|
|
next_ = after;
|
|
end_ = pos;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
|
|
void LiveRange::Verify() const {
|
|
UsePosition* cur = first_pos_;
|
|
while (cur != NULL) {
|
|
ASSERT(Start().Value() <= cur->pos().Value() &&
|
|
cur->pos().Value() <= End().Value());
|
|
cur = cur->next();
|
|
}
|
|
}
|
|
|
|
|
|
bool LiveRange::HasOverlap(UseInterval* target) const {
|
|
UseInterval* current_interval = first_interval_;
|
|
while (current_interval != NULL) {
|
|
// Intervals overlap if the start of one is contained in the other.
|
|
if (current_interval->Contains(target->start()) ||
|
|
target->Contains(current_interval->start())) {
|
|
return true;
|
|
}
|
|
current_interval = current_interval->next();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
|
|
LiveRange::LiveRange(int id, Zone* zone)
|
|
: id_(id),
|
|
spilled_(false),
|
|
kind_(UNALLOCATED_REGISTERS),
|
|
assigned_register_(kInvalidAssignment),
|
|
last_interval_(NULL),
|
|
first_interval_(NULL),
|
|
first_pos_(NULL),
|
|
parent_(NULL),
|
|
next_(NULL),
|
|
current_interval_(NULL),
|
|
last_processed_use_(NULL),
|
|
current_hint_operand_(NULL),
|
|
spill_operand_(new(zone) LOperand()),
|
|
spill_start_index_(kMaxInt) { }
|
|
|
|
|
|
void LiveRange::set_assigned_register(int reg, Zone* zone) {
|
|
ASSERT(!HasRegisterAssigned() && !IsSpilled());
|
|
assigned_register_ = reg;
|
|
ConvertOperands(zone);
|
|
}
|
|
|
|
|
|
void LiveRange::MakeSpilled(Zone* zone) {
|
|
ASSERT(!IsSpilled());
|
|
ASSERT(TopLevel()->HasAllocatedSpillOperand());
|
|
spilled_ = true;
|
|
assigned_register_ = kInvalidAssignment;
|
|
ConvertOperands(zone);
|
|
}
|
|
|
|
|
|
bool LiveRange::HasAllocatedSpillOperand() const {
|
|
ASSERT(spill_operand_ != NULL);
|
|
return !spill_operand_->IsIgnored();
|
|
}
|
|
|
|
|
|
void LiveRange::SetSpillOperand(LOperand* operand) {
|
|
ASSERT(!operand->IsUnallocated());
|
|
ASSERT(spill_operand_ != NULL);
|
|
ASSERT(spill_operand_->IsIgnored());
|
|
spill_operand_->ConvertTo(operand->kind(), operand->index());
|
|
}
|
|
|
|
|
|
UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
|
|
UsePosition* use_pos = last_processed_use_;
|
|
if (use_pos == NULL) use_pos = first_pos();
|
|
while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
|
|
use_pos = use_pos->next();
|
|
}
|
|
last_processed_use_ = use_pos;
|
|
return use_pos;
|
|
}
|
|
|
|
|
|
UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
|
|
LifetimePosition start) {
|
|
UsePosition* pos = NextUsePosition(start);
|
|
while (pos != NULL && !pos->RegisterIsBeneficial()) {
|
|
pos = pos->next();
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
|
|
UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
|
|
LifetimePosition start) {
|
|
UsePosition* pos = first_pos();
|
|
UsePosition* prev = NULL;
|
|
while (pos != NULL && pos->pos().Value() < start.Value()) {
|
|
if (pos->RegisterIsBeneficial()) prev = pos;
|
|
pos = pos->next();
|
|
}
|
|
return prev;
|
|
}
|
|
|
|
|
|
UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
|
|
UsePosition* pos = NextUsePosition(start);
|
|
while (pos != NULL && !pos->RequiresRegister()) {
|
|
pos = pos->next();
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
|
|
bool LiveRange::CanBeSpilled(LifetimePosition pos) {
|
|
// We cannot spill a live range that has a use requiring a register
|
|
// at the current or the immediate next position.
|
|
UsePosition* use_pos = NextRegisterPosition(pos);
|
|
if (use_pos == NULL) return true;
|
|
return
|
|
use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
|
|
}
|
|
|
|
|
|
LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
|
|
LOperand* op = NULL;
|
|
if (HasRegisterAssigned()) {
|
|
ASSERT(!IsSpilled());
|
|
switch (Kind()) {
|
|
case GENERAL_REGISTERS:
|
|
op = LRegister::Create(assigned_register(), zone);
|
|
break;
|
|
case DOUBLE_REGISTERS:
|
|
op = LDoubleRegister::Create(assigned_register(), zone);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
} else if (IsSpilled()) {
|
|
ASSERT(!HasRegisterAssigned());
|
|
op = TopLevel()->GetSpillOperand();
|
|
ASSERT(!op->IsUnallocated());
|
|
} else {
|
|
LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
|
|
unalloc->set_virtual_register(id_);
|
|
op = unalloc;
|
|
}
|
|
return op;
|
|
}
|
|
|
|
|
|
UseInterval* LiveRange::FirstSearchIntervalForPosition(
|
|
LifetimePosition position) const {
|
|
if (current_interval_ == NULL) return first_interval_;
|
|
if (current_interval_->start().Value() > position.Value()) {
|
|
current_interval_ = NULL;
|
|
return first_interval_;
|
|
}
|
|
return current_interval_;
|
|
}
|
|
|
|
|
|
void LiveRange::AdvanceLastProcessedMarker(
|
|
UseInterval* to_start_of, LifetimePosition but_not_past) const {
|
|
if (to_start_of == NULL) return;
|
|
if (to_start_of->start().Value() > but_not_past.Value()) return;
|
|
LifetimePosition start =
|
|
current_interval_ == NULL ? LifetimePosition::Invalid()
|
|
: current_interval_->start();
|
|
if (to_start_of->start().Value() > start.Value()) {
|
|
current_interval_ = to_start_of;
|
|
}
|
|
}
|
|
|
|
|
|
void LiveRange::SplitAt(LifetimePosition position,
|
|
LiveRange* result,
|
|
Zone* zone) {
|
|
ASSERT(Start().Value() < position.Value());
|
|
ASSERT(result->IsEmpty());
|
|
// Find the last interval that ends before the position. If the
|
|
// position is contained in one of the intervals in the chain, we
|
|
// split that interval and use the first part.
|
|
UseInterval* current = FirstSearchIntervalForPosition(position);
|
|
|
|
// If the split position coincides with the beginning of a use interval
|
|
// we need to split use positons in a special way.
|
|
bool split_at_start = false;
|
|
|
|
if (current->start().Value() == position.Value()) {
|
|
// When splitting at start we need to locate the previous use interval.
|
|
current = first_interval_;
|
|
}
|
|
|
|
while (current != NULL) {
|
|
if (current->Contains(position)) {
|
|
current->SplitAt(position, zone);
|
|
break;
|
|
}
|
|
UseInterval* next = current->next();
|
|
if (next->start().Value() >= position.Value()) {
|
|
split_at_start = (next->start().Value() == position.Value());
|
|
break;
|
|
}
|
|
current = next;
|
|
}
|
|
|
|
// Partition original use intervals to the two live ranges.
|
|
UseInterval* before = current;
|
|
UseInterval* after = before->next();
|
|
result->last_interval_ = (last_interval_ == before)
|
|
? after // Only interval in the range after split.
|
|
: last_interval_; // Last interval of the original range.
|
|
result->first_interval_ = after;
|
|
last_interval_ = before;
|
|
|
|
// Find the last use position before the split and the first use
|
|
// position after it.
|
|
UsePosition* use_after = first_pos_;
|
|
UsePosition* use_before = NULL;
|
|
if (split_at_start) {
|
|
// The split position coincides with the beginning of a use interval (the
|
|
// end of a lifetime hole). Use at this position should be attributed to
|
|
// the split child because split child owns use interval covering it.
|
|
while (use_after != NULL && use_after->pos().Value() < position.Value()) {
|
|
use_before = use_after;
|
|
use_after = use_after->next();
|
|
}
|
|
} else {
|
|
while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
|
|
use_before = use_after;
|
|
use_after = use_after->next();
|
|
}
|
|
}
|
|
|
|
// Partition original use positions to the two live ranges.
|
|
if (use_before != NULL) {
|
|
use_before->next_ = NULL;
|
|
} else {
|
|
first_pos_ = NULL;
|
|
}
|
|
result->first_pos_ = use_after;
|
|
|
|
// Discard cached iteration state. It might be pointing
|
|
// to the use that no longer belongs to this live range.
|
|
last_processed_use_ = NULL;
|
|
current_interval_ = NULL;
|
|
|
|
// Link the new live range in the chain before any of the other
|
|
// ranges linked from the range before the split.
|
|
result->parent_ = (parent_ == NULL) ? this : parent_;
|
|
result->kind_ = result->parent_->kind_;
|
|
result->next_ = next_;
|
|
next_ = result;
|
|
|
|
#ifdef DEBUG
|
|
Verify();
|
|
result->Verify();
|
|
#endif
|
|
}
|
|
|
|
|
|
// This implements an ordering on live ranges so that they are ordered by their
|
|
// start positions. This is needed for the correctness of the register
|
|
// allocation algorithm. If two live ranges start at the same offset then there
|
|
// is a tie breaker based on where the value is first used. This part of the
|
|
// ordering is merely a heuristic.
