v8/test/cctest/compiler/test-run-wasm-machops.cc
gdeepti 117a56b7c2 Add new relocation type WASM_MEMORY_SIZE_REFERENCE, use relocatable pointers to update wasm memory size references in generated code.
- Add new RelocInfo mode WASM_MEMORY_SIZE_REFERENCE in the assembler and add relocation information to immediates in compare instructions.
 - Use relocatable constants for MemSize/BoundsCheck in the wasm compiler

R=titzer@chromium.org, yangguo@chromium.org, bradnelson@chromium.org

Review-Url: https://codereview.chromium.org/1921203002
Cr-Commit-Position: refs/heads/master@{#36044}
2016-05-04 20:20:50 +00:00

171 lines
6.6 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved. Use of this
// source code is governed by a BSD-style license that can be found in the
// LICENSE file.
#include <cmath>
#include <functional>
#include <limits>
#include "src/base/bits.h"
#include "src/base/utils/random-number-generator.h"
#include "src/codegen.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/compiler/value-helper.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
static void UpdateMemoryReferences(Handle<Code> code, Address old_base,
Address new_base, uint32_t old_size,
uint32_t new_size) {
Isolate* isolate = CcTest::i_isolate();
bool modified = false;
int mode_mask = RelocInfo::ModeMask(RelocInfo::WASM_MEMORY_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::WASM_MEMORY_SIZE_REFERENCE);
for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (RelocInfo::IsWasmMemoryReference(mode) ||
RelocInfo::IsWasmMemorySizeReference(mode)) {
// Patch addresses with change in memory start address
it.rinfo()->update_wasm_memory_reference(old_base, new_base, old_size,
new_size);
modified = true;
}
}
if (modified) {
Assembler::FlushICache(isolate, code->instruction_start(),
code->instruction_size());
}
}
template <typename CType>
static void RunLoadStoreRelocation(MachineType rep) {
const int kNumElems = 2;
CType buffer[kNumElems];
CType new_buffer[kNumElems];
byte* raw = reinterpret_cast<byte*>(buffer);
byte* new_raw = reinterpret_cast<byte*>(new_buffer);
for (size_t i = 0; i < sizeof(buffer); i++) {
raw[i] = static_cast<byte>((i + sizeof(CType)) ^ 0xAA);
new_raw[i] = static_cast<byte>((i + sizeof(CType)) ^ 0xAA);
}
int32_t OK = 0x29000;
RawMachineAssemblerTester<uint32_t> m;
Node* base = m.RelocatableIntPtrConstant(reinterpret_cast<intptr_t>(raw),
RelocInfo::WASM_MEMORY_REFERENCE);
Node* base1 = m.RelocatableIntPtrConstant(
reinterpret_cast<intptr_t>(raw + sizeof(CType)),
RelocInfo::WASM_MEMORY_REFERENCE);
Node* index = m.Int32Constant(0);
Node* load = m.Load(rep, base, index);
m.Store(rep.representation(), base1, index, load, kNoWriteBarrier);
m.Return(m.Int32Constant(OK));
CHECK(buffer[0] != buffer[1]);
CHECK_EQ(OK, m.Call());
CHECK(buffer[0] == buffer[1]);
m.GenerateCode();
Handle<Code> code = m.GetCode();
UpdateMemoryReferences(code, raw, new_raw, sizeof(buffer),
sizeof(new_buffer));
CHECK(new_buffer[0] != new_buffer[1]);
CHECK_EQ(OK, m.Call());
CHECK(new_buffer[0] == new_buffer[1]);
}
TEST(RunLoadStoreRelocation) {
RunLoadStoreRelocation<int8_t>(MachineType::Int8());
RunLoadStoreRelocation<uint8_t>(MachineType::Uint8());
RunLoadStoreRelocation<int16_t>(MachineType::Int16());
