3419aefe5d
About a 32% boost. Before - 5:31 Richards: 84.5 DeltaBlue: 128 Crypto: 65.3 RayTrace: 203 EarleyBoyer: 149 RegExp: 23.4 Splay: 121 NavierStokes: 98.9 ---- Score (version 7): 93.8 After - 4:10 Richards: 107 DeltaBlue: 175 Crypto: 93.9 RayTrace: 258 EarleyBoyer: 186 RegExp: 32.7 Splay: 165 NavierStokes: 124 ---- Score (version 7): 124 R=jacob.bramley@arm.com, svenpanne@chromium.org Committed: https://code.google.com/p/v8/source/detail?r=21448 Review URL: https://codereview.chromium.org/213943002 Patch from Fritz Koenig <frkoenig@google.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21804 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1578 lines
46 KiB
C++
1578 lines
46 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_UTILS_H_
|
|
#define V8_UTILS_H_
|
|
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "src/allocation.h"
|
|
#include "src/checks.h"
|
|
#include "src/globals.h"
|
|
#include "src/list.h"
|
|
#include "src/platform.h"
|
|
#include "src/vector.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// General helper functions
|
|
|
|
#define IS_POWER_OF_TWO(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
|
|
|
|
// Returns true iff x is a power of 2. Cannot be used with the maximally
|
|
// negative value of the type T (the -1 overflows).
|
|
template <typename T>
|
|
inline bool IsPowerOf2(T x) {
|
|
return IS_POWER_OF_TWO(x);
|
|
}
|
|
|
|
|
|
// X must be a power of 2. Returns the number of trailing zeros.
|
|
inline int WhichPowerOf2(uint32_t x) {
|
|
ASSERT(IsPowerOf2(x));
|
|
int bits = 0;
|
|
#ifdef DEBUG
|
|
int original_x = x;
|
|
#endif
|
|
if (x >= 0x10000) {
|
|
bits += 16;
|
|
x >>= 16;
|
|
}
|
|
if (x >= 0x100) {
|
|
bits += 8;
|
|
x >>= 8;
|
|
}
|
|
if (x >= 0x10) {
|
|
bits += 4;
|
|
x >>= 4;
|
|
}
|
|
switch (x) {
|
|
default: UNREACHABLE();
|
|
case 8: bits++; // Fall through.
|
|
case 4: bits++; // Fall through.
|
|
case 2: bits++; // Fall through.
|
|
case 1: break;
|
|
}
|
|
ASSERT_EQ(1 << bits, original_x);
|
|
return bits;
|
|
return 0;
|
|
}
|
|
|
|
|
|
inline int MostSignificantBit(uint32_t x) {
|
|
static const int msb4[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4};
|
|
int nibble = 0;
|
|
if (x & 0xffff0000) {
|
|
nibble += 16;
|
|
x >>= 16;
|
|
}
|
|
if (x & 0xff00) {
|
|
nibble += 8;
|
|
x >>= 8;
|
|
}
|
|
if (x & 0xf0) {
|
|
nibble += 4;
|
|
x >>= 4;
|
|
}
|
|
return nibble + msb4[x];
|
|
}
|
|
|
|
|
|
// The C++ standard leaves the semantics of '>>' undefined for
|
|
// negative signed operands. Most implementations do the right thing,
|
|
// though.
|
|
inline int ArithmeticShiftRight(int x, int s) {
|
|
return x >> s;
|
|
}
|
|
|
|
|
|
// Compute the 0-relative offset of some absolute value x of type T.
|
|
// This allows conversion of Addresses and integral types into
|
|
// 0-relative int offsets.
|
|
template <typename T>
|
|
inline intptr_t OffsetFrom(T x) {
|
|
return x - static_cast<T>(0);
|
|
}
|
|
|
|
|
|
// Compute the absolute value of type T for some 0-relative offset x.
|
|
// This allows conversion of 0-relative int offsets into Addresses and
|
|
// integral types.
|
|
template <typename T>
|
|
inline T AddressFrom(intptr_t x) {
|
|
return static_cast<T>(static_cast<T>(0) + x);
|
|
}
|
|
|
|
|
|
// Return the largest multiple of m which is <= x.
