v8/src/preparser.cc
rossberg 74cf8e0122 [strong] Check constructor returns
R=dslomov@chromium.org
BUG=v8:3956
LOG=N

Review URL: https://codereview.chromium.org/1019283002

Cr-Commit-Position: refs/heads/master@{#27320}
2015-03-19 19:40:04 +00:00

1055 lines
34 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include "src/allocation.h"
#include "src/base/logging.h"
#include "src/conversions-inl.h"
#include "src/conversions.h"
#include "src/globals.h"
#include "src/hashmap.h"
#include "src/list.h"
#include "src/preparse-data.h"
#include "src/preparse-data-format.h"
#include "src/preparser.h"
#include "src/unicode.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
void PreParserTraits::ReportMessageAt(Scanner::Location location,
const char* message, const char* arg,
ParseErrorType error_type) {
ReportMessageAt(location.beg_pos, location.end_pos, message, arg, error_type);
}
void PreParserTraits::ReportMessageAt(int start_pos, int end_pos,
const char* message, const char* arg,
ParseErrorType error_type) {
pre_parser_->log_->LogMessage(start_pos, end_pos, message, arg, error_type);
}
PreParserIdentifier PreParserTraits::GetSymbol(Scanner* scanner) {
if (scanner->current_token() == Token::FUTURE_RESERVED_WORD) {
return PreParserIdentifier::FutureReserved();
} else if (scanner->current_token() ==
Token::FUTURE_STRICT_RESERVED_WORD) {
return PreParserIdentifier::FutureStrictReserved();
} else if (scanner->current_token() == Token::LET) {
return PreParserIdentifier::Let();
} else if (scanner->current_token() == Token::STATIC) {
return PreParserIdentifier::Static();
} else if (scanner->current_token() == Token::YIELD) {
return PreParserIdentifier::Yield();
}
if (scanner->UnescapedLiteralMatches("eval", 4)) {
return PreParserIdentifier::Eval();
}
if (scanner->UnescapedLiteralMatches("arguments", 9)) {
return PreParserIdentifier::Arguments();
}
if (scanner->LiteralMatches("prototype", 9)) {
return PreParserIdentifier::Prototype();
}
if (scanner->LiteralMatches("constructor", 11)) {
return PreParserIdentifier::Constructor();
}
return PreParserIdentifier::Default();
}
PreParserIdentifier PreParserTraits::GetNumberAsSymbol(Scanner* scanner) {
return PreParserIdentifier::Default();
}
PreParserExpression PreParserTraits::ExpressionFromString(
int pos, Scanner* scanner, PreParserFactory* factory) {
if (scanner->UnescapedLiteralMatches("use strict", 10)) {
return PreParserExpression::UseStrictStringLiteral();
} else if (scanner->UnescapedLiteralMatches("use strong", 10)) {
return PreParserExpression::UseStrongStringLiteral();
}
return PreParserExpression::StringLiteral();
}
PreParserExpression PreParserTraits::ParseV8Intrinsic(bool* ok) {
return pre_parser_->ParseV8Intrinsic(ok);
}
PreParserExpression PreParserTraits::ParseFunctionLiteral(
PreParserIdentifier name, Scanner::Location function_name_location,
bool name_is_strict_reserved, FunctionKind kind,
int function_token_position, FunctionLiteral::FunctionType type,
FunctionLiteral::ArityRestriction arity_restriction, bool* ok) {
return pre_parser_->ParseFunctionLiteral(
name, function_name_location, name_is_strict_reserved, kind,
function_token_position, type, arity_restriction, ok);
}
PreParser::PreParseResult PreParser::PreParseLazyFunction(
LanguageMode language_mode, FunctionKind kind, ParserRecorder* log) {
log_ = log;
// Lazy functions always have trivial outer scopes (no with/catch scopes).
