65115c2857
Previously we marked compare operations that occurred as for loop conditions so as to avoid inlining the floating-point code for them. Begin marking all expressions that occur as any loop condition (because they are never dead code). Review URL: http://codereview.chromium.org/1074009 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4227 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2102 lines
62 KiB
C++
2102 lines
62 KiB
C++
// Copyright 2010 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_AST_H_
|
|
#define V8_AST_H_
|
|
|
|
#include "execution.h"
|
|
#include "factory.h"
|
|
#include "jsregexp.h"
|
|
#include "jump-target.h"
|
|
#include "runtime.h"
|
|
#include "token.h"
|
|
#include "variables.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// The abstract syntax tree is an intermediate, light-weight
|
|
// representation of the parsed JavaScript code suitable for
|
|
// compilation to native code.
|
|
|
|
// Nodes are allocated in a separate zone, which allows faster
|
|
// allocation and constant-time deallocation of the entire syntax
|
|
// tree.
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Nodes of the abstract syntax tree. Only concrete classes are
|
|
// enumerated here.
|
|
|
|
#define STATEMENT_NODE_LIST(V) \
|
|
V(Block) \
|
|
V(ExpressionStatement) \
|
|
V(EmptyStatement) \
|
|
V(IfStatement) \
|
|
V(ContinueStatement) \
|
|
V(BreakStatement) \
|
|
V(ReturnStatement) \
|
|
V(WithEnterStatement) \
|
|
V(WithExitStatement) \
|
|
V(SwitchStatement) \
|
|
V(DoWhileStatement) \
|
|
V(WhileStatement) \
|
|
V(ForStatement) \
|
|
V(ForInStatement) \
|
|
V(TryCatchStatement) \
|
|
V(TryFinallyStatement) \
|
|
V(DebuggerStatement)
|
|
|
|
#define EXPRESSION_NODE_LIST(V) \
|
|
V(FunctionLiteral) \
|
|
V(SharedFunctionInfoLiteral) \
|
|
V(Conditional) \
|
|
V(Slot) \
|
|
V(VariableProxy) \
|
|
V(Literal) \
|
|
V(RegExpLiteral) \
|
|
V(ObjectLiteral) \
|
|
V(ArrayLiteral) \
|
|
V(CatchExtensionObject) \
|
|
V(Assignment) \
|
|
V(Throw) \
|
|
V(Property) \
|
|
V(Call) \
|
|
V(CallNew) \
|
|
V(CallRuntime) \
|
|
V(UnaryOperation) \
|
|
V(CountOperation) \
|
|
V(BinaryOperation) \
|
|
V(CompareOperation) \
|
|
V(ThisFunction)
|
|
|
|
#define AST_NODE_LIST(V) \
|
|
V(Declaration) \
|
|
STATEMENT_NODE_LIST(V) \
|
|
EXPRESSION_NODE_LIST(V)
|
|
|
|
// Forward declarations
|
|
class TargetCollector;
|
|
class MaterializedLiteral;
|
|
class DefinitionInfo;
|
|
class BitVector;
|
|
|
|
#define DEF_FORWARD_DECLARATION(type) class type;
|
|
AST_NODE_LIST(DEF_FORWARD_DECLARATION)
|
|
#undef DEF_FORWARD_DECLARATION
|
|
|
|
|
|
// Typedef only introduced to avoid unreadable code.
|
|
// Please do appreciate the required space in "> >".
|
|
typedef ZoneList<Handle<String> > ZoneStringList;
|
|
typedef ZoneList<Handle<Object> > ZoneObjectList;
|
|
|
|
|
|
class AstNode: public ZoneObject {
|
|
public:
|
|
static const int kNoNumber = -1;
|
|
|
|
AstNode() : num_(kNoNumber) {}
|
|
|
|
explicit AstNode(AstNode* other);
|
|
|
|
virtual ~AstNode() { }
|
|
virtual void Accept(AstVisitor* v) = 0;
|
|
|
|
// Type testing & conversion.
|
|
virtual Statement* AsStatement() { return NULL; }
|
|
virtual Block* AsBlock() { return NULL; }
|
|
virtual ExpressionStatement* AsExpressionStatement() { return NULL; }
|
|
virtual EmptyStatement* AsEmptyStatement() { return NULL; }
|
|
virtual Expression* AsExpression() { return NULL; }
|
|
virtual Literal* AsLiteral() { return NULL; }
|
|
virtual Slot* AsSlot() { return NULL; }
|
|
virtual VariableProxy* AsVariableProxy() { return NULL; }
|
|
virtual Property* AsProperty() { return NULL; }
|
|
virtual Call* AsCall() { return NULL; }
|
|
virtual TargetCollector* AsTargetCollector() { return NULL; }
|
|
virtual BreakableStatement* AsBreakableStatement() { return NULL; }
|
|
virtual IterationStatement* AsIterationStatement() { return NULL; }
|
|
virtual ForStatement* AsForStatement() { return NULL; }
|
|
virtual UnaryOperation* AsUnaryOperation() { return NULL; }
|
|
virtual CountOperation* AsCountOperation() { return NULL; }
|
|
virtual BinaryOperation* AsBinaryOperation() { return NULL; }
|
|
virtual Assignment* AsAssignment() { return NULL; }
|
|
virtual FunctionLiteral* AsFunctionLiteral() { return NULL; }
|
|
virtual MaterializedLiteral* AsMaterializedLiteral() { return NULL; }
|
|
virtual ObjectLiteral* AsObjectLiteral() { return NULL; }
|
|
virtual ArrayLiteral* AsArrayLiteral() { return NULL; }
|
|
virtual CompareOperation* AsCompareOperation() { return NULL; }
|
|
|
|
int num() { return num_; }
|
|
void set_num(int n) { num_ = n; }
|
|
|
|
private:
|
|
// Support for ast node numbering.
|
|
int num_;
|
|
};
|
|
|
|
|
|
class Statement: public AstNode {
|
|
public:
|
|
Statement() : statement_pos_(RelocInfo::kNoPosition) {}
|
|
|
|
explicit Statement(Statement* other);
|
|
|
|
virtual Statement* AsStatement() { return this; }
|
|
virtual ReturnStatement* AsReturnStatement() { return NULL; }
|
|
|
|
virtual Assignment* StatementAsSimpleAssignment() { return NULL; }
|
|
virtual CountOperation* StatementAsCountOperation() { return NULL; }
|
|
|
|
bool IsEmpty() { return AsEmptyStatement() != NULL; }
|
|
|
|
void set_statement_pos(int statement_pos) { statement_pos_ = statement_pos; }
|
|
int statement_pos() const { return statement_pos_; }
|
|
|
|
private:
|
|
int statement_pos_;
|
|
};
|
|
|
|
|
|
class Expression: public AstNode {
|
|
public:
|
|
enum Context {
|
|
// Not assigned a context yet, or else will not be visited during
|
|
// code generation.
|
|
kUninitialized,
|
|
// Evaluated for its side effects.
|
|
kEffect,
|
|
// Evaluated for its value (and side effects).
|
|
kValue,
|
|
// Evaluated for control flow (and side effects).
|
|
kTest,
|
|
// Evaluated for control flow and side effects. Value is also
|
|
// needed if true.
|
|
kValueTest,
|
|
// Evaluated for control flow and side effects. Value is also
|
|
// needed if false.
|
|
kTestValue
|
|
};
|
|
|
|
Expression() : bitfields_(0) {}
|
|
|
|
explicit Expression(Expression* other);
|
|
|
|
virtual Expression* AsExpression() { return this; }
|
|
|
|
virtual bool IsValidLeftHandSide() { return false; }
|
|
|
|
virtual Variable* AssignedVar() { return NULL; }
|
|
|
|
// Symbols that cannot be parsed as array indices are considered property
|
|
// names. We do not treat symbols that can be array indexes as property
|
|
// names because [] for string objects is handled only by keyed ICs.
|
|
virtual bool IsPropertyName() { return false; }
|
|
|
|
// True if the expression does not have (evaluated) subexpressions.
|
|
// Function literals are leaves because their subexpressions are not
|
|
// evaluated.
|
|
virtual bool IsLeaf() { return false; }
|
|
|
|
// True if the expression has no side effects and is safe to
|
|
// evaluate out of order.
|
|
virtual bool IsTrivial() { return false; }
|
|
|
|
// True if the expression always has one of the non-Object JS types
|
|
// (Undefined, Null, Boolean, String, or Number).
|
|
virtual bool IsPrimitive() = 0;
|
|
|
|
// Mark the expression as being compiled as an expression
|
|
// statement. This is used to transform postfix increments to
|
|
// (faster) prefix increments.
|
|
virtual void MarkAsStatement() { /* do nothing */ }
|
|
|
|
// Static type information for this expression.