|
|
bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
|
|
LifetimePosition start = Start();
|
|
LifetimePosition other_start = other->Start();
|
|
if (start.Value() == other_start.Value()) {
|
|
UsePosition* pos = first_pos();
|
|
if (pos == NULL) return false;
|
|
UsePosition* other_pos = other->first_pos();
|
|
if (other_pos == NULL) return true;
|
|
return pos->pos().Value() < other_pos->pos().Value();
|
|
}
|
|
return start.Value() < other_start.Value();
|
|
}
|
|
|
|
|
|
void LiveRange::ShortenTo(LifetimePosition start) {
|
|
LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
|
|
ASSERT(first_interval_ != NULL);
|
|
ASSERT(first_interval_->start().Value() <= start.Value());
|
|
ASSERT(start.Value() < first_interval_->end().Value());
|
|
first_interval_->set_start(start);
|
|
}
|
|
|
|
|
|
void LiveRange::EnsureInterval(LifetimePosition start,
|
|
LifetimePosition end,
|
|
Zone* zone) {
|
|
LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
|
|
id_,
|
|
start.Value(),
|
|
end.Value());
|
|
LifetimePosition new_end = end;
|
|
while (first_interval_ != NULL &&
|
|
first_interval_->start().Value() <= end.Value()) {
|
|
if (first_interval_->end().Value() > end.Value()) {
|
|
new_end = first_interval_->end();
|
|
}
|
|
first_interval_ = first_interval_->next();
|
|
}
|
|
|
|
UseInterval* new_interval = new(zone) UseInterval(start, new_end);
|
|
new_interval->next_ = first_interval_;
|
|
first_interval_ = new_interval;
|
|
if (new_interval->next() == NULL) {
|
|
last_interval_ = new_interval;
|
|
}
|
|
}
|
|
|
|
|
|
void LiveRange::AddUseInterval(LifetimePosition start,
|
|
LifetimePosition end,
|
|
Zone* zone) {
|
|
LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
|
|
id_,
|
|
start.Value(),
|
|
end.Value());
|
|
if (first_interval_ == NULL) {
|
|
UseInterval* interval = new(zone) UseInterval(start, end);
|
|
first_interval_ = interval;
|
|
last_interval_ = interval;
|
|
} else {
|
|
if (end.Value() == first_interval_->start().Value()) {
|
|
first_interval_->set_start(start);
|
|
} else if (end.Value() < first_interval_->start().Value()) {
|
|
UseInterval* interval = new(zone) UseInterval(start, end);
|
|
interval->set_next(first_interval_);
|
|
first_interval_ = interval;
|
|
} else {
|
|
// Order of instruction's processing (see ProcessInstructions) guarantees
|
|
// that each new use interval either precedes or intersects with
|
|
// last added interval.
|
|
ASSERT(start.Value() < first_interval_->end().Value());
|
|
first_interval_->start_ = Min(start, first_interval_->start_);
|
|
first_interval_->end_ = Max(end, first_interval_->end_);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LiveRange::AddUsePosition(LifetimePosition pos,
|
|
LOperand* operand,
|
|
LOperand* hint,
|
|
Zone* zone) {
|
|
LAllocator::TraceAlloc("Add to live range %d use position %d\n",
|
|
id_,
|
|
pos.Value());
|
|
UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint);
|
|
UsePosition* prev_hint = NULL;
|
|
UsePosition* prev = NULL;
|
|
UsePosition* current = first_pos_;
|
|
while (current != NULL && current->pos().Value() < pos.Value()) {
|
|
prev_hint = current->HasHint() ? current : prev_hint;
|
|
prev = current;
|
|
current = current->next();
|
|
}
|
|
|
|
if (prev == NULL) {
|
|
use_pos->set_next(first_pos_);
|
|
first_pos_ = use_pos;
|
|
} else {
|
|
use_pos->next_ = prev->next_;
|
|
prev->next_ = use_pos;
|
|
}
|
|
|
|
if (prev_hint == NULL && use_pos->HasHint()) {
|
|
current_hint_operand_ = hint;
|
|
}
|
|
}
|
|
|
|
|
|
void LiveRange::ConvertOperands(Zone* zone) {
|
|
LOperand* op = CreateAssignedOperand(zone);
|
|
UsePosition* use_pos = first_pos();
|
|
while (use_pos != NULL) {
|
|
ASSERT(Start().Value() <= use_pos->pos().Value() &&
|
|
use_pos->pos().Value() <= End().Value());
|
|
|
|
if (use_pos->HasOperand()) {
|
|
ASSERT(op->IsRegister() || op->IsDoubleRegister() ||
|
|
!use_pos->RequiresRegister());
|
|
use_pos->operand()->ConvertTo(op->kind(), op->index());
|
|
}
|
|
use_pos = use_pos->next();
|
|
}
|
|
}
|
|
|
|
|
|
bool LiveRange::CanCover(LifetimePosition position) const {
|
|
if (IsEmpty()) return false;
|
|
return Start().Value() <= position.Value() &&
|
|
position.Value() < End().Value();
|
|
}
|
|
|
|
|
|
bool LiveRange::Covers(LifetimePosition position) {
|
|
if (!CanCover(position)) return false;
|
|
UseInterval* start_search = FirstSearchIntervalForPosition(position);
|
|
for (UseInterval* interval = start_search;
|
|
interval != NULL;
|
|
interval = interval->next()) {
|
|
ASSERT(interval->next() == NULL ||
|
|
interval->next()->start().Value() >= interval->start().Value());
|
|
AdvanceLastProcessedMarker(interval, position);
|
|
if (interval->Contains(position)) return true;
|
|
if (interval->start().Value() > position.Value()) return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
|
|
UseInterval* b = other->first_interval();
|
|
if (b == NULL) return LifetimePosition::Invalid();
|
|
LifetimePosition advance_last_processed_up_to = b->start();
|
|
UseInterval* a = FirstSearchIntervalForPosition(b->start());
|
|
while (a != NULL && b != NULL) {
|
|
if (a->start().Value() > other->End().Value()) break;
|
|
if (b->start().Value() > End().Value()) break;
|
|
LifetimePosition cur_intersection = a->Intersect(b);
|
|
if (cur_intersection.IsValid()) {
|
|
return cur_intersection;
|
|
}
|
|
if (a->start().Value() < b->start().Value()) {
|
|
a = a->next();
|
|
if (a == NULL || a->start().Value() > other->End().Value()) break;
|
|
AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
|
|
} else {
|
|
b = b->next();
|
|
}
|
|
}
|
|
return LifetimePosition::Invalid();
|
|
}
|
|
|
|
|
|
LAllocator::LAllocator(int num_values, HGraph* graph)
|
|
: zone_(graph->isolate()),
|
|
chunk_(NULL),
|
|
live_in_sets_(graph->blocks()->length(), zone()),
|
|
live_ranges_(num_values * 2, zone()),
|
|
fixed_live_ranges_(NULL),
|
|
fixed_double_live_ranges_(NULL),
|
|
unhandled_live_ranges_(num_values * 2, zone()),
|
|
active_live_ranges_(8, zone()),
|
|
inactive_live_ranges_(8, zone()),
|
|
reusable_slots_(8, zone()),
|
|
next_virtual_register_(num_values),
|
|
first_artificial_register_(num_values),
|
|
mode_(UNALLOCATED_REGISTERS),
|
|
num_registers_(-1),
|
|
graph_(graph),
|
|
has_osr_entry_(false),
|
|
allocation_ok_(true) { }
|
|
|
|
|
|
void LAllocator::InitializeLivenessAnalysis() {
|
|
// Initialize the live_in sets for each block to NULL.
|
|
int block_count = graph_->blocks()->length();
|
|
live_in_sets_.Initialize(block_count, zone());
|
|
live_in_sets_.AddBlock(NULL, block_count, zone());
|
|
}
|
|
|
|
|
|
BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
|
|
// Compute live out for the given block, except not including backward
|
|
// successor edges.
|
|
BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone());
|
|
|
|
// Process all successor blocks.
|
|
for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
|
|
// Add values live on entry to the successor. Note the successor's
|
|
// live_in will not be computed yet for backwards edges.
|
|
HBasicBlock* successor = it.Current();
|
|
BitVector* live_in = live_in_sets_[successor->block_id()];
|
|
if (live_in != NULL) live_out->Union(*live_in);
|
|
|
|
// All phi input operands corresponding to this successor edge are live
|
|
// out from this block.
|
|
int index = successor->PredecessorIndexOf(block);
|
|
const ZoneList<HPhi*>* phis = successor->phis();
|
|
for (int i = 0; i < phis->length(); ++i) {
|
|
HPhi* phi = phis->at(i);
|
|
if (!phi->OperandAt(index)->IsConstant()) {
|
|
live_out->Add(phi->OperandAt(index)->id());
|
|
}
|
|
}
|
|
}
|
|
|
|
return live_out;
|
|
}
|
|
|
|
|
|
void LAllocator::AddInitialIntervals(HBasicBlock* block,
|
|
BitVector* live_out) {
|
|
// Add an interval that includes the entire block to the live range for
|
|
// each live_out value.