|
|
template <typename T>
|
|
inline T RoundDown(T x, intptr_t m) {
|
|
ASSERT(IsPowerOf2(m));
|
|
return AddressFrom<T>(OffsetFrom(x) & -m);
|
|
}
|
|
|
|
|
|
// Return the smallest multiple of m which is >= x.
|
|
template <typename T>
|
|
inline T RoundUp(T x, intptr_t m) {
|
|
return RoundDown<T>(static_cast<T>(x + m - 1), m);
|
|
}
|
|
|
|
|
|
// Increment a pointer until it has the specified alignment.
|
|
// This works like RoundUp, but it works correctly on pointer types where
|
|
// sizeof(*pointer) might not be 1.
|
|
template<class T>
|
|
T AlignUp(T pointer, size_t alignment) {
|
|
ASSERT(sizeof(pointer) == sizeof(uintptr_t));
|
|
uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
|
|
return reinterpret_cast<T>(RoundUp(pointer_raw, alignment));
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
int Compare(const T& a, const T& b) {
|
|
if (a == b)
|
|
return 0;
|
|
else if (a < b)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
int PointerValueCompare(const T* a, const T* b) {
|
|
return Compare<T>(*a, *b);
|
|
}
|
|
|
|
|
|
// Compare function to compare the object pointer value of two
|
|
// handlified objects. The handles are passed as pointers to the
|
|
// handles.
|
|
template<typename T> class Handle; // Forward declaration.
|
|
template <typename T>
|
|
int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
|
|
return Compare<T*>(*(*a), *(*b));
|
|
}
|
|
|
|
|
|
// Returns the smallest power of two which is >= x. If you pass in a
|
|
// number that is already a power of two, it is returned as is.
|
|
// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
|
|
// figure 3-3, page 48, where the function is called clp2.
|
|
inline uint32_t RoundUpToPowerOf2(uint32_t x) {
|
|
ASSERT(x <= 0x80000000u);
|
|
x = x - 1;
|
|
x = x | (x >> 1);
|
|
x = x | (x >> 2);
|
|
x = x | (x >> 4);
|
|
x = x | (x >> 8);
|
|
x = x | (x >> 16);
|
|
return x + 1;
|
|
}
|
|
|
|
|
|
inline uint32_t RoundDownToPowerOf2(uint32_t x) {
|
|
uint32_t rounded_up = RoundUpToPowerOf2(x);
|
|
if (rounded_up > x) return rounded_up >> 1;
|
|
return rounded_up;
|
|
}
|
|
|
|
|
|
template <typename T, typename U>
|
|
inline bool IsAligned(T value, U alignment) {
|
|
return (value & (alignment - 1)) == 0;
|
|
}
|
|
|
|
|
|
// Returns true if (addr + offset) is aligned.
|
|
inline bool IsAddressAligned(Address addr,
|
|
intptr_t alignment,
|
|
int offset = 0) {
|
|
intptr_t offs = OffsetFrom(addr + offset);
|
|
return IsAligned(offs, alignment);
|
|
}
|
|
|
|
|
|
// Returns the maximum of the two parameters.
|
|
template <typename T>
|
|
T Max(T a, T b) {
|
|
return a < b ? b : a;
|
|
}
|
|
|
|
|
|
// Returns the minimum of the two parameters.
|
|
template <typename T>
|
|
T Min(T a, T b) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
|
|
// Returns the absolute value of its argument.
|
|
template <typename T>
|
|
T Abs(T a) {
|
|
return a < 0 ? -a : a;
|
|
}
|
|
|
|
|
|
// Returns the negative absolute value of its argument.
|
|
template <typename T>
|
|
T NegAbs(T a) {
|
|
return a < 0 ? a : -a;
|
|
}
|
|
|
|
|
|
// TODO(svenpanne) Clean up the whole power-of-2 mess.
