v8/src/d8.cc
fmeawad 567e58390d Reland: Add Scoped Context Info (Isolate) to V8 Traces
This patch adds the newly added support for contexts in V8 Tracing, as well
as use it to mark all the entry points for a V8 Isolate.

Update for reland: The current tracing interface needs to be updated (AddTraceEvent),
but the embedders need to migrate to the new version before removing the old version.
(Reland of: https://codereview.chromium.org/1686233002)

The revert happened because the 2 signatures of the old and new AddTraceEvent where different
so it threw an overload-virtual error on cross arm debug. This issue is temporary, and to solve
it, I added an implementation of the old and new everywhere until the embedder implements the new.

BUG=v8:4565
LOG=N

R=jochen@chromium.org

Review URL: https://codereview.chromium.org/1704253002

Cr-Commit-Position: refs/heads/master@{#34332}
2016-02-26 17:25:30 +00:00

2573 lines
82 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Defined when linking against shared lib on Windows.
#if defined(USING_V8_SHARED) && !defined(V8_SHARED)
#define V8_SHARED
#endif
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#ifdef V8_SHARED
#include <assert.h>
#endif // V8_SHARED
#ifndef V8_SHARED
#include <algorithm>
#include <vector>
#endif // !V8_SHARED
#ifdef V8_SHARED
#include "include/v8-testing.h"
#endif // V8_SHARED
#ifdef ENABLE_VTUNE_JIT_INTERFACE
#include "src/third_party/vtune/v8-vtune.h"
#endif
#include "src/d8.h"
#include "src/ostreams.h"
#include "include/libplatform/libplatform.h"
#ifndef V8_SHARED
#include "src/api.h"
#include "src/base/cpu.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#include "src/base/sys-info.h"
#include "src/basic-block-profiler.h"
#include "src/snapshot/natives.h"
#include "src/utils.h"
#include "src/v8.h"
#endif // !V8_SHARED
#if !defined(_WIN32) && !defined(_WIN64)
#include <unistd.h> // NOLINT
#else
#include <windows.h> // NOLINT
#if defined(_MSC_VER)
#include <crtdbg.h> // NOLINT
#endif // defined(_MSC_VER)
#endif // !defined(_WIN32) && !defined(_WIN64)
#ifndef DCHECK
#define DCHECK(condition) assert(condition)
#endif
#ifndef CHECK
#define CHECK(condition) assert(condition)
#endif
namespace v8 {
namespace {
const int MB = 1024 * 1024;
#ifndef V8_SHARED
const int kMaxWorkers = 50;
#endif
class ShellArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
virtual void* Allocate(size_t length) {
void* data = AllocateUninitialized(length);
return data == NULL ? data : memset(data, 0, length);
}
virtual void* AllocateUninitialized(size_t length) { return malloc(length); }
virtual void Free(void* data, size_t) { free(data); }
};
class MockArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
void* Allocate(size_t length) override {
size_t actual_length = length > 10 * MB ? 1 : length;
void* data = AllocateUninitialized(actual_length);
return data == NULL ? data : memset(data, 0, actual_length);
}
void* AllocateUninitialized(size_t length) override {
return length > 10 * MB ? malloc(1) : malloc(length);
}
void Free(void* p, size_t) override { free(p); }
};
#ifndef V8_SHARED
// Predictable v8::Platform implementation. All background and foreground
// tasks are run immediately, delayed tasks are not executed at all.
class PredictablePlatform : public Platform {
public:
PredictablePlatform() {}
void CallOnBackgroundThread(Task* task,
ExpectedRuntime expected_runtime) override {
task->Run();
delete task;
}
void CallOnForegroundThread(v8::Isolate* isolate, Task* task) override {
task->Run();
delete task;
}
void CallDelayedOnForegroundThread(v8::Isolate* isolate, Task* task,
double delay_in_seconds) override {
delete task;
}
void CallIdleOnForegroundThread(v8::Isolate* isolate,
IdleTask* task) override {
UNREACHABLE();
}
bool IdleTasksEnabled(v8::Isolate* isolate) override { return false; }
double MonotonicallyIncreasingTime() override {
return synthetic_time_in_sec_ += 0.00001;
}
uint64_t AddTraceEvent(char phase, const uint8_t* categoryEnabledFlag,
const char* name, const char* scope, uint64_t id,
uint64_t bind_id, int numArgs, const char** argNames,
const uint8_t* argTypes, const uint64_t* argValues,
unsigned int flags) override {
return 0;
}
// TODO(fmeawad): Remove once all embedders implement the scope version.
uint64_t AddTraceEvent(char phase, const uint8_t* categoryEnabledFlag,
const char* name, uint64_t id, uint64_t bind_id,
int numArgs, const char** argNames,
const uint8_t* argTypes, const uint64_t* argValues,
unsigned int flags) override {
return 0;
}
void UpdateTraceEventDuration(const uint8_t* categoryEnabledFlag,
const char* name, uint64_t handle) override {}
const uint8_t* GetCategoryGroupEnabled(const char* name) override {
static uint8_t no = 0;
return &no;
}
const char* GetCategoryGroupName(
const uint8_t* categoryEnabledFlag) override {
static const char* dummy = "dummy";
return dummy;
}
private:
double synthetic_time_in_sec_ = 0.0;
DISALLOW_COPY_AND_ASSIGN(PredictablePlatform);
};
#endif // !V8_SHARED
v8::Platform* g_platform = NULL;
static Local<Value> Throw(Isolate* isolate, const char* message) {
return isolate->ThrowException(
String::NewFromUtf8(isolate, message, NewStringType::kNormal)
.ToLocalChecked());
}
#ifndef V8_SHARED
bool FindInObjectList(Local<Object> object, const Shell::ObjectList& list) {
for (int i = 0; i < list.length(); ++i) {
if (list[i]->StrictEquals(object)) {
return true;
}
}
return false;
}
Worker* GetWorkerFromInternalField(Isolate* isolate, Local<Object> object) {
if (object->InternalFieldCount() != 1) {
Throw(isolate, "this is not a Worker");
return NULL;
}
Worker* worker =
static_cast<Worker*>(object->GetAlignedPointerFromInternalField(0));
if (worker == NULL) {
Throw(isolate, "Worker is defunct because main thread is terminating");
return NULL;
}
return worker;
}
#endif // !V8_SHARED
} // namespace
class PerIsolateData {
public:
explicit PerIsolateData(Isolate* isolate) : isolate_(isolate), realms_(NULL) {
HandleScope scope(isolate);
isolate->SetData(0, this);
}
~PerIsolateData() {
isolate_->SetData(0, NULL); // Not really needed, just to be sure...
}
inline static PerIsolateData* Get(Isolate* isolate) {
return reinterpret_cast<PerIsolateData*>(isolate->GetData(0));
}
class RealmScope {
public:
explicit RealmScope(PerIsolateData* data);
~RealmScope();
private:
PerIsolateData* data_;
};
private:
friend class Shell;
friend class RealmScope;
Isolate* isolate_;
int realm_count_;
int realm_current_;
int realm_switch_;
Global<Context>* realms_;
Global<Value> realm_shared_;
int RealmIndexOrThrow(const v8::FunctionCallbackInfo<v8::Value>& args,
int arg_offset);
int RealmFind(Local<Context> context);
};
#ifndef V8_SHARED
CounterMap* Shell::counter_map_;
base::OS::MemoryMappedFile* Shell::counters_file_ = NULL;
CounterCollection Shell::local_counters_;
CounterCollection* Shell::counters_ = &local_counters_;
base::LazyMutex Shell::context_mutex_;
const base::TimeTicks Shell::kInitialTicks =
base::TimeTicks::HighResolutionNow();
Global<Context> Shell::utility_context_;
base::LazyMutex Shell::workers_mutex_;
bool Shell::allow_new_workers_ = true;
i::List<Worker*> Shell::workers_;
i::List<SharedArrayBuffer::Contents> Shell::externalized_shared_contents_;
#endif // !V8_SHARED
Global<Context> Shell::evaluation_context_;
ArrayBuffer::Allocator* Shell::array_buffer_allocator;
ShellOptions Shell::options;
base::OnceType Shell::quit_once_ = V8_ONCE_INIT;
#ifndef V8_SHARED
bool CounterMap::Match(void* key1, void* key2) {
const char* name1 = reinterpret_cast<const char*>(key1);
const char* name2 = reinterpret_cast<const char*>(key2);
return strcmp(name1, name2) == 0;
}
#endif // !V8_SHARED
// Converts a V8 value to a C string.
const char* Shell::ToCString(const v8::String::Utf8Value& value) {
return *value ? *value : "<string conversion failed>";
}
ScriptCompiler::CachedData* CompileForCachedData(
Local<String> source, Local<Value> name,
ScriptCompiler::CompileOptions compile_options) {
int source_length = source->Length();
uint16_t* source_buffer = new uint16_t[source_length];
source->Write(source_buffer, 0, source_length);
int name_length = 0;
uint16_t* name_buffer = NULL;
if (name->IsString()) {
Local<String> name_string = Local<String>::Cast(name);
name_length = name_string->Length();
name_buffer = new uint16_t[name_length];
name_string->Write(name_buffer, 0, name_length);
}
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* temp_isolate = Isolate::New(create_params);
ScriptCompiler::CachedData* result = NULL;
{
Isolate::Scope isolate_scope(temp_isolate);
HandleScope handle_scope(temp_isolate);
Context::Scope context_scope(Context::New(temp_isolate));
Local<String> source_copy =
v8::String::NewFromTwoByte(temp_isolate, source_buffer,
v8::NewStringType::kNormal,
source_length).ToLocalChecked();
Local<Value> name_copy;
if (name_buffer) {
name_copy = v8::String::NewFromTwoByte(temp_isolate, name_buffer,
v8::NewStringType::kNormal,
name_length).ToLocalChecked();
} else {
name_copy = v8::Undefined(temp_isolate);
}
ScriptCompiler::Source script_source(source_copy, ScriptOrigin(name_copy));
if (!ScriptCompiler::CompileUnboundScript(temp_isolate, &script_source,
compile_options).IsEmpty() &&
script_source.GetCachedData()) {
int length = script_source.GetCachedData()->length;
uint8_t* cache = new uint8_t[length];
memcpy(cache, script_source.GetCachedData()->data, length);
result = new ScriptCompiler::CachedData(
cache, length, ScriptCompiler::CachedData::BufferOwned);
}
}
temp_isolate->Dispose();
delete[] source_buffer;
delete[] name_buffer;
return result;
}
// Compile a string within the current v8 context.