|
|
LifetimePosition start = LifetimePosition::FromInstructionIndex(
|
|
block->first_instruction_index());
|
|
LifetimePosition end = LifetimePosition::FromInstructionIndex(
|
|
block->last_instruction_index()).NextInstruction();
|
|
BitVector::Iterator iterator(live_out);
|
|
while (!iterator.Done()) {
|
|
int operand_index = iterator.Current();
|
|
LiveRange* range = LiveRangeFor(operand_index);
|
|
range->AddUseInterval(start, end, zone());
|
|
iterator.Advance();
|
|
}
|
|
}
|
|
|
|
|
|
int LAllocator::FixedDoubleLiveRangeID(int index) {
|
|
return -index - 1 - Register::kMaxNumAllocatableRegisters;
|
|
}
|
|
|
|
|
|
LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
|
|
int pos,
|
|
bool is_tagged) {
|
|
TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
|
|
ASSERT(operand->HasFixedPolicy());
|
|
if (operand->HasFixedSlotPolicy()) {
|
|
operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index());
|
|
} else if (operand->HasFixedRegisterPolicy()) {
|
|
int reg_index = operand->fixed_register_index();
|
|
operand->ConvertTo(LOperand::REGISTER, reg_index);
|
|
} else if (operand->HasFixedDoubleRegisterPolicy()) {
|
|
int reg_index = operand->fixed_register_index();
|
|
operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
if (is_tagged) {
|
|
TraceAlloc("Fixed reg is tagged at %d\n", pos);
|
|
LInstruction* instr = InstructionAt(pos);
|
|
if (instr->HasPointerMap()) {
|
|
instr->pointer_map()->RecordPointer(operand, chunk()->zone());
|
|
}
|
|
}
|
|
return operand;
|
|
}
|
|
|
|
|
|
LiveRange* LAllocator::FixedLiveRangeFor(int index) {
|
|
ASSERT(index < Register::kMaxNumAllocatableRegisters);
|
|
LiveRange* result = fixed_live_ranges_[index];
|
|
if (result == NULL) {
|
|
result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone());
|
|
ASSERT(result->IsFixed());
|
|
result->kind_ = GENERAL_REGISTERS;
|
|
SetLiveRangeAssignedRegister(result, index);
|
|
fixed_live_ranges_[index] = result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
|
|
ASSERT(index < DoubleRegister::NumAllocatableRegisters());
|
|
LiveRange* result = fixed_double_live_ranges_[index];
|
|
if (result == NULL) {
|
|
result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index),
|
|
chunk()->zone());
|
|
ASSERT(result->IsFixed());
|
|
result->kind_ = DOUBLE_REGISTERS;
|
|
SetLiveRangeAssignedRegister(result, index);
|
|
fixed_double_live_ranges_[index] = result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
LiveRange* LAllocator::LiveRangeFor(int index) {
|
|
if (index >= live_ranges_.length()) {
|
|
live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
|
|
}
|
|
LiveRange* result = live_ranges_[index];
|
|
if (result == NULL) {
|
|
result = new(zone()) LiveRange(index, chunk()->zone());
|
|
live_ranges_[index] = result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
LGap* LAllocator::GetLastGap(HBasicBlock* block) {
|
|
int last_instruction = block->last_instruction_index();
|
|
int index = chunk_->NearestGapPos(last_instruction);
|
|
return GapAt(index);
|
|
}
|
|
|
|
|
|
HPhi* LAllocator::LookupPhi(LOperand* operand) const {
|
|
if (!operand->IsUnallocated()) return NULL;
|
|
int index = LUnallocated::cast(operand)->virtual_register();
|
|
HValue* instr = graph_->LookupValue(index);
|
|
if (instr != NULL && instr->IsPhi()) {
|
|
return HPhi::cast(instr);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
|
|
if (operand->IsUnallocated()) {
|
|
return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
|
|
} else if (operand->IsRegister()) {
|
|
return FixedLiveRangeFor(operand->index());
|
|
} else if (operand->IsDoubleRegister()) {
|
|
return FixedDoubleLiveRangeFor(operand->index());
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::Define(LifetimePosition position,
|
|
LOperand* operand,
|
|
LOperand* hint) {
|
|
LiveRange* range = LiveRangeFor(operand);
|
|
if (range == NULL) return;
|
|
|
|
if (range->IsEmpty() || range->Start().Value() > position.Value()) {
|
|
// Can happen if there is a definition without use.
|
|
range->AddUseInterval(position, position.NextInstruction(), zone());
|
|
range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
|
|
} else {
|
|
range->ShortenTo(position);
|
|
}
|
|
|
|
if (operand->IsUnallocated()) {
|
|
LUnallocated* unalloc_operand = LUnallocated::cast(operand);
|
|
range->AddUsePosition(position, unalloc_operand, hint, zone());
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::Use(LifetimePosition block_start,
|
|
LifetimePosition position,
|
|
LOperand* operand,
|
|
LOperand* hint) {
|
|
LiveRange* range = LiveRangeFor(operand);
|
|
if (range == NULL) return;
|
|
if (operand->IsUnallocated()) {
|
|
LUnallocated* unalloc_operand = LUnallocated::cast(operand);
|
|
range->AddUsePosition(position, unalloc_operand, hint, zone());
|
|
}
|
|
range->AddUseInterval(block_start, position, zone());
|
|
}
|
|
|
|
|
|
void LAllocator::AddConstraintsGapMove(int index,
|
|
LOperand* from,
|
|
LOperand* to) {
|
|
LGap* gap = GapAt(index);
|
|
LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
|
|
chunk()->zone());
|
|
if (from->IsUnallocated()) {
|
|
const ZoneList<LMoveOperands>* move_operands = move->move_operands();
|
|
for (int i = 0; i < move_operands->length(); ++i) {
|
|
LMoveOperands cur = move_operands->at(i);
|
|
LOperand* cur_to = cur.destination();
|
|
if (cur_to->IsUnallocated()) {
|
|
if (LUnallocated::cast(cur_to)->virtual_register() ==
|
|
LUnallocated::cast(from)->virtual_register()) {
|
|
move->AddMove(cur.source(), to, chunk()->zone());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
move->AddMove(from, to, chunk()->zone());
|
|
}
|
|
|
|
|
|
void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
|
|
int start = block->first_instruction_index();
|
|
int end = block->last_instruction_index();
|
|
if (start == -1) return;
|
|
for (int i = start; i <= end; ++i) {
|
|
if (IsGapAt(i)) {
|
|
LInstruction* instr = NULL;
|
|
LInstruction* prev_instr = NULL;
|
|
if (i < end) instr = InstructionAt(i + 1);
|
|
if (i > start) prev_instr = InstructionAt(i - 1);
|
|
MeetConstraintsBetween(prev_instr, instr, i);
|
|
if (!AllocationOk()) return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::MeetConstraintsBetween(LInstruction* first,
|
|
LInstruction* second,
|
|
int gap_index) {
|
|
// Handle fixed temporaries.
|
|
if (first != NULL) {
|
|
for (TempIterator it(first); !it.Done(); it.Advance()) {
|
|
LUnallocated* temp = LUnallocated::cast(it.Current());
|
|
if (temp->HasFixedPolicy()) {
|
|
AllocateFixed(temp, gap_index - 1, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle fixed output operand.
|
|
if (first != NULL && first->Output() != NULL) {
|
|
LUnallocated* first_output = LUnallocated::cast(first->Output());
|
|
LiveRange* range = LiveRangeFor(first_output->virtual_register());
|
|
bool assigned = false;
|
|
if (first_output->HasFixedPolicy()) {
|
|
LUnallocated* output_copy = first_output->CopyUnconstrained(
|
|
chunk()->zone());
|
|
bool is_tagged = HasTaggedValue(first_output->virtual_register());
|
|
AllocateFixed(first_output, gap_index, is_tagged);
|
|
|
|
// This value is produced on the stack, we never need to spill it.
|
|
if (first_output->IsStackSlot()) {
|
|
range->SetSpillOperand(first_output);
|
|
range->SetSpillStartIndex(gap_index - 1);
|
|
assigned = true;
|
|
}
|
|
chunk_->AddGapMove(gap_index, first_output, output_copy);
|
|
}
|
|
|
|
if (!assigned) {
|
|
range->SetSpillStartIndex(gap_index);
|
|
|
|
// This move to spill operand is not a real use. Liveness analysis
|
|
// and splitting of live ranges do not account for it.
|
|
// Thus it should be inserted to a lifetime position corresponding to
|
|
// the instruction end.
|
|
LGap* gap = GapAt(gap_index);
|
|
LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE,
|
|
chunk()->zone());
|
|
move->AddMove(first_output, range->GetSpillOperand(),
|
|
chunk()->zone());
|
|
}
|
|
}
|
|
|
|
// Handle fixed input operands of second instruction.
|
|
if (second != NULL) {
|
|
for (UseIterator it(second); !it.Done(); it.Advance()) {
|
|
LUnallocated* cur_input = LUnallocated::cast(it.Current());
|
|
if (cur_input->HasFixedPolicy()) {
|
|
LUnallocated* input_copy = cur_input->CopyUnconstrained(
|
|
chunk()->zone());
|
|
bool is_tagged = HasTaggedValue(cur_input->virtual_register());
|
|
AllocateFixed(cur_input, gap_index + 1, is_tagged);
|
|
AddConstraintsGapMove(gap_index, input_copy, cur_input);
|
|
} else if (cur_input->HasWritableRegisterPolicy()) {
|
|
// The live range of writable input registers always goes until the end
|
|
// of the instruction.
|
|
ASSERT(!cur_input->IsUsedAtStart());
|
|
|
|
LUnallocated* input_copy = cur_input->CopyUnconstrained(
|
|
chunk()->zone());
|
|
int vreg = GetVirtualRegister();
|
|
if (!AllocationOk()) return;
|
|
cur_input->set_virtual_register(vreg);
|
|
|
|
if (RequiredRegisterKind(input_copy->virtual_register()) ==
|
|
DOUBLE_REGISTERS) {
|
|
double_artificial_registers_.Add(
|
|
cur_input->virtual_register() - first_artificial_register_,
|
|
zone());
|
|
}
|
|
|
|
AddConstraintsGapMove(gap_index, input_copy, cur_input);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle "output same as input" for second instruction.