|
|
inline int32_t WhichPowerOf2Abs(int32_t x) {
|
|
return (x == kMinInt) ? 31 : WhichPowerOf2(Abs(x));
|
|
}
|
|
|
|
|
|
// Obtains the unsigned type corresponding to T
|
|
// available in C++11 as std::make_unsigned
|
|
template<typename T>
|
|
struct make_unsigned {
|
|
typedef T type;
|
|
};
|
|
|
|
|
|
// Template specializations necessary to have make_unsigned work
|
|
template<> struct make_unsigned<int32_t> {
|
|
typedef uint32_t type;
|
|
};
|
|
|
|
|
|
template<> struct make_unsigned<int64_t> {
|
|
typedef uint64_t type;
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BitField is a help template for encoding and decode bitfield with
|
|
// unsigned content.
|
|
|
|
template<class T, int shift, int size, class U>
|
|
class BitFieldBase {
|
|
public:
|
|
// A type U mask of bit field. To use all bits of a type U of x bits
|
|
// in a bitfield without compiler warnings we have to compute 2^x
|
|
// without using a shift count of x in the computation.
|
|
static const U kOne = static_cast<U>(1U);
|
|
static const U kMask = ((kOne << shift) << size) - (kOne << shift);
|
|
static const U kShift = shift;
|
|
static const U kSize = size;
|
|
static const U kNext = kShift + kSize;
|
|
|
|
// Value for the field with all bits set.
|
|
static const T kMax = static_cast<T>((1U << size) - 1);
|
|
|
|
// Tells whether the provided value fits into the bit field.
|
|
static bool is_valid(T value) {
|
|
return (static_cast<U>(value) & ~static_cast<U>(kMax)) == 0;
|
|
}
|
|
|
|
// Returns a type U with the bit field value encoded.
|
|
static U encode(T value) {
|
|
ASSERT(is_valid(value));
|
|
return static_cast<U>(value) << shift;
|
|
}
|
|
|
|
// Returns a type U with the bit field value updated.
|
|
static U update(U previous, T value) {
|
|
return (previous & ~kMask) | encode(value);
|
|
}
|
|
|
|
// Extracts the bit field from the value.
|
|
static T decode(U value) {
|
|
return static_cast<T>((value & kMask) >> shift);
|
|
}
|
|
};
|
|
|
|
|
|
template<class T, int shift, int size>
|
|
class BitField : public BitFieldBase<T, shift, size, uint32_t> { };
|
|
|
|
|
|
template<class T, int shift, int size>
|
|
class BitField64 : public BitFieldBase<T, shift, size, uint64_t> { };
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Hash function.
|
|
|
|
static const uint32_t kZeroHashSeed = 0;
|
|
|
|
// Thomas Wang, Integer Hash Functions.
|
|
// http://www.concentric.net/~Ttwang/tech/inthash.htm
|
|
inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) {
|
|
uint32_t hash = key;
|
|
hash = hash ^ seed;
|
|
hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
|
|
hash = hash ^ (hash >> 12);
|
|
hash = hash + (hash << 2);
|
|
hash = hash ^ (hash >> 4);
|
|
hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
|
|
hash = hash ^ (hash >> 16);
|
|
return hash;
|
|
}
|
|
|
|
|
|
inline uint32_t ComputeLongHash(uint64_t key) {
|
|
uint64_t hash = key;
|
|
hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1;
|
|
hash = hash ^ (hash >> 31);
|
|
hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4);
|
|
hash = hash ^ (hash >> 11);
|
|
hash = hash + (hash << 6);
|
|
hash = hash ^ (hash >> 22);
|
|
return static_cast<uint32_t>(hash);
|
|
}
|
|
|
|
|
|
inline uint32_t ComputePointerHash(void* ptr) {
|
|
return ComputeIntegerHash(
|
|
static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)),
|
|
v8::internal::kZeroHashSeed);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Generated memcpy/memmove
|
|
|
|
// Initializes the codegen support that depends on CPU features. This is
|
|
// called after CPU initialization.
|
|
void init_memcopy_functions();
|
|
|
|
#if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_X87)
|
|
// Limit below which the extra overhead of the MemCopy function is likely
|
|
// to outweigh the benefits of faster copying.
|
|
const int kMinComplexMemCopy = 64;
|
|
|
|
// Copy memory area. No restrictions.
|
|
void MemMove(void* dest, const void* src, size_t size);
|
|
typedef void (*MemMoveFunction)(void* dest, const void* src, size_t size);
|
|
|
|
// Keep the distinction of "move" vs. "copy" for the benefit of other
|
|
// architectures.
