ab234760d7
CQ_INCLUDE_TRYBOTS=tryserver.v8:v8_linux_nosnap_dbg,v8_linux_nosnap_rel Review URL: https://codereview.chromium.org/781943002 Cr-Commit-Position: refs/heads/master@{#25681}
2480 lines
94 KiB
C++
2480 lines
94 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/v8.h"
|
|
|
|
#include "src/accessors.h"
|
|
#include "src/api.h"
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/bootstrapper.h"
|
|
#include "src/code-stubs.h"
|
|
#include "src/deoptimizer.h"
|
|
#include "src/execution.h"
|
|
#include "src/global-handles.h"
|
|
#include "src/ic/ic.h"
|
|
#include "src/ic/stub-cache.h"
|
|
#include "src/natives.h"
|
|
#include "src/objects.h"
|
|
#include "src/runtime/runtime.h"
|
|
#include "src/serialize.h"
|
|
#include "src/snapshot.h"
|
|
#include "src/snapshot-source-sink.h"
|
|
#include "src/v8threads.h"
|
|
#include "src/version.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Coding of external references.
|
|
|
|
// The encoding of an external reference. The type is in the high word.
|
|
// The id is in the low word.
|
|
static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
|
|
return static_cast<uint32_t>(type) << 16 | id;
|
|
}
|
|
|
|
|
|
static int* GetInternalPointer(StatsCounter* counter) {
|
|
// All counters refer to dummy_counter, if deserializing happens without
|
|
// setting up counters.
|
|
static int dummy_counter = 0;
|
|
return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
|
|
}
|
|
|
|
|
|
ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
|
|
ExternalReferenceTable* external_reference_table =
|
|
isolate->external_reference_table();
|
|
if (external_reference_table == NULL) {
|
|
external_reference_table = new ExternalReferenceTable(isolate);
|
|
isolate->set_external_reference_table(external_reference_table);
|
|
}
|
|
return external_reference_table;
|
|
}
|
|
|
|
|
|
void ExternalReferenceTable::AddFromId(TypeCode type,
|
|
uint16_t id,
|
|
const char* name,
|
|
Isolate* isolate) {
|
|
Address address;
|
|
switch (type) {
|
|
case C_BUILTIN: {
|
|
ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
|
|
address = ref.address();
|
|
break;
|
|
}
|
|
case BUILTIN: {
|
|
ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
|
|
address = ref.address();
|
|
break;
|
|
}
|
|
case RUNTIME_FUNCTION: {
|
|
ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
|
|
address = ref.address();
|
|
break;
|
|
}
|
|
case IC_UTILITY: {
|
|
ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
|
|
isolate);
|
|
address = ref.address();
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return;
|
|
}
|
|
Add(address, type, id, name);
|
|
}
|
|
|
|
|
|
void ExternalReferenceTable::Add(Address address,
|
|
TypeCode type,
|
|
uint16_t id,
|
|
const char* name) {
|
|
DCHECK_NE(NULL, address);
|
|
ExternalReferenceEntry entry;
|
|
entry.address = address;
|
|
entry.code = EncodeExternal(type, id);
|
|
entry.name = name;
|
|
DCHECK_NE(0, entry.code);
|
|
// Assert that the code is added in ascending order to rule out duplicates.
|
|
DCHECK((size() == 0) || (code(size() - 1) < entry.code));
|
|
refs_.Add(entry);
|
|
if (id > max_id_[type]) max_id_[type] = id;
|
|
}
|
|
|
|
|
|
void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
|
|
for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
|
|
max_id_[type_code] = 0;
|
|
}
|
|
|
|
// Miscellaneous
|
|
Add(ExternalReference::roots_array_start(isolate).address(),
|
|
"Heap::roots_array_start()");
|
|
Add(ExternalReference::address_of_stack_limit(isolate).address(),
|
|
"StackGuard::address_of_jslimit()");
|
|
Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
|
|
"StackGuard::address_of_real_jslimit()");
|
|
Add(ExternalReference::new_space_start(isolate).address(),
|
|
"Heap::NewSpaceStart()");
|
|
Add(ExternalReference::new_space_mask(isolate).address(),
|
|
"Heap::NewSpaceMask()");
|
|
Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
|
|
"Heap::NewSpaceAllocationLimitAddress()");
|
|
Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
|
|
"Heap::NewSpaceAllocationTopAddress()");
|
|
Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()");
|
|
Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
|
|
"Debug::step_in_fp_addr()");
|
|
Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
|
|
"mod_two_doubles");
|
|
// Keyed lookup cache.
|
|
Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
|
|
"KeyedLookupCache::keys()");
|
|
Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
|
|
"KeyedLookupCache::field_offsets()");
|
|
Add(ExternalReference::handle_scope_next_address(isolate).address(),
|
|
"HandleScope::next");
|
|
Add(ExternalReference::handle_scope_limit_address(isolate).address(),
|
|
"HandleScope::limit");
|
|
Add(ExternalReference::handle_scope_level_address(isolate).address(),
|
|
"HandleScope::level");
|
|
Add(ExternalReference::new_deoptimizer_function(isolate).address(),
|
|
"Deoptimizer::New()");
|
|
Add(ExternalReference::compute_output_frames_function(isolate).address(),
|
|
"Deoptimizer::ComputeOutputFrames()");
|
|
Add(ExternalReference::address_of_min_int().address(),
|
|
"LDoubleConstant::min_int");
|
|
Add(ExternalReference::address_of_one_half().address(),
|
|
"LDoubleConstant::one_half");
|
|
Add(ExternalReference::isolate_address(isolate).address(), "isolate");
|
|
Add(ExternalReference::address_of_negative_infinity().address(),
|
|
"LDoubleConstant::negative_infinity");
|
|
Add(ExternalReference::power_double_double_function(isolate).address(),
|
|
"power_double_double_function");
|
|
Add(ExternalReference::power_double_int_function(isolate).address(),
|
|
"power_double_int_function");
|
|
Add(ExternalReference::math_log_double_function(isolate).address(),
|
|
"std::log");
|
|
Add(ExternalReference::store_buffer_top(isolate).address(),
|
|
"store_buffer_top");
|
|
Add(ExternalReference::address_of_canonical_non_hole_nan().address(),
|
|
"canonical_nan");
|
|
Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
|
|
Add(ExternalReference::get_date_field_function(isolate).address(),
|
|
"JSDate::GetField");
|
|
Add(ExternalReference::date_cache_stamp(isolate).address(),
|
|
"date_cache_stamp");
|
|
Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
|
|
"address_of_pending_message_obj");
|
|
Add(ExternalReference::address_of_has_pending_message(isolate).address(),
|
|
"address_of_has_pending_message");
|
|
Add(ExternalReference::address_of_pending_message_script(isolate).address(),
|
|
"pending_message_script");
|
|
Add(ExternalReference::get_make_code_young_function(isolate).address(),
|
|
"Code::MakeCodeYoung");
|
|
Add(ExternalReference::cpu_features().address(), "cpu_features");
|
|
Add(ExternalReference(Runtime::kAllocateInNewSpace, isolate).address(),
|
|
"Runtime::AllocateInNewSpace");
|
|
Add(ExternalReference(Runtime::kAllocateInTargetSpace, isolate).address(),
|
|
"Runtime::AllocateInTargetSpace");
|
|
Add(ExternalReference::old_pointer_space_allocation_top_address(isolate)
|
|
.address(),
|
|
"Heap::OldPointerSpaceAllocationTopAddress");
|
|
Add(ExternalReference::old_pointer_space_allocation_limit_address(isolate)
|
|
.address(),
|
|
"Heap::OldPointerSpaceAllocationLimitAddress");
|
|
Add(ExternalReference::old_data_space_allocation_top_address(isolate)
|
|
.address(),
|
|
"Heap::OldDataSpaceAllocationTopAddress");
|
|
Add(ExternalReference::old_data_space_allocation_limit_address(isolate)
|
|
.address(),
|
|
"Heap::OldDataSpaceAllocationLimitAddress");
|
|
Add(ExternalReference::allocation_sites_list_address(isolate).address(),
|
|
"Heap::allocation_sites_list_address()");
|
|
Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
|
|
Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
|
|
"Code::MarkCodeAsExecuted");
|
|
Add(ExternalReference::is_profiling_address(isolate).address(),
|
|
"CpuProfiler::is_profiling");
|
|
Add(ExternalReference::scheduled_exception_address(isolate).address(),
|
|
"Isolate::scheduled_exception");
|
|
Add(ExternalReference::invoke_function_callback(isolate).address(),
|
|
"InvokeFunctionCallback");
|
|
Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
|
|
"InvokeAccessorGetterCallback");
|
|
Add(ExternalReference::flush_icache_function(isolate).address(),
|
|
"CpuFeatures::FlushICache");
|
|
Add(ExternalReference::log_enter_external_function(isolate).address(),
|
|
"Logger::EnterExternal");
|
|
Add(ExternalReference::log_leave_external_function(isolate).address(),
|
|
"Logger::LeaveExternal");
|
|
Add(ExternalReference::address_of_minus_one_half().address(),
|
|
"double_constants.minus_one_half");
|
|
Add(ExternalReference::stress_deopt_count(isolate).address(),
|
|
"Isolate::stress_deopt_count_address()");
|
|
Add(ExternalReference::incremental_marking_record_write_function(isolate)
|
|
.address(),
|
|
"IncrementalMarking::RecordWriteFromCode");
|
|
|
|
// Debug addresses
|
|
Add(ExternalReference::debug_after_break_target_address(isolate).address(),
|
|
"Debug::after_break_target_address()");
|
|
Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate)
|
|
.address(),
|
|
"Debug::restarter_frame_function_pointer_address()");
|
|
Add(ExternalReference::debug_is_active_address(isolate).address(),
|
|
"Debug::is_active_address()");
|
|
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
|
|
"NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
|
|
Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
|
|
"RegExpMacroAssembler*::CheckStackGuardState()");
|
|
Add(ExternalReference::re_grow_stack(isolate).address(),
|
|
"NativeRegExpMacroAssembler::GrowStack()");
|
|
Add(ExternalReference::re_word_character_map().address(),
|
|
"NativeRegExpMacroAssembler::word_character_map");
|
|
Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
|
|
"RegExpStack::limit_address()");
|
|
Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
|
|
.address(),
|
|
"RegExpStack::memory_address()");
|
|
Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
|
|
"RegExpStack::memory_size()");
|
|
Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
|
|
"OffsetsVector::static_offsets_vector");
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
|
|
// The following populates all of the different type of external references
|
|
// into the ExternalReferenceTable.
|
|
//
|
|
// NOTE: This function was originally 100k of code. It has since been
|
|
// rewritten to be mostly table driven, as the callback macro style tends to
|
|
// very easily cause code bloat. Please be careful in the future when adding
|
|
// new references.
|
|
|
|
struct RefTableEntry {
|
|
TypeCode type;
|
|
uint16_t id;
|
|
const char* name;
|
|
};
|
|
|
|
static const RefTableEntry ref_table[] = {
|
|
// Builtins
|
|
#define DEF_ENTRY_C(name, ignored) \
|
|
{ C_BUILTIN, \
|
|
Builtins::c_##name, \
|
|
"Builtins::" #name },
|
|
|
|
BUILTIN_LIST_C(DEF_ENTRY_C)
|
|
#undef DEF_ENTRY_C
|
|
|
|
#define DEF_ENTRY_C(name, ignored) \
|
|
{ BUILTIN, \
|
|
Builtins::k##name, \
|
|
"Builtins::" #name },
|
|
#define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
|
|
|
|
BUILTIN_LIST_C(DEF_ENTRY_C)
|
|
BUILTIN_LIST_A(DEF_ENTRY_A)
|
|
BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
|
|
#undef DEF_ENTRY_C
|
|
#undef DEF_ENTRY_A
|
|
|
|
// Runtime functions
|
|
#define RUNTIME_ENTRY(name, nargs, ressize) \
|
|
{ RUNTIME_FUNCTION, \
|
|
Runtime::k##name, \
|
|
"Runtime::" #name },
|
|
|
|
RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
|
|
INLINE_OPTIMIZED_FUNCTION_LIST(RUNTIME_ENTRY)
|
|
#undef RUNTIME_ENTRY
|
|
|
|
#define INLINE_OPTIMIZED_ENTRY(name, nargs, ressize) \
|
|
{ RUNTIME_FUNCTION, \
|
|
Runtime::kInlineOptimized##name, \
|
|
"Runtime::" #name },
|
|
|
|
INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_OPTIMIZED_ENTRY)
|
|
#undef INLINE_OPTIMIZED_ENTRY
|
|
|
|
// IC utilities
|
|
#define IC_ENTRY(name) \
|
|
{ IC_UTILITY, \
|
|
IC::k##name, \
|
|
"IC::" #name },
|
|
|
|
IC_UTIL_LIST(IC_ENTRY)
|
|
#undef IC_ENTRY
|
|
}; // end of ref_table[].
