v8/test/unittests/interpreter/bytecode-array-writer-unittest.cc
Dan Elphick 735f3a689b [compiler] Skip creating unneeded objects for lazy source positions
This changes Compiler::CollectSourcePositions to skip finalization of
the BytecodeArray, constant table, handler table, ScopeInfos as well as
internalization of Ast values since only the source position table is
used and the others will be collected soon after by the GC.

It will also now avoid recompiling inner functions that would otherwise
be eagerly compiled.

BytecodeArrayWriter::ToBytecodeArray has been changed to never populate
the source_position_table.

Bug: v8:8510
Change-Id: I2db2f2da6b48fde11f17a20d017c1a54c0a34fc2
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1763538
Commit-Queue: Dan Elphick <delphick@chromium.org>
Reviewed-by: Ross McIlroy <rmcilroy@chromium.org>
Cr-Commit-Position: refs/heads/master@{#63365}
2019-08-23 12:47:20 +00:00

387 lines
15 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/init/v8.h"
#include "src/api/api.h"
#include "src/codegen/source-position-table.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/interpreter/bytecode-array-writer.h"
#include "src/interpreter/bytecode-label.h"
#include "src/interpreter/bytecode-node.h"
#include "src/interpreter/bytecode-register.h"
#include "src/interpreter/bytecode-source-info.h"
#include "src/interpreter/constant-array-builder.h"
#include "src/utils/utils.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/interpreter/bytecode-utils.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
namespace bytecode_array_writer_unittest {
#define B(Name) static_cast<uint8_t>(Bytecode::k##Name)
#define R(i) static_cast<uint32_t>(Register(i).ToOperand())
class BytecodeArrayWriterUnittest : public TestWithIsolateAndZone {
public:
BytecodeArrayWriterUnittest()
: constant_array_builder_(zone()),
bytecode_array_writer_(
zone(), &constant_array_builder_,
SourcePositionTableBuilder::RECORD_SOURCE_POSITIONS) {}
~BytecodeArrayWriterUnittest() override = default;
void Write(Bytecode bytecode, BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0,
BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
uint32_t operand2, BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
uint32_t operand2, uint32_t operand3,
BytecodeSourceInfo info = BytecodeSourceInfo());
void WriteJump(Bytecode bytecode, BytecodeLabel* label,
BytecodeSourceInfo info = BytecodeSourceInfo());
void WriteJumpLoop(Bytecode bytecode, BytecodeLoopHeader* loop_header,
int depth, BytecodeSourceInfo info = BytecodeSourceInfo());
BytecodeArrayWriter* writer() { return &bytecode_array_writer_; }
ZoneVector<unsigned char>* bytecodes() { return writer()->bytecodes(); }
SourcePositionTableBuilder* source_position_table_builder() {
return writer()->source_position_table_builder();
}
private:
ConstantArrayBuilder constant_array_builder_;
BytecodeArrayWriter bytecode_array_writer_;
};
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1, uint32_t operand2,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, operand2, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1, uint32_t operand2,
uint32_t operand3,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, operand2, operand3, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::WriteJump(Bytecode bytecode,
BytecodeLabel* label,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, 0, info);
writer()->WriteJump(&node, label);
}
void BytecodeArrayWriterUnittest::WriteJumpLoop(Bytecode bytecode,
BytecodeLoopHeader* loop_header,
int depth,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, 0, depth, info);
writer()->WriteJumpLoop(&node, loop_header);
}
TEST_F(BytecodeArrayWriterUnittest, SimpleExample) {
CHECK_EQ(bytecodes()->size(), 0u);
Write(Bytecode::kStackCheck, {10, false});
CHECK_EQ(bytecodes()->size(), 1u);
Write(Bytecode::kLdaSmi, 127, {55, true});
CHECK_EQ(bytecodes()->size(), 3u);
Write(Bytecode::kStar, Register(20).ToOperand());