|
|
V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
|
|
MemMove(dest, src, size);
|
|
}
|
|
#elif defined(V8_HOST_ARCH_ARM)
|
|
typedef void (*MemCopyUint8Function)(uint8_t* dest, const uint8_t* src,
|
|
size_t size);
|
|
extern MemCopyUint8Function memcopy_uint8_function;
|
|
V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src,
|
|
size_t chars) {
|
|
memcpy(dest, src, chars);
|
|
}
|
|
// For values < 16, the assembler function is slower than the inlined C code.
|
|
const int kMinComplexMemCopy = 16;
|
|
V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
|
|
(*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest),
|
|
reinterpret_cast<const uint8_t*>(src), size);
|
|
}
|
|
V8_INLINE void MemMove(void* dest, const void* src, size_t size) {
|
|
memmove(dest, src, size);
|
|
}
|
|
|
|
typedef void (*MemCopyUint16Uint8Function)(uint16_t* dest, const uint8_t* src,
|
|
size_t size);
|
|
extern MemCopyUint16Uint8Function memcopy_uint16_uint8_function;
|
|
void MemCopyUint16Uint8Wrapper(uint16_t* dest, const uint8_t* src,
|
|
size_t chars);
|
|
// For values < 12, the assembler function is slower than the inlined C code.
|
|
const int kMinComplexConvertMemCopy = 12;
|
|
V8_INLINE void MemCopyUint16Uint8(uint16_t* dest, const uint8_t* src,
|
|
size_t size) {
|
|
(*memcopy_uint16_uint8_function)(dest, src, size);
|
|
}
|
|
#elif defined(V8_HOST_ARCH_MIPS)
|
|
typedef void (*MemCopyUint8Function)(uint8_t* dest, const uint8_t* src,
|
|
size_t size);
|
|
extern MemCopyUint8Function memcopy_uint8_function;
|
|
V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src,
|
|
size_t chars) {
|
|
memcpy(dest, src, chars);
|
|
}
|
|
// For values < 16, the assembler function is slower than the inlined C code.
|
|
const int kMinComplexMemCopy = 16;
|
|
V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
|
|
(*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest),
|
|
reinterpret_cast<const uint8_t*>(src), size);
|
|
}
|
|
V8_INLINE void MemMove(void* dest, const void* src, size_t size) {
|
|
memmove(dest, src, size);
|
|
}
|
|
#else
|
|
// Copy memory area to disjoint memory area.
|
|
V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
|
|
memcpy(dest, src, size);
|
|
}
|
|
V8_INLINE void MemMove(void* dest, const void* src, size_t size) {
|
|
memmove(dest, src, size);
|
|
}
|
|
const int kMinComplexMemCopy = 16 * kPointerSize;
|
|
#endif // V8_TARGET_ARCH_IA32
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Miscellaneous
|
|
|
|
// A static resource holds a static instance that can be reserved in
|
|
// a local scope using an instance of Access. Attempts to re-reserve
|
|
// the instance will cause an error.
|
|
template <typename T>
|
|
class StaticResource {
|
|
public:
|
|
StaticResource() : is_reserved_(false) {}
|
|
|
|
private:
|
|
template <typename S> friend class Access;
|
|
T instance_;
|
|
bool is_reserved_;
|
|
};
|
|
|
|
|
|
// Locally scoped access to a static resource.
|
|
template <typename T>
|
|
class Access {
|
|
public:
|
|
explicit Access(StaticResource<T>* resource)
|
|
: resource_(resource)
|
|
, instance_(&resource->instance_) {
|
|
ASSERT(!resource->is_reserved_);
|
|
resource->is_reserved_ = true;
|
|
}
|
|
|
|
~Access() {
|
|
resource_->is_reserved_ = false;
|
|
resource_ = NULL;
|
|
instance_ = NULL;
|
|
}
|
|
|
|
T* value() { return instance_; }
|
|
T* operator -> () { return instance_; }
|
|
|
|
private:
|
|
StaticResource<T>* resource_;
|
|
T* instance_;
|
|
};
|
|
|
|
|
|
// A pointer that can only be set once and doesn't allow NULL values.