|
|
|
|
for (size_t i = 0; i < arraysize(ref_table); ++i) {
|
|
AddFromId(ref_table[i].type,
|
|
ref_table[i].id,
|
|
ref_table[i].name,
|
|
isolate);
|
|
}
|
|
|
|
// Stat counters
|
|
struct StatsRefTableEntry {
|
|
StatsCounter* (Counters::*counter)();
|
|
uint16_t id;
|
|
const char* name;
|
|
};
|
|
|
|
const StatsRefTableEntry stats_ref_table[] = {
|
|
#define COUNTER_ENTRY(name, caption) \
|
|
{ &Counters::name, \
|
|
Counters::k_##name, \
|
|
"Counters::" #name },
|
|
|
|
STATS_COUNTER_LIST_1(COUNTER_ENTRY)
|
|
STATS_COUNTER_LIST_2(COUNTER_ENTRY)
|
|
#undef COUNTER_ENTRY
|
|
}; // end of stats_ref_table[].
|
|
|
|
Counters* counters = isolate->counters();
|
|
for (size_t i = 0; i < arraysize(stats_ref_table); ++i) {
|
|
Add(reinterpret_cast<Address>(GetInternalPointer(
|
|
(counters->*(stats_ref_table[i].counter))())),
|
|
STATS_COUNTER,
|
|
stats_ref_table[i].id,
|
|
stats_ref_table[i].name);
|
|
}
|
|
|
|
// Top addresses
|
|
|
|
const char* AddressNames[] = {
|
|
#define BUILD_NAME_LITERAL(CamelName, hacker_name) \
|
|
"Isolate::" #hacker_name "_address",
|
|
FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL)
|
|
NULL
|
|
#undef BUILD_NAME_LITERAL
|
|
};
|
|
|
|
for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) {
|
|
Add(isolate->get_address_from_id((Isolate::AddressId)i),
|
|
TOP_ADDRESS, i, AddressNames[i]);
|
|
}
|
|
|
|
// Accessors
|
|
#define ACCESSOR_INFO_DECLARATION(name) \
|
|
Add(FUNCTION_ADDR(&Accessors::name##Getter), \
|
|
ACCESSOR, \
|
|
Accessors::k##name##Getter, \
|
|
"Accessors::" #name "Getter"); \
|
|
Add(FUNCTION_ADDR(&Accessors::name##Setter), \
|
|
ACCESSOR, \
|
|
Accessors::k##name##Setter, \
|
|
"Accessors::" #name "Setter");
|
|
ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
|
|
#undef ACCESSOR_INFO_DECLARATION
|
|
|
|
StubCache* stub_cache = isolate->stub_cache();
|
|
|
|
// Stub cache tables
|
|
Add(stub_cache->key_reference(StubCache::kPrimary).address(),
|
|
STUB_CACHE_TABLE, 1, "StubCache::primary_->key");
|
|
Add(stub_cache->value_reference(StubCache::kPrimary).address(),
|
|
STUB_CACHE_TABLE, 2, "StubCache::primary_->value");
|
|
Add(stub_cache->map_reference(StubCache::kPrimary).address(),
|
|
STUB_CACHE_TABLE, 3, "StubCache::primary_->map");
|
|
Add(stub_cache->key_reference(StubCache::kSecondary).address(),
|
|
STUB_CACHE_TABLE, 4, "StubCache::secondary_->key");
|
|
Add(stub_cache->value_reference(StubCache::kSecondary).address(),
|
|
STUB_CACHE_TABLE, 5, "StubCache::secondary_->value");
|
|
Add(stub_cache->map_reference(StubCache::kSecondary).address(),
|
|
STUB_CACHE_TABLE, 6, "StubCache::secondary_->map");
|
|
|
|
// Runtime entries
|
|
Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
|
|
RUNTIME_ENTRY, 1, "HandleScope::DeleteExtensions");
|
|
Add(ExternalReference::incremental_marking_record_write_function(isolate)
|
|
.address(),
|
|
RUNTIME_ENTRY, 2, "IncrementalMarking::RecordWrite");
|
|
Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
|
|
RUNTIME_ENTRY, 3, "StoreBuffer::StoreBufferOverflow");
|
|
|
|
// Add a small set of deopt entry addresses to encoder without generating the
|
|
// deopt table code, which isn't possible at deserialization time.
|
|
HandleScope scope(isolate);
|
|
for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
|
|
Address address = Deoptimizer::GetDeoptimizationEntry(
|
|
isolate,
|
|
entry,
|
|
Deoptimizer::LAZY,
|
|
Deoptimizer::CALCULATE_ENTRY_ADDRESS);
|
|
Add(address, LAZY_DEOPTIMIZATION, entry, "lazy_deopt");
|
|
}
|
|
}
|
|
|
|
|
|
ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate)
|
|
: encodings_(HashMap::PointersMatch),
|
|
isolate_(isolate) {
|
|
ExternalReferenceTable* external_references =
|
|
ExternalReferenceTable::instance(isolate_);
|
|
for (int i = 0; i < external_references->size(); ++i) {
|
|
Put(external_references->address(i), i);
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t ExternalReferenceEncoder::Encode(Address key) const {
|
|
int index = IndexOf(key);
|
|
DCHECK(key == NULL || index >= 0);
|
|
return index >= 0 ?
|
|
ExternalReferenceTable::instance(isolate_)->code(index) : 0;
|
|
}
|
|
|
|
|
|
const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
|
|
int index = IndexOf(key);
|
|
return index >= 0 ? ExternalReferenceTable::instance(isolate_)->name(index)
|
|
: "<unknown>";
|
|
}
|
|
|
|
|
|
int ExternalReferenceEncoder::IndexOf(Address key) const {
|
|
if (key == NULL) return -1;
|
|
HashMap::Entry* entry =
|
|
const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
|
|
return entry == NULL
|
|
? -1
|
|
: static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
|
|
}
|
|
|
|
|
|
void ExternalReferenceEncoder::Put(Address key, int index) {
|
|
HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
|
|
entry->value = reinterpret_cast<void*>(index);
|
|
}
|
|
|
|
|
|
ExternalReferenceDecoder::ExternalReferenceDecoder(Isolate* isolate)
|
|
: encodings_(NewArray<Address*>(kTypeCodeCount)),
|
|
isolate_(isolate) {
|
|
ExternalReferenceTable* external_references =
|
|
ExternalReferenceTable::instance(isolate_);
|
|
for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
|
|
int max = external_references->max_id(type) + 1;
|
|
encodings_[type] = NewArray<Address>(max + 1);
|
|
}
|
|
for (int i = 0; i < external_references->size(); ++i) {
|
|
Put(external_references->code(i), external_references->address(i));
|
|
}
|
|
}
|
|
|
|
|
|
ExternalReferenceDecoder::~ExternalReferenceDecoder() {
|
|
for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
|
|
DeleteArray(encodings_[type]);
|
|
}
|
|
DeleteArray(encodings_);
|
|
}
|
|
|
|
|
|
RootIndexMap::RootIndexMap(Isolate* isolate) {
|
|
map_ = new HashMap(HashMap::PointersMatch);
|
|
Object** root_array = isolate->heap()->roots_array_start();
|
|
for (int i = 0; i < Heap::kStrongRootListLength; i++) {
|
|
Object* root = root_array[i];
|
|
if (root->IsHeapObject() && !isolate->heap()->InNewSpace(root)) {
|
|
HeapObject* heap_object = HeapObject::cast(root);
|
|
if (LookupEntry(map_, heap_object, false) != NULL) {
|
|
// Some root values are initialized to the empty FixedArray();
|
|
// Do not add them to the map.
|
|
DCHECK_EQ(isolate->heap()->empty_fixed_array(), heap_object);
|
|
} else {
|
|
SetValue(LookupEntry(map_, heap_object, true), i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
class CodeAddressMap: public CodeEventLogger {
|
|
public:
|
|
explicit CodeAddressMap(Isolate* isolate)
|
|
: isolate_(isolate) {
|
|
isolate->logger()->addCodeEventListener(this);
|
|
}
|
|
|
|
virtual ~CodeAddressMap() {
|
|
isolate_->logger()->removeCodeEventListener(this);
|
|
}
|
|
|
|
virtual void CodeMoveEvent(Address from, Address to) {
|
|
address_to_name_map_.Move(from, to);
|
|
}
|
|
|
|
virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) {
|
|
}
|
|
|
|
virtual void CodeDeleteEvent(Address from) {
|
|
address_to_name_map_.Remove(from);
|
|
}
|
|
|
|
const char* Lookup(Address address) {
|
|
return address_to_name_map_.Lookup(address);
|
|
}
|
|
|
|
private:
|
|
class NameMap {
|
|
public:
|
|
NameMap() : impl_(HashMap::PointersMatch) {}
|
|
|
|
~NameMap() {
|
|
for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
|
|
DeleteArray(static_cast<const char*>(p->value));
|
|
}
|
|
}
|
|
|
|
void Insert(Address code_address, const char* name, int name_size) {
|
|
HashMap::Entry* entry = FindOrCreateEntry(code_address);
|
|
if (entry->value == NULL) {
|
|
entry->value = CopyName(name, name_size);
|
|
}
|
|
}
|
|
|
|
const char* Lookup(Address code_address) {
|
|
HashMap::Entry* entry = FindEntry(code_address);
|
|
return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
|
|
}
|
|
|
|
void Remove(Address code_address) {
|
|
HashMap::Entry* entry = FindEntry(code_address);
|
|
if (entry != NULL) {
|
|
DeleteArray(static_cast<char*>(entry->value));
|
|
RemoveEntry(entry);
|
|
}
|
|
}
|
|
|
|
void Move(Address from, Address to) {
|
|
if (from == to) return;
|
|
HashMap::Entry* from_entry = FindEntry(from);
|
|
DCHECK(from_entry != NULL);
|
|
void* value = from_entry->value;
|
|
RemoveEntry(from_entry);
|
|
HashMap::Entry* to_entry = FindOrCreateEntry(to);
|
|
DCHECK(to_entry->value == NULL);
|
|
to_entry->value = value;
|
|
}
|
|
|
|
private:
|
|
static char* CopyName(const char* name, int name_size) {
|
|
char* result = NewArray<char>(name_size + 1);
|
|
for (int i = 0; i < name_size; ++i) {
|
|
char c = name[i];
|
|
if (c == '\0') c = ' ';
|
|
result[i] = c;
|
|
}
|
|
result[name_size] = '\0';
|
|
return result;
|
|
}
|
|
|
|
HashMap::Entry* FindOrCreateEntry(Address code_address) {
|
|
return impl_.Lookup(code_address, ComputePointerHash(code_address), true);
|
|
}
|
|
|
|
HashMap::Entry* FindEntry(Address code_address) {
|
|
return impl_.Lookup(code_address,
|
|
ComputePointerHash(code_address),
|
|
false);
|
|
}
|
|
|
|
void RemoveEntry(HashMap::Entry* entry) {
|
|
impl_.Remove(entry->key, entry->hash);
|
|
}
|
|
|
|
HashMap impl_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(NameMap);
|
|
};
|
|
|
|
virtual void LogRecordedBuffer(Code* code,
|
|
SharedFunctionInfo*,
|
|
const char* name,
|
|
int length) {
|
|
address_to_name_map_.Insert(code->address(), name, length);
|
|
}
|
|
|
|
NameMap address_to_name_map_;
|
|
Isolate* isolate_;
|
|
};
|
|
|
|
|
|
void Deserializer::DecodeReservation(
|
|
Vector<const SerializedData::Reservation> res) {
|
|
DCHECK_EQ(0, reservations_[NEW_SPACE].length());
|
|
STATIC_ASSERT(NEW_SPACE == 0);
|
|
int current_space = NEW_SPACE;
|
|
for (const auto& r : res) {
|
|
reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
|
|
if (r.is_last()) current_space++;
|
|
}
|
|
DCHECK_EQ(kNumberOfSpaces, current_space);
|
|
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
|
|
}
|
|
|
|
|
|
void Deserializer::FlushICacheForNewCodeObjects() {
|
|
PageIterator it(isolate_->heap()->code_space());
|
|
while (it.has_next()) {
|
|
Page* p = it.next();
|
|
CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start());
|
|
}
|
|
}
|
|
|
|
|
|
bool Deserializer::ReserveSpace() {
|
|
if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
|
|
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
|
|
high_water_[i] = reservations_[i][0].start;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void Deserializer::Deserialize(Isolate* isolate) {
|
|
isolate_ = isolate;
|
|
DCHECK(isolate_ != NULL);
|
|
if (!ReserveSpace()) FatalProcessOutOfMemory("deserializing context");
|
|
// No active threads.