|
|
StaticType* type() { return &type_; }
|
|
|
|
// True if the expression is a loop condition.
|
|
bool is_loop_condition() const {
|
|
return LoopConditionField::decode(bitfields_);
|
|
}
|
|
void set_is_loop_condition(bool flag) {
|
|
bitfields_ = (bitfields_ & ~LoopConditionField::mask()) |
|
|
LoopConditionField::encode(flag);
|
|
}
|
|
|
|
// AST analysis results
|
|
|
|
// True if the expression rooted at this node can be compiled by the
|
|
// side-effect free compiler.
|
|
bool side_effect_free() { return SideEffectFreeField::decode(bitfields_); }
|
|
void set_side_effect_free(bool is_side_effect_free) {
|
|
bitfields_ &= ~SideEffectFreeField::mask();
|
|
bitfields_ |= SideEffectFreeField::encode(is_side_effect_free);
|
|
}
|
|
|
|
// Will the use of this expression treat -0 the same as 0 in all cases?
|
|
// If so, we can return 0 instead of -0 if we want to, to optimize code.
|
|
bool no_negative_zero() { return NoNegativeZeroField::decode(bitfields_); }
|
|
void set_no_negative_zero(bool no_negative_zero) {
|
|
bitfields_ &= ~NoNegativeZeroField::mask();
|
|
bitfields_ |= NoNegativeZeroField::encode(no_negative_zero);
|
|
}
|
|
|
|
// Will ToInt32 (ECMA 262-3 9.5) or ToUint32 (ECMA 262-3 9.6)
|
|
// be applied to the value of this expression?
|
|
// If so, we may be able to optimize the calculation of the value.
|
|
bool to_int32() { return ToInt32Field::decode(bitfields_); }
|
|
void set_to_int32(bool to_int32) {
|
|
bitfields_ &= ~ToInt32Field::mask();
|
|
bitfields_ |= ToInt32Field::encode(to_int32);
|
|
}
|
|
|
|
// How many bitwise logical or shift operators are used in this expression?
|
|
int num_bit_ops() { return NumBitOpsField::decode(bitfields_); }
|
|
void set_num_bit_ops(int num_bit_ops) {
|
|
bitfields_ &= ~NumBitOpsField::mask();
|
|
num_bit_ops = Min(num_bit_ops, kMaxNumBitOps);
|
|
bitfields_ |= NumBitOpsField::encode(num_bit_ops);
|
|
}
|
|
|
|
private:
|
|
static const int kMaxNumBitOps = (1 << 5) - 1;
|
|
|
|
uint32_t bitfields_;
|
|
StaticType type_;
|
|
|
|
// Using template BitField<type, start, size>.
|
|
class SideEffectFreeField : public BitField<bool, 0, 1> {};
|
|
class NoNegativeZeroField : public BitField<bool, 1, 1> {};
|
|
class ToInt32Field : public BitField<bool, 2, 1> {};
|
|
class NumBitOpsField : public BitField<int, 3, 5> {};
|
|
class LoopConditionField: public BitField<bool, 8, 1> {};
|
|
};
|
|
|
|
|
|
/**
|
|
* A sentinel used during pre parsing that represents some expression
|
|
* that is a valid left hand side without having to actually build
|
|
* the expression.
|
|
*/
|
|
class ValidLeftHandSideSentinel: public Expression {
|
|
public:
|
|
virtual bool IsValidLeftHandSide() { return true; }
|
|
virtual void Accept(AstVisitor* v) { UNREACHABLE(); }
|
|
static ValidLeftHandSideSentinel* instance() { return &instance_; }
|
|
|
|
virtual bool IsPrimitive() {
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
static ValidLeftHandSideSentinel instance_;
|
|
};
|
|
|
|
|
|
class BreakableStatement: public Statement {
|
|
public:
|
|
enum Type {
|
|
TARGET_FOR_ANONYMOUS,
|
|
TARGET_FOR_NAMED_ONLY
|
|
};
|
|
|
|
// The labels associated with this statement. May be NULL;
|
|
// if it is != NULL, guaranteed to contain at least one entry.
|
|
ZoneStringList* labels() const { return labels_; }
|
|
|
|
// Type testing & conversion.
|
|
virtual BreakableStatement* AsBreakableStatement() { return this; }
|
|
|
|
// Code generation
|
|
BreakTarget* break_target() { return &break_target_; }
|
|
|
|
// Testers.
|
|
bool is_target_for_anonymous() const { return type_ == TARGET_FOR_ANONYMOUS; }
|
|
|
|
protected:
|
|
BreakableStatement(ZoneStringList* labels, Type type)
|
|
: labels_(labels), type_(type) {
|
|
ASSERT(labels == NULL || labels->length() > 0);
|
|
}
|
|
|
|
explicit BreakableStatement(BreakableStatement* other);
|
|
|
|
private:
|
|
ZoneStringList* labels_;
|
|
Type type_;
|
|
BreakTarget break_target_;
|
|
};
|
|
|
|
|
|
class Block: public BreakableStatement {
|
|
public:
|
|
Block(ZoneStringList* labels, int capacity, bool is_initializer_block)
|
|
: BreakableStatement(labels, TARGET_FOR_NAMED_ONLY),
|
|
statements_(capacity),
|
|
is_initializer_block_(is_initializer_block) { }
|
|
|
|
// Construct a clone initialized from the original block and
|
|
// a deep copy of all statements of the original block.
|
|
Block(Block* other, ZoneList<Statement*>* statements);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual Block* AsBlock() { return this; }
|
|
|
|
virtual Assignment* StatementAsSimpleAssignment() {
|
|
if (statements_.length() != 1) return NULL;
|
|
return statements_[0]->StatementAsSimpleAssignment();
|
|
}
|
|
|
|
virtual CountOperation* StatementAsCountOperation() {
|
|
if (statements_.length() != 1) return NULL;
|
|
return statements_[0]->StatementAsCountOperation();
|
|
}
|
|
|
|
void AddStatement(Statement* statement) { statements_.Add(statement); }
|
|
|
|
ZoneList<Statement*>* statements() { return &statements_; }
|
|
bool is_initializer_block() const { return is_initializer_block_; }
|
|
|
|
private:
|
|
ZoneList<Statement*> statements_;
|
|
bool is_initializer_block_;
|
|
};
|
|
|
|
|
|
class Declaration: public AstNode {
|
|
public:
|
|
Declaration(VariableProxy* proxy, Variable::Mode mode, FunctionLiteral* fun)
|
|
: proxy_(proxy),
|
|
mode_(mode),
|
|
fun_(fun) {
|
|
ASSERT(mode == Variable::VAR || mode == Variable::CONST);
|
|
// At the moment there are no "const functions"'s in JavaScript...
|
|
ASSERT(fun == NULL || mode == Variable::VAR);
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
VariableProxy* proxy() const { return proxy_; }
|
|
Variable::Mode mode() const { return mode_; }
|
|
FunctionLiteral* fun() const { return fun_; } // may be NULL
|
|
|
|
private:
|
|
VariableProxy* proxy_;
|
|
Variable::Mode mode_;
|
|
FunctionLiteral* fun_;
|
|
};
|
|
|
|
|
|
class IterationStatement: public BreakableStatement {
|
|
public:
|
|
// Type testing & conversion.
|
|
virtual IterationStatement* AsIterationStatement() { return this; }
|
|
|
|
Statement* body() const { return body_; }
|
|
void set_body(Statement* stmt) { body_ = stmt; }
|
|
|
|
// Code generation
|
|
BreakTarget* continue_target() { return &continue_target_; }
|
|
|
|
protected:
|
|
explicit IterationStatement(ZoneStringList* labels)
|
|
: BreakableStatement(labels, TARGET_FOR_ANONYMOUS), body_(NULL) { }
|
|
|
|
// Construct a clone initialized from original and
|
|
// a deep copy of the original body.
|
|
IterationStatement(IterationStatement* other, Statement* body);
|
|
|
|
void Initialize(Statement* body) {
|
|
body_ = body;
|
|
}
|
|
|
|
private:
|
|
Statement* body_;
|
|
BreakTarget continue_target_;
|
|
};
|
|
|
|
|
|
class DoWhileStatement: public IterationStatement {
|
|
public:
|
|
explicit DoWhileStatement(ZoneStringList* labels)
|
|
: IterationStatement(labels), cond_(NULL), condition_position_(-1) {
|
|
}
|
|
|
|
void Initialize(Expression* cond, Statement* body) {
|
|
IterationStatement::Initialize(body);
|
|
cond_ = cond;
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
Expression* cond() const { return cond_; }
|
|
|
|
// Position where condition expression starts. We need it to make
|
|
// the loop's condition a breakable location.