|
|
template<typename T>
|
|
class SetOncePointer {
|
|
public:
|
|
SetOncePointer() : pointer_(NULL) { }
|
|
|
|
bool is_set() const { return pointer_ != NULL; }
|
|
|
|
T* get() const {
|
|
ASSERT(pointer_ != NULL);
|
|
return pointer_;
|
|
}
|
|
|
|
void set(T* value) {
|
|
ASSERT(pointer_ == NULL && value != NULL);
|
|
pointer_ = value;
|
|
}
|
|
|
|
private:
|
|
T* pointer_;
|
|
};
|
|
|
|
|
|
template <typename T, int kSize>
|
|
class EmbeddedVector : public Vector<T> {
|
|
public:
|
|
EmbeddedVector() : Vector<T>(buffer_, kSize) { }
|
|
|
|
explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
|
|
for (int i = 0; i < kSize; ++i) {
|
|
buffer_[i] = initial_value;
|
|
}
|
|
}
|
|
|
|
// When copying, make underlying Vector to reference our buffer.
|
|
EmbeddedVector(const EmbeddedVector& rhs)
|
|
: Vector<T>(rhs) {
|
|
MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize);
|
|
set_start(buffer_);
|
|
}
|
|
|
|
EmbeddedVector& operator=(const EmbeddedVector& rhs) {
|
|
if (this == &rhs) return *this;
|
|
Vector<T>::operator=(rhs);
|
|
MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize);
|
|
this->set_start(buffer_);
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
T buffer_[kSize];
|
|
};
|
|
|
|
|
|
/*
|
|
* A class that collects values into a backing store.
|
|
* Specialized versions of the class can allow access to the backing store
|
|
* in different ways.
|
|
* There is no guarantee that the backing store is contiguous (and, as a
|
|
* consequence, no guarantees that consecutively added elements are adjacent
|
|
* in memory). The collector may move elements unless it has guaranteed not
|
|
* to.
|
|
*/
|
|
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
|
|
class Collector {
|
|
public:
|
|
explicit Collector(int initial_capacity = kMinCapacity)
|
|
: index_(0), size_(0) {
|
|
current_chunk_ = Vector<T>::New(initial_capacity);
|
|
}
|
|
|
|
virtual ~Collector() {
|
|
// Free backing store (in reverse allocation order).
|
|
current_chunk_.Dispose();
|
|
for (int i = chunks_.length() - 1; i >= 0; i--) {
|
|
chunks_.at(i).Dispose();
|
|
}
|
|
}
|
|
|
|
// Add a single element.
|
|
inline void Add(T value) {
|
|
if (index_ >= current_chunk_.length()) {
|
|
Grow(1);
|
|
}
|
|
current_chunk_[index_] = value;
|
|
index_++;
|
|
size_++;
|
|
}
|
|
|
|
// Add a block of contiguous elements and return a Vector backed by the
|
|
// memory area.
|
|
// A basic Collector will keep this vector valid as long as the Collector
|
|
// is alive.
|
|
inline Vector<T> AddBlock(int size, T initial_value) {
|
|
ASSERT(size > 0);
|
|
if (size > current_chunk_.length() - index_) {
|
|
Grow(size);
|
|
}
|
|
T* position = current_chunk_.start() + index_;
|
|
index_ += size;
|
|
size_ += size;
|
|
for (int i = 0; i < size; i++) {
|
|
position[i] = initial_value;
|
|
}
|
|
return Vector<T>(position, size);
|
|
}
|
|
|
|
|
|
// Add a contiguous block of elements and return a vector backed
|
|
// by the added block.
|
|
// A basic Collector will keep this vector valid as long as the Collector
|
|
// is alive.
|
|
inline Vector<T> AddBlock(Vector<const T> source) {
|
|
if (source.length() > current_chunk_.length() - index_) {
|
|
Grow(source.length());
|
|
}
|
|
T* position = current_chunk_.start() + index_;
|
|
index_ += source.length();
|
|
size_ += source.length();
|
|
for (int i = 0; i < source.length(); i++) {
|
|
position[i] = source[i];
|
|
}
|
|
return Vector<T>(position, source.length());
|
|
}
|
|
|
|
|
|
// Write the contents of the collector into the provided vector.