|
|
DCHECK_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
|
|
// No active handles.
|
|
DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
|
|
DCHECK_EQ(NULL, external_reference_decoder_);
|
|
external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
|
|
isolate_->heap()->IterateSmiRoots(this);
|
|
isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
|
|
isolate_->heap()->RepairFreeListsAfterBoot();
|
|
isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
|
|
|
|
isolate_->heap()->set_native_contexts_list(
|
|
isolate_->heap()->undefined_value());
|
|
isolate_->heap()->set_array_buffers_list(
|
|
isolate_->heap()->undefined_value());
|
|
|
|
// The allocation site list is build during root iteration, but if no sites
|
|
// were encountered then it needs to be initialized to undefined.
|
|
if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
|
|
isolate_->heap()->set_allocation_sites_list(
|
|
isolate_->heap()->undefined_value());
|
|
}
|
|
|
|
isolate_->heap()->InitializeWeakObjectToCodeTable();
|
|
|
|
// Update data pointers to the external strings containing natives sources.
|
|
for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
|
|
Object* source = isolate_->heap()->natives_source_cache()->get(i);
|
|
if (!source->IsUndefined()) {
|
|
ExternalOneByteString::cast(source)->update_data_cache();
|
|
}
|
|
}
|
|
|
|
FlushICacheForNewCodeObjects();
|
|
|
|
// Issue code events for newly deserialized code objects.
|
|
LOG_CODE_EVENT(isolate_, LogCodeObjects());
|
|
LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
|
|
}
|
|
|
|
|
|
void Deserializer::DeserializePartial(Isolate* isolate, Object** root,
|
|
OnOOM on_oom) {
|
|
isolate_ = isolate;
|
|
for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) {
|
|
DCHECK(reservations_[i].length() > 0);
|
|
}
|
|
if (!ReserveSpace()) {
|
|
if (on_oom == FATAL_ON_OOM) FatalProcessOutOfMemory("deserialize context");
|
|
*root = NULL;
|
|
return;
|
|
}
|
|
if (external_reference_decoder_ == NULL) {
|
|
external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
|
|
}
|
|
|
|
DisallowHeapAllocation no_gc;
|
|
|
|
// Keep track of the code space start and end pointers in case new
|
|
// code objects were unserialized
|
|
OldSpace* code_space = isolate_->heap()->code_space();
|
|
Address start_address = code_space->top();
|
|
VisitPointer(root);
|
|
|
|
// There's no code deserialized here. If this assert fires
|
|
// then that's changed and logging should be added to notify
|
|
// the profiler et al of the new code.
|
|
CHECK_EQ(start_address, code_space->top());
|
|
}
|
|
|
|
|
|
Deserializer::~Deserializer() {
|
|
// TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
|
|
// DCHECK(source_.AtEOF());
|
|
if (external_reference_decoder_) {
|
|
delete external_reference_decoder_;
|
|
external_reference_decoder_ = NULL;
|
|
}
|
|
if (attached_objects_) attached_objects_->Dispose();
|
|
}
|
|
|
|
|
|
// This is called on the roots. It is the driver of the deserialization
|
|
// process. It is also called on the body of each function.
|
|
void Deserializer::VisitPointers(Object** start, Object** end) {
|
|
// The space must be new space. Any other space would cause ReadChunk to try
|
|
// to update the remembered using NULL as the address.
|
|
ReadData(start, end, NEW_SPACE, NULL);
|
|
}
|
|
|
|
|
|
void Deserializer::RelinkAllocationSite(AllocationSite* site) {
|
|
if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
|
|
site->set_weak_next(isolate_->heap()->undefined_value());
|
|
} else {
|
|
site->set_weak_next(isolate_->heap()->allocation_sites_list());
|
|
}
|
|
isolate_->heap()->set_allocation_sites_list(site);
|
|
}
|
|
|
|
|
|
// Used to insert a deserialized internalized string into the string table.
|
|
class StringTableInsertionKey : public HashTableKey {
|
|
public:
|
|
explicit StringTableInsertionKey(String* string)
|
|
: string_(string), hash_(HashForObject(string)) {
|
|
DCHECK(string->IsInternalizedString());
|
|
}
|
|
|
|
virtual bool IsMatch(Object* string) OVERRIDE {
|
|
// We know that all entries in a hash table had their hash keys created.
|
|
// Use that knowledge to have fast failure.
|
|
if (hash_ != HashForObject(string)) return false;
|
|
// We want to compare the content of two internalized strings here.
|
|
return string_->SlowEquals(String::cast(string));
|
|
}
|
|
|
|
virtual uint32_t Hash() OVERRIDE { return hash_; }
|
|
|
|
virtual uint32_t HashForObject(Object* key) OVERRIDE {
|
|
return String::cast(key)->Hash();
|
|
}
|
|
|
|
MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate)
|
|
OVERRIDE {
|
|
return handle(string_, isolate);
|
|
}
|
|
|
|
String* string_;
|
|
uint32_t hash_;
|
|
};
|
|
|
|
|
|
HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) {
|
|
if (obj->IsString()) {
|
|
String* string = String::cast(obj);
|
|
// Uninitialize hash field as the hash seed may have changed.
|
|
string->set_hash_field(String::kEmptyHashField);
|
|
if (string->IsInternalizedString()) {
|
|
DisallowHeapAllocation no_gc;
|
|
HandleScope scope(isolate_);
|
|
StringTableInsertionKey key(string);
|
|
String* canonical = *StringTable::LookupKey(isolate_, &key);
|
|
string->SetForwardedInternalizedString(canonical);
|
|
return canonical;
|
|
}
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
|
|
HeapObject* Deserializer::GetBackReferencedObject(int space) {
|
|
HeapObject* obj;
|
|
if (space == LO_SPACE) {
|
|
uint32_t index = source_.GetInt();
|
|
obj = deserialized_large_objects_[index];
|
|
} else {
|
|
BackReference back_reference(source_.GetInt());
|
|
DCHECK(space < kNumberOfPreallocatedSpaces);
|
|
uint32_t chunk_index = back_reference.chunk_index();
|
|
DCHECK_LE(chunk_index, current_chunk_[space]);
|
|
uint32_t chunk_offset = back_reference.chunk_offset();
|
|
obj = HeapObject::FromAddress(reservations_[space][chunk_index].start +
|
|
chunk_offset);
|
|
}
|
|
if (deserializing_user_code() && obj->IsInternalizedString()) {
|
|
obj = String::cast(obj)->GetForwardedInternalizedString();
|
|
}
|
|
hot_objects_.Add(obj);
|
|
return obj;
|
|
}
|
|
|
|
|
|
// This routine writes the new object into the pointer provided and then
|
|
// returns true if the new object was in young space and false otherwise.
|
|
// The reason for this strange interface is that otherwise the object is
|
|
// written very late, which means the FreeSpace map is not set up by the
|
|
// time we need to use it to mark the space at the end of a page free.
|
|
void Deserializer::ReadObject(int space_number, Object** write_back) {
|
|
Address address;
|
|
HeapObject* obj;
|
|
int next_int = source_.GetInt();
|
|
|
|
bool double_align = false;
|
|
#ifndef V8_HOST_ARCH_64_BIT
|
|
double_align = next_int == kDoubleAlignmentSentinel;
|
|
if (double_align) next_int = source_.GetInt();
|
|
#endif
|
|
|
|
DCHECK_NE(kDoubleAlignmentSentinel, next_int);
|
|
int size = next_int << kObjectAlignmentBits;
|
|
int reserved_size = size + (double_align ? kPointerSize : 0);
|
|
address = Allocate(space_number, reserved_size);
|
|
obj = HeapObject::FromAddress(address);
|
|
if (double_align) {
|
|
obj = isolate_->heap()->DoubleAlignForDeserialization(obj, reserved_size);
|
|
address = obj->address();
|
|
}
|
|
|
|
isolate_->heap()->OnAllocationEvent(obj, size);
|
|
Object** current = reinterpret_cast<Object**>(address);
|
|
Object** limit = current + (size >> kPointerSizeLog2);
|
|
if (FLAG_log_snapshot_positions) {
|
|
LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
|
|
}
|
|
ReadData(current, limit, space_number, address);
|
|
|
|
// TODO(mvstanton): consider treating the heap()->allocation_sites_list()
|
|
// as a (weak) root. If this root is relocated correctly,
|
|
// RelinkAllocationSite() isn't necessary.
|
|
if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj));
|
|
|
|
// Fix up strings from serialized user code.
|
|
if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj);
|
|
|
|
*write_back = obj;
|
|
#ifdef DEBUG
|
|
if (obj->IsCode()) {
|
|
DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
|
|
} else {
|
|
DCHECK(space_number != CODE_SPACE);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
// We know the space requirements before deserialization and can
|
|
// pre-allocate that reserved space. During deserialization, all we need
|
|
// to do is to bump up the pointer for each space in the reserved
|
|
// space. This is also used for fixing back references.
|
|
// We may have to split up the pre-allocation into several chunks
|
|
// because it would not fit onto a single page. We do not have to keep
|
|
// track of when to move to the next chunk. An opcode will signal this.
|
|
// Since multiple large objects cannot be folded into one large object
|
|
// space allocation, we have to do an actual allocation when deserializing
|
|
// each large object. Instead of tracking offset for back references, we
|
|
// reference large objects by index.
|
|
Address Deserializer::Allocate(int space_index, int size) {
|
|
if (space_index == LO_SPACE) {
|
|
AlwaysAllocateScope scope(isolate_);
|
|
LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
|
|
Executability exec = static_cast<Executability>(source_.Get());
|
|
AllocationResult result = lo_space->AllocateRaw(size, exec);
|
|
HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
|
|
deserialized_large_objects_.Add(obj);
|
|
return obj->address();
|
|
} else {
|
|
DCHECK(space_index < kNumberOfPreallocatedSpaces);
|
|
Address address = high_water_[space_index];
|
|
DCHECK_NE(NULL, address);
|
|
high_water_[space_index] += size;
|
|
#ifdef DEBUG
|
|
// Assert that the current reserved chunk is still big enough.