MaybeLocal<Script> Shell::CompileString(
Isolate* isolate, Local<String> source, Local<Value> name,
ScriptCompiler::CompileOptions compile_options, SourceType source_type) {
Local<Context> context(isolate->GetCurrentContext());
ScriptOrigin origin(name);
if (compile_options == ScriptCompiler::kNoCompileOptions) {
ScriptCompiler::Source script_source(source, origin);
return source_type == SCRIPT
? ScriptCompiler::Compile(context, &script_source,
compile_options)
: ScriptCompiler::CompileModule(context, &script_source,
compile_options);
}
ScriptCompiler::CachedData* data =
CompileForCachedData(source, name, compile_options);
ScriptCompiler::Source cached_source(source, origin, data);
if (compile_options == ScriptCompiler::kProduceCodeCache) {
compile_options = ScriptCompiler::kConsumeCodeCache;
} else if (compile_options == ScriptCompiler::kProduceParserCache) {
compile_options = ScriptCompiler::kConsumeParserCache;
} else {
DCHECK(false); // A new compile option?
}
if (data == NULL) compile_options = ScriptCompiler::kNoCompileOptions;
MaybeLocal<Script> result =
source_type == SCRIPT
? ScriptCompiler::Compile(context, &cached_source, compile_options)
: ScriptCompiler::CompileModule(context, &cached_source,
compile_options);
CHECK(data == NULL || !data->rejected);
return result;
}
// Executes a string within the current v8 context.
bool Shell::ExecuteString(Isolate* isolate, Local<String> source,
Local<Value> name, bool print_result,
bool report_exceptions, SourceType source_type) {
HandleScope handle_scope(isolate);
TryCatch try_catch(isolate);
try_catch.SetVerbose(true);
MaybeLocal<Value> maybe_result;
{
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm =
Local<Context>::New(isolate, data->realms_[data->realm_current_]);
Context::Scope context_scope(realm);
Local<Script> script;
if (!Shell::CompileString(isolate, source, name, options.compile_options,
source_type).ToLocal(&script)) {
// Print errors that happened during compilation.
if (report_exceptions) ReportException(isolate, &try_catch);
return false;
}
maybe_result = script->Run(realm);
EmptyMessageQueues(isolate);
data->realm_current_ = data->realm_switch_;
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
// Print errors that happened during execution.
if (report_exceptions) ReportException(isolate, &try_catch);
return false;
}
DCHECK(!try_catch.HasCaught());
if (print_result) {
#if !defined(V8_SHARED)
if (options.test_shell) {
#endif
if (!result->IsUndefined()) {
// If all went well and the result wasn't undefined then print
// the returned value.
v8::String::Utf8Value str(result);
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
#if !defined(V8_SHARED)
} else {
v8::TryCatch try_catch(isolate);
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, utility_context_);
v8::Context::Scope context_scope(context);
Local<Object> global = context->Global();
Local<Value> fun =
global->Get(context, String::NewFromUtf8(isolate, "Stringify",
v8::NewStringType::kNormal)
.ToLocalChecked()).ToLocalChecked();
Local<Value> argv[1] = {result};
Local<Value> s;
if (!Local<Function>::Cast(fun)
->Call(context, global, 1, argv)
.ToLocal(&s)) {
return true;
}
DCHECK(!try_catch.HasCaught());
v8::String::Utf8Value str(s);
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
#endif
}
return true;
}
PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) {
data_->realm_count_ = 1;
data_->realm_current_ = 0;
data_->realm_switch_ = 0;
data_->realms_ = new Global<Context>[1];
data_->realms_[0].Reset(data_->isolate_,
data_->isolate_->GetEnteredContext());
}
PerIsolateData::RealmScope::~RealmScope() {
// Drop realms to avoid keeping them alive.
for (int i = 0; i < data_->realm_count_; ++i)
data_->realms_[i].Reset();
delete[] data_->realms_;
if (!data_->realm_shared_.IsEmpty())
data_->realm_shared_.Reset();
}
int PerIsolateData::RealmFind(Local<Context> context) {
for (int i = 0; i < realm_count_; ++i) {
if (realms_[i] == context) return i;
}
return -1;
}
int PerIsolateData::RealmIndexOrThrow(
const v8::FunctionCallbackInfo<v8::Value>& args,
int arg_offset) {
if (args.Length() < arg_offset || !args[arg_offset]->IsNumber()) {
Throw(args.GetIsolate(), "Invalid argument");
return -1;
}
int index = args[arg_offset]
->Int32Value(args.GetIsolate()->GetCurrentContext())
.FromMaybe(-1);
if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) {
Throw(args.GetIsolate(), "Invalid realm index");
return -1;
}
return index;
}
#ifndef V8_SHARED
// performance.now() returns a time stamp as double, measured in milliseconds.
// When FLAG_verify_predictable mode is enabled it returns result of
// v8::Platform::MonotonicallyIncreasingTime().
void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& args) {
if (i::FLAG_verify_predictable) {
args.GetReturnValue().Set(g_platform->MonotonicallyIncreasingTime());
} else {
base::TimeDelta delta =
base::TimeTicks::HighResolutionNow() - kInitialTicks;
args.GetReturnValue().Set(delta.InMillisecondsF());
}
}
#endif // !V8_SHARED
// Realm.current() returns the index of the currently active realm.
void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmFind(isolate->GetEnteredContext());
if (index == -1) return;
args.GetReturnValue().Set(index);
}
// Realm.owner(o) returns the index of the realm that created o.
void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (args.Length() < 1 || !args[0]->IsObject()) {
Throw(args.GetIsolate(), "Invalid argument");
return;
}
int index = data->RealmFind(args[0]
->ToObject(isolate->GetCurrentContext())
.ToLocalChecked()
->CreationContext());
if (index == -1) return;
args.GetReturnValue().Set(index);
}
// Realm.global(i) returns the global object of realm i.
// (Note that properties of global objects cannot be read/written cross-realm.)
void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
PerIsolateData* data = PerIsolateData::Get(args.GetIsolate());
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
args.GetReturnValue().Set(
Local<Context>::New(args.GetIsolate(), data->realms_[index])->Global());
}
// Realm.create() creates a new realm and returns its index.
void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
TryCatch try_catch(isolate);
PerIsolateData* data = PerIsolateData::Get(isolate);
Global<Context>* old_realms = data->realms_;
int index = data->realm_count_;
data->realms_ = new Global<Context>[++data->realm_count_];
for (int i = 0; i < index; ++i) {
data->realms_[i].Reset(isolate, old_realms[i]);
old_realms[i].Reset();
}
delete[] old_realms;
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
Local<Context> context = Context::New(isolate, NULL, global_template);
if (context.IsEmpty()) {
DCHECK(try_catch.HasCaught());
try_catch.ReThrow();
return;
}
data->realms_[index].Reset(isolate, context);
args.GetReturnValue().Set(index);
}
// Realm.dispose(i) disposes the reference to the realm i.
void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (index == 0 ||
index == data->realm_current_ || index == data->realm_switch_) {
Throw(args.GetIsolate(), "Invalid realm index");
return;
}
data->realms_[index].Reset();
isolate->ContextDisposedNotification();
isolate->IdleNotificationDeadline(g_platform->MonotonicallyIncreasingTime());
}
// Realm.switch(i) switches to the realm i for consecutive interactive inputs.
void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
data->realm_switch_ = index;
}
// Realm.eval(i, s) evaluates s in realm i and returns the result.
void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (args.Length() < 2 || !args[1]->IsString()) {
Throw(args.GetIsolate(), "Invalid argument");
return;
}
ScriptCompiler::Source script_source(
args[1]->ToString(isolate->GetCurrentContext()).ToLocalChecked());
Local<UnboundScript> script;
if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source)
.ToLocal(&script)) {
return;
}
Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
realm->Enter();
Local<Value> result;
if (!script->BindToCurrentContext()->Run(realm).ToLocal(&result)) {
realm->Exit();
return;
}
realm->Exit();
args.GetReturnValue().Set(result);
}
// Realm.shared is an accessor for a single shared value across realms.