|
|
void WriteTo(Vector<T> destination) {
|
|
ASSERT(size_ <= destination.length());
|
|
int position = 0;
|
|
for (int i = 0; i < chunks_.length(); i++) {
|
|
Vector<T> chunk = chunks_.at(i);
|
|
for (int j = 0; j < chunk.length(); j++) {
|
|
destination[position] = chunk[j];
|
|
position++;
|
|
}
|
|
}
|
|
for (int i = 0; i < index_; i++) {
|
|
destination[position] = current_chunk_[i];
|
|
position++;
|
|
}
|
|
}
|
|
|
|
// Allocate a single contiguous vector, copy all the collected
|
|
// elements to the vector, and return it.
|
|
// The caller is responsible for freeing the memory of the returned
|
|
// vector (e.g., using Vector::Dispose).
|
|
Vector<T> ToVector() {
|
|
Vector<T> new_store = Vector<T>::New(size_);
|
|
WriteTo(new_store);
|
|
return new_store;
|
|
}
|
|
|
|
// Resets the collector to be empty.
|
|
virtual void Reset();
|
|
|
|
// Total number of elements added to collector so far.
|
|
inline int size() { return size_; }
|
|
|
|
protected:
|
|
static const int kMinCapacity = 16;
|
|
List<Vector<T> > chunks_;
|
|
Vector<T> current_chunk_; // Block of memory currently being written into.
|
|
int index_; // Current index in current chunk.
|
|
int size_; // Total number of elements in collector.
|
|
|
|
// Creates a new current chunk, and stores the old chunk in the chunks_ list.
|
|
void Grow(int min_capacity) {
|
|
ASSERT(growth_factor > 1);
|
|
int new_capacity;
|
|
int current_length = current_chunk_.length();
|
|
if (current_length < kMinCapacity) {
|
|
// The collector started out as empty.
|
|
new_capacity = min_capacity * growth_factor;
|
|
if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
|
|
} else {
|
|
int growth = current_length * (growth_factor - 1);
|
|
if (growth > max_growth) {
|
|
growth = max_growth;
|
|
}
|
|
new_capacity = current_length + growth;
|
|
if (new_capacity < min_capacity) {
|
|
new_capacity = min_capacity + growth;
|
|
}
|
|
}
|
|
NewChunk(new_capacity);
|
|
ASSERT(index_ + min_capacity <= current_chunk_.length());
|
|
}
|
|
|
|
// Before replacing the current chunk, give a subclass the option to move
|
|
// some of the current data into the new chunk. The function may update
|
|
// the current index_ value to represent data no longer in the current chunk.
|
|
// Returns the initial index of the new chunk (after copied data).
|
|
virtual void NewChunk(int new_capacity) {
|
|
Vector<T> new_chunk = Vector<T>::New(new_capacity);
|
|
if (index_ > 0) {
|
|
chunks_.Add(current_chunk_.SubVector(0, index_));
|
|
} else {
|
|
current_chunk_.Dispose();
|
|
}
|
|
current_chunk_ = new_chunk;
|
|
index_ = 0;
|
|
}
|
|
};
|
|
|
|
|
|
/*
|
|
* A collector that allows sequences of values to be guaranteed to
|
|
* stay consecutive.
|
|
* If the backing store grows while a sequence is active, the current
|
|
* sequence might be moved, but after the sequence is ended, it will
|
|
* not move again.
|
|
* NOTICE: Blocks allocated using Collector::AddBlock(int) can move
|
|
* as well, if inside an active sequence where another element is added.
|
|
*/
|
|
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
|
|
class SequenceCollector : public Collector<T, growth_factor, max_growth> {
|
|
public:
|
|
explicit SequenceCollector(int initial_capacity)
|
|
: Collector<T, growth_factor, max_growth>(initial_capacity),
|
|
sequence_start_(kNoSequence) { }
|
|
|
|
virtual ~SequenceCollector() {}
|
|
|
|
void StartSequence() {
|
|
ASSERT(sequence_start_ == kNoSequence);
|
|
sequence_start_ = this->index_;
|
|
}
|
|
|
|
Vector<T> EndSequence() {
|
|
ASSERT(sequence_start_ != kNoSequence);
|
|
int sequence_start = sequence_start_;
|
|
sequence_start_ = kNoSequence;
|
|
if (sequence_start == this->index_) return Vector<T>();
|
|
return this->current_chunk_.SubVector(sequence_start, this->index_);
|
|
}
|
|
|
|
// Drops the currently added sequence, and all collected elements in it.