|
|
const Heap::Reservation& reservation = reservations_[space_index];
|
|
int chunk_index = current_chunk_[space_index];
|
|
CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
|
|
#endif
|
|
return address;
|
|
}
|
|
}
|
|
|
|
|
|
void Deserializer::ReadData(Object** current, Object** limit, int source_space,
|
|
Address current_object_address) {
|
|
Isolate* const isolate = isolate_;
|
|
// Write barrier support costs around 1% in startup time. In fact there
|
|
// are no new space objects in current boot snapshots, so it's not needed,
|
|
// but that may change.
|
|
bool write_barrier_needed = (current_object_address != NULL &&
|
|
source_space != NEW_SPACE &&
|
|
source_space != CELL_SPACE &&
|
|
source_space != PROPERTY_CELL_SPACE &&
|
|
source_space != CODE_SPACE &&
|
|
source_space != OLD_DATA_SPACE);
|
|
while (current < limit) {
|
|
byte data = source_.Get();
|
|
switch (data) {
|
|
#define CASE_STATEMENT(where, how, within, space_number) \
|
|
case where + how + within + space_number: \
|
|
STATIC_ASSERT((where & ~kPointedToMask) == 0); \
|
|
STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
|
|
STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
|
|
STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
|
|
|
|
#define CASE_BODY(where, how, within, space_number_if_any) \
|
|
{ \
|
|
bool emit_write_barrier = false; \
|
|
bool current_was_incremented = false; \
|
|
int space_number = space_number_if_any == kAnyOldSpace \
|
|
? (data & kSpaceMask) \
|
|
: space_number_if_any; \
|
|
if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
|
|
ReadObject(space_number, current); \
|
|
emit_write_barrier = (space_number == NEW_SPACE); \
|
|
} else { \
|
|
Object* new_object = NULL; /* May not be a real Object pointer. */ \
|
|
if (where == kNewObject) { \
|
|
ReadObject(space_number, &new_object); \
|
|
} else if (where == kRootArray) { \
|
|
int root_id = source_.GetInt(); \
|
|
new_object = isolate->heap()->roots_array_start()[root_id]; \
|
|
emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
|
|
} else if (where == kPartialSnapshotCache) { \
|
|
int cache_index = source_.GetInt(); \
|
|
new_object = isolate->serialize_partial_snapshot_cache()[cache_index]; \
|
|
emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
|
|
} else if (where == kExternalReference) { \
|
|
int skip = source_.GetInt(); \
|
|
current = reinterpret_cast<Object**>( \
|
|
reinterpret_cast<Address>(current) + skip); \
|
|
int reference_id = source_.GetInt(); \
|
|
Address address = external_reference_decoder_->Decode(reference_id); \
|
|
new_object = reinterpret_cast<Object*>(address); \
|
|
} else if (where == kBackref) { \
|
|
emit_write_barrier = (space_number == NEW_SPACE); \
|
|
new_object = GetBackReferencedObject(data & kSpaceMask); \
|
|
} else if (where == kBuiltin) { \
|
|
DCHECK(deserializing_user_code()); \
|
|
int builtin_id = source_.GetInt(); \
|
|
DCHECK_LE(0, builtin_id); \
|
|
DCHECK_LT(builtin_id, Builtins::builtin_count); \
|
|
Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
|
|
new_object = isolate->builtins()->builtin(name); \
|
|
emit_write_barrier = false; \
|
|
} else if (where == kAttachedReference) { \
|
|
DCHECK(deserializing_user_code()); \
|
|
int index = source_.GetInt(); \
|
|
new_object = *attached_objects_->at(index); \
|
|
emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
|
|
} else { \
|
|
DCHECK(where == kBackrefWithSkip); \
|
|
int skip = source_.GetInt(); \
|
|
current = reinterpret_cast<Object**>( \
|
|
reinterpret_cast<Address>(current) + skip); \
|
|
emit_write_barrier = (space_number == NEW_SPACE); \
|
|
new_object = GetBackReferencedObject(data & kSpaceMask); \
|
|
} \
|
|
if (within == kInnerPointer) { \
|
|
if (space_number != CODE_SPACE || new_object->IsCode()) { \
|
|
Code* new_code_object = reinterpret_cast<Code*>(new_object); \
|
|
new_object = \
|
|
reinterpret_cast<Object*>(new_code_object->instruction_start()); \
|
|
} else { \
|
|
DCHECK(space_number == CODE_SPACE); \
|
|
Cell* cell = Cell::cast(new_object); \
|
|
new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
|
|
} \
|
|
} \
|
|
if (how == kFromCode) { \
|
|
Address location_of_branch_data = reinterpret_cast<Address>(current); \
|
|
Assembler::deserialization_set_special_target_at( \
|
|
location_of_branch_data, \
|
|
Code::cast(HeapObject::FromAddress(current_object_address)), \
|
|
reinterpret_cast<Address>(new_object)); \
|
|
location_of_branch_data += Assembler::kSpecialTargetSize; \
|
|
current = reinterpret_cast<Object**>(location_of_branch_data); \
|
|
current_was_incremented = true; \
|
|
} else { \
|
|
*current = new_object; \
|
|
} \
|
|
} \
|
|
if (emit_write_barrier && write_barrier_needed) { \
|
|
Address current_address = reinterpret_cast<Address>(current); \
|
|
isolate->heap()->RecordWrite( \
|
|
current_object_address, \
|
|
static_cast<int>(current_address - current_object_address)); \
|
|
} \
|
|
if (!current_was_incremented) { \
|
|
current++; \
|
|
} \
|
|
break; \
|
|
}
|
|
|
|
// This generates a case and a body for the new space (which has to do extra
|
|
// write barrier handling) and handles the other spaces with 8 fall-through
|
|
// cases and one body.
|
|
#define ALL_SPACES(where, how, within) \
|
|
CASE_STATEMENT(where, how, within, NEW_SPACE) \
|
|
CASE_BODY(where, how, within, NEW_SPACE) \
|
|
CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
|
|
CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
|
|
CASE_STATEMENT(where, how, within, CODE_SPACE) \
|
|
CASE_STATEMENT(where, how, within, MAP_SPACE) \
|
|
CASE_STATEMENT(where, how, within, CELL_SPACE) \
|
|
CASE_STATEMENT(where, how, within, PROPERTY_CELL_SPACE) \
|
|
CASE_STATEMENT(where, how, within, LO_SPACE) \
|
|
CASE_BODY(where, how, within, kAnyOldSpace)
|
|
|
|
#define FOUR_CASES(byte_code) \
|
|
case byte_code: \
|
|
case byte_code + 1: \
|
|
case byte_code + 2: \
|
|
case byte_code + 3:
|
|
|
|
#define SIXTEEN_CASES(byte_code) \
|
|
FOUR_CASES(byte_code) \
|
|
FOUR_CASES(byte_code + 4) \
|
|
FOUR_CASES(byte_code + 8) \
|
|
FOUR_CASES(byte_code + 12)
|
|
|
|
#define COMMON_RAW_LENGTHS(f) \
|
|
f(1) \
|
|
f(2) \
|
|
f(3) \
|
|
f(4) \
|
|
f(5) \
|
|
f(6) \
|
|
f(7) \
|
|
f(8) \
|
|
f(9) \
|
|
f(10) \
|
|
f(11) \
|
|
f(12) \
|
|
f(13) \
|
|
f(14) \
|
|
f(15) \
|
|
f(16) \
|
|
f(17) \
|
|
f(18) \
|
|
f(19) \
|
|
f(20) \
|
|
f(21) \
|
|
f(22) \
|
|
f(23) \
|
|
f(24) \
|
|
f(25) \
|
|
f(26) \
|
|
f(27) \
|
|
f(28) \
|
|
f(29) \
|
|
f(30) \
|
|
f(31)
|
|
|
|
// We generate 15 cases and bodies that process special tags that combine
|
|
// the raw data tag and the length into one byte.
|
|
#define RAW_CASE(index) \
|
|
case kRawData + index: { \
|
|
byte* raw_data_out = reinterpret_cast<byte*>(current); \
|
|
source_.CopyRaw(raw_data_out, index* kPointerSize); \
|
|
current = reinterpret_cast<Object**>(raw_data_out + index * kPointerSize); \
|
|
break; \
|
|
}
|
|
COMMON_RAW_LENGTHS(RAW_CASE)
|
|
#undef RAW_CASE
|
|
|
|
// Deserialize a chunk of raw data that doesn't have one of the popular
|
|
// lengths.
|
|
case kRawData: {
|
|
int size = source_.GetInt();
|
|
byte* raw_data_out = reinterpret_cast<byte*>(current);
|
|
source_.CopyRaw(raw_data_out, size);
|
|
break;
|
|
}
|
|
|
|
SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance)
|
|
SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance + 16) {
|
|
int root_id = RootArrayConstantFromByteCode(data);
|
|
Object* object = isolate->heap()->roots_array_start()[root_id];
|
|
DCHECK(!isolate->heap()->InNewSpace(object));
|
|
*current++ = object;
|
|
break;
|
|
}
|
|
|
|
SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance)
|
|
SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance + 16) {
|
|
int root_id = RootArrayConstantFromByteCode(data);
|
|
int skip = source_.GetInt();
|
|
current = reinterpret_cast<Object**>(
|
|
reinterpret_cast<intptr_t>(current) + skip);
|
|
Object* object = isolate->heap()->roots_array_start()[root_id];
|
|
DCHECK(!isolate->heap()->InNewSpace(object));
|
|
*current++ = object;
|
|
break;
|
|
}
|
|
|
|
case kVariableRepeat: {
|
|
int repeats = source_.GetInt();
|
|
Object* object = current[-1];
|
|
DCHECK(!isolate->heap()->InNewSpace(object));
|
|
for (int i = 0; i < repeats; i++) current[i] = object;
|
|
current += repeats;
|
|
break;
|
|
}
|
|
|
|
STATIC_ASSERT(kRootArrayNumberOfConstantEncodings ==
|
|
Heap::kOldSpaceRoots);
|
|
STATIC_ASSERT(kMaxFixedRepeats == 15);
|
|
FOUR_CASES(kFixedRepeat)
|
|
FOUR_CASES(kFixedRepeat + 4)
|
|
FOUR_CASES(kFixedRepeat + 8)
|
|
case kFixedRepeat + 12:
|
|
case kFixedRepeat + 13:
|
|
case kFixedRepeat + 14: {
|
|
int repeats = RepeatsForCode(data);
|
|
Object* object = current[-1];
|
|
DCHECK(!isolate->heap()->InNewSpace(object));
|
|
for (int i = 0; i < repeats; i++) current[i] = object;
|
|
current += repeats;
|
|
break;
|
|
}
|
|
|
|
// Deserialize a new object and write a pointer to it to the current
|
|
// object.
|
|
ALL_SPACES(kNewObject, kPlain, kStartOfObject)
|
|
// Support for direct instruction pointers in functions. It's an inner
|
|
// pointer because it points at the entry point, not at the start of the
|
|
// code object.
|
|
CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
|
|
CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
|
|
// Deserialize a new code object and write a pointer to its first
|
|
// instruction to the current code object.
|
|
ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
|
|
// Find a recently deserialized object using its offset from the current
|
|
// allocation point and write a pointer to it to the current object.
|
|
ALL_SPACES(kBackref, kPlain, kStartOfObject)
|
|
ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
|
|
#if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
|
|
defined(V8_TARGET_ARCH_MIPS64)
|
|
// Deserialize a new object from pointer found in code and write
|
|
// a pointer to it to the current object. Required only for MIPS or ARM
|
|
// with ool constant pool, and omitted on the other architectures because
|
|
// it is fully unrolled and would cause bloat.