CHECK_EQ(bytecodes()->size(), 5u);
Write(Bytecode::kLdar, Register(200).ToOperand());
CHECK_EQ(bytecodes()->size(), 9u);
Write(Bytecode::kReturn, {70, true});
CHECK_EQ(bytecodes()->size(), 10u);
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 10 E> */ B(StackCheck),
/* 1 55 S> */ B(LdaSmi), U8(127),
/* 3 */ B(Star), R8(20),
/* 5 */ B(Wide), B(Ldar), R16(200),
/* 9 70 S> */ B(Return),
// clang-format on
};
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(bytecodes()->at(i), expected_bytes[i]);
}
Handle<BytecodeArray> bytecode_array =
writer()->ToBytecodeArray(isolate(), 0, 0, factory()->empty_byte_array());
bytecode_array->set_source_position_table(
*writer()->ToSourcePositionTable(isolate()));
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
PositionTableEntry expected_positions[] = {
{0, 10, false}, {1, 55, true}, {9, 70, true}};
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, ComplexExample) {
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 30 E> */ B(StackCheck),
/* 1 42 S> */ B(LdaConstant), U8(0),
/* 3 42 E> */ B(Add), R8(1), U8(1),
/* 5 68 S> */ B(JumpIfUndefined), U8(39),
/* 7 */ B(JumpIfNull), U8(37),
/* 9 */ B(ToObject), R8(3),
/* 11 */ B(ForInPrepare), R8(3), U8(4),
/* 14 */ B(LdaZero),
/* 15 */ B(Star), R8(7),
/* 17 63 S> */ B(ForInContinue), R8(7), R8(6),
/* 20 */ B(JumpIfFalse), U8(24),
/* 22 */ B(ForInNext), R8(3), R8(7), R8(4), U8(1),
/* 27 */ B(JumpIfUndefined), U8(10),
/* 29 */ B(Star), R8(0),
/* 31 54 E> */ B(StackCheck),
/* 32 */ B(Ldar), R8(0),
/* 34 */ B(Star), R8(2),
/* 36 85 S> */ B(Return),
/* 37 */ B(ForInStep), R8(7),
/* 39 */ B(Star), R8(7),
/* 41 */ B(JumpLoop), U8(24), U8(0),
/* 44 */ B(LdaUndefined),
/* 45 85 S> */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {
{0, 30, false}, {1, 42, true}, {3, 42, false}, {6, 68, true},
{18, 63, true}, {32, 54, false}, {37, 85, true}, {46, 85, true}};
BytecodeLoopHeader loop_header;
BytecodeLabel jump_for_in, jump_end_1, jump_end_2, jump_end_3;
Write(Bytecode::kStackCheck, {30, false});
Write(Bytecode::kLdaConstant, U8(0), {42, true});
Write(Bytecode::kAdd, R(1), U8(1), {42, false});
WriteJump(Bytecode::kJumpIfUndefined, &jump_end_1, {68, true});
WriteJump(Bytecode::kJumpIfNull, &jump_end_2);
Write(Bytecode::kToObject, R(3));
Write(Bytecode::kForInPrepare, R(3), U8(4));
Write(Bytecode::kLdaZero);
Write(Bytecode::kStar, R(7));
writer()->BindLoopHeader(&loop_header);
Write(Bytecode::kForInContinue, R(7), R(6), {63, true});
WriteJump(Bytecode::kJumpIfFalse, &jump_end_3);
Write(Bytecode::kForInNext, R(3), R(7), R(4), U8(1));
WriteJump(Bytecode::kJumpIfUndefined, &jump_for_in);
Write(Bytecode::kStar, R(0));
Write(Bytecode::kStackCheck, {54, false});
Write(Bytecode::kLdar, R(0));
Write(Bytecode::kStar, R(2));
Write(Bytecode::kReturn, {85, true});
writer()->BindLabel(&jump_for_in);
Write(Bytecode::kForInStep, R(7));
Write(Bytecode::kStar, R(7));
WriteJumpLoop(Bytecode::kJumpLoop, &loop_header, 0);
writer()->BindLabel(&jump_end_1);
writer()->BindLabel(&jump_end_2);
writer()->BindLabel(&jump_end_3);
Write(Bytecode::kLdaUndefined);
Write(Bytecode::kReturn, {85, true});
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array =
writer()->ToBytecodeArray(isolate(), 0, 0, factory()->empty_byte_array());
bytecode_array->set_source_position_table(
*writer()->ToSourcePositionTable(isolate()));
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, ElideNoneffectfulBytecodes) {
if (!i::FLAG_ignition_elide_noneffectful_bytecodes) return;
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 10 E> */ B(StackCheck),
/* 1 55 S> */ B(Ldar), R8(20),
/* 3 */ B(Star), R8(20),
/* 5 */ B(CreateMappedArguments),
/* 6 60 S> */ B(LdaSmi), U8(127),
/* 8 70 S> */ B(Ldar), R8(20),
/* 10 75 S> */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {{0, 10, false},
{1, 55, true},
{6, 60, false},
{8, 70, true},
{10, 75, true}};
Write(Bytecode::kStackCheck, {10, false});
Write(Bytecode::kLdaSmi, 127, {55, true}); // Should be elided.