void Shell::RealmSharedGet(Local<String> property,
const PropertyCallbackInfo<Value>& info) {
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (data->realm_shared_.IsEmpty()) return;
info.GetReturnValue().Set(data->realm_shared_);
}
void Shell::RealmSharedSet(Local<String> property,
Local<Value> value,
const PropertyCallbackInfo<void>& info) {
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
data->realm_shared_.Reset(isolate, value);
}
void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& args) {
Write(args);
printf("\n");
fflush(stdout);
}
void Shell::Write(const v8::FunctionCallbackInfo<v8::Value>& args) {
for (int i = 0; i < args.Length(); i++) {
HandleScope handle_scope(args.GetIsolate());
if (i != 0) {
printf(" ");
}
// Explicitly catch potential exceptions in toString().
v8::TryCatch try_catch(args.GetIsolate());
Local<Value> arg = args[i];
Local<String> str_obj;
if (arg->IsSymbol()) {
arg = Local<Symbol>::Cast(arg)->Name();
}
if (!arg->ToString(args.GetIsolate()->GetCurrentContext())
.ToLocal(&str_obj)) {
try_catch.ReThrow();
return;
}
v8::String::Utf8Value str(str_obj);
int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), stdout));
if (n != str.length()) {
printf("Error in fwrite\n");
Exit(1);
}
}
}
void Shell::Read(const v8::FunctionCallbackInfo<v8::Value>& args) {
String::Utf8Value file(args[0]);
if (*file == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Local<String> source = ReadFile(args.GetIsolate(), *file);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
args.GetReturnValue().Set(source);
}
Local<String> Shell::ReadFromStdin(Isolate* isolate) {
static const int kBufferSize = 256;
char buffer[kBufferSize];
Local<String> accumulator =
String::NewFromUtf8(isolate, "", NewStringType::kNormal).ToLocalChecked();
int length;
while (true) {
// Continue reading if the line ends with an escape '\\' or the line has
// not been fully read into the buffer yet (does not end with '\n').
// If fgets gets an error, just give up.
char* input = NULL;
input = fgets(buffer, kBufferSize, stdin);
if (input == NULL) return Local<String>();
length = static_cast<int>(strlen(buffer));
if (length == 0) {
return accumulator;
} else if (buffer[length-1] != '\n') {
accumulator = String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length)
.ToLocalChecked());
} else if (length > 1 && buffer[length-2] == '\\') {
buffer[length-2] = '\n';
accumulator = String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
length - 1).ToLocalChecked());
} else {
return String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
length - 1).ToLocalChecked());
}
}
}
void Shell::Load(const v8::FunctionCallbackInfo<v8::Value>& args) {
for (int i = 0; i < args.Length(); i++) {
HandleScope handle_scope(args.GetIsolate());
String::Utf8Value file(args[i]);
if (*file == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Local<String> source = ReadFile(args.GetIsolate(), *file);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
if (!ExecuteString(
args.GetIsolate(), source,
String::NewFromUtf8(args.GetIsolate(), *file,
NewStringType::kNormal).ToLocalChecked(),
false, true)) {
Throw(args.GetIsolate(), "Error executing file");
return;
}
}
}
#ifndef V8_SHARED
void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
if (args.Length() < 1 || !args[0]->IsString()) {
Throw(args.GetIsolate(), "1st argument must be string");
return;
}
if (!args.IsConstructCall()) {
Throw(args.GetIsolate(), "Worker must be constructed with new");
return;
}
{
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
if (workers_.length() >= kMaxWorkers) {
Throw(args.GetIsolate(), "Too many workers, I won't let you create more");
return;
}
// Initialize the internal field to NULL; if we return early without
// creating a new Worker (because the main thread is terminating) we can
// early-out from the instance calls.
args.Holder()->SetAlignedPointerInInternalField(0, NULL);
if (!allow_new_workers_) return;
Worker* worker = new Worker;
args.Holder()->SetAlignedPointerInInternalField(0, worker);
workers_.Add(worker);
String::Utf8Value script(args[0]);
if (!*script) {
Throw(args.GetIsolate(), "Can't get worker script");
return;
}
worker->StartExecuteInThread(*script);
}
}
void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
if (args.Length() < 1) {
Throw(isolate, "Invalid argument");
return;
}
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
Local<Value> message = args[0];
ObjectList to_transfer;
if (args.Length() >= 2) {
if (!args[1]->IsArray()) {
Throw(isolate, "Transfer list must be an Array");
return;
}
Local<Array> transfer = Local<Array>::Cast(args[1]);
uint32_t length = transfer->Length();
for (uint32_t i = 0; i < length; ++i) {
Local<Value> element;
if (transfer->Get(context, i).ToLocal(&element)) {
if (!element->IsArrayBuffer() && !element->IsSharedArrayBuffer()) {
Throw(isolate,
"Transfer array elements must be an ArrayBuffer or "
"SharedArrayBuffer.");
break;
}
to_transfer.Add(Local<Object>::Cast(element));
}
}
}
ObjectList seen_objects;
SerializationData* data = new SerializationData;
if (SerializeValue(isolate, message, to_transfer, &seen_objects, data)) {
worker->PostMessage(data);
} else {
delete data;
}
}
void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
SerializationData* data = worker->GetMessage();
if (data) {
int offset = 0;
Local<Value> data_value;
if (Shell::DeserializeValue(isolate, *data, &offset).ToLocal(&data_value)) {
args.GetReturnValue().Set(data_value);
}
delete data;
}
}
void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
worker->Terminate();
}
#endif // !V8_SHARED
void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* args) {
int exit_code = (*args)[0]
->Int32Value(args->GetIsolate()->GetCurrentContext())
.FromMaybe(0);
#ifndef V8_SHARED
CleanupWorkers();
#endif // !V8_SHARED
OnExit(args->GetIsolate());
Exit(exit_code);
}
void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& args) {
base::CallOnce(&quit_once_, &QuitOnce,
const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&args));
}
void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& args) {
args.GetReturnValue().Set(
String::NewFromUtf8(args.GetIsolate(), V8::GetVersion(),
NewStringType::kNormal).ToLocalChecked());
}
void Shell::ReportException(Isolate* isolate, v8::TryCatch* try_catch) {
HandleScope handle_scope(isolate);
#ifndef V8_SHARED
Local<Context> utility_context;
bool enter_context = !isolate->InContext();
if (enter_context) {
utility_context = Local<Context>::New(isolate, utility_context_);
utility_context->Enter();
}
#endif // !V8_SHARED
v8::String::Utf8Value exception(try_catch->Exception());
const char* exception_string = ToCString(exception);
Local<Message> message = try_catch->Message();
if (message.IsEmpty()) {
// V8 didn't provide any extra information about this error; just
// print the exception.
printf("%s\n", exception_string);
} else {
// Print (filename):(line number): (message).
v8::String::Utf8Value filename(message->GetScriptOrigin().ResourceName());
const char* filename_string = ToCString(filename);
int linenum =
message->GetLineNumber(isolate->GetCurrentContext()).FromJust();
printf("%s:%i: %s\n", filename_string, linenum, exception_string);
// Print line of source code.
v8::String::Utf8Value sourceline(
message->GetSourceLine(isolate->GetCurrentContext()).ToLocalChecked());
const char* sourceline_string = ToCString(sourceline);
printf("%s\n", sourceline_string);
// Print wavy underline (GetUnderline is deprecated).
int start =
message->GetStartColumn(isolate->GetCurrentContext()).FromJust();
for (int i = 0; i < start; i++) {
printf(" ");
}
int end = message->GetEndColumn(isolate->GetCurrentContext()).FromJust();
for (int i = start; i < end; i++) {
printf("^");
}
printf("\n");
Local<Value> stack_trace_string;
if (try_catch->StackTrace(isolate->GetCurrentContext())
.ToLocal(&stack_trace_string) &&
stack_trace_string->IsString()) {
v8::String::Utf8Value stack_trace(
Local<String>::Cast(stack_trace_string));
printf("%s\n", ToCString(stack_trace));
}
}
printf("\n");
#ifndef V8_SHARED
if (enter_context) utility_context->Exit();
#endif // !V8_SHARED
}
#ifndef V8_SHARED
int32_t* Counter::Bind(const char* name, bool is_histogram) {
int i;
for (i = 0; i < kMaxNameSize - 1 && name[i]; i++)
name_[i] = static_cast<char>(name[i]);
name_[i] = '\0';
is_histogram_ = is_histogram;
return ptr();
}
void Counter::AddSample(int32_t sample) {
count_++;
sample_total_ += sample;
}
CounterCollection::CounterCollection() {
magic_number_ = 0xDEADFACE;
max_counters_ = kMaxCounters;
max_name_size_ = Counter::kMaxNameSize;
counters_in_use_ = 0;
}
Counter* CounterCollection::GetNextCounter() {
if (counters_in_use_ == kMaxCounters) return NULL;
return &counters_[counters_in_use_++];
}
void Shell::MapCounters(v8::Isolate* isolate, const char* name) {
counters_file_ = base::OS::MemoryMappedFile::create(
name, sizeof(CounterCollection), &local_counters_);
void* memory = (counters_file_ == NULL) ?