Scope* top_scope = NewScope(scope_, SCRIPT_SCOPE);
PreParserFactory top_factory(NULL);
FunctionState top_state(&function_state_, &scope_, top_scope, kNormalFunction,
&top_factory);
scope_->SetLanguageMode(language_mode);
Scope* function_scope = NewScope(scope_, FUNCTION_SCOPE);
PreParserFactory function_factory(NULL);
FunctionState function_state(&function_state_, &scope_, function_scope, kind,
&function_factory);
DCHECK_EQ(Token::LBRACE, scanner()->current_token());
bool ok = true;
int start_position = peek_position();
ParseLazyFunctionLiteralBody(&ok);
if (stack_overflow()) return kPreParseStackOverflow;
if (!ok) {
ReportUnexpectedToken(scanner()->current_token());
} else {
DCHECK_EQ(Token::RBRACE, scanner()->peek());
if (is_strict(scope_->language_mode())) {
int end_pos = scanner()->location().end_pos;
CheckStrictOctalLiteral(start_position, end_pos, &ok);
}
}
return kPreParseSuccess;
}
PreParserExpression PreParserTraits::ParseClassLiteral(
PreParserIdentifier name, Scanner::Location class_name_location,
bool name_is_strict_reserved, int pos, bool* ok) {
return pre_parser_->ParseClassLiteral(name, class_name_location,
name_is_strict_reserved, pos, ok);
}
// Preparsing checks a JavaScript program and emits preparse-data that helps
// a later parsing to be faster.
// See preparser-data.h for the data.
// The PreParser checks that the syntax follows the grammar for JavaScript,
// and collects some information about the program along the way.
// The grammar check is only performed in order to understand the program
// sufficiently to deduce some information about it, that can be used
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
// rather it is to speed up properly written and correct programs.
// That means that contextual checks (like a label being declared where
// it is used) are generally omitted.
PreParser::Statement PreParser::ParseStatementListItem(bool* ok) {
// ECMA 262 6th Edition
// StatementListItem[Yield, Return] :
// Statement[?Yield, ?Return]
// Declaration[?Yield]
//
// Declaration[Yield] :
// HoistableDeclaration[?Yield]
// ClassDeclaration[?Yield]
// LexicalDeclaration[In, ?Yield]
//
// HoistableDeclaration[Yield, Default] :
// FunctionDeclaration[?Yield, ?Default]
// GeneratorDeclaration[?Yield, ?Default]
//
// LexicalDeclaration[In, Yield] :
// LetOrConst BindingList[?In, ?Yield] ;
switch (peek()) {
case Token::FUNCTION:
return ParseFunctionDeclaration(ok);
case Token::CLASS:
return ParseClassDeclaration(ok);
case Token::CONST:
return ParseVariableStatement(kStatementListItem, ok);
case Token::LET:
if (is_strict(language_mode())) {
return ParseVariableStatement(kStatementListItem, ok);
}
// Fall through.
default:
return ParseStatement(ok);
}
}
void PreParser::ParseStatementList(int end_token, bool* ok) {
// SourceElements ::
// (Statement)* <end_token>
bool directive_prologue = true;
while (peek() != end_token) {
if (directive_prologue && peek() != Token::STRING) {
directive_prologue = false;
}
Token::Value token = peek();
Scanner::Location old_super_loc = function_state_->super_call_location();
Statement statement = ParseStatementListItem(ok);
if (!*ok) return;
Scanner::Location super_loc = function_state_->super_call_location();
if (is_strong(language_mode()) &&
i::IsConstructor(function_state_->kind()) &&
!old_super_loc.IsValid() && super_loc.IsValid() &&
token != Token::SUPER) {
ReportMessageAt(super_loc, "strong_super_call_nested");
*ok = false;
return;
}
if (directive_prologue) {
if (statement.IsUseStrictLiteral()) {
scope_->SetLanguageMode(
static_cast<LanguageMode>(scope_->language_mode() | STRICT_BIT));
} else if (statement.IsUseStrongLiteral() && allow_strong_mode()) {
scope_->SetLanguageMode(static_cast<LanguageMode>(
scope_->language_mode() | STRICT_BIT | STRONG_BIT));
} else if (!statement.IsStringLiteral()) {
directive_prologue = false;
}
}
}
}
#define CHECK_OK ok); \
if (!*ok) return Statement::Default(); \
((void)0
#define DUMMY ) // to make indentation work
#undef DUMMY
PreParser::Statement PreParser::ParseStatement(bool* ok) {
// Statement ::
// EmptyStatement
// ...
return ParseSubStatement(ok);
}
PreParser::Statement PreParser::ParseSubStatement(bool* ok) {
// Statement ::
// Block
// VariableStatement
// EmptyStatement
// ExpressionStatement
// IfStatement
// IterationStatement
// ContinueStatement
// BreakStatement
// ReturnStatement
// WithStatement
// LabelledStatement
// SwitchStatement
// ThrowStatement
// TryStatement
// DebuggerStatement
// Note: Since labels can only be used by 'break' and 'continue'
// statements, which themselves are only valid within blocks,
// iterations or 'switch' statements (i.e., BreakableStatements),
// labels can be simply ignored in all other cases; except for
// trivial labeled break statements 'label: break label' which is
// parsed into an empty statement.