RunLoadStoreRelocation<uint16_t>(MachineType::Uint16());
RunLoadStoreRelocation<int32_t>(MachineType::Int32());
RunLoadStoreRelocation<uint32_t>(MachineType::Uint32());
RunLoadStoreRelocation<void*>(MachineType::AnyTagged());
RunLoadStoreRelocation<float>(MachineType::Float32());
RunLoadStoreRelocation<double>(MachineType::Float64());
}
template <typename CType>
static void RunLoadStoreRelocationOffset(MachineType rep) {
RawMachineAssemblerTester<int32_t> r(MachineType::Int32());
const int kNumElems = 4;
CType buffer[kNumElems];
CType new_buffer[kNumElems + 1];
for (int32_t x = 0; x < kNumElems; x++) {
int32_t y = kNumElems - x - 1;
// initialize the buffer with raw data.
byte* raw = reinterpret_cast<byte*>(buffer);
for (size_t i = 0; i < sizeof(buffer); i++) {
raw[i] = static_cast<byte>((i + sizeof(buffer)) ^ 0xAA);
}
RawMachineAssemblerTester<int32_t> m;
int32_t OK = 0x29000 + x;
Node* base = m.RelocatableIntPtrConstant(reinterpret_cast<intptr_t>(buffer),
RelocInfo::WASM_MEMORY_REFERENCE);
Node* index0 = m.IntPtrConstant(x * sizeof(buffer[0]));
Node* load = m.Load(rep, base, index0);
Node* index1 = m.IntPtrConstant(y * sizeof(buffer[0]));
m.Store(rep.representation(), base, index1, load, kNoWriteBarrier);
m.Return(m.Int32Constant(OK));
CHECK(buffer[x] != buffer[y]);
CHECK_EQ(OK, m.Call());
CHECK(buffer[x] == buffer[y]);
m.GenerateCode();
// Initialize new buffer and set old_buffer to 0
byte* new_raw = reinterpret_cast<byte*>(new_buffer);
for (size_t i = 0; i < sizeof(buffer); i++) {
raw[i] = 0;
new_raw[i] = static_cast<byte>((i + sizeof(buffer)) ^ 0xAA);
}
// Perform relocation on generated code
Handle<Code> code = m.GetCode();
UpdateMemoryReferences(code, raw, new_raw, sizeof(buffer),
sizeof(new_buffer));
CHECK(new_buffer[x] != new_buffer[y]);
CHECK_EQ(OK, m.Call());
CHECK(new_buffer[x] == new_buffer[y]);
}
}
TEST(RunLoadStoreRelocationOffset) {
RunLoadStoreRelocationOffset<int8_t>(MachineType::Int8());
RunLoadStoreRelocationOffset<uint8_t>(MachineType::Uint8());
RunLoadStoreRelocationOffset<int16_t>(MachineType::Int16());
RunLoadStoreRelocationOffset<uint16_t>(MachineType::Uint16());
RunLoadStoreRelocationOffset<int32_t>(MachineType::Int32());
RunLoadStoreRelocationOffset<uint32_t>(MachineType::Uint32());
RunLoadStoreRelocationOffset<void*>(MachineType::AnyTagged());
RunLoadStoreRelocationOffset<float>(MachineType::Float32());
RunLoadStoreRelocationOffset<double>(MachineType::Float64());
}
TEST(Uint32LessThanRelocation) {
RawMachineAssemblerTester<uint32_t> m;
RawMachineLabel within_bounds, out_of_bounds;
Node* index = m.Int32Constant(0x200);
Node* limit =
m.RelocatableInt32Constant(0x200, RelocInfo::WASM_MEMORY_SIZE_REFERENCE);
Node* cond = m.AddNode(m.machine()->Uint32LessThan(), index, limit);
m.Branch(cond, &within_bounds, &out_of_bounds);
m.Bind(&within_bounds);
m.Return(m.Int32Constant(0xaced));
m.Bind(&out_of_bounds);
m.Return(m.Int32Constant(0xdeadbeef));
// Check that index is out of bounds with current size
CHECK_EQ(0xdeadbeef, m.Call());
m.GenerateCode();
Handle<Code> code = m.GetCode();
UpdateMemoryReferences(code, reinterpret_cast<Address>(1234),
reinterpret_cast<Address>(1234), 0x200, 0x400);
// Check that after limit is increased, index is within bounds.
CHECK_EQ(0xaced, m.Call());
}