44483870dc
The code under test is handling of multi-return values in TurboFan and hence actually independent of WebAssembly. The only reason to generate WasmCode is in order to use the WebAseembly linkages. This changes the generated code to have {STUB} kind instead of {WASM_FUNCTION} kind to avoid having stack checks in the generated code which would require a proper WasmInstanceObject to be allocated. R=ahaas@chromium.org BUG=chromium:862508 Change-Id: I4feb7bff1a42bbf59cfc5f249f2e0585ce7011ad Reviewed-on: https://chromium-review.googlesource.com/1136438 Reviewed-by: Andreas Haas <ahaas@chromium.org> Commit-Queue: Michael Starzinger <mstarzinger@chromium.org> Cr-Commit-Position: refs/heads/master@{#54436}
320 lines
11 KiB
C++
320 lines
11 KiB
C++
// Copyright 2018 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
|
|
#include "src/compiler/graph.h"
|
|
#include "src/compiler/instruction-selector.h"
|
|
#include "src/compiler/linkage.h"
|
|
#include "src/compiler/node.h"
|
|
#include "src/compiler/operator.h"
|
|
#include "src/compiler/pipeline.h"
|
|
#include "src/compiler/raw-machine-assembler.h"
|
|
#include "src/compiler/wasm-compiler.h"
|
|
#include "src/machine-type.h"
|
|
#include "src/objects-inl.h"
|
|
#include "src/objects.h"
|
|
#include "src/optimized-compilation-info.h"
|
|
#include "src/simulator.h"
|
|
#include "src/wasm/wasm-engine.h"
|
|
#include "src/wasm/wasm-limits.h"
|
|
#include "src/wasm/wasm-objects-inl.h"
|
|
#include "src/wasm/wasm-objects.h"
|
|
#include "src/wasm/wasm-opcodes.h"
|
|
#include "src/zone/accounting-allocator.h"
|
|
#include "src/zone/zone.h"
|
|
#include "test/fuzzer/fuzzer-support.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace compiler {
|
|
namespace fuzzer {
|
|
|
|
constexpr MachineType kTypes[] = {
|
|
// The first entry is just a placeholder, because '0' is a separator.
|
|
MachineType(),
|
|
#if !V8_TARGET_ARCH_32_BIT
|
|
MachineType::Int64(),
|
|
#endif
|
|
MachineType::Int32(), MachineType::Float32(), MachineType::Float64()};
|
|
|
|
static constexpr int kNumTypes = arraysize(kTypes);
|
|
|
|
class InputProvider {
|
|
public:
|
|
InputProvider(const uint8_t* data, size_t size)
|
|
: current_(data), end_(data + size) {}
|
|
|
|
size_t NumNonZeroBytes(size_t offset, int limit) {
|
|
DCHECK_LE(limit, std::numeric_limits<uint8_t>::max());
|
|
DCHECK_GE(current_ + offset, current_);
|
|
const uint8_t* p;
|
|
for (p = current_ + offset; p < end_; ++p) {
|
|
if (*p % limit == 0) break;
|
|
}
|
|
return p - current_ - offset;
|
|
}
|
|
|
|
int NextInt8(int limit) {
|
|
DCHECK_LE(limit, std::numeric_limits<uint8_t>::max());
|
|
if (current_ == end_) return 0;
|
|
uint8_t result = *current_;
|
|
current_++;
|
|
return static_cast<int>(result) % limit;
|
|
}
|
|
|
|
int NextInt32(int limit) {
|
|
if (current_ + sizeof(uint32_t) > end_) return 0;
|
|
int result =
|
|
ReadLittleEndianValue<int>(reinterpret_cast<Address>(current_));
|
|
current_ += sizeof(uint32_t);
|
|
return result % limit;
|
|
}
|
|
|
|
private:
|
|
const uint8_t* current_;
|
|
const uint8_t* end_;
|
|
};
|
|
|
|
MachineType RandomType(InputProvider* input) {
|
|
return kTypes[input->NextInt8(kNumTypes)];
|
|
}
|
|
|
|
int num_registers(MachineType type) {
|
|
const RegisterConfiguration* config = RegisterConfiguration::Default();
|
|
switch (type.representation()) {
|
|
case MachineRepresentation::kWord32:
|
|
case MachineRepresentation::kWord64:
|
|
return config->num_allocatable_general_registers();
|
|
case MachineRepresentation::kFloat32:
|
|
return config->num_allocatable_float_registers();
|
|
case MachineRepresentation::kFloat64:
|
|
return config->num_allocatable_double_registers();
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
int index(MachineType type) { return static_cast<int>(type.representation()); }
|
|
|
|
Node* Constant(RawMachineAssembler& m, MachineType type, int value) {
|
|
switch (type.representation()) {
|
|
case MachineRepresentation::kWord32:
|
|
return m.Int32Constant(static_cast<int32_t>(value));
|
|
case MachineRepresentation::kWord64:
|
|
return m.Int64Constant(static_cast<int64_t>(value));
|
|
case MachineRepresentation::kFloat32:
|
|
return m.Float32Constant(static_cast<float>(value));
|
|
case MachineRepresentation::kFloat64:
|
|
return m.Float64Constant(static_cast<double>(value));
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
Node* ToInt32(RawMachineAssembler& m, MachineType type, Node* a) {
|
|
switch (type.representation()) {
|
|
case MachineRepresentation::kWord32:
|
|
return a;
|
|
case MachineRepresentation::kWord64:
|
|
return m.TruncateInt64ToInt32(a);
|
|
case MachineRepresentation::kFloat32:
|
|
return m.TruncateFloat32ToInt32(a);
|
|
case MachineRepresentation::kFloat64:
|
|
return m.RoundFloat64ToInt32(a);
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
CallDescriptor* CreateRandomCallDescriptor(Zone* zone, size_t return_count,
|
|
size_t param_count,
|
|
InputProvider* input) {
|
|
wasm::FunctionSig::Builder builder(zone, return_count, param_count);
|
|
for (size_t i = 0; i < param_count; i++) {
|
|
MachineType type = RandomType(input);
|
|
builder.AddParam(wasm::ValueTypes::ValueTypeFor(type));
|
|
}
|
|
// Read the end byte of the parameters.