// Keep the source position of the statement
switch (peek()) {
case Token::LBRACE:
return ParseBlock(ok);
case Token::SEMICOLON:
if (is_strong(language_mode())) {
PreParserTraits::ReportMessageAt(scanner()->peek_location(),
"strong_empty");
*ok = false;
return Statement::Default();
}
Next();
return Statement::Default();
case Token::IF:
return ParseIfStatement(ok);
case Token::DO:
return ParseDoWhileStatement(ok);
case Token::WHILE:
return ParseWhileStatement(ok);
case Token::FOR:
return ParseForStatement(ok);
case Token::CONTINUE:
return ParseContinueStatement(ok);
case Token::BREAK:
return ParseBreakStatement(ok);
case Token::RETURN:
return ParseReturnStatement(ok);
case Token::WITH:
return ParseWithStatement(ok);
case Token::SWITCH:
return ParseSwitchStatement(ok);
case Token::THROW:
return ParseThrowStatement(ok);
case Token::TRY:
return ParseTryStatement(ok);
case Token::FUNCTION: {
Scanner::Location start_location = scanner()->peek_location();
Statement statement = ParseFunctionDeclaration(CHECK_OK);
Scanner::Location end_location = scanner()->location();
if (is_strict(language_mode())) {
PreParserTraits::ReportMessageAt(start_location.beg_pos,
end_location.end_pos,
"strict_function");
*ok = false;
return Statement::Default();
} else {
return statement;
}
}
case Token::DEBUGGER:
return ParseDebuggerStatement(ok);
case Token::VAR:
return ParseVariableStatement(kStatement, ok);
case Token::CONST:
// In ES6 CONST is not allowed as a Statement, only as a
// LexicalDeclaration, however we continue to allow it in sloppy mode for
// backwards compatibility.
if (is_sloppy(language_mode())) {
return ParseVariableStatement(kStatement, ok);
}
// Fall through.
default:
return ParseExpressionOrLabelledStatement(ok);
}
}
PreParser::Statement PreParser::ParseFunctionDeclaration(bool* ok) {
// FunctionDeclaration ::
// 'function' Identifier '(' FormalParameterListopt ')' '{' FunctionBody '}'
// GeneratorDeclaration ::
// 'function' '*' Identifier '(' FormalParameterListopt ')'
// '{' FunctionBody '}'
Expect(Token::FUNCTION, CHECK_OK);
int pos = position();
bool is_generator = Check(Token::MUL);
bool is_strict_reserved = false;
Identifier name = ParseIdentifierOrStrictReservedWord(
&is_strict_reserved, CHECK_OK);
ParseFunctionLiteral(name, scanner()->location(), is_strict_reserved,
is_generator ? FunctionKind::kGeneratorFunction
: FunctionKind::kNormalFunction,
pos, FunctionLiteral::DECLARATION,
FunctionLiteral::NORMAL_ARITY, CHECK_OK);
return Statement::FunctionDeclaration();
}
PreParser::Statement PreParser::ParseClassDeclaration(bool* ok) {
Expect(Token::CLASS, CHECK_OK);
if (!allow_harmony_sloppy() && is_sloppy(language_mode())) {
ReportMessage("sloppy_lexical");
*ok = false;
return Statement::Default();
}
int pos = position();
bool is_strict_reserved = false;
Identifier name =
ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK);
ParseClassLiteral(name, scanner()->location(), is_strict_reserved, pos,
CHECK_OK);
return Statement::Default();
}
PreParser::Statement PreParser::ParseBlock(bool* ok) {
// Block ::
// '{' Statement* '}'
// Note that a Block does not introduce a new execution scope!
// (ECMA-262, 3rd, 12.2)
//
Expect(Token::LBRACE, CHECK_OK);
while (peek() != Token::RBRACE) {
if (is_strict(language_mode())) {
ParseStatementListItem(CHECK_OK);
} else {
ParseStatement(CHECK_OK);
}
}
Expect(Token::RBRACE, ok);
return Statement::Default();
}
PreParser::Statement PreParser::ParseVariableStatement(
VariableDeclarationContext var_context,
bool* ok) {
// VariableStatement ::
// VariableDeclarations ';'
Statement result = ParseVariableDeclarations(var_context,
NULL,
NULL,
CHECK_OK);
ExpectSemicolon(CHECK_OK);
return result;
}
// If the variable declaration declares exactly one non-const
// variable, then *var is set to that variable. In all other cases,
// *var is untouched; in particular, it is the caller's responsibility
// to initialize it properly. This mechanism is also used for the parsing
// of 'for-in' loops.