|
|
int condition_position() { return condition_position_; }
|
|
void set_condition_position(int pos) { condition_position_ = pos; }
|
|
|
|
private:
|
|
Expression* cond_;
|
|
int condition_position_;
|
|
};
|
|
|
|
|
|
class WhileStatement: public IterationStatement {
|
|
public:
|
|
explicit WhileStatement(ZoneStringList* labels)
|
|
: IterationStatement(labels),
|
|
cond_(NULL),
|
|
may_have_function_literal_(true) {
|
|
}
|
|
|
|
void Initialize(Expression* cond, Statement* body) {
|
|
IterationStatement::Initialize(body);
|
|
cond_ = cond;
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
Expression* cond() const { return cond_; }
|
|
bool may_have_function_literal() const {
|
|
return may_have_function_literal_;
|
|
}
|
|
|
|
private:
|
|
Expression* cond_;
|
|
// True if there is a function literal subexpression in the condition.
|
|
bool may_have_function_literal_;
|
|
|
|
friend class AstOptimizer;
|
|
};
|
|
|
|
|
|
class ForStatement: public IterationStatement {
|
|
public:
|
|
explicit ForStatement(ZoneStringList* labels)
|
|
: IterationStatement(labels),
|
|
init_(NULL),
|
|
cond_(NULL),
|
|
next_(NULL),
|
|
may_have_function_literal_(true),
|
|
loop_variable_(NULL),
|
|
peel_this_loop_(false) {}
|
|
|
|
// Construct a for-statement initialized from another for-statement
|
|
// and deep copies of all parts of the original statement.
|
|
ForStatement(ForStatement* other,
|
|
Statement* init,
|
|
Expression* cond,
|
|
Statement* next,
|
|
Statement* body);
|
|
|
|
virtual ForStatement* AsForStatement() { return this; }
|
|
|
|
void Initialize(Statement* init,
|
|
Expression* cond,
|
|
Statement* next,
|
|
Statement* body) {
|
|
IterationStatement::Initialize(body);
|
|
init_ = init;
|
|
cond_ = cond;
|
|
next_ = next;
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
Statement* init() const { return init_; }
|
|
void set_init(Statement* stmt) { init_ = stmt; }
|
|
Expression* cond() const { return cond_; }
|
|
void set_cond(Expression* expr) { cond_ = expr; }
|
|
Statement* next() const { return next_; }
|
|
void set_next(Statement* stmt) { next_ = stmt; }
|
|
bool may_have_function_literal() const {
|
|
return may_have_function_literal_;
|
|
}
|
|
|
|
bool is_fast_smi_loop() { return loop_variable_ != NULL; }
|
|
Variable* loop_variable() { return loop_variable_; }
|
|
void set_loop_variable(Variable* var) { loop_variable_ = var; }
|
|
|
|
bool peel_this_loop() { return peel_this_loop_; }
|
|
void set_peel_this_loop(bool b) { peel_this_loop_ = b; }
|
|
|
|
private:
|
|
Statement* init_;
|
|
Expression* cond_;
|
|
Statement* next_;
|
|
// True if there is a function literal subexpression in the condition.
|
|
bool may_have_function_literal_;
|
|
Variable* loop_variable_;
|
|
bool peel_this_loop_;
|
|
|
|
friend class AstOptimizer;
|
|
};
|
|
|
|
|
|
class ForInStatement: public IterationStatement {
|
|
public:
|
|
explicit ForInStatement(ZoneStringList* labels)
|
|
: IterationStatement(labels), each_(NULL), enumerable_(NULL) { }
|
|
|
|
void Initialize(Expression* each, Expression* enumerable, Statement* body) {
|
|
IterationStatement::Initialize(body);
|
|
each_ = each;
|
|
enumerable_ = enumerable;
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
Expression* each() const { return each_; }
|
|
Expression* enumerable() const { return enumerable_; }
|
|
|
|
private:
|
|
Expression* each_;
|
|
Expression* enumerable_;
|
|
};
|
|
|
|
|
|
class ExpressionStatement: public Statement {
|
|
public:
|
|
explicit ExpressionStatement(Expression* expression)
|
|
: expression_(expression) { }
|
|
|
|
// Construct an expression statement initialized from another
|
|
// expression statement and a deep copy of the original expression.
|
|
ExpressionStatement(ExpressionStatement* other, Expression* expression);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion.
|
|
virtual ExpressionStatement* AsExpressionStatement() { return this; }
|
|
|
|
virtual Assignment* StatementAsSimpleAssignment();
|
|
virtual CountOperation* StatementAsCountOperation();
|
|
|
|
void set_expression(Expression* e) { expression_ = e; }
|
|
Expression* expression() { return expression_; }
|
|
|
|
private:
|
|
Expression* expression_;
|
|
};
|
|
|
|
|
|
class ContinueStatement: public Statement {
|
|
public:
|
|
explicit ContinueStatement(IterationStatement* target)
|
|
: target_(target) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
IterationStatement* target() const { return target_; }
|
|
|
|
private:
|
|
IterationStatement* target_;
|
|
};
|
|
|
|
|
|
class BreakStatement: public Statement {
|
|
public:
|
|
explicit BreakStatement(BreakableStatement* target)
|
|
: target_(target) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
BreakableStatement* target() const { return target_; }
|
|
|
|
private:
|
|
BreakableStatement* target_;
|
|
};
|
|
|
|
|
|
class ReturnStatement: public Statement {
|
|
public:
|
|
explicit ReturnStatement(Expression* expression)
|
|
: expression_(expression) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion.
|
|
virtual ReturnStatement* AsReturnStatement() { return this; }
|
|
|
|
Expression* expression() { return expression_; }
|
|
|
|
private:
|
|
Expression* expression_;
|
|
};
|
|
|
|
|
|
class WithEnterStatement: public Statement {
|
|
public:
|
|
explicit WithEnterStatement(Expression* expression, bool is_catch_block)
|
|
: expression_(expression), is_catch_block_(is_catch_block) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
Expression* expression() const { return expression_; }
|
|
|
|
bool is_catch_block() const { return is_catch_block_; }
|
|
|
|
private:
|
|
Expression* expression_;
|
|
bool is_catch_block_;
|
|
};
|
|
|
|
|
|
class WithExitStatement: public Statement {
|
|
public:
|
|
WithExitStatement() { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
};
|
|
|
|
|
|
class CaseClause: public ZoneObject {
|
|
public:
|
|
CaseClause(Expression* label, ZoneList<Statement*>* statements)
|
|
: label_(label), statements_(statements) { }
|
|
|
|
bool is_default() const { return label_ == NULL; }
|
|
Expression* label() const {
|
|
CHECK(!is_default());
|
|
return label_;
|
|
}
|
|
JumpTarget* body_target() { return &body_target_; }
|
|
ZoneList<Statement*>* statements() const { return statements_; }
|
|
|
|
private:
|
|
Expression* label_;
|
|
JumpTarget body_target_;
|
|
ZoneList<Statement*>* statements_;
|
|
};
|
|
|
|
|
|
class SwitchStatement: public BreakableStatement {
|
|
public:
|
|
explicit SwitchStatement(ZoneStringList* labels)
|
|
: BreakableStatement(labels, TARGET_FOR_ANONYMOUS),
|
|
tag_(NULL), cases_(NULL) { }
|
|
|
|
void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
|
|
tag_ = tag;
|
|
cases_ = cases;
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
Expression* tag() const { return tag_; }
|
|
ZoneList<CaseClause*>* cases() const { return cases_; }
|
|
|
|
private:
|
|
Expression* tag_;
|
|
ZoneList<CaseClause*>* cases_;
|
|
};
|
|
|
|
|
|
// If-statements always have non-null references to their then- and
|
|
// else-parts. When parsing if-statements with no explicit else-part,
|
|
// the parser implicitly creates an empty statement. Use the
|
|
// HasThenStatement() and HasElseStatement() functions to check if a
|
|
// given if-statement has a then- or an else-part containing code.
|
|
class IfStatement: public Statement {
|
|
public:
|
|
IfStatement(Expression* condition,
|
|
Statement* then_statement,
|
|
Statement* else_statement)
|
|
: condition_(condition),
|
|
then_statement_(then_statement),
|
|
else_statement_(else_statement) { }
|
|
|
|
// Construct an if-statement initialized from another if-statement
|
|
// and deep copies of all parts of the original.
|
|
IfStatement(IfStatement* other,
|
|
Expression* condition,
|
|
Statement* then_statement,
|
|
Statement* else_statement);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
|
|
bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
|
|
|
|
Expression* condition() const { return condition_; }
|
|
Statement* then_statement() const { return then_statement_; }
|
|
void set_then_statement(Statement* stmt) { then_statement_ = stmt; }
|
|
Statement* else_statement() const { return else_statement_; }
|
|
void set_else_statement(Statement* stmt) { else_statement_ = stmt; }
|
|
|
|
private:
|
|
Expression* condition_;
|
|
Statement* then_statement_;
|
|
Statement* else_statement_;
|
|
};
|
|
|
|
|
|
// NOTE: TargetCollectors are represented as nodes to fit in the target
|
|
// stack in the compiler; this should probably be reworked.