|
|
input->NextInt8(1);
|
|
|
|
for (size_t i = 0; i < return_count; i++) {
|
|
MachineType type = RandomType(input);
|
|
builder.AddReturn(wasm::ValueTypes::ValueTypeFor(type));
|
|
}
|
|
|
|
return compiler::GetWasmCallDescriptor(zone, builder.Build());
|
|
}
|
|
|
|
std::unique_ptr<wasm::NativeModule> AllocateNativeModule(i::Isolate* isolate,
|
|
size_t code_size) {
|
|
std::shared_ptr<wasm::WasmModule> module(new wasm::WasmModule);
|
|
module->num_declared_functions = 1;
|
|
wasm::ModuleEnv env(
|
|
module.get(), wasm::UseTrapHandler::kNoTrapHandler,
|
|
wasm::RuntimeExceptionSupport::kNoRuntimeExceptionSupport);
|
|
|
|
// We have to add the code object to a NativeModule, because the
|
|
// WasmCallDescriptor assumes that code is on the native heap and not
|
|
// within a code object.
|
|
return isolate->wasm_engine()->code_manager()->NewNativeModule(
|
|
isolate, code_size, false, std::move(module), env);
|
|
}
|
|
|
|
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
|
|
v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get();
|
|
v8::Isolate* isolate = support->GetIsolate();
|
|
i::Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::Scope context_scope(support->GetContext());
|
|
v8::TryCatch try_catch(isolate);
|
|
v8::internal::AccountingAllocator allocator;
|
|
Zone zone(&allocator, ZONE_NAME);
|
|
|
|
InputProvider input(data, size);
|
|
// Create randomized descriptor.
|
|
size_t param_count = input.NumNonZeroBytes(0, kNumTypes);
|
|
if (param_count > Code::kMaxArguments) return 0;
|
|
|
|
size_t return_count = input.NumNonZeroBytes(param_count + 1, kNumTypes);
|
|
if (return_count > wasm::kV8MaxWasmFunctionMultiReturns) return 0;
|
|
|
|
CallDescriptor* desc =
|
|
CreateRandomCallDescriptor(&zone, return_count, param_count, &input);
|
|
|
|
if (FLAG_wasm_fuzzer_gen_test) {
|
|
// Print some debugging output which describes the produced signature.
|
|
printf("[");
|
|
for (size_t j = 0; j < param_count; ++j) {
|
|
// Parameter 0 is the WasmContext.
|
|
printf(" %s", MachineReprToString(
|
|
desc->GetParameterType(j + 1).representation()));
|
|
}
|
|
printf(" ] -> [");
|
|
for (size_t j = 0; j < desc->ReturnCount(); ++j) {
|
|
printf(" %s",
|
|
MachineReprToString(desc->GetReturnType(j).representation()));
|
|
}
|
|
printf(" ]\n\n");
|
|
}
|
|
|
|
// Count parameters of each type.
|
|
constexpr size_t kNumMachineRepresentations =
|
|
static_cast<size_t>(MachineRepresentation::kLastRepresentation) + 1;
|
|
|
|
// Trivial hash table for the number of occurrences of parameter types. The
|
|
// MachineRepresentation of the parameter types is used as hash code.
|
|
int counts[kNumMachineRepresentations] = {0};
|
|
for (size_t i = 0; i < param_count; ++i) {
|
|
// Parameter 0 is the WasmContext.
|
|
++counts[index(desc->GetParameterType(i + 1))];
|
|
}
|
|
|
|
// Generate random inputs.