NULL : counters_file_->memory();
if (memory == NULL) {
printf("Could not map counters file %s\n", name);
Exit(1);
}
counters_ = static_cast<CounterCollection*>(memory);
isolate->SetCounterFunction(LookupCounter);
isolate->SetCreateHistogramFunction(CreateHistogram);
isolate->SetAddHistogramSampleFunction(AddHistogramSample);
}
int CounterMap::Hash(const char* name) {
int h = 0;
int c;
while ((c = *name++) != 0) {
h += h << 5;
h += c;
}
return h;
}
Counter* Shell::GetCounter(const char* name, bool is_histogram) {
Counter* counter = counter_map_->Lookup(name);
if (counter == NULL) {
counter = counters_->GetNextCounter();
if (counter != NULL) {
counter_map_->Set(name, counter);
counter->Bind(name, is_histogram);
}
} else {
DCHECK(counter->is_histogram() == is_histogram);
}
return counter;
}
int* Shell::LookupCounter(const char* name) {
Counter* counter = GetCounter(name, false);
if (counter != NULL) {
return counter->ptr();
} else {
return NULL;
}
}
void* Shell::CreateHistogram(const char* name,
int min,
int max,
size_t buckets) {
return GetCounter(name, true);
}
void Shell::AddHistogramSample(void* histogram, int sample) {
Counter* counter = reinterpret_cast<Counter*>(histogram);
counter->AddSample(sample);
}
class NoUseStrongForUtilityScriptScope {
public:
NoUseStrongForUtilityScriptScope() : flag_(i::FLAG_use_strong) {
i::FLAG_use_strong = false;
}
~NoUseStrongForUtilityScriptScope() { i::FLAG_use_strong = flag_; }
private:
bool flag_;
};
void Shell::InstallUtilityScript(Isolate* isolate) {
NoUseStrongForUtilityScriptScope no_use_strong;
HandleScope scope(isolate);
// If we use the utility context, we have to set the security tokens so that
// utility, evaluation and debug context can all access each other.
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
utility_context_.Reset(isolate, Context::New(isolate, NULL, global_template));
v8::Local<v8::Context> utility_context =
v8::Local<v8::Context>::New(isolate, utility_context_);
v8::Local<v8::Context> evaluation_context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
utility_context->SetSecurityToken(Undefined(isolate));
evaluation_context->SetSecurityToken(Undefined(isolate));
v8::Context::Scope context_scope(utility_context);
// Run the d8 shell utility script in the utility context
int source_index = i::NativesCollection<i::D8>::GetIndex("d8");
i::Vector<const char> shell_source =
i::NativesCollection<i::D8>::GetScriptSource(source_index);
i::Vector<const char> shell_source_name =
i::NativesCollection<i::D8>::GetScriptName(source_index);
Local<String> source =
String::NewFromUtf8(isolate, shell_source.start(), NewStringType::kNormal,
shell_source.length()).ToLocalChecked();
Local<String> name =
String::NewFromUtf8(isolate, shell_source_name.start(),
NewStringType::kNormal,
shell_source_name.length()).ToLocalChecked();
ScriptOrigin origin(name);
Local<Script> script =
Script::Compile(utility_context, source, &origin).ToLocalChecked();
script->Run(utility_context).ToLocalChecked();
// Mark the d8 shell script as native to avoid it showing up as normal source
// in the debugger.
i::Handle<i::Object> compiled_script = Utils::OpenHandle(*script);
i::Handle<i::Script> script_object = compiled_script->IsJSFunction()
? i::Handle<i::Script>(i::Script::cast(
i::JSFunction::cast(*compiled_script)->shared()->script()))
: i::Handle<i::Script>(i::Script::cast(
i::SharedFunctionInfo::cast(*compiled_script)->script()));
script_object->set_type(i::Script::TYPE_EXTENSION);
}
#endif // !V8_SHARED
Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate);
global_template->Set(
String::NewFromUtf8(isolate, "print", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Print));
global_template->Set(
String::NewFromUtf8(isolate, "write", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Write));
global_template->Set(
String::NewFromUtf8(isolate, "read", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Read));
global_template->Set(
String::NewFromUtf8(isolate, "readbuffer", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, ReadBuffer));
global_template->Set(
String::NewFromUtf8(isolate, "readline", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, ReadLine));
global_template->Set(
String::NewFromUtf8(isolate, "load", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Load));
// Some Emscripten-generated code tries to call 'quit', which in turn would
// call C's exit(). This would lead to memory leaks, because there is no way
// we can terminate cleanly then, so we need a way to hide 'quit'.
if (!options.omit_quit) {
global_template->Set(
String::NewFromUtf8(isolate, "quit", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Quit));
}
global_template->Set(
String::NewFromUtf8(isolate, "version", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Version));
// Bind the Realm object.
Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate);
realm_template->Set(
String::NewFromUtf8(isolate, "current", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmCurrent));
realm_template->Set(
String::NewFromUtf8(isolate, "owner", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmOwner));
realm_template->Set(
String::NewFromUtf8(isolate, "global", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmGlobal));
realm_template->Set(
String::NewFromUtf8(isolate, "create", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmCreate));
realm_template->Set(
String::NewFromUtf8(isolate, "dispose", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmDispose));
realm_template->Set(
String::NewFromUtf8(isolate, "switch", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmSwitch));
realm_template->Set(
String::NewFromUtf8(isolate, "eval", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmEval));
realm_template->SetAccessor(
String::NewFromUtf8(isolate, "shared", NewStringType::kNormal)
.ToLocalChecked(),
RealmSharedGet, RealmSharedSet);
global_template->Set(
String::NewFromUtf8(isolate, "Realm", NewStringType::kNormal)
.ToLocalChecked(),
realm_template);
#ifndef V8_SHARED
Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate);
performance_template->Set(
String::NewFromUtf8(isolate, "now", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, PerformanceNow));
global_template->Set(
String::NewFromUtf8(isolate, "performance", NewStringType::kNormal)
.ToLocalChecked(),
performance_template);
Local<FunctionTemplate> worker_fun_template =
FunctionTemplate::New(isolate, WorkerNew);
Local<Signature> worker_signature =
Signature::New(isolate, worker_fun_template);
worker_fun_template->SetClassName(
String::NewFromUtf8(isolate, "Worker", NewStringType::kNormal)
.ToLocalChecked());
worker_fun_template->ReadOnlyPrototype();
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "terminate", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "postMessage", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "getMessage", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(),
worker_signature));
worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1);
global_template->Set(
String::NewFromUtf8(isolate, "Worker", NewStringType::kNormal)
.ToLocalChecked(),
worker_fun_template);
#endif // !V8_SHARED
Local<ObjectTemplate> os_templ = ObjectTemplate::New(isolate);
AddOSMethods(isolate, os_templ);
global_template->Set(
String::NewFromUtf8(isolate, "os", NewStringType::kNormal)
.ToLocalChecked(),
os_templ);
return global_template;
}
static void EmptyMessageCallback(Local<Message> message, Local<Value> error) {
// Nothing to be done here, exceptions thrown up to the shell will be reported
// separately by {Shell::ReportException} after they are caught.
}
void Shell::Initialize(Isolate* isolate) {
#ifndef V8_SHARED
// Set up counters
if (i::StrLength(i::FLAG_map_counters) != 0)
MapCounters(isolate, i::FLAG_map_counters);
#endif // !V8_SHARED
// Disable default message reporting.
isolate->AddMessageListener(EmptyMessageCallback);
}
Local<Context> Shell::CreateEvaluationContext(Isolate* isolate) {
#ifndef V8_SHARED
// This needs to be a critical section since this is not thread-safe
base::LockGuard<base::Mutex> lock_guard(context_mutex_.Pointer());
#endif // !V8_SHARED
// Initialize the global objects
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
EscapableHandleScope handle_scope(isolate);
Local<Context> context = Context::New(isolate, NULL, global_template);
DCHECK(!context.IsEmpty());
Context::Scope scope(context);
#ifndef V8_SHARED
i::Factory* factory = reinterpret_cast<i::Isolate*>(isolate)->factory();
i::JSArguments js_args = i::FLAG_js_arguments;
i::Handle<i::FixedArray> arguments_array =
factory->NewFixedArray(js_args.argc);
for (int j = 0; j < js_args.argc; j++) {
i::Handle<i::String> arg =
factory->NewStringFromUtf8(i::CStrVector(js_args[j])).ToHandleChecked();
arguments_array->set(j, *arg);
}
i::Handle<i::JSArray> arguments_jsarray =
factory->NewJSArrayWithElements(arguments_array);
context->Global()
->Set(context,
String::NewFromUtf8(isolate, "arguments", NewStringType::kNormal)
.ToLocalChecked(),
Utils::ToLocal(arguments_jsarray))
.FromJust();
#endif // !V8_SHARED
return handle_scope.Escape(context);
}
void Shell::Exit(int exit_code) {
// Use _exit instead of exit to avoid races between isolate
// threads and static destructors.