|
|
class TargetCollector: public AstNode {
|
|
public:
|
|
explicit TargetCollector(ZoneList<BreakTarget*>* targets)
|
|
: targets_(targets) {
|
|
}
|
|
|
|
// Adds a jump target to the collector. The collector stores a pointer not
|
|
// a copy of the target to make binding work, so make sure not to pass in
|
|
// references to something on the stack.
|
|
void AddTarget(BreakTarget* target);
|
|
|
|
// Virtual behaviour. TargetCollectors are never part of the AST.
|
|
virtual void Accept(AstVisitor* v) { UNREACHABLE(); }
|
|
virtual TargetCollector* AsTargetCollector() { return this; }
|
|
|
|
ZoneList<BreakTarget*>* targets() { return targets_; }
|
|
|
|
private:
|
|
ZoneList<BreakTarget*>* targets_;
|
|
};
|
|
|
|
|
|
class TryStatement: public Statement {
|
|
public:
|
|
explicit TryStatement(Block* try_block)
|
|
: try_block_(try_block), escaping_targets_(NULL) { }
|
|
|
|
void set_escaping_targets(ZoneList<BreakTarget*>* targets) {
|
|
escaping_targets_ = targets;
|
|
}
|
|
|
|
Block* try_block() const { return try_block_; }
|
|
ZoneList<BreakTarget*>* escaping_targets() const { return escaping_targets_; }
|
|
|
|
private:
|
|
Block* try_block_;
|
|
ZoneList<BreakTarget*>* escaping_targets_;
|
|
};
|
|
|
|
|
|
class TryCatchStatement: public TryStatement {
|
|
public:
|
|
TryCatchStatement(Block* try_block,
|
|
VariableProxy* catch_var,
|
|
Block* catch_block)
|
|
: TryStatement(try_block),
|
|
catch_var_(catch_var),
|
|
catch_block_(catch_block) {
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
VariableProxy* catch_var() const { return catch_var_; }
|
|
Block* catch_block() const { return catch_block_; }
|
|
|
|
private:
|
|
VariableProxy* catch_var_;
|
|
Block* catch_block_;
|
|
};
|
|
|
|
|
|
class TryFinallyStatement: public TryStatement {
|
|
public:
|
|
TryFinallyStatement(Block* try_block, Block* finally_block)
|
|
: TryStatement(try_block),
|
|
finally_block_(finally_block) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
Block* finally_block() const { return finally_block_; }
|
|
|
|
private:
|
|
Block* finally_block_;
|
|
};
|
|
|
|
|
|
class DebuggerStatement: public Statement {
|
|
public:
|
|
virtual void Accept(AstVisitor* v);
|
|
};
|
|
|
|
|
|
class EmptyStatement: public Statement {
|
|
public:
|
|
EmptyStatement() {}
|
|
|
|
explicit EmptyStatement(EmptyStatement* other);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion.
|
|
virtual EmptyStatement* AsEmptyStatement() { return this; }
|
|
};
|
|
|
|
|
|
class Literal: public Expression {
|
|
public:
|
|
explicit Literal(Handle<Object> handle) : handle_(handle) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion.
|
|
virtual Literal* AsLiteral() { return this; }
|
|
|
|
// Check if this literal is identical to the other literal.
|
|
bool IsIdenticalTo(const Literal* other) const {
|
|
return handle_.is_identical_to(other->handle_);
|
|
}
|
|
|
|
virtual bool IsPropertyName() {
|
|
if (handle_->IsSymbol()) {
|
|
uint32_t ignored;
|
|
return !String::cast(*handle_)->AsArrayIndex(&ignored);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual bool IsLeaf() { return true; }
|
|
virtual bool IsTrivial() { return true; }
|
|
virtual bool IsPrimitive();
|
|
|
|
// Identity testers.
|
|
bool IsNull() const { return handle_.is_identical_to(Factory::null_value()); }
|
|
bool IsTrue() const { return handle_.is_identical_to(Factory::true_value()); }
|
|
bool IsFalse() const {
|
|
return handle_.is_identical_to(Factory::false_value());
|
|
}
|
|
|
|
Handle<Object> handle() const { return handle_; }
|
|
|
|
private:
|
|
Handle<Object> handle_;
|
|
};
|
|
|
|
|
|
// Base class for literals that needs space in the corresponding JSFunction.
|
|
class MaterializedLiteral: public Expression {
|
|
public:
|
|
explicit MaterializedLiteral(int literal_index, bool is_simple, int depth)
|
|
: literal_index_(literal_index), is_simple_(is_simple), depth_(depth) {}
|
|
|
|
virtual MaterializedLiteral* AsMaterializedLiteral() { return this; }
|
|
|
|
int literal_index() { return literal_index_; }
|
|
|
|
// A materialized literal is simple if the values consist of only
|
|
// constants and simple object and array literals.
|
|
bool is_simple() const { return is_simple_; }
|
|
|
|
int depth() const { return depth_; }
|
|
|
|
private:
|
|
int literal_index_;
|
|
bool is_simple_;
|
|
int depth_;
|
|
};
|
|
|
|
|
|
// An object literal has a boilerplate object that is used
|
|
// for minimizing the work when constructing it at runtime.
|
|
class ObjectLiteral: public MaterializedLiteral {
|
|
public:
|
|
// Property is used for passing information
|
|
// about an object literal's properties from the parser
|
|
// to the code generator.
|
|
class Property: public ZoneObject {
|
|
public:
|
|
|
|
enum Kind {
|
|
CONSTANT, // Property with constant value (compile time).
|
|
COMPUTED, // Property with computed value (execution time).
|
|
MATERIALIZED_LITERAL, // Property value is a materialized literal.
|
|
GETTER, SETTER, // Property is an accessor function.
|
|
PROTOTYPE // Property is __proto__.
|
|
};
|
|
|
|
Property(Literal* key, Expression* value);
|
|
Property(bool is_getter, FunctionLiteral* value);
|
|
|
|
Literal* key() { return key_; }
|
|
Expression* value() { return value_; }
|
|
Kind kind() { return kind_; }
|
|
|
|
bool IsCompileTimeValue();
|
|
|
|
private:
|
|
Literal* key_;
|
|
Expression* value_;
|
|
Kind kind_;
|
|
};
|
|
|
|
ObjectLiteral(Handle<FixedArray> constant_properties,
|
|
ZoneList<Property*>* properties,
|
|
int literal_index,
|
|
bool is_simple,
|
|
bool fast_elements,
|
|
int depth)
|
|
: MaterializedLiteral(literal_index, is_simple, depth),
|
|
constant_properties_(constant_properties),
|
|
properties_(properties),
|
|
fast_elements_(fast_elements) {}
|
|
|
|
virtual ObjectLiteral* AsObjectLiteral() { return this; }
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsLeaf() { return properties()->is_empty(); }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Handle<FixedArray> constant_properties() const {
|
|
return constant_properties_;
|
|
}
|
|
ZoneList<Property*>* properties() const { return properties_; }
|
|
|
|
bool fast_elements() const { return fast_elements_; }
|
|
|
|
private:
|
|
Handle<FixedArray> constant_properties_;
|
|
ZoneList<Property*>* properties_;
|
|
bool fast_elements_;
|
|
};
|
|
|
|
|
|
// Node for capturing a regexp literal.
|
|
class RegExpLiteral: public MaterializedLiteral {
|
|
public:
|
|
RegExpLiteral(Handle<String> pattern,
|
|
Handle<String> flags,
|
|
int literal_index)
|
|
: MaterializedLiteral(literal_index, false, 1),
|
|
pattern_(pattern),
|
|
flags_(flags) {}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsLeaf() { return true; }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Handle<String> pattern() const { return pattern_; }
|
|
Handle<String> flags() const { return flags_; }
|
|
|
|
private:
|
|
Handle<String> pattern_;
|
|
Handle<String> flags_;
|
|
};
|
|
|
|
// An array literal has a literals object that is used
|
|
// for minimizing the work when constructing it at runtime.