PreParser::Statement PreParser::ParseVariableDeclarations(
VariableDeclarationContext var_context,
VariableDeclarationProperties* decl_props,
int* num_decl,
bool* ok) {
// VariableDeclarations ::
// ('var' | 'const') (Identifier ('=' AssignmentExpression)?)+[',']
//
// The ES6 Draft Rev3 specifies the following grammar for const declarations
//
// ConstDeclaration ::
// const ConstBinding (',' ConstBinding)* ';'
// ConstBinding ::
// Identifier '=' AssignmentExpression
//
// TODO(ES6):
// ConstBinding ::
// BindingPattern '=' AssignmentExpression
bool require_initializer = false;
bool is_strict_const = false;
if (peek() == Token::VAR) {
if (is_strong(language_mode())) {
Scanner::Location location = scanner()->peek_location();
ReportMessageAt(location, "strong_var");
*ok = false;
return Statement::Default();
}
Consume(Token::VAR);
} else if (peek() == Token::CONST) {
// TODO(ES6): The ES6 Draft Rev4 section 12.2.2 reads:
//
// ConstDeclaration : const ConstBinding (',' ConstBinding)* ';'
//
// * It is a Syntax Error if the code that matches this production is not
// contained in extended code.
//
// However disallowing const in sloppy mode will break compatibility with
// existing pages. Therefore we keep allowing const with the old
// non-harmony semantics in sloppy mode.
Consume(Token::CONST);
if (is_strict(language_mode())) {
DCHECK(var_context != kStatement);
is_strict_const = true;
require_initializer = var_context != kForStatement;
}
} else if (peek() == Token::LET && is_strict(language_mode())) {
Consume(Token::LET);
DCHECK(var_context != kStatement);
} else {
*ok = false;
return Statement::Default();
}
// The scope of a var/const declared variable anywhere inside a function
// is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). The scope
// of a let declared variable is the scope of the immediately enclosing
// block.
int nvars = 0; // the number of variables declared
do {
// Parse variable name.
if (nvars > 0) Consume(Token::COMMA);
ParseIdentifier(kDontAllowEvalOrArguments, CHECK_OK);
nvars++;
if (peek() == Token::ASSIGN || require_initializer ||
// require initializers for multiple consts.
(is_strict_const && peek() == Token::COMMA)) {
Expect(Token::ASSIGN, CHECK_OK);
ParseAssignmentExpression(var_context != kForStatement, CHECK_OK);
if (decl_props != NULL) *decl_props = kHasInitializers;
}
} while (peek() == Token::COMMA);
if (num_decl != NULL) *num_decl = nvars;
return Statement::Default();
}
PreParser::Statement PreParser::ParseExpressionOrLabelledStatement(bool* ok) {
// ExpressionStatement | LabelledStatement ::
// Expression ';'
// Identifier ':' Statement
switch (peek()) {
case Token::FUNCTION:
case Token::LBRACE:
UNREACHABLE(); // Always handled by the callers.
case Token::CLASS:
ReportUnexpectedToken(Next());
*ok = false;
return Statement::Default();
// TODO(arv): Handle `let [`
// https://code.google.com/p/v8/issues/detail?id=3847
default:
break;
}
bool starts_with_identifier = peek_any_identifier();
Expression expr = ParseExpression(true, CHECK_OK);
// Even if the expression starts with an identifier, it is not necessarily an
// identifier. For example, "foo + bar" starts with an identifier but is not
// an identifier.
if (starts_with_identifier && expr.IsIdentifier() && peek() == Token::COLON) {
// Expression is a single identifier, and not, e.g., a parenthesized
// identifier.
DCHECK(!expr.AsIdentifier().IsFutureReserved());
DCHECK(is_sloppy(language_mode()) ||
!IsFutureStrictReserved(expr.AsIdentifier()));
Consume(Token::COLON);
return ParseStatement(ok);
// Preparsing is disabled for extensions (because the extension details
// aren't passed to lazily compiled functions), so we don't
// accept "native function" in the preparser.
}
// Parsed expression statement.