fflush(stdout);
fflush(stderr);
_exit(exit_code);
}
#ifndef V8_SHARED
struct CounterAndKey {
Counter* counter;
const char* key;
};
inline bool operator<(const CounterAndKey& lhs, const CounterAndKey& rhs) {
return strcmp(lhs.key, rhs.key) < 0;
}
#endif // !V8_SHARED
void Shell::OnExit(v8::Isolate* isolate) {
#ifndef V8_SHARED
reinterpret_cast<i::Isolate*>(isolate)->DumpAndResetCompilationStats();
if (i::FLAG_dump_counters) {
int number_of_counters = 0;
for (CounterMap::Iterator i(counter_map_); i.More(); i.Next()) {
number_of_counters++;
}
CounterAndKey* counters = new CounterAndKey[number_of_counters];
int j = 0;
for (CounterMap::Iterator i(counter_map_); i.More(); i.Next(), j++) {
counters[j].counter = i.CurrentValue();
counters[j].key = i.CurrentKey();
}
std::sort(counters, counters + number_of_counters);
printf("+----------------------------------------------------------------+"
"-------------+\n");
printf("| Name |"
" Value |\n");
printf("+----------------------------------------------------------------+"
"-------------+\n");
for (j = 0; j < number_of_counters; j++) {
Counter* counter = counters[j].counter;
const char* key = counters[j].key;
if (counter->is_histogram()) {
printf("| c:%-60s | %11i |\n", key, counter->count());
printf("| t:%-60s | %11i |\n", key, counter->sample_total());
} else {
printf("| %-62s | %11i |\n", key, counter->count());
}
}
printf("+----------------------------------------------------------------+"
"-------------+\n");
delete [] counters;
}
delete counters_file_;
delete counter_map_;
#endif // !V8_SHARED
}
static FILE* FOpen(const char* path, const char* mode) {
#if defined(_MSC_VER) && (defined(_WIN32) || defined(_WIN64))
FILE* result;
if (fopen_s(&result, path, mode) == 0) {
return result;
} else {
return NULL;
}
#else
FILE* file = fopen(path, mode);
if (file == NULL) return NULL;
struct stat file_stat;
if (fstat(fileno(file), &file_stat) != 0) return NULL;
bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0);
if (is_regular_file) return file;
fclose(file);
return NULL;
#endif
}
static char* ReadChars(Isolate* isolate, const char* name, int* size_out) {
FILE* file = FOpen(name, "rb");
if (file == NULL) return NULL;
fseek(file, 0, SEEK_END);
size_t size = ftell(file);
rewind(file);
char* chars = new char[size + 1];
chars[size] = '\0';
for (size_t i = 0; i < size;) {
i += fread(&chars[i], 1, size - i, file);
if (ferror(file)) {
fclose(file);
delete[] chars;
return nullptr;
}
}
fclose(file);
*size_out = static_cast<int>(size);
return chars;
}
struct DataAndPersistent {
uint8_t* data;
int byte_length;
Global<ArrayBuffer> handle;
};
static void ReadBufferWeakCallback(
const v8::WeakCallbackInfo<DataAndPersistent>& data) {
int byte_length = data.GetParameter()->byte_length;
data.GetIsolate()->AdjustAmountOfExternalAllocatedMemory(
-static_cast<intptr_t>(byte_length));
delete[] data.GetParameter()->data;
data.GetParameter()->handle.Reset();
delete data.GetParameter();
}
void Shell::ReadBuffer(const v8::FunctionCallbackInfo<v8::Value>& args) {
DCHECK(sizeof(char) == sizeof(uint8_t)); // NOLINT
String::Utf8Value filename(args[0]);
int length;
if (*filename == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Isolate* isolate = args.GetIsolate();
DataAndPersistent* data = new DataAndPersistent;
data->data = reinterpret_cast<uint8_t*>(
ReadChars(args.GetIsolate(), *filename, &length));
if (data->data == NULL) {
delete data;
Throw(args.GetIsolate(), "Error reading file");
return;
}
data->byte_length = length;
Local<v8::ArrayBuffer> buffer = ArrayBuffer::New(isolate, data->data, length);
data->handle.Reset(isolate, buffer);
data->handle.SetWeak(data, ReadBufferWeakCallback,
v8::WeakCallbackType::kParameter);
data->handle.MarkIndependent();
isolate->AdjustAmountOfExternalAllocatedMemory(length);
args.GetReturnValue().Set(buffer);
}
// Reads a file into a v8 string.
Local<String> Shell::ReadFile(Isolate* isolate, const char* name) {
int size = 0;
char* chars = ReadChars(isolate, name, &size);
if (chars == NULL) return Local<String>();
Local<String> result =
String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size)
.ToLocalChecked();
delete[] chars;
return result;
}
void Shell::RunShell(Isolate* isolate) {
HandleScope outer_scope(isolate);
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
v8::Context::Scope context_scope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Local<String> name =
String::NewFromUtf8(isolate, "(d8)", NewStringType::kNormal)
.ToLocalChecked();
printf("V8 version %s\n", V8::GetVersion());
while (true) {
HandleScope inner_scope(isolate);
printf("d8> ");
#if defined(__native_client__)
// Native Client libc is used to being embedded in Chrome and
// has trouble recognizing when to flush.
fflush(stdout);
#endif
Local<String> input = Shell::ReadFromStdin(isolate);
if (input.IsEmpty()) break;
ExecuteString(isolate, input, name, true, true);
}
printf("\n");
}
SourceGroup::~SourceGroup() {
#ifndef V8_SHARED
delete thread_;
thread_ = NULL;
#endif // !V8_SHARED
}
void SourceGroup::Execute(Isolate* isolate) {
bool exception_was_thrown = false;
for (int i = begin_offset_; i < end_offset_; ++i) {
const char* arg = argv_[i];
Shell::SourceType source_type = Shell::SCRIPT;
if (strcmp(arg, "-e") == 0 && i + 1 < end_offset_) {
// Execute argument given to -e option directly.
HandleScope handle_scope(isolate);
Local<String> file_name =
String::NewFromUtf8(isolate, "unnamed", NewStringType::kNormal)
.ToLocalChecked();
Local<String> source =
String::NewFromUtf8(isolate, argv_[i + 1], NewStringType::kNormal)
.ToLocalChecked();
Shell::options.script_executed = true;
if (!Shell::ExecuteString(isolate, source, file_name, false, true)) {
exception_was_thrown = true;
break;
}
++i;
continue;
} else if (strcmp(arg, "--module") == 0 && i + 1 < end_offset_) {
// Treat the next file as a module.
source_type = Shell::MODULE;
arg = argv_[++i];
} else if (arg[0] == '-') {
// Ignore other options. They have been parsed already.
continue;
}
// Use all other arguments as names of files to load and run.
HandleScope handle_scope(isolate);
Local<String> file_name =
String::NewFromUtf8(isolate, arg, NewStringType::kNormal)
.ToLocalChecked();
Local<String> source = ReadFile(isolate, arg);
if (source.IsEmpty()) {
printf("Error reading '%s'\n", arg);
Shell::Exit(1);
}
Shell::options.script_executed = true;
if (!Shell::ExecuteString(isolate, source, file_name, false, true,
source_type)) {
exception_was_thrown = true;
break;
}
}
if (exception_was_thrown != Shell::options.expected_to_throw) {
Shell::Exit(1);
}
}
Local<String> SourceGroup::ReadFile(Isolate* isolate, const char* name) {
int size;
char* chars = ReadChars(isolate, name, &size);
if (chars == NULL) return Local<String>();
Local<String> result =
String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size)
.ToLocalChecked();
delete[] chars;
return result;
}
#ifndef V8_SHARED
base::Thread::Options SourceGroup::GetThreadOptions() {
// On some systems (OSX 10.6) the stack size default is 0.5Mb or less
// which is not enough to parse the big literal expressions used in tests.
// The stack size should be at least StackGuard::kLimitSize + some
// OS-specific padding for thread startup code. 2Mbytes seems to be enough.
return base::Thread::Options("IsolateThread", 2 * MB);
}
void SourceGroup::ExecuteInThread() {
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* isolate = Isolate::New(create_params);
for (int i = 0; i < Shell::options.stress_runs; ++i) {
next_semaphore_.Wait();
{
Isolate::Scope iscope(isolate);
{
HandleScope scope(isolate);
PerIsolateData data(isolate);
Local<Context> context = Shell::CreateEvaluationContext(isolate);
{
Context::Scope cscope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Execute(isolate);
}
}
Shell::CollectGarbage(isolate);
}
done_semaphore_.Signal();
}
isolate->Dispose();
}
void SourceGroup::StartExecuteInThread() {
if (thread_ == NULL) {
thread_ = new IsolateThread(this);
thread_->Start();
}
next_semaphore_.Signal();
}
void SourceGroup::WaitForThread() {
if (thread_ == NULL) return;
done_semaphore_.Wait();
}
void SourceGroup::JoinThread() {
if (thread_ == NULL) return;
thread_->Join();
}
SerializationData::~SerializationData() {
// Any ArrayBuffer::Contents are owned by this SerializationData object if
// ownership hasn't been transferred out via ReadArrayBufferContents.