|
|
class ArrayLiteral: public MaterializedLiteral {
|
|
public:
|
|
ArrayLiteral(Handle<FixedArray> constant_elements,
|
|
ZoneList<Expression*>* values,
|
|
int literal_index,
|
|
bool is_simple,
|
|
int depth)
|
|
: MaterializedLiteral(literal_index, is_simple, depth),
|
|
constant_elements_(constant_elements),
|
|
values_(values) {}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
virtual ArrayLiteral* AsArrayLiteral() { return this; }
|
|
|
|
virtual bool IsLeaf() { return values()->is_empty(); }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Handle<FixedArray> constant_elements() const { return constant_elements_; }
|
|
ZoneList<Expression*>* values() const { return values_; }
|
|
|
|
private:
|
|
Handle<FixedArray> constant_elements_;
|
|
ZoneList<Expression*>* values_;
|
|
};
|
|
|
|
|
|
// Node for constructing a context extension object for a catch block.
|
|
// The catch context extension object has one property, the catch
|
|
// variable, which should be DontDelete.
|
|
class CatchExtensionObject: public Expression {
|
|
public:
|
|
CatchExtensionObject(Literal* key, VariableProxy* value)
|
|
: key_(key), value_(value) {
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Literal* key() const { return key_; }
|
|
VariableProxy* value() const { return value_; }
|
|
|
|
private:
|
|
Literal* key_;
|
|
VariableProxy* value_;
|
|
};
|
|
|
|
|
|
class VariableProxy: public Expression {
|
|
public:
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion
|
|
virtual Property* AsProperty() {
|
|
return var_ == NULL ? NULL : var_->AsProperty();
|
|
}
|
|
virtual VariableProxy* AsVariableProxy() { return this; }
|
|
|
|
Variable* AsVariable() {
|
|
return this == NULL || var_ == NULL ? NULL : var_->AsVariable();
|
|
}
|
|
|
|
virtual bool IsValidLeftHandSide() {
|
|
return var_ == NULL ? true : var_->IsValidLeftHandSide();
|
|
}
|
|
|
|
virtual bool IsLeaf() {
|
|
ASSERT(var_ != NULL); // Variable must be resolved.
|
|
return var()->is_global() || var()->rewrite()->IsLeaf();
|
|
}
|
|
|
|
// Reading from a mutable variable is a side effect, but 'this' is
|
|
// immutable.
|
|
virtual bool IsTrivial() { return is_trivial_; }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
void SetIsPrimitive(bool value) { is_primitive_ = value; }
|
|
|
|
bool IsVariable(Handle<String> n) {
|
|
return !is_this() && name().is_identical_to(n);
|
|
}
|
|
|
|
bool IsArguments() {
|
|
Variable* variable = AsVariable();
|
|
return (variable == NULL) ? false : variable->is_arguments();
|
|
}
|
|
|
|
Handle<String> name() const { return name_; }
|
|
Variable* var() const { return var_; }
|
|
bool is_this() const { return is_this_; }
|
|
bool inside_with() const { return inside_with_; }
|
|
bool is_trivial() { return is_trivial_; }
|
|
void set_is_trivial(bool b) { is_trivial_ = b; }
|
|
|
|
BitVector* reaching_definitions() { return reaching_definitions_; }
|
|
void set_reaching_definitions(BitVector* rd) { reaching_definitions_ = rd; }
|
|
|
|
// Bind this proxy to the variable var.
|
|
void BindTo(Variable* var);
|
|
|
|
protected:
|
|
Handle<String> name_;
|
|
Variable* var_; // resolved variable, or NULL
|
|
bool is_this_;
|
|
bool inside_with_;
|
|
bool is_trivial_;
|
|
BitVector* reaching_definitions_;
|
|
bool is_primitive_;
|
|
|
|
VariableProxy(Handle<String> name, bool is_this, bool inside_with);
|
|
explicit VariableProxy(bool is_this);
|
|
|
|
friend class Scope;
|
|
};
|
|
|
|
|
|
class VariableProxySentinel: public VariableProxy {
|
|
public:
|
|
virtual bool IsValidLeftHandSide() { return !is_this(); }
|
|
static VariableProxySentinel* this_proxy() { return &this_proxy_; }
|
|
static VariableProxySentinel* identifier_proxy() {
|
|
return &identifier_proxy_;
|
|
}
|
|
|
|
virtual bool IsPrimitive() {
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
explicit VariableProxySentinel(bool is_this) : VariableProxy(is_this) { }
|
|
static VariableProxySentinel this_proxy_;
|
|
static VariableProxySentinel identifier_proxy_;
|
|
};
|
|
|
|
|
|
class Slot: public Expression {
|
|
public:
|
|
enum Type {
|
|
// A slot in the parameter section on the stack. index() is
|
|
// the parameter index, counting left-to-right, starting at 0.
|
|
PARAMETER,
|
|
|
|
// A slot in the local section on the stack. index() is
|
|
// the variable index in the stack frame, starting at 0.
|
|
LOCAL,
|
|
|
|
// An indexed slot in a heap context. index() is the
|
|
// variable index in the context object on the heap,
|
|
// starting at 0. var()->scope() is the corresponding
|
|
// scope.
|
|
CONTEXT,
|
|
|
|
// A named slot in a heap context. var()->name() is the
|
|
// variable name in the context object on the heap,
|
|
// with lookup starting at the current context. index()
|
|
// is invalid.
|
|
LOOKUP
|
|
};
|
|
|
|
Slot(Variable* var, Type type, int index)
|
|
: var_(var), type_(type), index_(index) {
|
|
ASSERT(var != NULL);
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion
|
|
virtual Slot* AsSlot() { return this; }
|
|
|
|
virtual bool IsLeaf() { return true; }
|
|
|
|
virtual bool IsPrimitive() {
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
bool IsStackAllocated() { return type_ == PARAMETER || type_ == LOCAL; }
|
|
|
|
// Accessors
|
|
Variable* var() const { return var_; }
|
|
Type type() const { return type_; }
|
|
int index() const { return index_; }
|
|
bool is_arguments() const { return var_->is_arguments(); }
|
|
|
|
private:
|
|
Variable* var_;
|
|
Type type_;
|
|
int index_;
|
|
};
|
|
|
|
|
|
class Property: public Expression {
|
|
public:
|
|
// Synthetic properties are property lookups introduced by the system,
|
|
// to objects that aren't visible to the user. Function calls to synthetic
|
|
// properties should use the global object as receiver, not the base object
|
|
// of the resolved Reference.
|
|
enum Type { NORMAL, SYNTHETIC };
|
|
Property(Expression* obj, Expression* key, int pos, Type type = NORMAL)
|
|
: obj_(obj), key_(key), pos_(pos), type_(type) { }
|
|
|
|
Property(Property* other, Expression* obj, Expression* key);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion
|
|
virtual Property* AsProperty() { return this; }
|
|
|
|
virtual bool IsValidLeftHandSide() { return true; }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Expression* obj() const { return obj_; }
|
|
Expression* key() const { return key_; }
|
|
int position() const { return pos_; }
|
|
bool is_synthetic() const { return type_ == SYNTHETIC; }
|
|
|
|
// Returns a property singleton property access on 'this'. Used
|
|
// during preparsing.
|
|
static Property* this_property() { return &this_property_; }
|
|
|
|
private:
|
|
Expression* obj_;
|
|
Expression* key_;
|
|
int pos_;
|
|
Type type_;
|
|
|
|
// Dummy property used during preparsing.
|
|
static Property this_property_;
|
|
};
|
|
|
|
|
|
class Call: public Expression {
|
|
public:
|
|
Call(Expression* expression, ZoneList<Expression*>* arguments, int pos)
|
|
: expression_(expression), arguments_(arguments), pos_(pos) { }
|
|
|
|
Call(Call* other, Expression* expression, ZoneList<Expression*>* arguments);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing and conversion.
|
|
virtual Call* AsCall() { return this; }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Expression* expression() const { return expression_; }
|
|
ZoneList<Expression*>* arguments() const { return arguments_; }
|
|
int position() { return pos_; }
|
|
|
|
static Call* sentinel() { return &sentinel_; }
|
|
|
|
private:
|
|
Expression* expression_;
|
|
ZoneList<Expression*>* arguments_;
|
|
int pos_;
|
|
|
|
static Call sentinel_;
|
|
};
|
|
|
|
|
|
class CallNew: public Expression {
|
|
public:
|
|
CallNew(Expression* expression, ZoneList<Expression*>* arguments, int pos)
|
|
: expression_(expression), arguments_(arguments), pos_(pos) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Expression* expression() const { return expression_; }
|
|
ZoneList<Expression*>* arguments() const { return arguments_; }
|
|
int position() { return pos_; }
|
|
|
|
private:
|
|
Expression* expression_;
|
|
ZoneList<Expression*>* arguments_;
|
|
int pos_;
|
|
};
|
|
|
|
|
|
// The CallRuntime class does not represent any official JavaScript
|
|
// language construct. Instead it is used to call a C or JS function
|
|
// with a set of arguments. This is used from the builtins that are
|
|
// implemented in JavaScript (see "v8natives.js").