|
|
ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
|
|
// Find a recently deserialized code object using its offset from the
|
|
// current allocation point and write a pointer to it to the current
|
|
// object. Required only for MIPS or ARM with ool constant pool.
|
|
ALL_SPACES(kBackref, kFromCode, kStartOfObject)
|
|
ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
|
|
#endif
|
|
// Find a recently deserialized code object using its offset from the
|
|
// current allocation point and write a pointer to its first instruction
|
|
// to the current code object or the instruction pointer in a function
|
|
// object.
|
|
ALL_SPACES(kBackref, kFromCode, kInnerPointer)
|
|
ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
|
|
ALL_SPACES(kBackref, kPlain, kInnerPointer)
|
|
ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
|
|
// Find an object in the roots array and write a pointer to it to the
|
|
// current object.
|
|
CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
|
|
CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
|
|
#if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
|
|
defined(V8_TARGET_ARCH_MIPS64)
|
|
// Find an object in the roots array and write a pointer to it to in code.
|
|
CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0)
|
|
CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0)
|
|
#endif
|
|
// Find an object in the partial snapshots cache and write a pointer to it
|
|
// to the current object.
|
|
CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
|
|
CASE_BODY(kPartialSnapshotCache,
|
|
kPlain,
|
|
kStartOfObject,
|
|
0)
|
|
// Find an code entry in the partial snapshots cache and
|
|
// write a pointer to it to the current object.
|
|
CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
|
|
CASE_BODY(kPartialSnapshotCache,
|
|
kPlain,
|
|
kInnerPointer,
|
|
0)
|
|
// Find an external reference and write a pointer to it to the current
|
|
// object.
|
|
CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
|
|
CASE_BODY(kExternalReference,
|
|
kPlain,
|
|
kStartOfObject,
|
|
0)
|
|
// Find an external reference and write a pointer to it in the current
|
|
// code object.
|
|
CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
|
|
CASE_BODY(kExternalReference,
|
|
kFromCode,
|
|
kStartOfObject,
|
|
0)
|
|
// Find a builtin and write a pointer to it to the current object.
|
|
CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0)
|
|
CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0)
|
|
CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0)
|
|
CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0)
|
|
CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0)
|
|
CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0)
|
|
// Find an object in the attached references and write a pointer to it to
|
|
// the current object.
|
|
CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0)
|
|
CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0)
|
|
CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0)
|
|
CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0)
|
|
CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0)
|
|
CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0)
|
|
|
|
#undef CASE_STATEMENT
|
|
#undef CASE_BODY
|
|
#undef ALL_SPACES
|
|
|
|
case kSkip: {
|
|
int size = source_.GetInt();
|
|
current = reinterpret_cast<Object**>(
|
|
reinterpret_cast<intptr_t>(current) + size);
|
|
break;
|
|
}
|
|
|
|
case kNativesStringResource: {
|
|
int index = source_.Get();
|
|
Vector<const char> source_vector = Natives::GetScriptSource(index);
|
|
NativesExternalStringResource* resource =
|
|
new NativesExternalStringResource(isolate->bootstrapper(),
|
|
source_vector.start(),
|
|
source_vector.length());
|
|
*current++ = reinterpret_cast<Object*>(resource);
|
|
break;
|
|
}
|
|
|
|
case kNextChunk: {
|
|
int space = source_.Get();
|
|
DCHECK(space < kNumberOfPreallocatedSpaces);
|
|
int chunk_index = current_chunk_[space];
|
|
const Heap::Reservation& reservation = reservations_[space];
|
|
// Make sure the current chunk is indeed exhausted.
|
|
CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
|
|
// Move to next reserved chunk.
|
|
chunk_index = ++current_chunk_[space];
|
|
DCHECK_LT(chunk_index, reservation.length());
|
|
high_water_[space] = reservation[chunk_index].start;
|
|
break;
|
|
}
|
|
|
|
FOUR_CASES(kHotObjectWithSkip)
|
|
FOUR_CASES(kHotObjectWithSkip + 4) {
|
|
int skip = source_.GetInt();
|
|
current = reinterpret_cast<Object**>(
|
|
reinterpret_cast<Address>(current) + skip);
|
|
// Fall through.
|
|
}
|
|
FOUR_CASES(kHotObject)
|
|
FOUR_CASES(kHotObject + 4) {
|
|
int index = data & kHotObjectIndexMask;
|
|
*current = hot_objects_.Get(index);
|
|
if (write_barrier_needed && isolate->heap()->InNewSpace(*current)) {
|
|
Address current_address = reinterpret_cast<Address>(current);
|
|
isolate->heap()->RecordWrite(
|
|
current_object_address,
|
|
static_cast<int>(current_address - current_object_address));
|
|
}
|
|
current++;
|
|
break;
|
|
}
|
|
|
|
case kSynchronize: {
|
|
// If we get here then that indicates that you have a mismatch between
|
|
// the number of GC roots when serializing and deserializing.
|
|
UNREACHABLE();
|
|
}
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
DCHECK_EQ(limit, current);
|
|
}
|
|
|
|
|
|
Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
|
|
: isolate_(isolate),
|
|
sink_(sink),
|
|
external_reference_encoder_(new ExternalReferenceEncoder(isolate)),
|
|
root_index_map_(isolate),
|
|
code_address_map_(NULL),
|
|
large_objects_total_size_(0),
|
|
seen_large_objects_index_(0) {
|
|
// The serializer is meant to be used only to generate initial heap images
|
|
// from a context in which there is only one isolate.
|
|
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
|
|
pending_chunk_[i] = 0;
|
|
max_chunk_size_[i] = static_cast<uint32_t>(
|
|
MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
|
|
}
|
|
}
|
|
|
|
|
|
Serializer::~Serializer() {
|
|
delete external_reference_encoder_;
|
|
if (code_address_map_ != NULL) delete code_address_map_;
|
|
}
|
|
|
|
|
|
void StartupSerializer::SerializeStrongReferences() {
|
|
Isolate* isolate = this->isolate();
|
|
// No active threads.
|
|
CHECK_EQ(NULL, isolate->thread_manager()->FirstThreadStateInUse());
|
|
// No active or weak handles.
|
|
CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
|
|
CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
|
|
CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
|
|
// We don't support serializing installed extensions.
|
|
CHECK(!isolate->has_installed_extensions());
|
|
isolate->heap()->IterateSmiRoots(this);
|
|
isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
|
|
}
|
|
|
|
|
|
void StartupSerializer::VisitPointers(Object** start, Object** end) {
|
|
for (Object** current = start; current < end; current++) {
|
|
if (start == isolate()->heap()->roots_array_start()) {
|
|
root_index_wave_front_ =
|
|
Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
|
|
}
|
|
if (ShouldBeSkipped(current)) {
|
|
sink_->Put(kSkip, "Skip");
|
|
sink_->PutInt(kPointerSize, "SkipOneWord");
|
|
} else if ((*current)->IsSmi()) {
|
|
sink_->Put(kOnePointerRawData, "Smi");
|
|
for (int i = 0; i < kPointerSize; i++) {
|
|
sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
|
|
}
|
|
} else {
|
|
SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void PartialSerializer::Serialize(Object** object) {
|
|
this->VisitPointer(object);
|
|
Pad();
|
|
}
|
|
|
|
|
|
bool Serializer::ShouldBeSkipped(Object** current) {
|
|
Object** roots = isolate()->heap()->roots_array_start();
|
|
return current == &roots[Heap::kStoreBufferTopRootIndex]
|
|
|| current == &roots[Heap::kStackLimitRootIndex]
|
|
|| current == &roots[Heap::kRealStackLimitRootIndex];
|
|
}
|
|
|
|
|
|
void Serializer::VisitPointers(Object** start, Object** end) {
|
|
for (Object** current = start; current < end; current++) {
|
|
if ((*current)->IsSmi()) {
|
|
sink_->Put(kOnePointerRawData, "Smi");
|
|
for (int i = 0; i < kPointerSize; i++) {
|
|
sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
|
|
}
|
|
} else {
|
|
SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Serializer::EncodeReservations(
|
|
List<SerializedData::Reservation>* out) const {
|
|
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
|
|
for (int j = 0; j < completed_chunks_[i].length(); j++) {
|
|
out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
|
|
}
|
|
|
|
if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
|
|
out->Add(SerializedData::Reservation(pending_chunk_[i]));
|
|
}
|
|
out->last().mark_as_last();
|
|
}
|
|
|
|
out->Add(SerializedData::Reservation(large_objects_total_size_));
|
|
out->last().mark_as_last();
|
|
}
|
|
|
|
|
|
// This ensures that the partial snapshot cache keeps things alive during GC and
|
|
// tracks their movement. When it is called during serialization of the startup
|
|
// snapshot nothing happens. When the partial (context) snapshot is created,
|
|
// this array is populated with the pointers that the partial snapshot will
|
|
// need. As that happens we emit serialized objects to the startup snapshot
|
|
// that correspond to the elements of this cache array. On deserialization we
|
|
// therefore need to visit the cache array. This fills it up with pointers to
|
|
// deserialized objects.
|
|
void SerializerDeserializer::Iterate(Isolate* isolate,
|
|
ObjectVisitor* visitor) {
|
|
if (isolate->serializer_enabled()) return;
|
|
for (int i = 0; ; i++) {
|
|
if (isolate->serialize_partial_snapshot_cache_length() <= i) {
|
|
// Extend the array ready to get a value from the visitor when
|
|
// deserializing.
|
|
isolate->PushToPartialSnapshotCache(Smi::FromInt(0));
|
|
}
|
|
Object** cache = isolate->serialize_partial_snapshot_cache();
|
|
visitor->VisitPointers(&cache[i], &cache[i + 1]);
|
|
// Sentinel is the undefined object, which is a root so it will not normally
|
|
// be found in the cache.
|
|
if (cache[i] == isolate->heap()->undefined_value()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
|
|
Isolate* isolate = this->isolate();
|
|
|
|
for (int i = 0;
|
|
i < isolate->serialize_partial_snapshot_cache_length();
|
|
i++) {
|
|
Object* entry = isolate->serialize_partial_snapshot_cache()[i];
|
|
if (entry == heap_object) return i;
|
|
}
|
|
|
|
// We didn't find the object in the cache. So we add it to the cache and
|
|
// then visit the pointer so that it becomes part of the startup snapshot
|
|
// and we can refer to it from the partial snapshot.
|
|
int length = isolate->serialize_partial_snapshot_cache_length();
|
|
isolate->PushToPartialSnapshotCache(heap_object);
|
|
startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
|
|
// We don't recurse from the startup snapshot generator into the partial
|
|
// snapshot generator.
|
|
DCHECK(length == isolate->serialize_partial_snapshot_cache_length() - 1);
|
|
return length;
|
|
}
|
|
|
|
|
|
bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
|
|
WhereToPoint where_to_point, int skip) {
|
|
if (how_to_code == kPlain && where_to_point == kStartOfObject) {
|
|
// Encode a reference to a hot object by its index in the working set.
|
|
int index = hot_objects_.Find(obj);
|
|
if (index != HotObjectsList::kNotFound) {
|
|
DCHECK(index >= 0 && index <= kMaxHotObjectIndex);
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" Encoding hot object %d:", index);
|
|
obj->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
if (skip != 0) {
|
|
sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
|
|
sink_->PutInt(skip, "HotObjectSkipDistance");
|
|
} else {
|
|
sink_->Put(kHotObject + index, "HotObject");
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
BackReference back_reference = back_reference_map_.Lookup(obj);
|
|
if (back_reference.is_valid()) {
|
|
// Encode the location of an already deserialized object in order to write
|
|
// its location into a later object. We can encode the location as an
|
|
// offset fromthe start of the deserialized objects or as an offset
|
|
// backwards from thecurrent allocation pointer.