// SharedArrayBuffer::Contents may be used by multiple threads, so must be
// cleaned up by the main thread in Shell::CleanupWorkers().
for (int i = 0; i < array_buffer_contents_.length(); ++i) {
ArrayBuffer::Contents& contents = array_buffer_contents_[i];
if (contents.Data()) {
Shell::array_buffer_allocator->Free(contents.Data(),
contents.ByteLength());
}
}
}
void SerializationData::WriteTag(SerializationTag tag) { data_.Add(tag); }
void SerializationData::WriteMemory(const void* p, int length) {
if (length > 0) {
i::Vector<uint8_t> block = data_.AddBlock(0, length);
memcpy(&block[0], p, length);
}
}
void SerializationData::WriteArrayBufferContents(
const ArrayBuffer::Contents& contents) {
array_buffer_contents_.Add(contents);
WriteTag(kSerializationTagTransferredArrayBuffer);
int index = array_buffer_contents_.length() - 1;
Write(index);
}
void SerializationData::WriteSharedArrayBufferContents(
const SharedArrayBuffer::Contents& contents) {
shared_array_buffer_contents_.Add(contents);
WriteTag(kSerializationTagTransferredSharedArrayBuffer);
int index = shared_array_buffer_contents_.length() - 1;
Write(index);
}
SerializationTag SerializationData::ReadTag(int* offset) const {
return static_cast<SerializationTag>(Read<uint8_t>(offset));
}
void SerializationData::ReadMemory(void* p, int length, int* offset) const {
if (length > 0) {
memcpy(p, &data_[*offset], length);
(*offset) += length;
}
}
void SerializationData::ReadArrayBufferContents(ArrayBuffer::Contents* contents,
int* offset) const {
int index = Read<int>(offset);
DCHECK(index < array_buffer_contents_.length());
*contents = array_buffer_contents_[index];
// Ownership of this ArrayBuffer::Contents is passed to the caller. Neuter
// our copy so it won't be double-free'd when this SerializationData is
// destroyed.
array_buffer_contents_[index] = ArrayBuffer::Contents();
}
void SerializationData::ReadSharedArrayBufferContents(
SharedArrayBuffer::Contents* contents, int* offset) const {
int index = Read<int>(offset);
DCHECK(index < shared_array_buffer_contents_.length());
*contents = shared_array_buffer_contents_[index];
}
void SerializationDataQueue::Enqueue(SerializationData* data) {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
data_.Add(data);
}
bool SerializationDataQueue::Dequeue(SerializationData** data) {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
*data = NULL;
if (data_.is_empty()) return false;
*data = data_.Remove(0);
return true;
}
bool SerializationDataQueue::IsEmpty() {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
return data_.is_empty();
}
void SerializationDataQueue::Clear() {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
for (int i = 0; i < data_.length(); ++i) {
delete data_[i];
}
data_.Clear();
}
Worker::Worker()
: in_semaphore_(0),
out_semaphore_(0),
thread_(NULL),
script_(NULL),
running_(false) {}
Worker::~Worker() {
delete thread_;
thread_ = NULL;
delete[] script_;
script_ = NULL;
in_queue_.Clear();
out_queue_.Clear();
}
void Worker::StartExecuteInThread(const char* script) {
running_ = true;
script_ = i::StrDup(script);
thread_ = new WorkerThread(this);
thread_->Start();
}
void Worker::PostMessage(SerializationData* data) {
in_queue_.Enqueue(data);
in_semaphore_.Signal();
}
SerializationData* Worker::GetMessage() {
SerializationData* data = NULL;
while (!out_queue_.Dequeue(&data)) {
// If the worker is no longer running, and there are no messages in the
// queue, don't expect any more messages from it.
if (!base::NoBarrier_Load(&running_)) break;
out_semaphore_.Wait();
}
return data;
}
void Worker::Terminate() {
base::NoBarrier_Store(&running_, false);
// Post NULL to wake the Worker thread message loop, and tell it to stop
// running.
PostMessage(NULL);
}
void Worker::WaitForThread() {
Terminate();
thread_->Join();
}
void Worker::ExecuteInThread() {
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* isolate = Isolate::New(create_params);
{
Isolate::Scope iscope(isolate);
{
HandleScope scope(isolate);
PerIsolateData data(isolate);
Local<Context> context = Shell::CreateEvaluationContext(isolate);
{
Context::Scope cscope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Local<Object> global = context->Global();
Local<Value> this_value = External::New(isolate, this);
Local<FunctionTemplate> postmessage_fun_template =
FunctionTemplate::New(isolate, PostMessageOut, this_value);
Local<Function> postmessage_fun;
if (postmessage_fun_template->GetFunction(context)
.ToLocal(&postmessage_fun)) {
global->Set(context, String::NewFromUtf8(isolate, "postMessage",
NewStringType::kNormal)
.ToLocalChecked(),
postmessage_fun).FromJust();
}
// First run the script
Local<String> file_name =
String::NewFromUtf8(isolate, "unnamed", NewStringType::kNormal)
.ToLocalChecked();
Local<String> source =
String::NewFromUtf8(isolate, script_, NewStringType::kNormal)
.ToLocalChecked();
if (Shell::ExecuteString(isolate, source, file_name, false, true)) {
// Get the message handler
Local<Value> onmessage =
global->Get(context, String::NewFromUtf8(isolate, "onmessage",
NewStringType::kNormal)
.ToLocalChecked()).ToLocalChecked();
if (onmessage->IsFunction()) {
Local<Function> onmessage_fun = Local<Function>::Cast(onmessage);
// Now wait for messages
while (true) {
in_semaphore_.Wait();
SerializationData* data;
if (!in_queue_.Dequeue(&data)) continue;
if (data == NULL) {
break;
}
int offset = 0;
Local<Value> data_value;
if (Shell::DeserializeValue(isolate, *data, &offset)
.ToLocal(&data_value)) {
Local<Value> argv[] = {data_value};
(void)onmessage_fun->Call(context, global, 1, argv);
}
delete data;
}
}
}
}
}
Shell::CollectGarbage(isolate);
}
isolate->Dispose();
// Post NULL to wake the thread waiting on GetMessage() if there is one.
out_queue_.Enqueue(NULL);
out_semaphore_.Signal();
}
void Worker::PostMessageOut(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
if (args.Length() < 1) {
Throw(isolate, "Invalid argument");
return;
}
Local<Value> message = args[0];
// TODO(binji): Allow transferring from worker to main thread?
Shell::ObjectList to_transfer;
Shell::ObjectList seen_objects;
SerializationData* data = new SerializationData;
if (Shell::SerializeValue(isolate, message, to_transfer, &seen_objects,
data)) {
DCHECK(args.Data()->IsExternal());
Local<External> this_value = Local<External>::Cast(args.Data());
Worker* worker = static_cast<Worker*>(this_value->Value());
worker->out_queue_.Enqueue(data);
worker->out_semaphore_.Signal();
} else {
delete data;
}
}
#endif // !V8_SHARED
void SetFlagsFromString(const char* flags) {
v8::V8::SetFlagsFromString(flags, static_cast<int>(strlen(flags)));
}
bool Shell::SetOptions(int argc, char* argv[]) {
bool logfile_per_isolate = false;
for (int i = 0; i < argc; i++) {
if (strcmp(argv[i], "--stress-opt") == 0) {
options.stress_opt = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--nostress-opt") == 0) {
options.stress_opt = false;
argv[i] = NULL;
} else if (strcmp(argv[i], "--stress-deopt") == 0) {
options.stress_deopt = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--mock-arraybuffer-allocator") == 0) {
options.mock_arraybuffer_allocator = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--noalways-opt") == 0) {
// No support for stressing if we can't use --always-opt.
options.stress_opt = false;
options.stress_deopt = false;
} else if (strcmp(argv[i], "--logfile-per-isolate") == 0) {
logfile_per_isolate = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--shell") == 0) {
options.interactive_shell = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--test") == 0) {
options.test_shell = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--notest") == 0 ||
strcmp(argv[i], "--no-test") == 0) {
options.test_shell = false;
argv[i] = NULL;
} else if (strcmp(argv[i], "--send-idle-notification") == 0) {
options.send_idle_notification = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--invoke-weak-callbacks") == 0) {
options.invoke_weak_callbacks = true;
// TODO(jochen) See issue 3351
options.send_idle_notification = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--omit-quit") == 0) {
options.omit_quit = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "-f") == 0) {
// Ignore any -f flags for compatibility with other stand-alone
// JavaScript engines.
continue;
} else if (strcmp(argv[i], "--isolate") == 0) {
#ifdef V8_SHARED
printf("D8 with shared library does not support multi-threading\n");
return false;
#endif // V8_SHARED
options.num_isolates++;
} else if (strcmp(argv[i], "--dump-heap-constants") == 0) {
#ifdef V8_SHARED
printf("D8 with shared library does not support constant dumping\n");
return false;
#else
options.dump_heap_constants = true;
argv[i] = NULL;
#endif // V8_SHARED
} else if (strcmp(argv[i], "--throws") == 0) {
options.expected_to_throw = true;
argv[i] = NULL;
} else if (strncmp(argv[i], "--icu-data-file=", 16) == 0) {
options.icu_data_file = argv[i] + 16;
argv[i] = NULL;
#ifdef V8_SHARED
} else if (strcmp(argv[i], "--dump-counters") == 0) {
printf("D8 with shared library does not include counters\n");
return false;
#endif // V8_SHARED
#ifdef V8_USE_EXTERNAL_STARTUP_DATA
} else if (strncmp(argv[i], "--natives_blob=", 15) == 0) {
options.natives_blob = argv[i] + 15;
argv[i] = NULL;
} else if (strncmp(argv[i], "--snapshot_blob=", 16) == 0) {
options.snapshot_blob = argv[i] + 16;
argv[i] = NULL;
#endif // V8_USE_EXTERNAL_STARTUP_DATA
} else if (strcmp(argv[i], "--cache") == 0 ||
strncmp(argv[i], "--cache=", 8) == 0) {
const char* value = argv[i] + 7;
if (!*value || strncmp(value, "=code", 6) == 0) {
options.compile_options = v8::ScriptCompiler::kProduceCodeCache;
} else if (strncmp(value, "=parse", 7) == 0) {
options.compile_options = v8::ScriptCompiler::kProduceParserCache;
} else if (strncmp(value, "=none", 6) == 0) {
options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
} else {
printf("Unknown option to --cache.\n");
return false;
}
argv[i] = NULL;
}
}
v8::V8::SetFlagsFromCommandLine(&argc, argv, true);
bool enable_harmony_modules = false;
// Set up isolated source groups.
options.isolate_sources = new SourceGroup[options.num_isolates];
SourceGroup* current = options.isolate_sources;
current->Begin(argv, 1);
for (int i = 1; i < argc; i++) {
const char* str = argv[i];
if (strcmp(str, "--isolate") == 0) {
current->End(i);
current++;
current->Begin(argv, i + 1);
} else if (strcmp(str, "--module") == 0) {
// Pass on to SourceGroup, which understands this option.