|
|
class CallRuntime: public Expression {
|
|
public:
|
|
CallRuntime(Handle<String> name,
|
|
Runtime::Function* function,
|
|
ZoneList<Expression*>* arguments)
|
|
: name_(name), function_(function), arguments_(arguments) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Handle<String> name() const { return name_; }
|
|
Runtime::Function* function() const { return function_; }
|
|
ZoneList<Expression*>* arguments() const { return arguments_; }
|
|
bool is_jsruntime() const { return function_ == NULL; }
|
|
|
|
private:
|
|
Handle<String> name_;
|
|
Runtime::Function* function_;
|
|
ZoneList<Expression*>* arguments_;
|
|
};
|
|
|
|
|
|
class UnaryOperation: public Expression {
|
|
public:
|
|
UnaryOperation(Token::Value op, Expression* expression)
|
|
: op_(op), expression_(expression) {
|
|
ASSERT(Token::IsUnaryOp(op));
|
|
}
|
|
|
|
UnaryOperation(UnaryOperation* other, Expression* expression);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion
|
|
virtual UnaryOperation* AsUnaryOperation() { return this; }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Token::Value op() const { return op_; }
|
|
Expression* expression() const { return expression_; }
|
|
|
|
private:
|
|
Token::Value op_;
|
|
Expression* expression_;
|
|
};
|
|
|
|
|
|
class BinaryOperation: public Expression {
|
|
public:
|
|
BinaryOperation(Token::Value op, Expression* left, Expression* right)
|
|
: op_(op), left_(left), right_(right) {
|
|
ASSERT(Token::IsBinaryOp(op));
|
|
}
|
|
|
|
BinaryOperation(BinaryOperation* other, Expression* left, Expression* right);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion
|
|
virtual BinaryOperation* AsBinaryOperation() { return this; }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
// True iff the result can be safely overwritten (to avoid allocation).
|
|
// False for operations that can return one of their operands.
|
|
bool ResultOverwriteAllowed() {
|
|
switch (op_) {
|
|
case Token::COMMA:
|
|
case Token::OR:
|
|
case Token::AND:
|
|
return false;
|
|
case Token::BIT_OR:
|
|
case Token::BIT_XOR:
|
|
case Token::BIT_AND:
|
|
case Token::SHL:
|
|
case Token::SAR:
|
|
case Token::SHR:
|
|
case Token::ADD:
|
|
case Token::SUB:
|
|
case Token::MUL:
|
|
case Token::DIV:
|
|
case Token::MOD:
|
|
return true;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Token::Value op() const { return op_; }
|
|
Expression* left() const { return left_; }
|
|
Expression* right() const { return right_; }
|
|
|
|
private:
|
|
Token::Value op_;
|
|
Expression* left_;
|
|
Expression* right_;
|
|
};
|
|
|
|
|
|
class CountOperation: public Expression {
|
|
public:
|
|
CountOperation(bool is_prefix, Token::Value op, Expression* expression)
|
|
: is_prefix_(is_prefix), op_(op), expression_(expression) {
|
|
ASSERT(Token::IsCountOp(op));
|
|
}
|
|
|
|
CountOperation(CountOperation* other, Expression* expression);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual CountOperation* AsCountOperation() { return this; }
|
|
|
|
virtual Variable* AssignedVar() {
|
|
return expression()->AsVariableProxy()->AsVariable();
|
|
}
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
bool is_prefix() const { return is_prefix_; }
|
|
bool is_postfix() const { return !is_prefix_; }
|
|
Token::Value op() const { return op_; }
|
|
Token::Value binary_op() {
|
|
return op_ == Token::INC ? Token::ADD : Token::SUB;
|
|
}
|
|
Expression* expression() const { return expression_; }
|
|
|
|
virtual void MarkAsStatement() { is_prefix_ = true; }
|
|
|
|
private:
|
|
bool is_prefix_;
|
|
Token::Value op_;
|
|
Expression* expression_;
|
|
};
|
|
|
|
|
|
class CompareOperation: public Expression {
|
|
public:
|
|
CompareOperation(Token::Value op, Expression* left, Expression* right)
|
|
: op_(op), left_(left), right_(right) {
|
|
ASSERT(Token::IsCompareOp(op));
|
|
}
|
|
|
|
CompareOperation(CompareOperation* other,
|
|
Expression* left,
|
|
Expression* right);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Token::Value op() const { return op_; }
|
|
Expression* left() const { return left_; }
|
|
Expression* right() const { return right_; }
|
|
|
|
// Type testing & conversion
|
|
virtual CompareOperation* AsCompareOperation() { return this; }
|
|
|
|
private:
|
|
Token::Value op_;
|
|
Expression* left_;
|
|
Expression* right_;
|
|
};
|
|
|
|
|
|
class Conditional: public Expression {
|
|
public:
|
|
Conditional(Expression* condition,
|
|
Expression* then_expression,
|
|
Expression* else_expression)
|
|
: condition_(condition),
|
|
then_expression_(then_expression),
|
|
else_expression_(else_expression) { }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Expression* condition() const { return condition_; }
|
|
Expression* then_expression() const { return then_expression_; }
|
|
Expression* else_expression() const { return else_expression_; }
|
|
|
|
private:
|
|
Expression* condition_;
|
|
Expression* then_expression_;
|
|
Expression* else_expression_;
|
|
};
|
|
|
|
|
|
class Assignment: public Expression {
|
|
public:
|
|
Assignment(Token::Value op, Expression* target, Expression* value, int pos)
|
|
: op_(op), target_(target), value_(value), pos_(pos),
|
|
block_start_(false), block_end_(false) {
|
|
ASSERT(Token::IsAssignmentOp(op));
|
|
}
|
|
|
|
Assignment(Assignment* other, Expression* target, Expression* value);
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
virtual Assignment* AsAssignment() { return this; }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; }
|
|
|
|
virtual Variable* AssignedVar() {
|
|
return target()->AsVariableProxy()->AsVariable();
|
|
}
|
|
|
|
Token::Value binary_op() const;
|
|
|
|
Token::Value op() const { return op_; }
|
|
Expression* target() const { return target_; }
|
|
Expression* value() const { return value_; }
|
|
int position() { return pos_; }
|
|
// This check relies on the definition order of token in token.h.
|
|
bool is_compound() const { return op() > Token::ASSIGN; }
|
|
|
|
// An initialization block is a series of statments of the form
|
|
// x.y.z.a = ...; x.y.z.b = ...; etc. The parser marks the beginning and
|
|
// ending of these blocks to allow for optimizations of initialization
|
|
// blocks.