// Detect attempts at 'let' declarations in sloppy mode.
if (peek() == Token::IDENTIFIER && is_sloppy(language_mode()) &&
expr.IsIdentifier() && expr.AsIdentifier().IsLet()) {
ReportMessage("sloppy_lexical", NULL);
*ok = false;
return Statement::Default();
}
ExpectSemicolon(CHECK_OK);
return Statement::ExpressionStatement(expr);
}
PreParser::Statement PreParser::ParseIfStatement(bool* ok) {
// IfStatement ::
// 'if' '(' Expression ')' Statement ('else' Statement)?
Expect(Token::IF, CHECK_OK);
Expect(Token::LPAREN, CHECK_OK);
ParseExpression(true, CHECK_OK);
Expect(Token::RPAREN, CHECK_OK);
ParseSubStatement(CHECK_OK);
if (peek() == Token::ELSE) {
Next();
ParseSubStatement(CHECK_OK);
}
return Statement::Default();
}
PreParser::Statement PreParser::ParseContinueStatement(bool* ok) {
// ContinueStatement ::
// 'continue' [no line terminator] Identifier? ';'
Expect(Token::CONTINUE, CHECK_OK);
Token::Value tok = peek();
if (!scanner()->HasAnyLineTerminatorBeforeNext() &&
tok != Token::SEMICOLON &&
tok != Token::RBRACE &&
tok != Token::EOS) {
// ECMA allows "eval" or "arguments" as labels even in strict mode.
ParseIdentifier(kAllowEvalOrArguments, CHECK_OK);
}
ExpectSemicolon(CHECK_OK);
return Statement::Default();
}
PreParser::Statement PreParser::ParseBreakStatement(bool* ok) {
// BreakStatement ::
// 'break' [no line terminator] Identifier? ';'
Expect(Token::BREAK, CHECK_OK);
Token::Value tok = peek();
if (!scanner()->HasAnyLineTerminatorBeforeNext() &&
tok != Token::SEMICOLON &&
tok != Token::RBRACE &&
tok != Token::EOS) {
// ECMA allows "eval" or "arguments" as labels even in strict mode.
ParseIdentifier(kAllowEvalOrArguments, CHECK_OK);
}
ExpectSemicolon(CHECK_OK);
return Statement::Default();
}
PreParser::Statement PreParser::ParseReturnStatement(bool* ok) {
// ReturnStatement ::
// 'return' [no line terminator] Expression? ';'
// Consume the return token. It is necessary to do before
// reporting any errors on it, because of the way errors are
// reported (underlining).
Expect(Token::RETURN, CHECK_OK);
function_state_->set_return_location(scanner()->location());
// An ECMAScript program is considered syntactically incorrect if it
// contains a return statement that is not within the body of a
// function. See ECMA-262, section 12.9, page 67.
// This is not handled during preparsing.
Token::Value tok = peek();
if (!scanner()->HasAnyLineTerminatorBeforeNext() &&
tok != Token::SEMICOLON &&
tok != Token::RBRACE &&
tok != Token::EOS) {
if (is_strong(language_mode()) &&
i::IsConstructor(function_state_->kind())) {
int pos = peek_position();
ReportMessageAt(Scanner::Location(pos, pos + 1),
"strong_constructor_return_value");
*ok = false;
return Statement::Default();
}
ParseExpression(true, CHECK_OK);
}
ExpectSemicolon(CHECK_OK);
return Statement::Default();
}
PreParser::Statement PreParser::ParseWithStatement(bool* ok) {
// WithStatement ::
// 'with' '(' Expression ')' Statement
Expect(Token::WITH, CHECK_OK);
if (is_strict(language_mode())) {
ReportMessageAt(scanner()->location(), "strict_mode_with");
*ok = false;
return Statement::Default();
}
Expect(Token::LPAREN, CHECK_OK);
ParseExpression(true, CHECK_OK);
Expect(Token::RPAREN, CHECK_OK);