|
|
if (back_reference.is_source()) {
|
|
FlushSkip(skip);
|
|
if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
|
|
DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
|
|
sink_->Put(kAttachedReference + how_to_code + where_to_point, "Source");
|
|
sink_->PutInt(kSourceObjectReference, "kSourceObjectIndex");
|
|
} else {
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" Encoding back reference to: ");
|
|
obj->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
|
|
AllocationSpace space = back_reference.space();
|
|
if (skip == 0) {
|
|
sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
|
|
} else {
|
|
sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
|
|
"BackRefWithSkip");
|
|
sink_->PutInt(skip, "BackRefSkipDistance");
|
|
}
|
|
sink_->PutInt(back_reference.reference(), "BackRefValue");
|
|
|
|
hot_objects_.Add(obj);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
|
|
WhereToPoint where_to_point, int skip) {
|
|
DCHECK(!obj->IsJSFunction());
|
|
|
|
int root_index = root_index_map_.Lookup(obj);
|
|
// We can only encode roots as such if it has already been serialized.
|
|
// That applies to root indices below the wave front.
|
|
if (root_index != RootIndexMap::kInvalidRootIndex &&
|
|
root_index < root_index_wave_front_) {
|
|
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
|
|
return;
|
|
}
|
|
|
|
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
|
|
|
|
FlushSkip(skip);
|
|
|
|
// Object has not yet been serialized. Serialize it here.
|
|
ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
|
|
where_to_point);
|
|
object_serializer.Serialize();
|
|
}
|
|
|
|
|
|
void StartupSerializer::SerializeWeakReferences() {
|
|
// This phase comes right after the serialization (of the snapshot).
|
|
// After we have done the partial serialization the partial snapshot cache
|
|
// will contain some references needed to decode the partial snapshot. We
|
|
// add one entry with 'undefined' which is the sentinel that the deserializer
|
|
// uses to know it is done deserializing the array.
|
|
Object* undefined = isolate()->heap()->undefined_value();
|
|
VisitPointer(&undefined);
|
|
isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
|
|
Pad();
|
|
}
|
|
|
|
|
|
void Serializer::PutRoot(int root_index,
|
|
HeapObject* object,
|
|
SerializerDeserializer::HowToCode how_to_code,
|
|
SerializerDeserializer::WhereToPoint where_to_point,
|
|
int skip) {
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" Encoding root %d:", root_index);
|
|
object->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
|
|
if (how_to_code == kPlain &&
|
|
where_to_point == kStartOfObject &&
|
|
root_index < kRootArrayNumberOfConstantEncodings &&
|
|
!isolate()->heap()->InNewSpace(object)) {
|
|
if (skip == 0) {
|
|
sink_->Put(kRootArrayConstants + kNoSkipDistance + root_index,
|
|
"RootConstant");
|
|
} else {
|
|
sink_->Put(kRootArrayConstants + kHasSkipDistance + root_index,
|
|
"RootConstant");
|
|
sink_->PutInt(skip, "SkipInPutRoot");
|
|
}
|
|
} else {
|
|
FlushSkip(skip);
|
|
sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
|
|
sink_->PutInt(root_index, "root_index");
|
|
}
|
|
}
|
|
|
|
|
|
void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
|
|
WhereToPoint where_to_point, int skip) {
|
|
if (obj->IsMap()) {
|
|
// The code-caches link to context-specific code objects, which
|
|
// the startup and context serializes cannot currently handle.
|
|
DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
|
|
}
|
|
|
|
int root_index = root_index_map_.Lookup(obj);
|
|
if (root_index != RootIndexMap::kInvalidRootIndex) {
|
|
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
|
|
return;
|
|
}
|
|
|
|
if (ShouldBeInThePartialSnapshotCache(obj)) {
|
|
FlushSkip(skip);
|
|
|
|
int cache_index = PartialSnapshotCacheIndex(obj);
|
|
sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
|
|
"PartialSnapshotCache");
|
|
sink_->PutInt(cache_index, "partial_snapshot_cache_index");
|
|
return;
|
|
}
|
|
|
|
// Pointers from the partial snapshot to the objects in the startup snapshot
|
|
// should go through the root array or through the partial snapshot cache.
|
|
// If this is not the case you may have to add something to the root array.
|
|
DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
|
|
// All the internalized strings that the partial snapshot needs should be
|
|
// either in the root table or in the partial snapshot cache.
|
|
DCHECK(!obj->IsInternalizedString());
|
|
|
|
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
|
|
|
|
FlushSkip(skip);
|
|
|
|
// Object has not yet been serialized. Serialize it here.
|
|
ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
|
|
serializer.Serialize();
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
|
|
int size, Map* map) {
|
|
if (serializer_->code_address_map_) {
|
|
const char* code_name =
|
|
serializer_->code_address_map_->Lookup(object_->address());
|
|
LOG(serializer_->isolate_,
|
|
CodeNameEvent(object_->address(), sink_->Position(), code_name));
|
|
LOG(serializer_->isolate_,
|
|
SnapshotPositionEvent(object_->address(), sink_->Position()));
|
|
}
|
|
|
|
BackReference back_reference;
|
|
if (space == LO_SPACE) {
|
|
sink_->Put(kNewObject + reference_representation_ + space,
|
|
"NewLargeObject");
|
|
sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
|
|
if (object_->IsCode()) {
|
|
sink_->Put(EXECUTABLE, "executable large object");
|
|
} else {
|
|
sink_->Put(NOT_EXECUTABLE, "not executable large object");
|
|
}
|
|
back_reference = serializer_->AllocateLargeObject(size);
|
|
} else {
|
|
if (object_->NeedsToEnsureDoubleAlignment()) {
|
|
// Add wriggle room for double alignment padding.
|
|
back_reference = serializer_->Allocate(space, size + kPointerSize);
|
|
sink_->PutInt(kDoubleAlignmentSentinel, "DoubleAlignSentinel");
|
|
} else {
|
|
back_reference = serializer_->Allocate(space, size);
|
|
}
|
|
sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
|
|
int encoded_size = size >> kObjectAlignmentBits;
|
|
DCHECK_NE(kDoubleAlignmentSentinel, encoded_size);
|
|
sink_->PutInt(encoded_size, "ObjectSizeInWords");
|
|
}
|
|
|
|
// Mark this object as already serialized.
|
|
serializer_->back_reference_map()->Add(object_, back_reference);
|
|
|
|
// Serialize the map (first word of the object).
|
|
serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::SerializeExternalString() {
|
|
// Instead of serializing this as an external string, we serialize
|
|
// an imaginary sequential string with the same content.
|
|
Isolate* isolate = serializer_->isolate();
|
|
DCHECK(object_->IsExternalString());
|
|
DCHECK(object_->map() != isolate->heap()->native_source_string_map());
|
|
ExternalString* string = ExternalString::cast(object_);
|
|
int length = string->length();
|
|
Map* map;
|
|
int content_size;
|
|
int allocation_size;
|
|
const byte* resource;
|
|
// Find the map and size for the imaginary sequential string.
|
|
bool internalized = object_->IsInternalizedString();
|
|
if (object_->IsExternalOneByteString()) {
|
|
map = internalized ? isolate->heap()->one_byte_internalized_string_map()
|
|
: isolate->heap()->one_byte_string_map();
|
|
allocation_size = SeqOneByteString::SizeFor(length);
|
|
content_size = length * kCharSize;
|
|
resource = reinterpret_cast<const byte*>(
|
|
ExternalOneByteString::cast(string)->resource()->data());
|
|
} else {
|
|
map = internalized ? isolate->heap()->internalized_string_map()
|
|
: isolate->heap()->string_map();
|
|
allocation_size = SeqTwoByteString::SizeFor(length);
|
|
content_size = length * kShortSize;
|
|
resource = reinterpret_cast<const byte*>(
|
|
ExternalTwoByteString::cast(string)->resource()->data());
|
|
}
|
|
|
|
AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
|
|
? LO_SPACE
|
|
: OLD_DATA_SPACE;
|
|
SerializePrologue(space, allocation_size, map);
|
|
|
|
// Output the rest of the imaginary string.
|
|
int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
|
|
|
|
// Output raw data header. Do not bother with common raw length cases here.
|
|
sink_->Put(kRawData, "RawDataForString");
|
|
sink_->PutInt(bytes_to_output, "length");
|
|
|
|
// Serialize string header (except for map).
|
|
Address string_start = string->address();
|
|
for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
|
|
sink_->PutSection(string_start[i], "StringHeader");
|
|
}
|
|
|
|
// Serialize string content.
|
|
sink_->PutRaw(resource, content_size, "StringContent");
|
|
|
|
// Since the allocation size is rounded up to object alignment, there
|
|
// maybe left-over bytes that need to be padded.
|
|
int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
|
|
DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
|
|
for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
|
|
|
|
sink_->Put(kSkip, "SkipAfterString");
|
|
sink_->PutInt(bytes_to_output, "SkipDistance");
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::Serialize() {
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" Encoding heap object: ");
|
|
object_->ShortPrint();
|
|
PrintF("\n");
|
|
}
|
|
|
|
if (object_->IsExternalString()) {
|
|
Heap* heap = serializer_->isolate()->heap();
|
|
if (object_->map() != heap->native_source_string_map()) {
|
|
// Usually we cannot recreate resources for external strings. To work
|
|
// around this, external strings are serialized to look like ordinary
|
|
// sequential strings.
|
|
// The exception are native source code strings, since we can recreate
|
|
// their resources. In that case we fall through and leave it to
|
|
// VisitExternalOneByteString further down.
|
|
SerializeExternalString();
|
|
return;
|
|
}
|
|
}
|
|
|
|
int size = object_->Size();
|
|
Map* map = object_->map();
|
|
SerializePrologue(Serializer::SpaceOfObject(object_), size, map);
|
|
|
|
// Serialize the rest of the object.
|
|
CHECK_EQ(0, bytes_processed_so_far_);
|
|
bytes_processed_so_far_ = kPointerSize;
|
|
|
|
object_->IterateBody(map->instance_type(), size, this);
|
|
OutputRawData(object_->address() + size);
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitPointers(Object** start,
|
|
Object** end) {
|
|
Object** current = start;
|
|
while (current < end) {
|
|
while (current < end && (*current)->IsSmi()) current++;
|
|
if (current < end) OutputRawData(reinterpret_cast<Address>(current));
|
|
|
|
while (current < end && !(*current)->IsSmi()) {
|
|
HeapObject* current_contents = HeapObject::cast(*current);
|
|
int root_index = serializer_->root_index_map()->Lookup(current_contents);
|
|
// Repeats are not subject to the write barrier so we can only use
|
|
// immortal immovable root members. They are never in new space.
|
|
if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
|
|
Heap::RootIsImmortalImmovable(root_index) &&
|
|
current_contents == current[-1]) {
|
|
DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
|
|
int repeat_count = 1;
|
|
while (¤t[repeat_count] < end - 1 &&
|
|
current[repeat_count] == current_contents) {
|
|
repeat_count++;
|
|
}
|
|
current += repeat_count;
|
|
bytes_processed_so_far_ += repeat_count * kPointerSize;
|
|
if (repeat_count > kMaxFixedRepeats) {
|
|
sink_->Put(kVariableRepeat, "SerializeRepeats");
|
|
sink_->PutInt(repeat_count, "SerializeRepeats");
|
|
} else {
|
|
sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats");
|
|
}
|
|
} else {
|
|
serializer_->SerializeObject(
|
|
current_contents, kPlain, kStartOfObject, 0);
|
|
bytes_processed_so_far_ += kPointerSize;
|
|
current++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
|
|
// Out-of-line constant pool entries will be visited by the ConstantPoolArray.