|
|
bool starts_initialization_block() { return block_start_; }
|
|
bool ends_initialization_block() { return block_end_; }
|
|
void mark_block_start() { block_start_ = true; }
|
|
void mark_block_end() { block_end_ = true; }
|
|
|
|
private:
|
|
Token::Value op_;
|
|
Expression* target_;
|
|
Expression* value_;
|
|
int pos_;
|
|
bool block_start_;
|
|
bool block_end_;
|
|
};
|
|
|
|
|
|
class Throw: public Expression {
|
|
public:
|
|
Throw(Expression* exception, int pos)
|
|
: exception_(exception), pos_(pos) {}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Expression* exception() const { return exception_; }
|
|
int position() const { return pos_; }
|
|
|
|
private:
|
|
Expression* exception_;
|
|
int pos_;
|
|
};
|
|
|
|
|
|
class FunctionLiteral: public Expression {
|
|
public:
|
|
FunctionLiteral(Handle<String> name,
|
|
Scope* scope,
|
|
ZoneList<Statement*>* body,
|
|
int materialized_literal_count,
|
|
int expected_property_count,
|
|
bool has_only_simple_this_property_assignments,
|
|
Handle<FixedArray> this_property_assignments,
|
|
int num_parameters,
|
|
int start_position,
|
|
int end_position,
|
|
bool is_expression)
|
|
: name_(name),
|
|
scope_(scope),
|
|
body_(body),
|
|
materialized_literal_count_(materialized_literal_count),
|
|
expected_property_count_(expected_property_count),
|
|
has_only_simple_this_property_assignments_(
|
|
has_only_simple_this_property_assignments),
|
|
this_property_assignments_(this_property_assignments),
|
|
num_parameters_(num_parameters),
|
|
start_position_(start_position),
|
|
end_position_(end_position),
|
|
is_expression_(is_expression),
|
|
function_token_position_(RelocInfo::kNoPosition),
|
|
inferred_name_(Heap::empty_string()),
|
|
try_full_codegen_(false) {
|
|
#ifdef DEBUG
|
|
already_compiled_ = false;
|
|
#endif
|
|
}
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
// Type testing & conversion
|
|
virtual FunctionLiteral* AsFunctionLiteral() { return this; }
|
|
|
|
virtual bool IsLeaf() { return true; }
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
Handle<String> name() const { return name_; }
|
|
Scope* scope() const { return scope_; }
|
|
ZoneList<Statement*>* body() const { return body_; }
|
|
void set_function_token_position(int pos) { function_token_position_ = pos; }
|
|
int function_token_position() const { return function_token_position_; }
|
|
int start_position() const { return start_position_; }
|
|
int end_position() const { return end_position_; }
|
|
bool is_expression() const { return is_expression_; }
|
|
|
|
int materialized_literal_count() { return materialized_literal_count_; }
|
|
int expected_property_count() { return expected_property_count_; }
|
|
bool has_only_simple_this_property_assignments() {
|
|
return has_only_simple_this_property_assignments_;
|
|
}
|
|
Handle<FixedArray> this_property_assignments() {
|
|
return this_property_assignments_;
|
|
}
|
|
int num_parameters() { return num_parameters_; }
|
|
|
|
bool AllowsLazyCompilation();
|
|
|
|
Handle<String> inferred_name() const { return inferred_name_; }
|
|
void set_inferred_name(Handle<String> inferred_name) {
|
|
inferred_name_ = inferred_name;
|
|
}
|
|
|
|
bool try_full_codegen() { return try_full_codegen_; }
|
|
void set_try_full_codegen(bool flag) { try_full_codegen_ = flag; }
|
|
|
|
#ifdef DEBUG
|
|
void mark_as_compiled() {
|
|
ASSERT(!already_compiled_);
|
|
already_compiled_ = true;
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
Handle<String> name_;
|
|
Scope* scope_;
|
|
ZoneList<Statement*>* body_;
|
|
int materialized_literal_count_;
|
|
int expected_property_count_;
|
|
bool has_only_simple_this_property_assignments_;
|
|
Handle<FixedArray> this_property_assignments_;
|
|
int num_parameters_;
|
|
int start_position_;
|
|
int end_position_;
|
|
bool is_expression_;
|
|
int function_token_position_;
|
|
Handle<String> inferred_name_;
|
|
bool try_full_codegen_;
|
|
#ifdef DEBUG
|
|
bool already_compiled_;
|
|
#endif
|
|
};
|
|
|
|
|
|
class SharedFunctionInfoLiteral: public Expression {
|
|
public:
|
|
explicit SharedFunctionInfoLiteral(
|
|
Handle<SharedFunctionInfo> shared_function_info)
|
|
: shared_function_info_(shared_function_info) { }
|
|
|
|
Handle<SharedFunctionInfo> shared_function_info() const {
|
|
return shared_function_info_;
|
|
}
|
|
|
|
virtual bool IsLeaf() { return true; }
|
|
|
|
virtual void Accept(AstVisitor* v);
|
|
|
|
virtual bool IsPrimitive();
|
|
|
|
private:
|
|
Handle<SharedFunctionInfo> shared_function_info_;
|
|
};
|
|
|
|
|
|
class ThisFunction: public Expression {
|
|
public:
|
|
virtual void Accept(AstVisitor* v);
|
|
virtual bool IsLeaf() { return true; }
|
|
virtual bool IsPrimitive();
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Regular expressions
|
|
|
|
|
|
class RegExpVisitor BASE_EMBEDDED {
|
|
public:
|
|
virtual ~RegExpVisitor() { }
|
|
#define MAKE_CASE(Name) \
|
|
virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
|
|
#undef MAKE_CASE
|
|
};
|
|
|
|
|
|
class RegExpTree: public ZoneObject {
|
|
public:
|
|
static const int kInfinity = kMaxInt;
|
|
virtual ~RegExpTree() { }
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success) = 0;
|
|
virtual bool IsTextElement() { return false; }
|
|
virtual bool IsAnchored() { return false; }
|
|
virtual int min_match() = 0;
|
|
virtual int max_match() = 0;
|
|
// Returns the interval of registers used for captures within this
|
|
// expression.
|
|
virtual Interval CaptureRegisters() { return Interval::Empty(); }
|
|
virtual void AppendToText(RegExpText* text);
|
|
SmartPointer<const char> ToString();
|
|
#define MAKE_ASTYPE(Name) \
|
|
virtual RegExp##Name* As##Name(); \
|
|
virtual bool Is##Name();
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
|
|
#undef MAKE_ASTYPE
|
|
};
|
|
|
|
|
|
class RegExpDisjunction: public RegExpTree {
|
|
public:
|
|
explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives);
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpDisjunction* AsDisjunction();
|
|
virtual Interval CaptureRegisters();
|
|
virtual bool IsDisjunction();
|
|
virtual bool IsAnchored();
|
|
virtual int min_match() { return min_match_; }
|
|
virtual int max_match() { return max_match_; }
|
|
ZoneList<RegExpTree*>* alternatives() { return alternatives_; }
|
|
private:
|
|
ZoneList<RegExpTree*>* alternatives_;
|
|
int min_match_;
|
|
int max_match_;
|
|
};
|
|
|
|
|
|
class RegExpAlternative: public RegExpTree {
|
|
public:
|
|
explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes);
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpAlternative* AsAlternative();
|
|
virtual Interval CaptureRegisters();
|
|
virtual bool IsAlternative();
|
|
virtual bool IsAnchored();
|
|
virtual int min_match() { return min_match_; }
|
|
virtual int max_match() { return max_match_; }
|
|
ZoneList<RegExpTree*>* nodes() { return nodes_; }
|
|
private:
|
|
ZoneList<RegExpTree*>* nodes_;
|
|
int min_match_;
|
|
int max_match_;
|
|
};
|
|
|
|
|
|
class RegExpAssertion: public RegExpTree {
|
|
public:
|
|
enum Type {
|
|
START_OF_LINE,
|
|
START_OF_INPUT,
|
|
END_OF_LINE,
|
|
END_OF_INPUT,
|
|
BOUNDARY,
|
|
NON_BOUNDARY
|
|
};
|
|
explicit RegExpAssertion(Type type) : type_(type) { }
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpAssertion* AsAssertion();
|
|
virtual bool IsAssertion();
|
|
virtual bool IsAnchored();
|
|
virtual int min_match() { return 0; }
|
|
virtual int max_match() { return 0; }
|
|
Type type() { return type_; }
|
|
private:
|
|
Type type_;
|
|
};
|
|
|
|
|
|
class CharacterSet BASE_EMBEDDED {
|
|
public:
|
|
explicit CharacterSet(uc16 standard_set_type)
|
|
: ranges_(NULL),
|
|
standard_set_type_(standard_set_type) {}
|
|
explicit CharacterSet(ZoneList<CharacterRange>* ranges)
|
|
: ranges_(ranges),
|
|
standard_set_type_(0) {}
|
|
ZoneList<CharacterRange>* ranges();
|
|
uc16 standard_set_type() { return standard_set_type_; }
|
|
void set_standard_set_type(uc16 special_set_type) {
|
|
standard_set_type_ = special_set_type;
|
|
}
|
|
bool is_standard() { return standard_set_type_ != 0; }
|
|
void Canonicalize();
|
|
private:
|
|
ZoneList<CharacterRange>* ranges_;
|
|
// If non-zero, the value represents a standard set (e.g., all whitespace
|
|
// characters) without having to expand the ranges.
|
|
uc16 standard_set_type_;
|
|
};
|
|
|
|
|
|
class RegExpCharacterClass: public RegExpTree {
|
|
public:
|
|
RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated)
|
|
: set_(ranges),
|
|
is_negated_(is_negated) { }
|
|
explicit RegExpCharacterClass(uc16 type)
|
|
: set_(type),
|
|
is_negated_(false) { }
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpCharacterClass* AsCharacterClass();
|
|
virtual bool IsCharacterClass();
|
|
virtual bool IsTextElement() { return true; }
|
|
virtual int min_match() { return 1; }
|
|
virtual int max_match() { return 1; }
|
|
virtual void AppendToText(RegExpText* text);
|
|
CharacterSet character_set() { return set_; }
|
|
// TODO(lrn): Remove need for complex version if is_standard that
|
|
// recognizes a mangled standard set and just do { return set_.is_special(); }
|
|
bool is_standard();
|
|
// Returns a value representing the standard character set if is_standard()
|
|
// returns true.