|
|
if (second != NULL && second->Output() != NULL) {
|
|
LUnallocated* second_output = LUnallocated::cast(second->Output());
|
|
if (second_output->HasSameAsInputPolicy()) {
|
|
LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
|
|
int output_vreg = second_output->virtual_register();
|
|
int input_vreg = cur_input->virtual_register();
|
|
|
|
LUnallocated* input_copy = cur_input->CopyUnconstrained(
|
|
chunk()->zone());
|
|
cur_input->set_virtual_register(second_output->virtual_register());
|
|
AddConstraintsGapMove(gap_index, input_copy, cur_input);
|
|
|
|
if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
|
|
int index = gap_index + 1;
|
|
LInstruction* instr = InstructionAt(index);
|
|
if (instr->HasPointerMap()) {
|
|
instr->pointer_map()->RecordPointer(input_copy, chunk()->zone());
|
|
}
|
|
} else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
|
|
// The input is assumed to immediately have a tagged representation,
|
|
// before the pointer map can be used. I.e. the pointer map at the
|
|
// instruction will include the output operand (whose value at the
|
|
// beginning of the instruction is equal to the input operand). If
|
|
// this is not desired, then the pointer map at this instruction needs
|
|
// to be adjusted manually.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
|
|
int block_start = block->first_instruction_index();
|
|
int index = block->last_instruction_index();
|
|
|
|
LifetimePosition block_start_position =
|
|
LifetimePosition::FromInstructionIndex(block_start);
|
|
|
|
while (index >= block_start) {
|
|
LifetimePosition curr_position =
|
|
LifetimePosition::FromInstructionIndex(index);
|
|
|
|
if (IsGapAt(index)) {
|
|
// We have a gap at this position.
|
|
LGap* gap = GapAt(index);
|
|
LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
|
|
chunk()->zone());
|
|
const ZoneList<LMoveOperands>* move_operands = move->move_operands();
|
|
for (int i = 0; i < move_operands->length(); ++i) {
|
|
LMoveOperands* cur = &move_operands->at(i);
|
|
if (cur->IsIgnored()) continue;
|
|
LOperand* from = cur->source();
|
|
LOperand* to = cur->destination();
|
|
HPhi* phi = LookupPhi(to);
|
|
LOperand* hint = to;
|
|
if (phi != NULL) {
|
|
// This is a phi resolving move.
|
|
if (!phi->block()->IsLoopHeader()) {
|
|
hint = LiveRangeFor(phi->id())->current_hint_operand();
|
|
}
|
|
} else {
|
|
if (to->IsUnallocated()) {
|
|
if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
|
|
Define(curr_position, to, from);
|
|
live->Remove(LUnallocated::cast(to)->virtual_register());
|
|
} else {
|
|
cur->Eliminate();
|
|
continue;
|
|
}
|
|
} else {
|
|
Define(curr_position, to, from);
|
|
}
|
|
}
|
|
Use(block_start_position, curr_position, from, hint);
|
|
if (from->IsUnallocated()) {
|
|
live->Add(LUnallocated::cast(from)->virtual_register());
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT(!IsGapAt(index));
|
|
LInstruction* instr = InstructionAt(index);
|
|
|
|
if (instr != NULL) {
|
|
LOperand* output = instr->Output();
|
|
if (output != NULL) {
|
|
if (output->IsUnallocated()) {
|
|
live->Remove(LUnallocated::cast(output)->virtual_register());
|
|
}
|
|
Define(curr_position, output, NULL);
|
|
}
|
|
|
|
if (instr->ClobbersRegisters()) {
|
|
for (int i = 0; i < Register::kMaxNumAllocatableRegisters; ++i) {
|
|
if (output == NULL || !output->IsRegister() ||
|
|
output->index() != i) {
|
|
LiveRange* range = FixedLiveRangeFor(i);
|
|
range->AddUseInterval(curr_position,
|
|
curr_position.InstructionEnd(),
|
|
zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (instr->ClobbersDoubleRegisters()) {
|
|
for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
|
|
if (output == NULL || !output->IsDoubleRegister() ||
|
|
output->index() != i) {
|
|
LiveRange* range = FixedDoubleLiveRangeFor(i);
|
|
range->AddUseInterval(curr_position,
|
|
curr_position.InstructionEnd(),
|
|
zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
for (UseIterator it(instr); !it.Done(); it.Advance()) {
|
|
LOperand* input = it.Current();
|
|
|
|
LifetimePosition use_pos;
|
|
if (input->IsUnallocated() &&
|
|
LUnallocated::cast(input)->IsUsedAtStart()) {
|
|
use_pos = curr_position;
|
|
} else {
|
|
use_pos = curr_position.InstructionEnd();
|
|
}
|
|
|
|
Use(block_start_position, use_pos, input, NULL);
|
|
if (input->IsUnallocated()) {
|
|
live->Add(LUnallocated::cast(input)->virtual_register());
|
|
}
|
|
}
|
|
|
|
for (TempIterator it(instr); !it.Done(); it.Advance()) {
|
|
LOperand* temp = it.Current();
|
|
if (instr->ClobbersTemps()) {
|
|
if (temp->IsRegister()) continue;
|
|
if (temp->IsUnallocated()) {
|
|
LUnallocated* temp_unalloc = LUnallocated::cast(temp);
|
|
if (temp_unalloc->HasFixedPolicy()) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
|
|
Define(curr_position, temp, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
index = index - 1;
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::ResolvePhis(HBasicBlock* block) {
|
|
const ZoneList<HPhi*>* phis = block->phis();
|
|
for (int i = 0; i < phis->length(); ++i) {
|
|
HPhi* phi = phis->at(i);
|
|
LUnallocated* phi_operand =
|
|
new(chunk()->zone()) LUnallocated(LUnallocated::NONE);
|
|
phi_operand->set_virtual_register(phi->id());
|
|
for (int j = 0; j < phi->OperandCount(); ++j) {
|
|
HValue* op = phi->OperandAt(j);
|
|
LOperand* operand = NULL;
|
|
if (op->IsConstant() && op->EmitAtUses()) {
|
|
HConstant* constant = HConstant::cast(op);
|
|
operand = chunk_->DefineConstantOperand(constant);
|
|
} else {
|
|
ASSERT(!op->EmitAtUses());
|
|
LUnallocated* unalloc =
|
|
new(chunk()->zone()) LUnallocated(LUnallocated::ANY);
|
|
unalloc->set_virtual_register(op->id());
|
|
operand = unalloc;
|
|
}
|
|
HBasicBlock* cur_block = block->predecessors()->at(j);
|
|
// The gap move must be added without any special processing as in
|
|
// the AddConstraintsGapMove.
|
|
chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
|
|
operand,
|
|
phi_operand);
|
|
|
|
// We are going to insert a move before the branch instruction.
|
|
// Some branch instructions (e.g. loops' back edges)
|
|
// can potentially cause a GC so they have a pointer map.
|
|
// By inserting a move we essentially create a copy of a
|
|
// value which is invisible to PopulatePointerMaps(), because we store
|
|
// it into a location different from the operand of a live range
|
|
// covering a branch instruction.
|
|
// Thus we need to manually record a pointer.
|
|
LInstruction* branch =
|
|
InstructionAt(cur_block->last_instruction_index());
|
|
if (branch->HasPointerMap()) {
|
|
if (phi->representation().IsTagged() && !phi->type().IsSmi()) {
|
|
branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone());
|
|
} else if (!phi->representation().IsDouble()) {
|
|
branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
LiveRange* live_range = LiveRangeFor(phi->id());
|
|
LLabel* label = chunk_->GetLabel(phi->block()->block_id());
|
|
label->GetOrCreateParallelMove(LGap::START, chunk()->zone())->
|
|
AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone());
|
|
live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
|
|
}
|
|
}
|
|
|
|
|
|
bool LAllocator::Allocate(LChunk* chunk) {
|
|
ASSERT(chunk_ == NULL);
|
|
chunk_ = static_cast<LPlatformChunk*>(chunk);
|
|
assigned_registers_ =
|
|
new(chunk->zone()) BitVector(Register::NumAllocatableRegisters(),
|
|
chunk->zone());
|
|
assigned_double_registers_ =
|
|
new(chunk->zone()) BitVector(DoubleRegister::NumAllocatableRegisters(),
|
|
chunk->zone());
|
|
MeetRegisterConstraints();
|
|
if (!AllocationOk()) return false;
|
|
ResolvePhis();
|
|
BuildLiveRanges();
|
|
AllocateGeneralRegisters();
|
|
if (!AllocationOk()) return false;
|
|
AllocateDoubleRegisters();
|
|
if (!AllocationOk()) return false;
|
|
PopulatePointerMaps();
|
|
ConnectRanges();
|
|
ResolveControlFlow();
|
|
return true;
|
|
}
|
|
|
|
|
|
void LAllocator::MeetRegisterConstraints() {
|
|
LAllocatorPhase phase("L_Register constraints", this);
|
|
first_artificial_register_ = next_virtual_register_;
|
|
const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
|
|
for (int i = 0; i < blocks->length(); ++i) {
|
|
HBasicBlock* block = blocks->at(i);
|
|
MeetRegisterConstraints(block);
|
|
if (!AllocationOk()) return;
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::ResolvePhis() {
|
|
LAllocatorPhase phase("L_Resolve phis", this);
|
|
|
|
// Process the blocks in reverse order.
|
|
const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
|
|
for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
|
|
HBasicBlock* block = blocks->at(block_id);
|
|
ResolvePhis(block);
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::ResolveControlFlow(LiveRange* range,
|
|
HBasicBlock* block,
|
|
HBasicBlock* pred) {
|
|
LifetimePosition pred_end =
|
|
LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
|
|
LifetimePosition cur_start =
|
|
LifetimePosition::FromInstructionIndex(block->first_instruction_index());
|
|
LiveRange* pred_cover = NULL;
|
|
LiveRange* cur_cover = NULL;
|
|
LiveRange* cur_range = range;
|
|
while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
|
|
if (cur_range->CanCover(cur_start)) {
|
|
ASSERT(cur_cover == NULL);
|
|
cur_cover = cur_range;
|
|
}
|
|
if (cur_range->CanCover(pred_end)) {
|
|
ASSERT(pred_cover == NULL);
|
|
pred_cover = cur_range;
|
|
}
|
|
cur_range = cur_range->next();
|
|
}
|
|
|
|
if (cur_cover->IsSpilled()) return;
|
|
ASSERT(pred_cover != NULL && cur_cover != NULL);
|
|
if (pred_cover != cur_cover) {
|
|
LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone());
|
|
LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone());
|
|
if (!pred_op->Equals(cur_op)) {
|
|
LGap* gap = NULL;
|
|
if (block->predecessors()->length() == 1) {
|
|
gap = GapAt(block->first_instruction_index());
|
|
} else {
|
|
ASSERT(pred->end()->SecondSuccessor() == NULL);
|
|
gap = GetLastGap(pred);
|
|
|
|
// We are going to insert a move before the branch instruction.