|
|
if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
|
|
|
|
int skip = OutputRawData(rinfo->target_address_address(),
|
|
kCanReturnSkipInsteadOfSkipping);
|
|
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
|
Object* object = rinfo->target_object();
|
|
serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
|
|
kStartOfObject, skip);
|
|
bytes_processed_so_far_ += rinfo->target_address_size();
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
|
|
int skip = OutputRawData(reinterpret_cast<Address>(p),
|
|
kCanReturnSkipInsteadOfSkipping);
|
|
sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
|
|
sink_->PutInt(skip, "SkipB4ExternalRef");
|
|
Address target = *p;
|
|
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
|
bytes_processed_so_far_ += kPointerSize;
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
|
|
int skip = OutputRawData(rinfo->target_address_address(),
|
|
kCanReturnSkipInsteadOfSkipping);
|
|
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
|
sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
|
|
sink_->PutInt(skip, "SkipB4ExternalRef");
|
|
Address target = rinfo->target_reference();
|
|
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
|
bytes_processed_so_far_ += rinfo->target_address_size();
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
|
|
int skip = OutputRawData(rinfo->target_address_address(),
|
|
kCanReturnSkipInsteadOfSkipping);
|
|
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
|
sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
|
|
sink_->PutInt(skip, "SkipB4ExternalRef");
|
|
Address target = rinfo->target_address();
|
|
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
|
bytes_processed_so_far_ += rinfo->target_address_size();
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
|
|
// Out-of-line constant pool entries will be visited by the ConstantPoolArray.
|
|
if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
|
|
|
|
int skip = OutputRawData(rinfo->target_address_address(),
|
|
kCanReturnSkipInsteadOfSkipping);
|
|
Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
|
|
serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
|
|
bytes_processed_so_far_ += rinfo->target_address_size();
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
|
|
int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
|
|
Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
|
|
serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
|
|
bytes_processed_so_far_ += kPointerSize;
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
|
|
// Out-of-line constant pool entries will be visited by the ConstantPoolArray.
|
|
if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
|
|
|
|
int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
|
|
Cell* object = Cell::cast(rinfo->target_cell());
|
|
serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
|
|
bytes_processed_so_far_ += kPointerSize;
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitExternalOneByteString(
|
|
v8::String::ExternalOneByteStringResource** resource_pointer) {
|
|
Address references_start = reinterpret_cast<Address>(resource_pointer);
|
|
OutputRawData(references_start);
|
|
for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
|
|
Object* source =
|
|
serializer_->isolate()->heap()->natives_source_cache()->get(i);
|
|
if (!source->IsUndefined()) {
|
|
ExternalOneByteString* string = ExternalOneByteString::cast(source);
|
|
typedef v8::String::ExternalOneByteStringResource Resource;
|
|
const Resource* resource = string->resource();
|
|
if (resource == *resource_pointer) {
|
|
sink_->Put(kNativesStringResource, "NativesStringResource");
|
|
sink_->PutSection(i, "NativesStringResourceEnd");
|
|
bytes_processed_so_far_ += sizeof(resource);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
// One of the strings in the natives cache should match the resource. We
|
|
// don't expect any other kinds of external strings here.
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
static Code* CloneCodeObject(HeapObject* code) {
|
|
Address copy = new byte[code->Size()];
|
|
MemCopy(copy, code->address(), code->Size());
|
|
return Code::cast(HeapObject::FromAddress(copy));
|
|
}
|
|
|
|
|
|
static void WipeOutRelocations(Code* code) {
|
|
int mode_mask =
|
|
RelocInfo::kCodeTargetMask |
|
|
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
|
|
RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
|
|
RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
|
|
for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
|
|
if (!(FLAG_enable_ool_constant_pool && it.rinfo()->IsInConstantPool())) {
|
|
it.rinfo()->WipeOut();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int Serializer::ObjectSerializer::OutputRawData(
|
|
Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
|
|
Address object_start = object_->address();
|
|
int base = bytes_processed_so_far_;
|
|
int up_to_offset = static_cast<int>(up_to - object_start);
|
|
int to_skip = up_to_offset - bytes_processed_so_far_;
|
|
int bytes_to_output = to_skip;
|
|
bytes_processed_so_far_ += to_skip;
|
|
// This assert will fail if the reloc info gives us the target_address_address
|
|
// locations in a non-ascending order. Luckily that doesn't happen.
|
|
DCHECK(to_skip >= 0);
|
|
bool outputting_code = false;
|
|
if (to_skip != 0 && code_object_ && !code_has_been_output_) {
|
|
// Output the code all at once and fix later.
|
|
bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
|
|
outputting_code = true;
|
|
code_has_been_output_ = true;
|
|
}
|
|
if (bytes_to_output != 0 &&
|
|
(!code_object_ || outputting_code)) {
|
|
#define RAW_CASE(index) \
|
|
if (!outputting_code && bytes_to_output == index * kPointerSize && \
|
|
index * kPointerSize == to_skip) { \
|
|
sink_->PutSection(kRawData + index, "RawDataFixed"); \
|
|
to_skip = 0; /* This insn already skips. */ \
|
|
} else /* NOLINT */
|
|
COMMON_RAW_LENGTHS(RAW_CASE)
|
|
#undef RAW_CASE
|
|
{ /* NOLINT */
|
|
// We always end up here if we are outputting the code of a code object.
|
|
sink_->Put(kRawData, "RawData");
|
|
sink_->PutInt(bytes_to_output, "length");
|
|
}
|
|
|
|
// To make snapshots reproducible, we need to wipe out all pointers in code.
|
|
if (code_object_) {
|
|
Code* code = CloneCodeObject(object_);
|
|
// Code age headers are not serializable.
|
|
code->MakeYoung(serializer_->isolate());
|
|
WipeOutRelocations(code);
|
|
// We need to wipe out the header fields *after* wiping out the
|
|
// relocations, because some of these fields are needed for the latter.
|
|
code->WipeOutHeader();
|
|
object_start = code->address();
|
|
}
|
|
|
|
const char* description = code_object_ ? "Code" : "Byte";
|
|
sink_->PutRaw(object_start + base, bytes_to_output, description);
|
|
if (code_object_) delete[] object_start;
|
|
}
|
|
if (to_skip != 0 && return_skip == kIgnoringReturn) {
|
|
sink_->Put(kSkip, "Skip");
|
|
sink_->PutInt(to_skip, "SkipDistance");
|
|
to_skip = 0;
|
|
}
|
|
return to_skip;
|
|
}
|
|
|
|
|
|
AllocationSpace Serializer::SpaceOfObject(HeapObject* object) {
|
|
for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
|
|
AllocationSpace s = static_cast<AllocationSpace>(i);
|
|
if (object->GetHeap()->InSpace(object, s)) {
|
|
DCHECK(i < kNumberOfSpaces);
|
|
return s;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return FIRST_SPACE;
|
|
}
|
|
|
|
|
|
BackReference Serializer::AllocateLargeObject(int size) {
|
|
// Large objects are allocated one-by-one when deserializing. We do not
|
|
// have to keep track of multiple chunks.
|
|
large_objects_total_size_ += size;
|
|
return BackReference::LargeObjectReference(seen_large_objects_index_++);
|
|
}
|
|
|
|
|
|
BackReference Serializer::Allocate(AllocationSpace space, int size) {
|
|
DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
|
|
DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
|
|
uint32_t new_chunk_size = pending_chunk_[space] + size;
|
|
if (new_chunk_size > max_chunk_size(space)) {
|
|
// The new chunk size would not fit onto a single page. Complete the
|
|
// current chunk and start a new one.
|
|
sink_->Put(kNextChunk, "NextChunk");
|
|
sink_->Put(space, "NextChunkSpace");
|
|
completed_chunks_[space].Add(pending_chunk_[space]);
|
|
DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
|
|
pending_chunk_[space] = 0;
|
|
new_chunk_size = size;
|
|
}
|
|
uint32_t offset = pending_chunk_[space];
|
|
pending_chunk_[space] = new_chunk_size;
|
|
return BackReference::Reference(space, completed_chunks_[space].length(),
|
|
offset);
|
|
}
|
|
|
|
|
|
void Serializer::Pad() {
|
|
// The non-branching GetInt will read up to 3 bytes too far, so we need
|
|
// to pad the snapshot to make sure we don't read over the end.
|
|
for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
|
|
sink_->Put(kNop, "Padding");
|
|
}
|
|
}
|
|
|
|
|
|
void Serializer::InitializeCodeAddressMap() {
|
|
isolate_->InitializeLoggingAndCounters();
|
|
code_address_map_ = new CodeAddressMap(isolate_);
|
|
}
|
|
|
|
|
|
ScriptData* CodeSerializer::Serialize(Isolate* isolate,
|
|
Handle<SharedFunctionInfo> info,
|
|
Handle<String> source) {
|
|
base::ElapsedTimer timer;
|
|
if (FLAG_profile_deserialization) timer.Start();
|
|
if (FLAG_trace_serializer) {
|
|
PrintF("[Serializing from");
|
|
Object* script = info->script();
|
|
if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
|
|
PrintF("]\n");
|
|
}
|
|
|
|
// Serialize code object.
|
|
SnapshotByteSink sink(info->code()->CodeSize() * 2);
|
|
CodeSerializer cs(isolate, &sink, *source, info->code());
|
|
DisallowHeapAllocation no_gc;
|
|
Object** location = Handle<Object>::cast(info).location();
|
|
cs.VisitPointer(location);
|
|
cs.Pad();
|
|
|
|
SerializedCodeData data(sink.data(), cs);
|
|
ScriptData* script_data = data.GetScriptData();
|
|
|
|
if (FLAG_profile_deserialization) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
int length = script_data->length();
|
|
PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
|
|
}
|
|
|
|
return script_data;
|
|
}
|
|
|
|
|
|
void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
|
|
WhereToPoint where_to_point, int skip) {
|
|
int root_index = root_index_map_.Lookup(obj);
|
|
if (root_index != RootIndexMap::kInvalidRootIndex) {
|
|
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
|
|
return;
|
|
}
|
|
|
|
if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
|
|
|
|
FlushSkip(skip);
|
|
|
|
if (obj->IsCode()) {
|
|
Code* code_object = Code::cast(obj);
|
|
switch (code_object->kind()) {
|
|
case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
|
|
case Code::HANDLER: // No handlers patched in yet.
|
|
case Code::REGEXP: // No regexp literals initialized yet.
|
|
case Code::NUMBER_OF_KINDS: // Pseudo enum value.
|
|
CHECK(false);
|
|
case Code::BUILTIN:
|
|
SerializeBuiltin(code_object->builtin_index(), how_to_code,
|
|
where_to_point);
|
|
return;
|
|
case Code::STUB:
|
|
SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
|
|
return;
|
|
#define IC_KIND_CASE(KIND) case Code::KIND:
|
|
IC_KIND_LIST(IC_KIND_CASE)
|
|
#undef IC_KIND_CASE
|
|
SerializeIC(code_object, how_to_code, where_to_point);
|
|
return;
|
|
case Code::FUNCTION:
|
|
DCHECK(code_object->has_reloc_info_for_serialization());
|
|
// Only serialize the code for the toplevel function unless specified
|
|
// by flag. Replace code of inner functions by the lazy compile builtin.
|
|
// This is safe, as checked in Compiler::BuildFunctionInfo.
|
|
if (code_object != main_code_ && !FLAG_serialize_inner) {
|
|
SerializeBuiltin(Builtins::kCompileLazy, how_to_code, where_to_point);
|
|
} else {
|
|
SerializeGeneric(code_object, how_to_code, where_to_point);
|
|
}
|
|
return;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Past this point we should not see any (context-specific) maps anymore.
|
|
CHECK(!obj->IsMap());
|
|
// There should be no references to the global object embedded.
|
|
CHECK(!obj->IsJSGlobalProxy() && !obj->IsGlobalObject());
|
|
// There should be no hash table embedded. They would require rehashing.
|
|
CHECK(!obj->IsHashTable());
|
|
// We expect no instantiated function objects or contexts.