Write(Bytecode::kLdar, Register(20).ToOperand());
Write(Bytecode::kStar, Register(20).ToOperand());
Write(Bytecode::kLdar, Register(20).ToOperand()); // Should be elided.
Write(Bytecode::kCreateMappedArguments);
Write(Bytecode::kLdaSmi, 127, {60, false}); // Not elided due to source info.
Write(Bytecode::kLdar, Register(20).ToOperand(), {70, true});
Write(Bytecode::kReturn, {75, true});
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array =
writer()->ToBytecodeArray(isolate(), 0, 0, factory()->empty_byte_array());
bytecode_array->set_source_position_table(
*writer()->ToSourcePositionTable(isolate()));
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, DeadcodeElimination) {
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 10 E> */ B(StackCheck),
/* 1 55 S> */ B(LdaSmi), U8(127),
/* 3 */ B(Jump), U8(2),
/* 5 65 S> */ B(LdaSmi), U8(127),
/* 7 */ B(JumpIfFalse), U8(3),
/* 9 75 S> */ B(Return),
/* 10 */ B(JumpIfFalse), U8(3),
/* 12 */ B(Throw),
/* 13 */ B(JumpIfFalse), U8(3),
/* 15 */ B(ReThrow),
/* 16 */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {
{0, 10, false}, {1, 55, true}, {5, 65, true}, {9, 75, true}};
BytecodeLabel after_jump, after_conditional_jump, after_return, after_throw,
after_rethrow;
Write(Bytecode::kStackCheck, {10, false});
Write(Bytecode::kLdaSmi, 127, {55, true});
WriteJump(Bytecode::kJump, &after_jump);
Write(Bytecode::kLdaSmi, 127); // Dead code.
WriteJump(Bytecode::kJumpIfFalse, &after_conditional_jump); // Dead code.
writer()->BindLabel(&after_jump);
// We would bind the after_conditional_jump label here, but the jump to it is
// dead.
CHECK(!after_conditional_jump.has_referrer_jump());
Write(Bytecode::kLdaSmi, 127, {65, true});
WriteJump(Bytecode::kJumpIfFalse, &after_return);
Write(Bytecode::kReturn, {75, true});
Write(Bytecode::kLdaSmi, 127, {100, true}); // Dead code.
writer()->BindLabel(&after_return);
WriteJump(Bytecode::kJumpIfFalse, &after_throw);
Write(Bytecode::kThrow);
Write(Bytecode::kLdaSmi, 127); // Dead code.
writer()->BindLabel(&after_throw);
WriteJump(Bytecode::kJumpIfFalse, &after_rethrow);
Write(Bytecode::kReThrow);
Write(Bytecode::kLdaSmi, 127); // Dead code.
writer()->BindLabel(&after_rethrow);
Write(Bytecode::kReturn);
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array =
writer()->ToBytecodeArray(isolate(), 0, 0, factory()->empty_byte_array());
bytecode_array->set_source_position_table(
*writer()->ToSourcePositionTable(isolate()));
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
#undef B
#undef R
} // namespace bytecode_array_writer_unittest
} // namespace interpreter
} // namespace internal
} // namespace v8