|
|
// Some branch instructions (e.g. loops' back edges)
|
|
// can potentially cause a GC so they have a pointer map.
|
|
// By inserting a move we essentially create a copy of a
|
|
// value which is invisible to PopulatePointerMaps(), because we store
|
|
// it into a location different from the operand of a live range
|
|
// covering a branch instruction.
|
|
// Thus we need to manually record a pointer.
|
|
LInstruction* branch = InstructionAt(pred->last_instruction_index());
|
|
if (branch->HasPointerMap()) {
|
|
if (HasTaggedValue(range->id())) {
|
|
branch->pointer_map()->RecordPointer(cur_op, chunk()->zone());
|
|
} else if (!cur_op->IsDoubleStackSlot() &&
|
|
!cur_op->IsDoubleRegister()) {
|
|
branch->pointer_map()->RemovePointer(cur_op);
|
|
}
|
|
}
|
|
}
|
|
gap->GetOrCreateParallelMove(
|
|
LGap::START, chunk()->zone())->AddMove(pred_op, cur_op,
|
|
chunk()->zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
|
|
int index = pos.InstructionIndex();
|
|
if (IsGapAt(index)) {
|
|
LGap* gap = GapAt(index);
|
|
return gap->GetOrCreateParallelMove(
|
|
pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone());
|
|
}
|
|
int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
|
|
return GapAt(gap_pos)->GetOrCreateParallelMove(
|
|
(gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone());
|
|
}
|
|
|
|
|
|
HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
|
|
LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
|
|
return gap->block();
|
|
}
|
|
|
|
|
|
void LAllocator::ConnectRanges() {
|
|
LAllocatorPhase phase("L_Connect ranges", this);
|
|
for (int i = 0; i < live_ranges()->length(); ++i) {
|
|
LiveRange* first_range = live_ranges()->at(i);
|
|
if (first_range == NULL || first_range->parent() != NULL) continue;
|
|
|
|
LiveRange* second_range = first_range->next();
|
|
while (second_range != NULL) {
|
|
LifetimePosition pos = second_range->Start();
|
|
|
|
if (!second_range->IsSpilled()) {
|
|
// Add gap move if the two live ranges touch and there is no block
|
|
// boundary.
|
|
if (first_range->End().Value() == pos.Value()) {
|
|
bool should_insert = true;
|
|
if (IsBlockBoundary(pos)) {
|
|
should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
|
|
}
|
|
if (should_insert) {
|
|
LParallelMove* move = GetConnectingParallelMove(pos);
|
|
LOperand* prev_operand = first_range->CreateAssignedOperand(
|
|
chunk()->zone());
|
|
LOperand* cur_operand = second_range->CreateAssignedOperand(
|
|
chunk()->zone());
|
|
move->AddMove(prev_operand, cur_operand,
|
|
chunk()->zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
first_range = second_range;
|
|
second_range = second_range->next();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
|
|
if (block->predecessors()->length() != 1) return false;
|
|
return block->predecessors()->first()->block_id() == block->block_id() - 1;
|
|
}
|
|
|
|
|
|
void LAllocator::ResolveControlFlow() {
|
|
LAllocatorPhase phase("L_Resolve control flow", this);
|
|
const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
|
|
for (int block_id = 1; block_id < blocks->length(); ++block_id) {
|
|
HBasicBlock* block = blocks->at(block_id);
|
|
if (CanEagerlyResolveControlFlow(block)) continue;
|
|
BitVector* live = live_in_sets_[block->block_id()];
|
|
BitVector::Iterator iterator(live);
|
|
while (!iterator.Done()) {
|
|
int operand_index = iterator.Current();
|
|
for (int i = 0; i < block->predecessors()->length(); ++i) {
|
|
HBasicBlock* cur = block->predecessors()->at(i);
|
|
LiveRange* cur_range = LiveRangeFor(operand_index);
|
|
ResolveControlFlow(cur_range, block, cur);
|
|
}
|
|
iterator.Advance();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::BuildLiveRanges() {
|
|
LAllocatorPhase phase("L_Build live ranges", this);
|
|
InitializeLivenessAnalysis();
|
|
// Process the blocks in reverse order.
|
|
const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
|
|
for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
|
|
HBasicBlock* block = blocks->at(block_id);
|
|
BitVector* live = ComputeLiveOut(block);
|
|
// Initially consider all live_out values live for the entire block. We
|
|
// will shorten these intervals if necessary.
|
|
AddInitialIntervals(block, live);
|
|
|
|
// Process the instructions in reverse order, generating and killing
|
|
// live values.
|
|
ProcessInstructions(block, live);
|
|
// All phi output operands are killed by this block.
|
|
const ZoneList<HPhi*>* phis = block->phis();
|
|
for (int i = 0; i < phis->length(); ++i) {
|
|
// The live range interval already ends at the first instruction of the
|
|
// block.
|
|
HPhi* phi = phis->at(i);
|
|
live->Remove(phi->id());
|
|
|
|
LOperand* hint = NULL;
|
|
LOperand* phi_operand = NULL;
|
|
LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
|
|
LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
|
|
chunk()->zone());
|
|
for (int j = 0; j < move->move_operands()->length(); ++j) {
|
|
LOperand* to = move->move_operands()->at(j).destination();
|
|
if (to->IsUnallocated() &&
|
|
LUnallocated::cast(to)->virtual_register() == phi->id()) {
|
|
hint = move->move_operands()->at(j).source();
|
|
phi_operand = to;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT(hint != NULL);
|
|
|
|
LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
|
|
block->first_instruction_index());
|
|
Define(block_start, phi_operand, hint);
|
|
}
|
|
|
|
// Now live is live_in for this block except not including values live
|
|
// out on backward successor edges.
|
|
live_in_sets_[block_id] = live;
|
|
|
|
// If this block is a loop header go back and patch up the necessary
|
|
// predecessor blocks.
|
|
if (block->IsLoopHeader()) {
|
|
// TODO(kmillikin): Need to be able to get the last block of the loop
|
|
// in the loop information. Add a live range stretching from the first
|
|
// loop instruction to the last for each value live on entry to the
|
|
// header.
|
|
HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
|
|
BitVector::Iterator iterator(live);
|
|
LifetimePosition start = LifetimePosition::FromInstructionIndex(
|
|
block->first_instruction_index());
|
|
LifetimePosition end = LifetimePosition::FromInstructionIndex(
|
|
back_edge->last_instruction_index()).NextInstruction();
|
|
while (!iterator.Done()) {
|
|
int operand_index = iterator.Current();
|
|
LiveRange* range = LiveRangeFor(operand_index);
|
|
range->EnsureInterval(start, end, zone());
|
|
iterator.Advance();
|
|
}
|
|
|
|
for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
|
|
live_in_sets_[i]->Union(*live);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (block_id == 0) {
|
|
BitVector::Iterator iterator(live);
|
|
bool found = false;
|
|
while (!iterator.Done()) {
|
|
found = true;
|
|
int operand_index = iterator.Current();
|
|
if (chunk_->info()->IsStub()) {
|
|
CodeStub::Major major_key = chunk_->info()->code_stub()->MajorKey();
|
|
PrintF("Function: %s\n", CodeStub::MajorName(major_key, false));
|
|
} else {
|
|
ASSERT(chunk_->info()->IsOptimizing());
|
|
AllowHandleDereference allow_deref;
|
|
PrintF("Function: %s\n",
|
|
chunk_->info()->function()->debug_name()->ToCString().get());
|
|
}
|
|
PrintF("Value %d used before first definition!\n", operand_index);
|
|
LiveRange* range = LiveRangeFor(operand_index);
|
|
PrintF("First use is at %d\n", range->first_pos()->pos().Value());
|
|
iterator.Advance();
|
|
}
|
|
ASSERT(!found);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for (int i = 0; i < live_ranges_.length(); ++i) {
|
|
if (live_ranges_[i] != NULL) {
|
|
live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool LAllocator::SafePointsAreInOrder() const {
|
|
const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
|
|
int safe_point = 0;
|
|
for (int i = 0; i < pointer_maps->length(); ++i) {
|
|
LPointerMap* map = pointer_maps->at(i);
|
|
if (safe_point > map->lithium_position()) return false;
|
|
safe_point = map->lithium_position();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void LAllocator::PopulatePointerMaps() {
|
|
LAllocatorPhase phase("L_Populate pointer maps", this);
|
|
const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
|
|
|
|
ASSERT(SafePointsAreInOrder());
|
|
|
|
// Iterate over all safe point positions and record a pointer
|
|
// for all spilled live ranges at this point.
|
|
int first_safe_point_index = 0;
|
|
int last_range_start = 0;
|
|
for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
|
|
LiveRange* range = live_ranges()->at(range_idx);
|
|
if (range == NULL) continue;
|
|
// Iterate over the first parts of multi-part live ranges.
|
|
if (range->parent() != NULL) continue;
|
|
// Skip non-pointer values.
|
|
if (!HasTaggedValue(range->id())) continue;
|
|
// Skip empty live ranges.