Scope* with_scope = NewScope(scope_, WITH_SCOPE);
BlockState block_state(&scope_, with_scope);
ParseSubStatement(CHECK_OK);
return Statement::Default();
}
PreParser::Statement PreParser::ParseSwitchStatement(bool* ok) {
// SwitchStatement ::
// 'switch' '(' Expression ')' '{' CaseClause* '}'
Expect(Token::SWITCH, CHECK_OK);
Expect(Token::LPAREN, CHECK_OK);
ParseExpression(true, CHECK_OK);
Expect(Token::RPAREN, CHECK_OK);
Expect(Token::LBRACE, CHECK_OK);
Token::Value token = peek();
while (token != Token::RBRACE) {
if (token == Token::CASE) {
Expect(Token::CASE, CHECK_OK);
ParseExpression(true, CHECK_OK);
} else {
Expect(Token::DEFAULT, CHECK_OK);
}
Expect(Token::COLON, CHECK_OK);
token = peek();
while (token != Token::CASE &&
token != Token::DEFAULT &&
token != Token::RBRACE) {
ParseStatementListItem(CHECK_OK);
token = peek();
}
}
Expect(Token::RBRACE, ok);
return Statement::Default();
}
PreParser::Statement PreParser::ParseDoWhileStatement(bool* ok) {
// DoStatement ::
// 'do' Statement 'while' '(' Expression ')' ';'
Expect(Token::DO, CHECK_OK);
ParseSubStatement(CHECK_OK);
Expect(Token::WHILE, CHECK_OK);
Expect(Token::LPAREN, CHECK_OK);
ParseExpression(true, CHECK_OK);
Expect(Token::RPAREN, ok);
if (peek() == Token::SEMICOLON) Consume(Token::SEMICOLON);
return Statement::Default();
}
PreParser::Statement PreParser::ParseWhileStatement(bool* ok) {
// WhileStatement ::
// 'while' '(' Expression ')' Statement
Expect(Token::WHILE, CHECK_OK);
Expect(Token::LPAREN, CHECK_OK);
ParseExpression(true, CHECK_OK);
Expect(Token::RPAREN, CHECK_OK);
ParseSubStatement(ok);
return Statement::Default();
}
PreParser::Statement PreParser::ParseForStatement(bool* ok) {
// ForStatement ::
// 'for' '(' Expression? ';' Expression? ';' Expression? ')' Statement
Expect(Token::FOR, CHECK_OK);
Expect(Token::LPAREN, CHECK_OK);
bool is_let_identifier_expression = false;
if (peek() != Token::SEMICOLON) {
ForEachStatement::VisitMode visit_mode;
if (peek() == Token::VAR || peek() == Token::CONST ||
(peek() == Token::LET && is_strict(language_mode()))) {
bool is_lexical = peek() == Token::LET ||
(peek() == Token::CONST && is_strict(language_mode()));
int decl_count;
VariableDeclarationProperties decl_props = kHasNoInitializers;
ParseVariableDeclarations(
kForStatement, &decl_props, &decl_count, CHECK_OK);
bool has_initializers = decl_props == kHasInitializers;
bool accept_IN = decl_count == 1 && !(is_lexical && has_initializers);
bool accept_OF = !has_initializers;
if (accept_IN && CheckInOrOf(accept_OF, &visit_mode, ok)) {
if (!*ok) return Statement::Default();
ParseExpression(true, CHECK_OK);
Expect(Token::RPAREN, CHECK_OK);
ParseSubStatement(CHECK_OK);
return Statement::Default();
}
} else {
Expression lhs = ParseExpression(false, CHECK_OK);
is_let_identifier_expression =
lhs.IsIdentifier() && lhs.AsIdentifier().IsLet();
if (CheckInOrOf(lhs.IsIdentifier(), &visit_mode, ok)) {
if (!*ok) return Statement::Default();
ParseExpression(true, CHECK_OK);
Expect(Token::RPAREN, CHECK_OK);
ParseSubStatement(CHECK_OK);
return Statement::Default();
}
}
}
// Parsed initializer at this point.
// Detect attempts at 'let' declarations in sloppy mode.