|
|
std::unique_ptr<int[]> inputs(new int[param_count]);
|
|
std::unique_ptr<int[]> outputs(new int[desc->ReturnCount()]);
|
|
for (size_t i = 0; i < param_count; ++i) {
|
|
inputs[i] = input.NextInt32(10000);
|
|
}
|
|
|
|
RawMachineAssembler callee(
|
|
i_isolate, new (&zone) Graph(&zone), desc,
|
|
MachineType::PointerRepresentation(),
|
|
InstructionSelector::SupportedMachineOperatorFlags());
|
|
|
|
// Generate callee, returning random picks of its parameters.
|
|
std::unique_ptr<Node* []> params(new Node*[desc->ParameterCount() + 2]);
|
|
// The first input of a return is the number of stack slots that should be
|
|
// popped before returning.
|
|
std::unique_ptr<Node* []> returns(new Node*[desc->ReturnCount() + 1]);
|
|
for (size_t i = 0; i < param_count; ++i) {
|
|
// Parameter(0) is the WasmContext.
|
|
params[i] = callee.Parameter(i + 1);
|
|
}
|
|
|
|
for (size_t i = 0; i < desc->ReturnCount(); ++i) {
|
|
MachineType type = desc->GetReturnType(i);
|
|
// Find a random same-type parameter to return. Use a constant if none.
|
|
if (counts[index(type)] == 0) {
|
|
returns[i] = Constant(callee, type, 42);
|
|
outputs[i] = 42;
|
|
} else {
|
|
int n = input.NextInt32(counts[index(type)]);
|
|
int k = 0;
|
|
while (desc->GetParameterType(k + 1) != desc->GetReturnType(i) ||
|
|
--n > 0) {
|
|
++k;
|
|
}
|
|
returns[i] = params[k];
|
|
outputs[i] = inputs[k];
|
|
}
|
|
}
|
|
callee.Return(static_cast<int>(desc->ReturnCount()), returns.get());
|
|
|
|
OptimizedCompilationInfo info(ArrayVector("testing"), &zone, Code::STUB);
|
|
Handle<Code> code = Pipeline::GenerateCodeForTesting(
|
|
&info, i_isolate, desc, callee.graph(),
|
|
AssemblerOptions::Default(i_isolate), callee.Export())
|
|
.ToHandleChecked();
|
|
|
|
std::unique_ptr<wasm::NativeModule> module =
|
|
AllocateNativeModule(i_isolate, code->raw_instruction_size());
|
|
byte* code_start = module->AddCodeCopy(code, wasm::WasmCode::kFunction, 0)
|
|
->instructions()
|
|
.start();
|
|
// Generate wrapper.
|
|
int expect = 0;
|
|
|
|
MachineSignature::Builder sig_builder(&zone, 1, 0);
|
|
sig_builder.AddReturn(MachineType::Int32());
|
|
|
|
CallDescriptor* wrapper_desc =
|
|
Linkage::GetSimplifiedCDescriptor(&zone, sig_builder.Build());
|
|
RawMachineAssembler caller(
|
|
i_isolate, new (&zone) Graph(&zone), wrapper_desc,
|
|
MachineType::PointerRepresentation(),
|
|
InstructionSelector::SupportedMachineOperatorFlags());
|
|
|
|
params[0] = caller.PointerConstant(code_start);
|
|
// WasmContext dummy.
|
|
params[1] = caller.PointerConstant(nullptr);
|
|
for (size_t i = 0; i < param_count; ++i) {
|
|
params[i + 2] = Constant(caller, desc->GetParameterType(i + 1), inputs[i]);
|
|
}
|
|
Node* call = caller.AddNode(caller.common()->Call(desc),
|
|
static_cast<int>(param_count + 2), params.get());
|
|
Node* ret = Constant(caller, MachineType::Int32(), 0);
|
|
for (size_t i = 0; i < desc->ReturnCount(); ++i) {
|
|
// Skip roughly one third of the outputs.
|
|
if (input.NextInt8(3) == 0) continue;
|
|
Node* ret_i = (desc->ReturnCount() == 1)
|
|
? call
|
|
: caller.AddNode(caller.common()->Projection(i), call);
|
|
ret = caller.Int32Add(ret, ToInt32(caller, desc->GetReturnType(i), ret_i));
|
|
expect += outputs[i];
|
|
}
|
|
caller.Return(ret);
|
|
|
|
// Call the wrapper.
|
|
OptimizedCompilationInfo wrapper_info(ArrayVector("wrapper"), &zone,
|
|
Code::STUB);
|
|
Handle<Code> wrapper_code =
|
|
Pipeline::GenerateCodeForTesting(
|
|
&wrapper_info, i_isolate, wrapper_desc, caller.graph(),
|
|
AssemblerOptions::Default(i_isolate), caller.Export())
|
|
.ToHandleChecked();
|
|
auto fn = GeneratedCode<int32_t>::FromCode(*wrapper_code);
|
|
int result = fn.Call();
|
|
|
|
CHECK_EQ(expect, result);
|
|
return 0;
|
|
}
|
|
|
|
} // namespace fuzzer
|
|
} // namespace compiler
|
|
} // namespace internal
|
|
} // namespace v8
|