|
|
if (range->IsEmpty()) continue;
|
|
|
|
// Find the extent of the range and its children.
|
|
int start = range->Start().InstructionIndex();
|
|
int end = 0;
|
|
for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
|
|
LifetimePosition this_end = cur->End();
|
|
if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
|
|
ASSERT(cur->Start().InstructionIndex() >= start);
|
|
}
|
|
|
|
// Most of the ranges are in order, but not all. Keep an eye on when
|
|
// they step backwards and reset the first_safe_point_index so we don't
|
|
// miss any safe points.
|
|
if (start < last_range_start) {
|
|
first_safe_point_index = 0;
|
|
}
|
|
last_range_start = start;
|
|
|
|
// Step across all the safe points that are before the start of this range,
|
|
// recording how far we step in order to save doing this for the next range.
|
|
while (first_safe_point_index < pointer_maps->length()) {
|
|
LPointerMap* map = pointer_maps->at(first_safe_point_index);
|
|
int safe_point = map->lithium_position();
|
|
if (safe_point >= start) break;
|
|
first_safe_point_index++;
|
|
}
|
|
|
|
// Step through the safe points to see whether they are in the range.
|
|
for (int safe_point_index = first_safe_point_index;
|
|
safe_point_index < pointer_maps->length();
|
|
++safe_point_index) {
|
|
LPointerMap* map = pointer_maps->at(safe_point_index);
|
|
int safe_point = map->lithium_position();
|
|
|
|
// The safe points are sorted so we can stop searching here.
|
|
if (safe_point - 1 > end) break;
|
|
|
|
// Advance to the next active range that covers the current
|
|
// safe point position.
|
|
LifetimePosition safe_point_pos =
|
|
LifetimePosition::FromInstructionIndex(safe_point);
|
|
LiveRange* cur = range;
|
|
while (cur != NULL && !cur->Covers(safe_point_pos)) {
|
|
cur = cur->next();
|
|
}
|
|
if (cur == NULL) continue;
|
|
|
|
// Check if the live range is spilled and the safe point is after
|
|
// the spill position.
|
|
if (range->HasAllocatedSpillOperand() &&
|
|
safe_point >= range->spill_start_index()) {
|
|
TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
|
|
range->id(), range->spill_start_index(), safe_point);
|
|
map->RecordPointer(range->GetSpillOperand(), chunk()->zone());
|
|
}
|
|
|
|
if (!cur->IsSpilled()) {
|
|
TraceAlloc("Pointer in register for range %d (start at %d) "
|
|
"at safe point %d\n",
|
|
cur->id(), cur->Start().Value(), safe_point);
|
|
LOperand* operand = cur->CreateAssignedOperand(chunk()->zone());
|
|
ASSERT(!operand->IsStackSlot());
|
|
map->RecordPointer(operand, chunk()->zone());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::AllocateGeneralRegisters() {
|
|
LAllocatorPhase phase("L_Allocate general registers", this);
|
|
num_registers_ = Register::NumAllocatableRegisters();
|
|
mode_ = GENERAL_REGISTERS;
|
|
AllocateRegisters();
|
|
}
|
|
|
|
|
|
void LAllocator::AllocateDoubleRegisters() {
|
|
LAllocatorPhase phase("L_Allocate double registers", this);
|
|
num_registers_ = DoubleRegister::NumAllocatableRegisters();
|
|
mode_ = DOUBLE_REGISTERS;
|
|
AllocateRegisters();
|
|
}
|
|
|
|
|
|
void LAllocator::AllocateRegisters() {
|
|
ASSERT(unhandled_live_ranges_.is_empty());
|
|
|
|
for (int i = 0; i < live_ranges_.length(); ++i) {
|
|
if (live_ranges_[i] != NULL) {
|
|
if (live_ranges_[i]->Kind() == mode_) {
|
|
AddToUnhandledUnsorted(live_ranges_[i]);
|
|
}
|
|
}
|
|
}
|
|
SortUnhandled();
|
|
ASSERT(UnhandledIsSorted());
|
|
|
|
ASSERT(reusable_slots_.is_empty());
|
|
ASSERT(active_live_ranges_.is_empty());
|
|
ASSERT(inactive_live_ranges_.is_empty());
|
|
|
|
if (mode_ == DOUBLE_REGISTERS) {
|
|
for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
|
|
LiveRange* current = fixed_double_live_ranges_.at(i);
|
|
if (current != NULL) {
|
|
AddToInactive(current);
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT(mode_ == GENERAL_REGISTERS);
|
|
for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
|
|
LiveRange* current = fixed_live_ranges_.at(i);
|
|
if (current != NULL) {
|
|
AddToInactive(current);
|
|
}
|
|
}
|
|
}
|
|
|
|
while (!unhandled_live_ranges_.is_empty()) {
|
|
ASSERT(UnhandledIsSorted());
|
|
LiveRange* current = unhandled_live_ranges_.RemoveLast();
|
|
ASSERT(UnhandledIsSorted());
|
|
LifetimePosition position = current->Start();
|
|
#ifdef DEBUG
|
|
allocation_finger_ = position;
|
|
#endif
|
|
TraceAlloc("Processing interval %d start=%d\n",
|
|
current->id(),
|
|
position.Value());
|
|
|
|
if (current->HasAllocatedSpillOperand()) {
|
|
TraceAlloc("Live range %d already has a spill operand\n", current->id());
|
|
LifetimePosition next_pos = position;
|
|
if (IsGapAt(next_pos.InstructionIndex())) {
|
|
next_pos = next_pos.NextInstruction();
|
|
}
|
|
UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
|
|
// If the range already has a spill operand and it doesn't need a
|
|
// register immediately, split it and spill the first part of the range.
|
|
if (pos == NULL) {
|
|
Spill(current);
|
|
continue;
|
|
} else if (pos->pos().Value() >
|
|
current->Start().NextInstruction().Value()) {
|
|
// Do not spill live range eagerly if use position that can benefit from
|
|
// the register is too close to the start of live range.
|
|
SpillBetween(current, current->Start(), pos->pos());
|
|
if (!AllocationOk()) return;
|
|
ASSERT(UnhandledIsSorted());
|
|
continue;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < active_live_ranges_.length(); ++i) {
|
|
LiveRange* cur_active = active_live_ranges_.at(i);
|
|
if (cur_active->End().Value() <= position.Value()) {
|
|
ActiveToHandled(cur_active);
|
|
--i; // The live range was removed from the list of active live ranges.
|
|
} else if (!cur_active->Covers(position)) {
|
|
ActiveToInactive(cur_active);
|
|
--i; // The live range was removed from the list of active live ranges.
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
|
|
LiveRange* cur_inactive = inactive_live_ranges_.at(i);
|
|
if (cur_inactive->End().Value() <= position.Value()) {
|
|
InactiveToHandled(cur_inactive);
|
|
--i; // Live range was removed from the list of inactive live ranges.
|
|
} else if (cur_inactive->Covers(position)) {
|
|
InactiveToActive(cur_inactive);
|
|
--i; // Live range was removed from the list of inactive live ranges.
|
|
}
|
|
}
|
|
|
|
ASSERT(!current->HasRegisterAssigned() && !current->IsSpilled());
|
|
|
|
bool result = TryAllocateFreeReg(current);
|
|
if (!AllocationOk()) return;
|
|
|
|
if (!result) AllocateBlockedReg(current);
|
|
if (!AllocationOk()) return;
|
|
|
|
if (current->HasRegisterAssigned()) {
|
|
AddToActive(current);
|
|
}
|
|
}
|
|
|
|
reusable_slots_.Rewind(0);
|
|
active_live_ranges_.Rewind(0);
|
|
inactive_live_ranges_.Rewind(0);
|
|
}
|
|
|
|
|
|
const char* LAllocator::RegisterName(int allocation_index) {
|
|
if (mode_ == GENERAL_REGISTERS) {
|
|
return Register::AllocationIndexToString(allocation_index);
|
|
} else {
|
|
return DoubleRegister::AllocationIndexToString(allocation_index);
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::TraceAlloc(const char* msg, ...) {
|
|
if (FLAG_trace_alloc) {
|
|
va_list arguments;
|
|
va_start(arguments, msg);
|
|
OS::VPrint(msg, arguments);
|
|
va_end(arguments);
|
|
}
|
|
}
|
|
|
|
|
|
bool LAllocator::HasTaggedValue(int virtual_register) const {
|
|
HValue* value = graph_->LookupValue(virtual_register);
|
|
if (value == NULL) return false;
|
|
return value->representation().IsTagged() && !value->type().IsSmi();
|
|
}
|
|
|
|
|
|
RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
|
|
if (virtual_register < first_artificial_register_) {
|
|
HValue* value = graph_->LookupValue(virtual_register);
|
|
if (value != NULL && value->representation().IsDouble()) {
|
|
return DOUBLE_REGISTERS;
|
|
}
|
|
} else if (double_artificial_registers_.Contains(
|
|
virtual_register - first_artificial_register_)) {
|
|
return DOUBLE_REGISTERS;
|
|
}
|
|
|
|
return GENERAL_REGISTERS;
|
|
}
|
|
|
|
|
|
void LAllocator::AddToActive(LiveRange* range) {
|
|
TraceAlloc("Add live range %d to active\n", range->id());
|
|
active_live_ranges_.Add(range, zone());
|
|
}
|
|
|
|
|
|
void LAllocator::AddToInactive(LiveRange* range) {
|
|
TraceAlloc("Add live range %d to inactive\n", range->id());
|
|
inactive_live_ranges_.Add(range, zone());
|
|
}
|
|
|
|
|
|
void LAllocator::AddToUnhandledSorted(LiveRange* range) {
|
|
if (range == NULL || range->IsEmpty()) return;
|
|
ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
|
|
ASSERT(allocation_finger_.Value() <= range->Start().Value());
|
|
for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
|
|
LiveRange* cur_range = unhandled_live_ranges_.at(i);
|
|
if (range->ShouldBeAllocatedBefore(cur_range)) {
|
|
TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
|
|
unhandled_live_ranges_.InsertAt(i + 1, range, zone());
|
|
ASSERT(UnhandledIsSorted());
|
|
return;
|
|
}
|
|
}
|
|
TraceAlloc("Add live range %d to unhandled at start\n", range->id());
|
|
unhandled_live_ranges_.InsertAt(0, range, zone());
|
|
ASSERT(UnhandledIsSorted());
|
|
}
|
|
|
|
|
|
void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
|
|
if (range == NULL || range->IsEmpty()) return;
|
|
ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
|
|
TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
|
|
unhandled_live_ranges_.Add(range, zone());
|
|
}
|
|
|
|
|
|
static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
|
|
ASSERT(!(*a)->ShouldBeAllocatedBefore(*b) ||
|
|
!(*b)->ShouldBeAllocatedBefore(*a));
|
|
if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
|
|
if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
|
|
return (*a)->id() - (*b)->id();
|
|
}
|
|
|
|
|
|
// Sort the unhandled live ranges so that the ranges to be processed first are
|
|
// at the end of the array list. This is convenient for the register allocation
|
|
// algorithm because it is efficient to remove elements from the end.