if (peek() == Token::IDENTIFIER && is_sloppy(language_mode()) &&
is_let_identifier_expression) {
ReportMessage("sloppy_lexical", NULL);
*ok = false;
return Statement::Default();
}
Expect(Token::SEMICOLON, CHECK_OK);
if (peek() != Token::SEMICOLON) {
ParseExpression(true, CHECK_OK);
}
Expect(Token::SEMICOLON, CHECK_OK);
if (peek() != Token::RPAREN) {
ParseExpression(true, CHECK_OK);
}
Expect(Token::RPAREN, CHECK_OK);
ParseSubStatement(ok);
return Statement::Default();
}
PreParser::Statement PreParser::ParseThrowStatement(bool* ok) {
// ThrowStatement ::
// 'throw' [no line terminator] Expression ';'
Expect(Token::THROW, CHECK_OK);
if (scanner()->HasAnyLineTerminatorBeforeNext()) {
ReportMessageAt(scanner()->location(), "newline_after_throw");
*ok = false;
return Statement::Default();
}
ParseExpression(true, CHECK_OK);
ExpectSemicolon(ok);
return Statement::Default();
}
PreParser::Statement PreParser::ParseTryStatement(bool* ok) {
// TryStatement ::
// 'try' Block Catch
// 'try' Block Finally
// 'try' Block Catch Finally
//
// Catch ::
// 'catch' '(' Identifier ')' Block
//
// Finally ::
// 'finally' Block
Expect(Token::TRY, CHECK_OK);
ParseBlock(CHECK_OK);
Token::Value tok = peek();
if (tok != Token::CATCH && tok != Token::FINALLY) {
ReportMessageAt(scanner()->location(), "no_catch_or_finally");
*ok = false;
return Statement::Default();
}
if (tok == Token::CATCH) {
Consume(Token::CATCH);
Expect(Token::LPAREN, CHECK_OK);
ParseIdentifier(kDontAllowEvalOrArguments, CHECK_OK);
Expect(Token::RPAREN, CHECK_OK);
{
Scope* with_scope = NewScope(scope_, WITH_SCOPE);
BlockState block_state(&scope_, with_scope);
ParseBlock(CHECK_OK);
}
tok = peek();
}
if (tok == Token::FINALLY) {
Consume(Token::FINALLY);
ParseBlock(CHECK_OK);
}
return Statement::Default();
}
PreParser::Statement PreParser::ParseDebuggerStatement(bool* ok) {
// In ECMA-262 'debugger' is defined as a reserved keyword. In some browser
// contexts this is used as a statement which invokes the debugger as if a
// break point is present.
// DebuggerStatement ::
// 'debugger' ';'
Expect(Token::DEBUGGER, CHECK_OK);
ExpectSemicolon(ok);
return Statement::Default();
}
#undef CHECK_OK
#define CHECK_OK ok); \
if (!*ok) return Expression::Default(); \
((void)0
#define DUMMY ) // to make indentation work
#undef DUMMY
PreParser::Expression PreParser::ParseFunctionLiteral(
Identifier function_name, Scanner::Location function_name_location,
bool name_is_strict_reserved, FunctionKind kind, int function_token_pos,
FunctionLiteral::FunctionType function_type,
FunctionLiteral::ArityRestriction arity_restriction, bool* ok) {
// Function ::
// '(' FormalParameterList? ')' '{' FunctionBody '}'
// Parse function body.
bool outer_is_script_scope = scope_->is_script_scope();
Scope* function_scope = NewScope(scope_, FUNCTION_SCOPE);
PreParserFactory factory(NULL);
FunctionState function_state(&function_state_, &scope_, function_scope, kind,
&factory);
// FormalParameterList ::
// '(' (Identifier)*[','] ')'
Expect(Token::LPAREN, CHECK_OK);
int start_position = position();
DuplicateFinder duplicate_finder(scanner()->unicode_cache());
// We don't yet know if the function will be strict, so we cannot yet produce
// errors for parameter names or duplicates. However, we remember the
// locations of these errors if they occur and produce the errors later.
Scanner::Location eval_args_error_loc = Scanner::Location::invalid();
Scanner::Location dupe_error_loc = Scanner::Location::invalid();
Scanner::Location reserved_error_loc = Scanner::Location::invalid();
bool is_rest = false;
bool done = arity_restriction == FunctionLiteral::GETTER_ARITY ||
(peek() == Token::RPAREN &&
arity_restriction != FunctionLiteral::SETTER_ARITY);
while (!done) {
bool is_strict_reserved = false;
is_rest = peek() == Token::ELLIPSIS && allow_harmony_rest_params();
if (is_rest) {
Consume(Token::ELLIPSIS);
}
Identifier param_name =
ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK);
if (!eval_args_error_loc.IsValid() && param_name.IsEvalOrArguments()) {
eval_args_error_loc = scanner()->location();
}
if (!reserved_error_loc.IsValid() && is_strict_reserved) {
reserved_error_loc = scanner()->location();
}
int prev_value = scanner()->FindSymbol(&duplicate_finder, 1);
if (!dupe_error_loc.IsValid() && prev_value != 0) {
dupe_error_loc = scanner()->location();
}
if (arity_restriction == FunctionLiteral::SETTER_ARITY) break;
done = (peek() == Token::RPAREN);
if (!done) {
if (is_rest) {
ReportMessageAt(scanner()->peek_location(), "param_after_rest");
*ok = false;
return Expression::Default();
}
Expect(Token::COMMA, CHECK_OK);
}
}
Expect(Token::RPAREN, CHECK_OK);
// See Parser::ParseFunctionLiteral for more information about lazy parsing
// and lazy compilation.