enable_harmony_modules = true;
} else if (strncmp(argv[i], "--", 2) == 0) {
printf("Warning: unknown flag %s.\nTry --help for options\n", argv[i]);
} else if (strcmp(str, "-e") == 0 && i + 1 < argc) {
options.script_executed = true;
} else if (strncmp(str, "-", 1) != 0) {
// Not a flag, so it must be a script to execute.
options.script_executed = true;
}
}
current->End(argc);
if (!logfile_per_isolate && options.num_isolates) {
SetFlagsFromString("--nologfile_per_isolate");
}
if (enable_harmony_modules) {
SetFlagsFromString("--harmony-modules");
}
return true;
}
int Shell::RunMain(Isolate* isolate, int argc, char* argv[], bool last_run) {
#ifndef V8_SHARED
for (int i = 1; i < options.num_isolates; ++i) {
options.isolate_sources[i].StartExecuteInThread();
}
#endif // !V8_SHARED
{
HandleScope scope(isolate);
Local<Context> context = CreateEvaluationContext(isolate);
if (last_run && options.use_interactive_shell()) {
// Keep using the same context in the interactive shell.
evaluation_context_.Reset(isolate, context);
}
{
Context::Scope cscope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
options.isolate_sources[0].Execute(isolate);
}
}
CollectGarbage(isolate);
#ifndef V8_SHARED
for (int i = 1; i < options.num_isolates; ++i) {
if (last_run) {
options.isolate_sources[i].JoinThread();
} else {
options.isolate_sources[i].WaitForThread();
}
}
CleanupWorkers();
#endif // !V8_SHARED
return 0;
}
void Shell::CollectGarbage(Isolate* isolate) {
if (options.send_idle_notification) {
const double kLongIdlePauseInSeconds = 1.0;
isolate->ContextDisposedNotification();
isolate->IdleNotificationDeadline(
g_platform->MonotonicallyIncreasingTime() + kLongIdlePauseInSeconds);
}
if (options.invoke_weak_callbacks) {
// By sending a low memory notifications, we will try hard to collect all
// garbage and will therefore also invoke all weak callbacks of actually
// unreachable persistent handles.
isolate->LowMemoryNotification();
}
}
void Shell::EmptyMessageQueues(Isolate* isolate) {
#ifndef V8_SHARED
if (!i::FLAG_verify_predictable) {
#endif
while (v8::platform::PumpMessageLoop(g_platform, isolate)) continue;
#ifndef V8_SHARED
}
#endif
}
#ifndef V8_SHARED
bool Shell::SerializeValue(Isolate* isolate, Local<Value> value,
const ObjectList& to_transfer,
ObjectList* seen_objects,
SerializationData* out_data) {
DCHECK(out_data);
Local<Context> context = isolate->GetCurrentContext();
if (value->IsUndefined()) {
out_data->WriteTag(kSerializationTagUndefined);
} else if (value->IsNull()) {
out_data->WriteTag(kSerializationTagNull);
} else if (value->IsTrue()) {
out_data->WriteTag(kSerializationTagTrue);
} else if (value->IsFalse()) {
out_data->WriteTag(kSerializationTagFalse);
} else if (value->IsNumber()) {
Local<Number> num = Local<Number>::Cast(value);
double value = num->Value();
out_data->WriteTag(kSerializationTagNumber);
out_data->Write(value);
} else if (value->IsString()) {
v8::String::Utf8Value str(value);
out_data->WriteTag(kSerializationTagString);
out_data->Write(str.length());
out_data->WriteMemory(*str, str.length());
} else if (value->IsArray()) {
Local<Array> array = Local<Array>::Cast(value);
if (FindInObjectList(array, *seen_objects)) {
Throw(isolate, "Duplicated arrays not supported");
return false;
}
seen_objects->Add(array);
out_data->WriteTag(kSerializationTagArray);
uint32_t length = array->Length();
out_data->Write(length);
for (uint32_t i = 0; i < length; ++i) {
Local<Value> element_value;
if (array->Get(context, i).ToLocal(&element_value)) {
if (!SerializeValue(isolate, element_value, to_transfer, seen_objects,
out_data))
return false;
} else {
Throw(isolate, "Failed to serialize array element.");
return false;
}
}
} else if (value->IsArrayBuffer()) {
Local<ArrayBuffer> array_buffer = Local<ArrayBuffer>::Cast(value);
if (FindInObjectList(array_buffer, *seen_objects)) {
Throw(isolate, "Duplicated array buffers not supported");
return false;
}
seen_objects->Add(array_buffer);
if (FindInObjectList(array_buffer, to_transfer)) {
// Transfer ArrayBuffer
if (!array_buffer->IsNeuterable()) {
Throw(isolate, "Attempting to transfer an un-neuterable ArrayBuffer");
return false;
}
ArrayBuffer::Contents contents = array_buffer->IsExternal()
? array_buffer->GetContents()
: array_buffer->Externalize();
array_buffer->Neuter();
out_data->WriteArrayBufferContents(contents);
} else {
ArrayBuffer::Contents contents = array_buffer->GetContents();
// Clone ArrayBuffer
if (contents.ByteLength() > i::kMaxInt) {
Throw(isolate, "ArrayBuffer is too big to clone");
return false;
}
int32_t byte_length = static_cast<int32_t>(contents.ByteLength());
out_data->WriteTag(kSerializationTagArrayBuffer);
out_data->Write(byte_length);
out_data->WriteMemory(contents.Data(), byte_length);
}
} else if (value->IsSharedArrayBuffer()) {
Local<SharedArrayBuffer> sab = Local<SharedArrayBuffer>::Cast(value);
if (FindInObjectList(sab, *seen_objects)) {
Throw(isolate, "Duplicated shared array buffers not supported");
return false;
}
seen_objects->Add(sab);
if (!FindInObjectList(sab, to_transfer)) {
Throw(isolate, "SharedArrayBuffer must be transferred");
return false;
}
SharedArrayBuffer::Contents contents;
if (sab->IsExternal()) {
contents = sab->GetContents();
} else {
contents = sab->Externalize();
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
externalized_shared_contents_.Add(contents);
}
out_data->WriteSharedArrayBufferContents(contents);
} else if (value->IsObject()) {
Local<Object> object = Local<Object>::Cast(value);
if (FindInObjectList(object, *seen_objects)) {
Throw(isolate, "Duplicated objects not supported");
return false;
}
seen_objects->Add(object);
Local<Array> property_names;
if (!object->GetOwnPropertyNames(context).ToLocal(&property_names)) {
Throw(isolate, "Unable to get property names");
return false;
}
uint32_t length = property_names->Length();
out_data->WriteTag(kSerializationTagObject);
out_data->Write(length);
for (uint32_t i = 0; i < length; ++i) {
Local<Value> name;
Local<Value> property_value;
if (property_names->Get(context, i).ToLocal(&name) &&
object->Get(context, name).ToLocal(&property_value)) {
if (!SerializeValue(isolate, name, to_transfer, seen_objects, out_data))
return false;
if (!SerializeValue(isolate, property_value, to_transfer, seen_objects,
out_data))
return false;
} else {
Throw(isolate, "Failed to serialize property.");
return false;
}
}
} else {
Throw(isolate, "Don't know how to serialize object");
return false;
}
return true;
}
MaybeLocal<Value> Shell::DeserializeValue(Isolate* isolate,
const SerializationData& data,
int* offset) {
DCHECK(offset);
EscapableHandleScope scope(isolate);
// This function should not use utility_context_ because it is running on a
// different thread.
Local<Value> result;
SerializationTag tag = data.ReadTag(offset);
switch (tag) {
case kSerializationTagUndefined:
result = Undefined(isolate);
break;
case kSerializationTagNull:
result = Null(isolate);
break;
case kSerializationTagTrue:
result = True(isolate);
break;
case kSerializationTagFalse:
result = False(isolate);
break;
case kSerializationTagNumber:
result = Number::New(isolate, data.Read<double>(offset));
break;
case kSerializationTagString: {
int length = data.Read<int>(offset);
CHECK(length >= 0);
std::vector<char> buffer(length + 1); // + 1 so it is never empty.