|
|
void LAllocator::SortUnhandled() {
|
|
TraceAlloc("Sort unhandled\n");
|
|
unhandled_live_ranges_.Sort(&UnhandledSortHelper);
|
|
}
|
|
|
|
|
|
bool LAllocator::UnhandledIsSorted() {
|
|
int len = unhandled_live_ranges_.length();
|
|
for (int i = 1; i < len; i++) {
|
|
LiveRange* a = unhandled_live_ranges_.at(i - 1);
|
|
LiveRange* b = unhandled_live_ranges_.at(i);
|
|
if (a->Start().Value() < b->Start().Value()) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void LAllocator::FreeSpillSlot(LiveRange* range) {
|
|
// Check that we are the last range.
|
|
if (range->next() != NULL) return;
|
|
|
|
if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
|
|
|
|
int index = range->TopLevel()->GetSpillOperand()->index();
|
|
if (index >= 0) {
|
|
reusable_slots_.Add(range, zone());
|
|
}
|
|
}
|
|
|
|
|
|
LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
|
|
if (reusable_slots_.is_empty()) return NULL;
|
|
if (reusable_slots_.first()->End().Value() >
|
|
range->TopLevel()->Start().Value()) {
|
|
return NULL;
|
|
}
|
|
LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
|
|
reusable_slots_.Remove(0);
|
|
return result;
|
|
}
|
|
|
|
|
|
void LAllocator::ActiveToHandled(LiveRange* range) {
|
|
ASSERT(active_live_ranges_.Contains(range));
|
|
active_live_ranges_.RemoveElement(range);
|
|
TraceAlloc("Moving live range %d from active to handled\n", range->id());
|
|
FreeSpillSlot(range);
|
|
}
|
|
|
|
|
|
void LAllocator::ActiveToInactive(LiveRange* range) {
|
|
ASSERT(active_live_ranges_.Contains(range));
|
|
active_live_ranges_.RemoveElement(range);
|
|
inactive_live_ranges_.Add(range, zone());
|
|
TraceAlloc("Moving live range %d from active to inactive\n", range->id());
|
|
}
|
|
|
|
|
|
void LAllocator::InactiveToHandled(LiveRange* range) {
|
|
ASSERT(inactive_live_ranges_.Contains(range));
|
|
inactive_live_ranges_.RemoveElement(range);
|
|
TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
|
|
FreeSpillSlot(range);
|
|
}
|
|
|
|
|
|
void LAllocator::InactiveToActive(LiveRange* range) {
|
|
ASSERT(inactive_live_ranges_.Contains(range));
|
|
inactive_live_ranges_.RemoveElement(range);
|
|
active_live_ranges_.Add(range, zone());
|
|
TraceAlloc("Moving live range %d from inactive to active\n", range->id());
|
|
}
|
|
|
|
|
|
// TryAllocateFreeReg and AllocateBlockedReg assume this
|
|
// when allocating local arrays.
|
|
STATIC_ASSERT(DoubleRegister::kMaxNumAllocatableRegisters >=
|
|
Register::kMaxNumAllocatableRegisters);
|
|
|
|
|
|
bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
|
|
LifetimePosition free_until_pos[DoubleRegister::kMaxNumAllocatableRegisters];
|
|
|
|
for (int i = 0; i < num_registers_; i++) {
|
|
free_until_pos[i] = LifetimePosition::MaxPosition();
|
|
}
|
|
|
|
for (int i = 0; i < active_live_ranges_.length(); ++i) {
|
|
LiveRange* cur_active = active_live_ranges_.at(i);
|
|
free_until_pos[cur_active->assigned_register()] =
|
|
LifetimePosition::FromInstructionIndex(0);
|
|
}
|
|
|
|
for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
|
|
LiveRange* cur_inactive = inactive_live_ranges_.at(i);
|
|
ASSERT(cur_inactive->End().Value() > current->Start().Value());
|
|
LifetimePosition next_intersection =
|
|
cur_inactive->FirstIntersection(current);
|
|
if (!next_intersection.IsValid()) continue;
|
|
int cur_reg = cur_inactive->assigned_register();
|
|
free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
|
|
}
|
|
|
|
LOperand* hint = current->FirstHint();
|
|
if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
|
|
int register_index = hint->index();
|
|
TraceAlloc(
|
|
"Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
|
|
RegisterName(register_index),
|
|
free_until_pos[register_index].Value(),
|
|
current->id(),
|
|
current->End().Value());
|
|
|
|
// The desired register is free until the end of the current live range.
|
|
if (free_until_pos[register_index].Value() >= current->End().Value()) {
|
|
TraceAlloc("Assigning preferred reg %s to live range %d\n",
|
|
RegisterName(register_index),
|
|
current->id());
|
|
SetLiveRangeAssignedRegister(current, register_index);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Find the register which stays free for the longest time.
|
|
int reg = 0;
|
|
for (int i = 1; i < RegisterCount(); ++i) {
|
|
if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
|
|
reg = i;
|
|
}
|
|
}
|
|
|
|
LifetimePosition pos = free_until_pos[reg];
|
|
|
|
if (pos.Value() <= current->Start().Value()) {
|
|
// All registers are blocked.
|
|
return false;
|
|
}
|
|
|
|
if (pos.Value() < current->End().Value()) {
|
|
// Register reg is available at the range start but becomes blocked before
|
|
// the range end. Split current at position where it becomes blocked.
|
|
LiveRange* tail = SplitRangeAt(current, pos);
|
|
if (!AllocationOk()) return false;
|
|
AddToUnhandledSorted(tail);
|
|
}
|
|
|
|
|
|
// Register reg is available at the range start and is free until
|
|
// the range end.
|
|
ASSERT(pos.Value() >= current->End().Value());
|
|
TraceAlloc("Assigning free reg %s to live range %d\n",
|
|
RegisterName(reg),
|
|
current->id());
|
|
SetLiveRangeAssignedRegister(current, reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void LAllocator::AllocateBlockedReg(LiveRange* current) {
|
|
UsePosition* register_use = current->NextRegisterPosition(current->Start());
|
|
if (register_use == NULL) {
|
|
// There is no use in the current live range that requires a register.
|
|
// We can just spill it.
|
|
Spill(current);
|
|
return;
|
|
}
|
|
|
|
|
|
LifetimePosition use_pos[DoubleRegister::kMaxNumAllocatableRegisters];
|
|
LifetimePosition block_pos[DoubleRegister::kMaxNumAllocatableRegisters];
|
|
|
|
for (int i = 0; i < num_registers_; i++) {
|
|
use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
|
|
}
|
|
|
|
for (int i = 0; i < active_live_ranges_.length(); ++i) {
|
|
LiveRange* range = active_live_ranges_[i];
|
|
int cur_reg = range->assigned_register();
|
|
if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
|
|
block_pos[cur_reg] = use_pos[cur_reg] =
|
|
LifetimePosition::FromInstructionIndex(0);
|
|
} else {
|
|
UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
|
|
current->Start());
|
|
if (next_use == NULL) {
|
|
use_pos[cur_reg] = range->End();
|
|
} else {
|
|
use_pos[cur_reg] = next_use->pos();
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
|
|
LiveRange* range = inactive_live_ranges_.at(i);
|
|
ASSERT(range->End().Value() > current->Start().Value());
|
|
LifetimePosition next_intersection = range->FirstIntersection(current);
|
|
if (!next_intersection.IsValid()) continue;
|
|
int cur_reg = range->assigned_register();
|
|
if (range->IsFixed()) {
|
|
block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
|
|
use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
|
|
} else {
|
|
use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
|
|
}
|
|
}
|
|
|
|
int reg = 0;
|
|
for (int i = 1; i < RegisterCount(); ++i) {
|
|
if (use_pos[i].Value() > use_pos[reg].Value()) {
|
|
reg = i;
|
|
}
|
|
}
|
|
|
|
LifetimePosition pos = use_pos[reg];
|
|
|
|
if (pos.Value() < register_use->pos().Value()) {
|
|
// All registers are blocked before the first use that requires a register.
|
|
// Spill starting part of live range up to that use.
|
|
SpillBetween(current, current->Start(), register_use->pos());
|
|
return;
|
|
}
|
|
|
|
if (block_pos[reg].Value() < current->End().Value()) {
|
|
// Register becomes blocked before the current range end. Split before that
|
|
// position.