|
|
// Currently used values are:
|
|
// s : unicode whitespace
|
|
// S : unicode non-whitespace
|
|
// w : ASCII word character (digit, letter, underscore)
|
|
// W : non-ASCII word character
|
|
// d : ASCII digit
|
|
// D : non-ASCII digit
|
|
// . : non-unicode non-newline
|
|
// * : All characters
|
|
uc16 standard_type() { return set_.standard_set_type(); }
|
|
ZoneList<CharacterRange>* ranges() { return set_.ranges(); }
|
|
bool is_negated() { return is_negated_; }
|
|
private:
|
|
CharacterSet set_;
|
|
bool is_negated_;
|
|
};
|
|
|
|
|
|
class RegExpAtom: public RegExpTree {
|
|
public:
|
|
explicit RegExpAtom(Vector<const uc16> data) : data_(data) { }
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpAtom* AsAtom();
|
|
virtual bool IsAtom();
|
|
virtual bool IsTextElement() { return true; }
|
|
virtual int min_match() { return data_.length(); }
|
|
virtual int max_match() { return data_.length(); }
|
|
virtual void AppendToText(RegExpText* text);
|
|
Vector<const uc16> data() { return data_; }
|
|
int length() { return data_.length(); }
|
|
private:
|
|
Vector<const uc16> data_;
|
|
};
|
|
|
|
|
|
class RegExpText: public RegExpTree {
|
|
public:
|
|
RegExpText() : elements_(2), length_(0) {}
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpText* AsText();
|
|
virtual bool IsText();
|
|
virtual bool IsTextElement() { return true; }
|
|
virtual int min_match() { return length_; }
|
|
virtual int max_match() { return length_; }
|
|
virtual void AppendToText(RegExpText* text);
|
|
void AddElement(TextElement elm) {
|
|
elements_.Add(elm);
|
|
length_ += elm.length();
|
|
};
|
|
ZoneList<TextElement>* elements() { return &elements_; }
|
|
private:
|
|
ZoneList<TextElement> elements_;
|
|
int length_;
|
|
};
|
|
|
|
|
|
class RegExpQuantifier: public RegExpTree {
|
|
public:
|
|
enum Type { GREEDY, NON_GREEDY, POSSESSIVE };
|
|
RegExpQuantifier(int min, int max, Type type, RegExpTree* body)
|
|
: body_(body),
|
|
min_(min),
|
|
max_(max),
|
|
min_match_(min * body->min_match()),
|
|
type_(type) {
|
|
if (max > 0 && body->max_match() > kInfinity / max) {
|
|
max_match_ = kInfinity;
|
|
} else {
|
|
max_match_ = max * body->max_match();
|
|
}
|
|
}
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
static RegExpNode* ToNode(int min,
|
|
int max,
|
|
bool is_greedy,
|
|
RegExpTree* body,
|
|
RegExpCompiler* compiler,
|
|
RegExpNode* on_success,
|
|
bool not_at_start = false);
|
|
virtual RegExpQuantifier* AsQuantifier();
|
|
virtual Interval CaptureRegisters();
|
|
virtual bool IsQuantifier();
|
|
virtual int min_match() { return min_match_; }
|
|
virtual int max_match() { return max_match_; }
|
|
int min() { return min_; }
|
|
int max() { return max_; }
|
|
bool is_possessive() { return type_ == POSSESSIVE; }
|
|
bool is_non_greedy() { return type_ == NON_GREEDY; }
|
|
bool is_greedy() { return type_ == GREEDY; }
|
|
RegExpTree* body() { return body_; }
|
|
private:
|
|
RegExpTree* body_;
|
|
int min_;
|
|
int max_;
|
|
int min_match_;
|
|
int max_match_;
|
|
Type type_;
|
|
};
|
|
|
|
|
|
class RegExpCapture: public RegExpTree {
|
|
public:
|
|
explicit RegExpCapture(RegExpTree* body, int index)
|
|
: body_(body), index_(index) { }
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
static RegExpNode* ToNode(RegExpTree* body,
|
|
int index,
|
|
RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpCapture* AsCapture();
|
|
virtual bool IsAnchored();
|
|
virtual Interval CaptureRegisters();
|
|
virtual bool IsCapture();
|
|
virtual int min_match() { return body_->min_match(); }
|
|
virtual int max_match() { return body_->max_match(); }
|
|
RegExpTree* body() { return body_; }
|
|
int index() { return index_; }
|
|
static int StartRegister(int index) { return index * 2; }
|
|
static int EndRegister(int index) { return index * 2 + 1; }
|
|
private:
|
|
RegExpTree* body_;
|
|
int index_;
|
|
};
|
|
|
|
|
|
class RegExpLookahead: public RegExpTree {
|
|
public:
|
|
RegExpLookahead(RegExpTree* body,
|
|
bool is_positive,
|
|
int capture_count,
|
|
int capture_from)
|
|
: body_(body),
|
|
is_positive_(is_positive),
|
|
capture_count_(capture_count),
|
|
capture_from_(capture_from) { }
|
|
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpLookahead* AsLookahead();
|
|
virtual Interval CaptureRegisters();
|
|
virtual bool IsLookahead();
|
|
virtual bool IsAnchored();
|
|
virtual int min_match() { return 0; }
|
|
virtual int max_match() { return 0; }
|
|
RegExpTree* body() { return body_; }
|
|
bool is_positive() { return is_positive_; }
|
|
int capture_count() { return capture_count_; }
|
|
int capture_from() { return capture_from_; }
|
|
private:
|
|
RegExpTree* body_;
|
|
bool is_positive_;
|
|
int capture_count_;
|
|
int capture_from_;
|
|
};
|
|
|
|
|
|
class RegExpBackReference: public RegExpTree {
|
|
public:
|
|
explicit RegExpBackReference(RegExpCapture* capture)
|
|
: capture_(capture) { }
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpBackReference* AsBackReference();
|
|
virtual bool IsBackReference();
|
|
virtual int min_match() { return 0; }
|
|
virtual int max_match() { return capture_->max_match(); }
|
|
int index() { return capture_->index(); }
|
|
RegExpCapture* capture() { return capture_; }
|
|
private:
|
|
RegExpCapture* capture_;
|
|
};
|
|
|
|
|
|
class RegExpEmpty: public RegExpTree {
|
|
public:
|
|
RegExpEmpty() { }
|
|
virtual void* Accept(RegExpVisitor* visitor, void* data);
|
|
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
|
|
RegExpNode* on_success);
|
|
virtual RegExpEmpty* AsEmpty();
|
|
virtual bool IsEmpty();
|
|
virtual int min_match() { return 0; }
|
|
virtual int max_match() { return 0; }
|
|
static RegExpEmpty* GetInstance() { return &kInstance; }
|
|
private:
|
|
static RegExpEmpty kInstance;
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Basic visitor
|
|
// - leaf node visitors are abstract.
|
|
|
|
class AstVisitor BASE_EMBEDDED {
|
|
public:
|
|
AstVisitor() : stack_overflow_(false) { }
|
|
virtual ~AstVisitor() { }
|
|
|
|
// Dispatch
|
|
void Visit(AstNode* node) { node->Accept(this); }
|
|
|
|
// Iteration
|
|
virtual void VisitDeclarations(ZoneList<Declaration*>* declarations);
|
|
virtual void VisitStatements(ZoneList<Statement*>* statements);
|
|
virtual void VisitExpressions(ZoneList<Expression*>* expressions);
|
|
|
|
// Stack overflow tracking support.
|
|
bool HasStackOverflow() const { return stack_overflow_; }
|
|
bool CheckStackOverflow() {
|
|
if (stack_overflow_) return true;
|
|
StackLimitCheck check;
|
|
if (!check.HasOverflowed()) return false;
|
|
return (stack_overflow_ = true);
|
|
}
|
|
|
|
// If a stack-overflow exception is encountered when visiting a
|
|
// node, calling SetStackOverflow will make sure that the visitor
|
|
// bails out without visiting more nodes.
|
|
void SetStackOverflow() { stack_overflow_ = true; }
|
|
|
|
|
|
// Individual nodes
|
|
#define DEF_VISIT(type) \
|
|
virtual void Visit##type(type* node) = 0;
|
|
AST_NODE_LIST(DEF_VISIT)
|
|
#undef DEF_VISIT
|
|
|
|
private:
|
|
bool stack_overflow_;
|
|
};
|
|
|
|
|
|
class CopyAstVisitor : public AstVisitor {
|
|
public:
|
|
Expression* DeepCopyExpr(Expression* expr);
|
|
|
|
Statement* DeepCopyStmt(Statement* stmt);
|
|
|
|
private:
|
|
ZoneList<Expression*>* DeepCopyExprList(ZoneList<Expression*>* expressions);
|
|
|
|
ZoneList<Statement*>* DeepCopyStmtList(ZoneList<Statement*>* statements);
|
|
|
|
// AST node visit functions.
|
|
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
|
|
AST_NODE_LIST(DECLARE_VISIT)
|
|
#undef DECLARE_VISIT
|
|
|
|
// Holds the result of copying an expression.
|
|
Expression* expr_;
|
|
// Holds the result of copying a statement.
|
|
Statement* stmt_;
|
|
};
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_AST_H_
|