|
|
CHECK(!obj->IsJSFunction() && !obj->IsContext());
|
|
|
|
SerializeGeneric(obj, how_to_code, where_to_point);
|
|
}
|
|
|
|
|
|
void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
|
|
HowToCode how_to_code,
|
|
WhereToPoint where_to_point) {
|
|
if (heap_object->IsInternalizedString()) num_internalized_strings_++;
|
|
|
|
// Object has not yet been serialized. Serialize it here.
|
|
ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
|
|
where_to_point);
|
|
serializer.Serialize();
|
|
}
|
|
|
|
|
|
void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
|
|
WhereToPoint where_to_point) {
|
|
DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
|
|
(how_to_code == kPlain && where_to_point == kInnerPointer) ||
|
|
(how_to_code == kFromCode && where_to_point == kInnerPointer));
|
|
DCHECK_LT(builtin_index, Builtins::builtin_count);
|
|
DCHECK_LE(0, builtin_index);
|
|
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" Encoding builtin: %s\n",
|
|
isolate()->builtins()->name(builtin_index));
|
|
}
|
|
|
|
sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
|
|
sink_->PutInt(builtin_index, "builtin_index");
|
|
}
|
|
|
|
|
|
void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
|
|
WhereToPoint where_to_point) {
|
|
DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
|
|
(how_to_code == kPlain && where_to_point == kInnerPointer) ||
|
|
(how_to_code == kFromCode && where_to_point == kInnerPointer));
|
|
DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
|
|
DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
|
|
|
|
int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
|
|
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" Encoding code stub %s as %d\n",
|
|
CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false),
|
|
index);
|
|
}
|
|
|
|
sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
|
|
sink_->PutInt(index, "CodeStub key");
|
|
}
|
|
|
|
|
|
void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
|
|
WhereToPoint where_to_point) {
|
|
// The IC may be implemented as a stub.
|
|
uint32_t stub_key = ic->stub_key();
|
|
if (stub_key != CodeStub::NoCacheKey()) {
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
|
|
}
|
|
SerializeCodeStub(stub_key, how_to_code, where_to_point);
|
|
return;
|
|
}
|
|
// The IC may be implemented as builtin. Only real builtins have an
|
|
// actual builtin_index value attached (otherwise it's just garbage).
|
|
// Compare to make sure we are really dealing with a builtin.
|
|
int builtin_index = ic->builtin_index();
|
|
if (builtin_index < Builtins::builtin_count) {
|
|
Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
|
|
Code* builtin = isolate()->builtins()->builtin(name);
|
|
if (builtin == ic) {
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
|
|
}
|
|
DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
|
|
ic->kind() == Code::KEYED_STORE_IC);
|
|
SerializeBuiltin(builtin_index, how_to_code, where_to_point);
|
|
return;
|
|
}
|
|
}
|
|
// The IC may also just be a piece of code kept in the non_monomorphic_cache.
|
|
// In that case, just serialize as a normal code object.
|
|
if (FLAG_trace_serializer) {
|
|
PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
|
|
}
|
|
DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
|
|
SerializeGeneric(ic, how_to_code, where_to_point);
|
|
}
|
|
|
|
|
|
int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
|
|
// TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
|
|
int index = 0;
|
|
while (index < stub_keys_.length()) {
|
|
if (stub_keys_[index] == stub_key) return index;
|
|
index++;
|
|
}
|
|
stub_keys_.Add(stub_key);
|
|
return index;
|
|
}
|
|
|
|
|
|
void CodeSerializer::SerializeSourceObject(HowToCode how_to_code,
|
|
WhereToPoint where_to_point) {
|
|
if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
|
|
|
|
DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
|
|
sink_->Put(kAttachedReference + how_to_code + where_to_point, "Source");
|
|
sink_->PutInt(kSourceObjectIndex, "kSourceObjectIndex");
|
|
}
|
|
|
|
|
|
MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
|
|
Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
|
|
base::ElapsedTimer timer;
|
|
if (FLAG_profile_deserialization) timer.Start();
|
|
|
|
Object* root;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
SmartPointer<SerializedCodeData> scd(
|
|
SerializedCodeData::FromCachedData(cached_data, *source));
|
|
if (scd.is_empty()) {
|
|
if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
|
|
DCHECK(cached_data->rejected());
|
|
return MaybeHandle<SharedFunctionInfo>();
|
|
}
|
|
|
|
// Eagerly expand string table to avoid allocations during deserialization.
|
|
StringTable::EnsureCapacityForDeserialization(
|
|
isolate, scd->NumInternalizedStrings());
|
|
|
|
// Prepare and register list of attached objects.
|
|
Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
|
|
Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
|
|
code_stub_keys.length() + kCodeStubsBaseIndex);
|
|
attached_objects[kSourceObjectIndex] = source;
|
|
for (int i = 0; i < code_stub_keys.length(); i++) {
|
|
attached_objects[i + kCodeStubsBaseIndex] =
|
|
CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
|
|
}
|
|
|
|
Deserializer deserializer(scd.get());
|
|
deserializer.SetAttachedObjects(&attached_objects);
|
|
|
|
// Deserialize.
|
|
deserializer.DeserializePartial(isolate, &root, Deserializer::NULL_ON_OOM);
|
|
if (root == NULL) {
|
|
// Deserializing may fail if the reservations cannot be fulfilled.
|
|
if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
|
|
return MaybeHandle<SharedFunctionInfo>();
|
|
}
|
|
deserializer.FlushICacheForNewCodeObjects();
|
|
}
|
|
|
|
if (FLAG_profile_deserialization) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
int length = cached_data->length();
|
|
PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
|
|
}
|
|
Handle<SharedFunctionInfo> result(SharedFunctionInfo::cast(root), isolate);
|
|
result->set_deserialized(true);
|
|
|
|
if (isolate->logger()->is_logging_code_events() ||
|
|
isolate->cpu_profiler()->is_profiling()) {
|
|
String* name = isolate->heap()->empty_string();
|
|
if (result->script()->IsScript()) {
|
|
Script* script = Script::cast(result->script());
|
|
if (script->name()->IsString()) name = String::cast(script->name());
|
|
}
|
|
isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(),
|
|
*result, NULL, name);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void SerializedData::AllocateData(int size) {
|
|
DCHECK(!owns_data_);
|
|
data_ = NewArray<byte>(size);
|
|
size_ = size;
|
|
owns_data_ = true;
|
|
DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
|
|
}
|
|
|
|
|
|
SnapshotData::SnapshotData(const SnapshotByteSink& sink,
|
|
const Serializer& ser) {
|
|
DisallowHeapAllocation no_gc;
|
|
List<Reservation> reservations;
|
|
ser.EncodeReservations(&reservations);
|
|
const List<byte>& payload = sink.data();
|
|
|
|
// Calculate sizes.
|
|
int reservation_size = reservations.length() * kInt32Size;
|
|
int size = kHeaderSize + reservation_size + payload.length();
|
|
|
|
// Allocate backing store and create result data.
|
|
AllocateData(size);
|
|
|
|
// Set header values.
|
|
SetHeaderValue(kCheckSumOffset, Version::Hash());
|
|
SetHeaderValue(kReservationsOffset, reservations.length());
|
|
SetHeaderValue(kPayloadLengthOffset, payload.length());
|
|
|
|
// Copy reservation chunk sizes.
|
|
CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
|
|
reservation_size);
|
|
|
|
// Copy serialized data.
|
|
CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
|
|
static_cast<size_t>(payload.length()));
|
|
}
|
|
|
|
|
|
bool SnapshotData::IsSane() {
|
|
return GetHeaderValue(kCheckSumOffset) == Version::Hash();
|
|
}
|
|
|
|
|
|
Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
|
|
return Vector<const Reservation>(
|
|
reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
|
|
GetHeaderValue(kReservationsOffset));
|
|
}
|
|
|
|
|
|
Vector<const byte> SnapshotData::Payload() const {
|
|
int reservations_size = GetHeaderValue(kReservationsOffset) * kInt32Size;
|
|
const byte* payload = data_ + kHeaderSize + reservations_size;
|
|
int length = GetHeaderValue(kPayloadLengthOffset);
|
|
DCHECK_EQ(data_ + size_, payload + length);
|
|
return Vector<const byte>(payload, length);
|
|
}
|
|
|
|
|
|
SerializedCodeData::SerializedCodeData(const List<byte>& payload,
|
|
const CodeSerializer& cs) {
|
|
DisallowHeapAllocation no_gc;
|
|
const List<uint32_t>* stub_keys = cs.stub_keys();
|
|
|
|
List<Reservation> reservations;
|
|
cs.EncodeReservations(&reservations);
|
|
|
|
// Calculate sizes.
|
|
int reservation_size = reservations.length() * kInt32Size;
|
|
int num_stub_keys = stub_keys->length();
|
|
int stub_keys_size = stub_keys->length() * kInt32Size;
|
|
int size = kHeaderSize + reservation_size + stub_keys_size + payload.length();
|
|
|
|
// Allocate backing store and create result data.
|
|
AllocateData(size);
|
|
|
|
// Set header values.
|
|
SetHeaderValue(kCheckSumOffset, CheckSum(cs.source()));
|
|
SetHeaderValue(kNumInternalizedStringsOffset, cs.num_internalized_strings());
|
|
SetHeaderValue(kReservationsOffset, reservations.length());
|
|
SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
|
|
SetHeaderValue(kPayloadLengthOffset, payload.length());
|
|
|
|
// Copy reservation chunk sizes.
|
|
CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
|
|
reservation_size);
|
|
|
|
// Copy code stub keys.
|
|
CopyBytes(data_ + kHeaderSize + reservation_size,
|
|
reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
|
|
|
|
// Copy serialized data.
|
|
CopyBytes(data_ + kHeaderSize + reservation_size + stub_keys_size,
|
|
payload.begin(), static_cast<size_t>(payload.length()));
|
|
}
|
|
|
|
|
|
bool SerializedCodeData::IsSane(String* source) {
|
|
return GetHeaderValue(kCheckSumOffset) == CheckSum(source) &&
|
|
Payload().length() >= SharedFunctionInfo::kSize;
|
|
}
|
|
|
|
|
|
int SerializedCodeData::CheckSum(String* string) {
|
|
return Version::Hash() ^ string->length();
|
|
}
|
|
|
|
|
|
// Return ScriptData object and relinquish ownership over it to the caller.
|
|
ScriptData* SerializedCodeData::GetScriptData() {
|
|
DCHECK(owns_data_);
|
|
ScriptData* result = new ScriptData(data_, size_);
|
|
result->AcquireDataOwnership();
|
|
owns_data_ = false;
|
|
data_ = NULL;
|
|
return result;
|
|
}
|
|
|
|
|
|
Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
|
|
const {
|
|
return Vector<const Reservation>(
|
|
reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
|
|
GetHeaderValue(kReservationsOffset));
|
|
}
|
|
|
|
|
|
Vector<const byte> SerializedCodeData::Payload() const {
|
|
int reservations_size = GetHeaderValue(kReservationsOffset) * kInt32Size;
|
|
int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
|
|
const byte* payload =
|
|
data_ + kHeaderSize + reservations_size + code_stubs_size;
|
|
int length = GetHeaderValue(kPayloadLengthOffset);
|
|
DCHECK_EQ(data_ + size_, payload + length);
|
|
return Vector<const byte>(payload, length);
|
|
}
|
|
|
|
|
|
int SerializedCodeData::NumInternalizedStrings() const {
|
|
return GetHeaderValue(kNumInternalizedStringsOffset);
|
|
}
|
|
|
|
Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
|
|
int reservations_size = GetHeaderValue(kReservationsOffset) * kInt32Size;
|
|
const byte* start = data_ + kHeaderSize + reservations_size;
|
|
return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
|
|
GetHeaderValue(kNumCodeStubKeysOffset));
|
|
}
|
|
} } // namespace v8::internal
|