bool is_lazily_parsed =
(outer_is_script_scope && allow_lazy() && !parenthesized_function_);
parenthesized_function_ = false;
Expect(Token::LBRACE, CHECK_OK);
if (is_lazily_parsed) {
ParseLazyFunctionLiteralBody(CHECK_OK);
} else {
ParseStatementList(Token::RBRACE, CHECK_OK);
}
Expect(Token::RBRACE, CHECK_OK);
// Validate name and parameter names. We can do this only after parsing the
// function, since the function can declare itself strict.
CheckFunctionName(language_mode(), kind, function_name,
name_is_strict_reserved, function_name_location, CHECK_OK);
const bool use_strict_params = is_rest || IsConciseMethod(kind);
CheckFunctionParameterNames(language_mode(), use_strict_params,
eval_args_error_loc, dupe_error_loc,
reserved_error_loc, CHECK_OK);
if (is_strict(language_mode())) {
int end_position = scanner()->location().end_pos;
CheckStrictOctalLiteral(start_position, end_position, CHECK_OK);
}
if (is_strong(language_mode()) && IsSubclassConstructor(kind)) {
if (!function_state.super_call_location().IsValid()) {
ReportMessageAt(function_name_location, "strong_super_call_missing",
kReferenceError);
*ok = false;
return Expression::Default();
}
}
return Expression::Default();
}
void PreParser::ParseLazyFunctionLiteralBody(bool* ok) {
int body_start = position();
ParseStatementList(Token::RBRACE, ok);
if (!*ok) return;
// Position right after terminal '}'.
DCHECK_EQ(Token::RBRACE, scanner()->peek());
int body_end = scanner()->peek_location().end_pos;
log_->LogFunction(body_start, body_end,
function_state_->materialized_literal_count(),
function_state_->expected_property_count(), language_mode(),
scope_->uses_super_property());
}
PreParserExpression PreParser::ParseClassLiteral(
PreParserIdentifier name, Scanner::Location class_name_location,
bool name_is_strict_reserved, int pos, bool* ok) {
// All parts of a ClassDeclaration and ClassExpression are strict code.
if (name_is_strict_reserved) {
ReportMessageAt(class_name_location, "unexpected_strict_reserved");
*ok = false;
return EmptyExpression();
}
if (IsEvalOrArguments(name)) {
ReportMessageAt(class_name_location, "strict_eval_arguments");
*ok = false;
return EmptyExpression();
}
Scope* scope = NewScope(scope_, BLOCK_SCOPE);
BlockState block_state(&scope_, scope);
scope_->SetLanguageMode(
static_cast<LanguageMode>(scope_->language_mode() | STRICT_BIT));
// TODO(marja): Make PreParser use scope names too.
// scope_->SetScopeName(name);
bool has_extends = Check(Token::EXTENDS);
if (has_extends) {
ParseLeftHandSideExpression(CHECK_OK);
}
ClassLiteralChecker checker(this);
bool has_seen_constructor = false;
Expect(Token::LBRACE, CHECK_OK);
while (peek() != Token::RBRACE) {
if (Check(Token::SEMICOLON)) continue;
const bool in_class = true;
const bool is_static = false;
bool is_computed_name = false; // Classes do not care about computed
// property names here.
ParsePropertyDefinition(&checker, in_class, has_extends, is_static,
&is_computed_name, &has_seen_constructor, CHECK_OK);
}
Expect(Token::RBRACE, CHECK_OK);
return Expression::Default();
}
PreParser::Expression PreParser::ParseV8Intrinsic(bool* ok) {
// CallRuntime ::
// '%' Identifier Arguments
Expect(Token::MOD, CHECK_OK);
if (!allow_natives()) {
*ok = false;
return Expression::Default();
}
// Allow "eval" or "arguments" for backward compatibility.
ParseIdentifier(kAllowEvalOrArguments, CHECK_OK);
ParseArguments(ok);
return Expression::Default();
}
#undef CHECK_OK
} } // v8::internal