|
|
LiveRange* tail = SplitBetween(current,
|
|
current->Start(),
|
|
block_pos[reg].InstructionStart());
|
|
if (!AllocationOk()) return;
|
|
AddToUnhandledSorted(tail);
|
|
}
|
|
|
|
// Register reg is not blocked for the whole range.
|
|
ASSERT(block_pos[reg].Value() >= current->End().Value());
|
|
TraceAlloc("Assigning blocked reg %s to live range %d\n",
|
|
RegisterName(reg),
|
|
current->id());
|
|
SetLiveRangeAssignedRegister(current, reg);
|
|
|
|
// This register was not free. Thus we need to find and spill
|
|
// parts of active and inactive live regions that use the same register
|
|
// at the same lifetime positions as current.
|
|
SplitAndSpillIntersecting(current);
|
|
}
|
|
|
|
|
|
LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range,
|
|
LifetimePosition pos) {
|
|
HBasicBlock* block = GetBlock(pos.InstructionStart());
|
|
HBasicBlock* loop_header =
|
|
block->IsLoopHeader() ? block : block->parent_loop_header();
|
|
|
|
if (loop_header == NULL) return pos;
|
|
|
|
UsePosition* prev_use =
|
|
range->PreviousUsePositionRegisterIsBeneficial(pos);
|
|
|
|
while (loop_header != NULL) {
|
|
// We are going to spill live range inside the loop.
|
|
// If possible try to move spilling position backwards to loop header.
|
|
// This will reduce number of memory moves on the back edge.
|
|
LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
|
|
loop_header->first_instruction_index());
|
|
|
|
if (range->Covers(loop_start)) {
|
|
if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
|
|
// No register beneficial use inside the loop before the pos.
|
|
pos = loop_start;
|
|
}
|
|
}
|
|
|
|
// Try hoisting out to an outer loop.
|
|
loop_header = loop_header->parent_loop_header();
|
|
}
|
|
|
|
return pos;
|
|
}
|
|
|
|
|
|
void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
|
|
ASSERT(current->HasRegisterAssigned());
|
|
int reg = current->assigned_register();
|
|
LifetimePosition split_pos = current->Start();
|
|
for (int i = 0; i < active_live_ranges_.length(); ++i) {
|
|
LiveRange* range = active_live_ranges_[i];
|
|
if (range->assigned_register() == reg) {
|
|
UsePosition* next_pos = range->NextRegisterPosition(current->Start());
|
|
LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
|
|
if (next_pos == NULL) {
|
|
SpillAfter(range, spill_pos);
|
|
} else {
|
|
// When spilling between spill_pos and next_pos ensure that the range
|
|
// remains spilled at least until the start of the current live range.
|
|
// This guarantees that we will not introduce new unhandled ranges that
|
|
// start before the current range as this violates allocation invariant
|
|
// and will lead to an inconsistent state of active and inactive
|
|
// live-ranges: ranges are allocated in order of their start positions,
|
|
// ranges are retired from active/inactive when the start of the
|
|
// current live-range is larger than their end.
|
|
SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
|
|
}
|
|
if (!AllocationOk()) return;
|
|
ActiveToHandled(range);
|
|
--i;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
|
|
LiveRange* range = inactive_live_ranges_[i];
|
|
ASSERT(range->End().Value() > current->Start().Value());
|
|
if (range->assigned_register() == reg && !range->IsFixed()) {
|
|
LifetimePosition next_intersection = range->FirstIntersection(current);
|
|
if (next_intersection.IsValid()) {
|
|
UsePosition* next_pos = range->NextRegisterPosition(current->Start());
|
|
if (next_pos == NULL) {
|
|
SpillAfter(range, split_pos);
|
|
} else {
|
|
next_intersection = Min(next_intersection, next_pos->pos());
|
|
SpillBetween(range, split_pos, next_intersection);
|
|
}
|
|
if (!AllocationOk()) return;
|
|
InactiveToHandled(range);
|
|
--i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
|
|
return pos.IsInstructionStart() &&
|
|
InstructionAt(pos.InstructionIndex())->IsLabel();
|
|
}
|
|
|
|
|
|
LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
|
|
ASSERT(!range->IsFixed());
|
|
TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
|
|
|
|
if (pos.Value() <= range->Start().Value()) return range;
|
|
|
|
// We can't properly connect liveranges if split occured at the end
|
|
// of control instruction.
|
|
ASSERT(pos.IsInstructionStart() ||
|
|
!chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
|
|
|
|
int vreg = GetVirtualRegister();
|
|
if (!AllocationOk()) return NULL;
|
|
LiveRange* result = LiveRangeFor(vreg);
|
|
range->SplitAt(pos, result, zone());
|
|
return result;
|
|
}
|
|
|
|
|
|
LiveRange* LAllocator::SplitBetween(LiveRange* range,
|
|
LifetimePosition start,
|
|
LifetimePosition end) {
|
|
ASSERT(!range->IsFixed());
|
|
TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
|
|
range->id(),
|
|
start.Value(),
|
|
end.Value());
|
|
|
|
LifetimePosition split_pos = FindOptimalSplitPos(start, end);
|
|
ASSERT(split_pos.Value() >= start.Value());
|
|
return SplitRangeAt(range, split_pos);
|
|
}
|
|
|
|
|
|
LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
|
|
LifetimePosition end) {
|
|
int start_instr = start.InstructionIndex();
|
|
int end_instr = end.InstructionIndex();
|
|
ASSERT(start_instr <= end_instr);
|
|
|
|
// We have no choice
|
|
if (start_instr == end_instr) return end;
|
|
|
|
HBasicBlock* start_block = GetBlock(start);
|
|
HBasicBlock* end_block = GetBlock(end);
|
|
|
|
if (end_block == start_block) {
|
|
// The interval is split in the same basic block. Split at the latest
|
|
// possible position.
|
|
return end;
|
|
}
|
|
|
|
HBasicBlock* block = end_block;
|
|
// Find header of outermost loop.
|
|
while (block->parent_loop_header() != NULL &&
|
|
block->parent_loop_header()->block_id() > start_block->block_id()) {
|
|
block = block->parent_loop_header();
|
|
}
|
|
|
|
// We did not find any suitable outer loop. Split at the latest possible
|
|
// position unless end_block is a loop header itself.
|
|
if (block == end_block && !end_block->IsLoopHeader()) return end;
|
|
|
|
return LifetimePosition::FromInstructionIndex(
|
|
block->first_instruction_index());
|
|
}
|
|
|
|
|
|
void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
|
|
LiveRange* second_part = SplitRangeAt(range, pos);
|
|
if (!AllocationOk()) return;
|
|
Spill(second_part);
|
|
}
|
|
|
|
|
|
void LAllocator::SpillBetween(LiveRange* range,
|
|
LifetimePosition start,
|
|
LifetimePosition end) {
|
|
SpillBetweenUntil(range, start, start, end);
|
|
}
|
|
|
|
|
|
void LAllocator::SpillBetweenUntil(LiveRange* range,
|
|
LifetimePosition start,
|
|
LifetimePosition until,
|
|
LifetimePosition end) {
|
|
CHECK(start.Value() < end.Value());
|
|
LiveRange* second_part = SplitRangeAt(range, start);
|
|
if (!AllocationOk()) return;
|
|
|
|
if (second_part->Start().Value() < end.Value()) {
|
|
// The split result intersects with [start, end[.
|
|
// Split it at position between ]start+1, end[, spill the middle part
|
|
// and put the rest to unhandled.
|
|
LiveRange* third_part = SplitBetween(
|
|
second_part,
|
|
Max(second_part->Start().InstructionEnd(), until),
|
|
end.PrevInstruction().InstructionEnd());
|
|
if (!AllocationOk()) return;
|
|
|
|
ASSERT(third_part != second_part);
|
|
|
|
Spill(second_part);
|
|
AddToUnhandledSorted(third_part);
|
|
} else {
|
|
// The split result does not intersect with [start, end[.
|
|
// Nothing to spill. Just put it to unhandled as whole.
|
|
AddToUnhandledSorted(second_part);
|
|
}
|
|
}
|
|
|
|
|
|
void LAllocator::Spill(LiveRange* range) {
|
|
ASSERT(!range->IsSpilled());
|
|
TraceAlloc("Spilling live range %d\n", range->id());
|
|
LiveRange* first = range->TopLevel();
|
|
|
|
if (!first->HasAllocatedSpillOperand()) {
|
|
LOperand* op = TryReuseSpillSlot(range);
|
|
if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind());
|
|
first->SetSpillOperand(op);
|
|
}
|
|
range->MakeSpilled(chunk()->zone());
|
|
}
|
|
|
|
|
|
int LAllocator::RegisterCount() const {
|
|
return num_registers_;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
|
|
void LAllocator::Verify() const {
|
|
for (int i = 0; i < live_ranges()->length(); ++i) {
|
|
LiveRange* current = live_ranges()->at(i);
|
|
if (current != NULL) current->Verify();
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
|
|
LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator)
|
|
: CompilationPhase(name, allocator->graph()->info()),
|
|
allocator_(allocator) {
|
|
if (FLAG_hydrogen_stats) {
|
|
allocator_zone_start_allocation_size_ =
|
|
allocator->zone()->allocation_size();
|
|
}
|
|
}
|
|
|
|
|
|
LAllocatorPhase::~LAllocatorPhase() {
|
|
if (FLAG_hydrogen_stats) {
|
|
unsigned size = allocator_->zone()->allocation_size() -
|
|
allocator_zone_start_allocation_size_;
|
|
isolate()->GetHStatistics()->SaveTiming(name(), TimeDelta(), size);
|
|
}
|
|
|
|
if (ShouldProduceTraceOutput()) {
|
|
isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk());
|
|
isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (allocator_ != NULL) allocator_->Verify();
|
|
#endif
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|