data.ReadMemory(&buffer[0], length, offset);
MaybeLocal<String> str =
String::NewFromUtf8(isolate, &buffer[0], NewStringType::kNormal,
length).ToLocalChecked();
if (!str.IsEmpty()) result = str.ToLocalChecked();
break;
}
case kSerializationTagArray: {
uint32_t length = data.Read<uint32_t>(offset);
Local<Array> array = Array::New(isolate, length);
for (uint32_t i = 0; i < length; ++i) {
Local<Value> element_value;
CHECK(DeserializeValue(isolate, data, offset).ToLocal(&element_value));
array->Set(isolate->GetCurrentContext(), i, element_value).FromJust();
}
result = array;
break;
}
case kSerializationTagObject: {
int length = data.Read<int>(offset);
Local<Object> object = Object::New(isolate);
for (int i = 0; i < length; ++i) {
Local<Value> property_name;
CHECK(DeserializeValue(isolate, data, offset).ToLocal(&property_name));
Local<Value> property_value;
CHECK(DeserializeValue(isolate, data, offset).ToLocal(&property_value));
object->Set(isolate->GetCurrentContext(), property_name, property_value)
.FromJust();
}
result = object;
break;
}
case kSerializationTagArrayBuffer: {
int32_t byte_length = data.Read<int32_t>(offset);
Local<ArrayBuffer> array_buffer = ArrayBuffer::New(isolate, byte_length);
ArrayBuffer::Contents contents = array_buffer->GetContents();
DCHECK(static_cast<size_t>(byte_length) == contents.ByteLength());
data.ReadMemory(contents.Data(), byte_length, offset);
result = array_buffer;
break;
}
case kSerializationTagTransferredArrayBuffer: {
ArrayBuffer::Contents contents;
data.ReadArrayBufferContents(&contents, offset);
result = ArrayBuffer::New(isolate, contents.Data(), contents.ByteLength(),
ArrayBufferCreationMode::kInternalized);
break;
}
case kSerializationTagTransferredSharedArrayBuffer: {
SharedArrayBuffer::Contents contents;
data.ReadSharedArrayBufferContents(&contents, offset);
result = SharedArrayBuffer::New(isolate, contents.Data(),
contents.ByteLength());
break;
}
default:
UNREACHABLE();
}
return scope.Escape(result);
}
void Shell::CleanupWorkers() {
// Make a copy of workers_, because we don't want to call Worker::Terminate
// while holding the workers_mutex_ lock. Otherwise, if a worker is about to
// create a new Worker, it would deadlock.
i::List<Worker*> workers_copy;
{
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
allow_new_workers_ = false;
workers_copy.AddAll(workers_);
workers_.Clear();
}
for (int i = 0; i < workers_copy.length(); ++i) {
Worker* worker = workers_copy[i];
worker->WaitForThread();
delete worker;
}
// Now that all workers are terminated, we can re-enable Worker creation.
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
allow_new_workers_ = true;
for (int i = 0; i < externalized_shared_contents_.length(); ++i) {
const SharedArrayBuffer::Contents& contents =
externalized_shared_contents_[i];
Shell::array_buffer_allocator->Free(contents.Data(), contents.ByteLength());
}
externalized_shared_contents_.Clear();
}
static void DumpHeapConstants(i::Isolate* isolate) {
i::Heap* heap = isolate->heap();
// Dump the INSTANCE_TYPES table to the console.
printf("# List of known V8 instance types.\n");
#define DUMP_TYPE(T) printf(" %d: \"%s\",\n", i::T, #T);
printf("INSTANCE_TYPES = {\n");
INSTANCE_TYPE_LIST(DUMP_TYPE)
printf("}\n");
#undef DUMP_TYPE
// Dump the KNOWN_MAP table to the console.
printf("\n# List of known V8 maps.\n");
#define ROOT_LIST_CASE(type, name, camel_name) \
if (n == NULL && o == heap->name()) n = #camel_name;
#define STRUCT_LIST_CASE(upper_name, camel_name, name) \
if (n == NULL && o == heap->name##_map()) n = #camel_name "Map";
i::HeapObjectIterator it(heap->map_space());
printf("KNOWN_MAPS = {\n");
for (i::Object* o = it.Next(); o != NULL; o = it.Next()) {
i::Map* m = i::Map::cast(o);
const char* n = NULL;
intptr_t p = reinterpret_cast<intptr_t>(m) & 0xfffff;
int t = m->instance_type();
ROOT_LIST(ROOT_LIST_CASE)
STRUCT_LIST(STRUCT_LIST_CASE)
if (n == NULL) continue;
printf(" 0x%05" V8PRIxPTR ": (%d, \"%s\"),\n", p, t, n);
}
printf("}\n");
#undef STRUCT_LIST_CASE
#undef ROOT_LIST_CASE
// Dump the KNOWN_OBJECTS table to the console.
printf("\n# List of known V8 objects.\n");
#define ROOT_LIST_CASE(type, name, camel_name) \
if (n == NULL && o == heap->name()) n = #camel_name;
i::OldSpaces spit(heap);
printf("KNOWN_OBJECTS = {\n");
for (i::PagedSpace* s = spit.next(); s != NULL; s = spit.next()) {
i::HeapObjectIterator it(s);
const char* sname = AllocationSpaceName(s->identity());
for (i::Object* o = it.Next(); o != NULL; o = it.Next()) {
const char* n = NULL;
intptr_t p = reinterpret_cast<intptr_t>(o) & 0xfffff;
ROOT_LIST(ROOT_LIST_CASE)
if (n == NULL) continue;
printf(" (\"%s\", 0x%05" V8PRIxPTR "): \"%s\",\n", sname, p, n);
}
}
printf("}\n");
#undef ROOT_LIST_CASE
}
#endif // !V8_SHARED
int Shell::Main(int argc, char* argv[]) {
#if (defined(_WIN32) || defined(_WIN64))
UINT new_flags =
SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX;
UINT existing_flags = SetErrorMode(new_flags);
SetErrorMode(existing_flags | new_flags);
#if defined(_MSC_VER)
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR);
_set_error_mode(_OUT_TO_STDERR);
#endif // defined(_MSC_VER)
#endif // defined(_WIN32) || defined(_WIN64)
if (!SetOptions(argc, argv)) return 1;
v8::V8::InitializeICU(options.icu_data_file);
#ifndef V8_SHARED
g_platform = i::FLAG_verify_predictable
? new PredictablePlatform()
: v8::platform::CreateDefaultPlatform();
#else
g_platform = v8::platform::CreateDefaultPlatform();
#endif // !V8_SHARED
v8::V8::InitializePlatform(g_platform);
v8::V8::Initialize();
if (options.natives_blob || options.snapshot_blob) {
v8::V8::InitializeExternalStartupData(options.natives_blob,
options.snapshot_blob);
} else {
v8::V8::InitializeExternalStartupData(argv[0]);
}
SetFlagsFromString("--trace-hydrogen-file=hydrogen.cfg");
SetFlagsFromString("--trace-turbo-cfg-file=turbo.cfg");
SetFlagsFromString("--redirect-code-traces-to=code.asm");
int result = 0;
Isolate::CreateParams create_params;
ShellArrayBufferAllocator shell_array_buffer_allocator;
MockArrayBufferAllocator mock_arraybuffer_allocator;
if (options.mock_arraybuffer_allocator) {
Shell::array_buffer_allocator = &mock_arraybuffer_allocator;
} else {
Shell::array_buffer_allocator = &shell_array_buffer_allocator;
}
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
#ifdef ENABLE_VTUNE_JIT_INTERFACE
create_params.code_event_handler = vTune::GetVtuneCodeEventHandler();
#endif
#ifndef V8_SHARED
create_params.constraints.ConfigureDefaults(
base::SysInfo::AmountOfPhysicalMemory(),
base::SysInfo::AmountOfVirtualMemory());
Shell::counter_map_ = new CounterMap();
if (i::FLAG_dump_counters || i::FLAG_track_gc_object_stats) {
create_params.counter_lookup_callback = LookupCounter;
create_params.create_histogram_callback = CreateHistogram;
create_params.add_histogram_sample_callback = AddHistogramSample;
}
#endif
Isolate* isolate = Isolate::New(create_params);
{
Isolate::Scope scope(isolate);
Initialize(isolate);
PerIsolateData data(isolate);
#ifndef V8_SHARED
if (options.dump_heap_constants) {
DumpHeapConstants(reinterpret_cast<i::Isolate*>(isolate));
return 0;
}
#endif
if (options.stress_opt || options.stress_deopt) {
Testing::SetStressRunType(options.stress_opt
? Testing::kStressTypeOpt
: Testing::kStressTypeDeopt);
options.stress_runs = Testing::GetStressRuns();
for (int i = 0; i < options.stress_runs && result == 0; i++) {
printf("============ Stress %d/%d ============\n", i + 1,
options.stress_runs);
Testing::PrepareStressRun(i);
bool last_run = i == options.stress_runs - 1;
result = RunMain(isolate, argc, argv, last_run);
}
printf("======== Full Deoptimization =======\n");
Testing::DeoptimizeAll(isolate);
#if !defined(V8_SHARED)
} else if (i::FLAG_stress_runs > 0) {
options.stress_runs = i::FLAG_stress_runs;
for (int i = 0; i < options.stress_runs && result == 0; i++) {
printf("============ Run %d/%d ============\n", i + 1,
options.stress_runs);
bool last_run = i == options.stress_runs - 1;
result = RunMain(isolate, argc, argv, last_run);
}
#endif
} else {
bool last_run = true;
result = RunMain(isolate, argc, argv, last_run);
}
// Run interactive shell if explicitly requested or if no script has been
// executed, but never on --test
if (options.use_interactive_shell()) {
#ifndef V8_SHARED
InstallUtilityScript(isolate);
#endif // !V8_SHARED
RunShell(isolate);
}
// Shut down contexts and collect garbage.
evaluation_context_.Reset();
#ifndef V8_SHARED
utility_context_.Reset();
#endif // !V8_SHARED
CollectGarbage(isolate);
}
OnExit(isolate);
#ifndef V8_SHARED
// Dump basic block profiling data.
if (i::BasicBlockProfiler* profiler =
reinterpret_cast<i::Isolate*>(isolate)->basic_block_profiler()) {
i::OFStream os(stdout);
os << *profiler;
}
#endif // !V8_SHARED
isolate->Dispose();
V8::Dispose();
V8::ShutdownPlatform();
delete g_platform;
return result;
}
} // namespace v8
#ifndef GOOGLE3
int main(int argc, char* argv[]) {
return v8::Shell::Main(argc, argv);
}
#endif