|
|
void DropSequence() {
|
|
ASSERT(sequence_start_ != kNoSequence);
|
|
int sequence_length = this->index_ - sequence_start_;
|
|
this->index_ = sequence_start_;
|
|
this->size_ -= sequence_length;
|
|
sequence_start_ = kNoSequence;
|
|
}
|
|
|
|
virtual void Reset() {
|
|
sequence_start_ = kNoSequence;
|
|
this->Collector<T, growth_factor, max_growth>::Reset();
|
|
}
|
|
|
|
private:
|
|
static const int kNoSequence = -1;
|
|
int sequence_start_;
|
|
|
|
// Move the currently active sequence to the new chunk.
|
|
virtual void NewChunk(int new_capacity) {
|
|
if (sequence_start_ == kNoSequence) {
|
|
// Fall back on default behavior if no sequence has been started.
|
|
this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
|
|
return;
|
|
}
|
|
int sequence_length = this->index_ - sequence_start_;
|
|
Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
|
|
ASSERT(sequence_length < new_chunk.length());
|
|
for (int i = 0; i < sequence_length; i++) {
|
|
new_chunk[i] = this->current_chunk_[sequence_start_ + i];
|
|
}
|
|
if (sequence_start_ > 0) {
|
|
this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
|
|
} else {
|
|
this->current_chunk_.Dispose();
|
|
}
|
|
this->current_chunk_ = new_chunk;
|
|
this->index_ = sequence_length;
|
|
sequence_start_ = 0;
|
|
}
|
|
};
|
|
|
|
|
|
// Compare ASCII/16bit chars to ASCII/16bit chars.
|
|
template <typename lchar, typename rchar>
|
|
inline int CompareCharsUnsigned(const lchar* lhs,
|
|
const rchar* rhs,
|
|
int chars) {
|
|
const lchar* limit = lhs + chars;
|
|
#ifdef V8_HOST_CAN_READ_UNALIGNED
|
|
if (sizeof(*lhs) == sizeof(*rhs)) {
|
|
// Number of characters in a uintptr_t.
|
|
static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
|
|
while (lhs <= limit - kStepSize) {
|
|
if (*reinterpret_cast<const uintptr_t*>(lhs) !=
|
|
*reinterpret_cast<const uintptr_t*>(rhs)) {
|
|
break;
|
|
}
|
|
lhs += kStepSize;
|
|
rhs += kStepSize;
|
|
}
|
|
}
|
|
#endif
|
|
while (lhs < limit) {
|
|
int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
|
|
if (r != 0) return r;
|
|
++lhs;
|
|
++rhs;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template<typename lchar, typename rchar>
|
|
inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
|
|
ASSERT(sizeof(lchar) <= 2);
|
|
ASSERT(sizeof(rchar) <= 2);
|
|
if (sizeof(lchar) == 1) {
|
|
if (sizeof(rchar) == 1) {
|
|
return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
|
|
reinterpret_cast<const uint8_t*>(rhs),
|
|
chars);
|
|
} else {
|
|
return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
|
|
reinterpret_cast<const uint16_t*>(rhs),
|
|
chars);
|
|
}
|
|
} else {
|
|
if (sizeof(rchar) == 1) {
|
|
return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
|
|
reinterpret_cast<const uint8_t*>(rhs),
|
|
chars);
|
|
} else {
|
|
return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
|
|
reinterpret_cast<const uint16_t*>(rhs),
|
|
chars);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Calculate 10^exponent.
|
|
inline int TenToThe(int exponent) {
|
|
ASSERT(exponent <= 9);
|
|
ASSERT(exponent >= 1);
|
|
int answer = 10;
|
|
for (int i = 1; i < exponent; i++) answer *= 10;
|
|
return answer;
|
|
}
|
|
|
|
|
|
// The type-based aliasing rule allows the compiler to assume that pointers of
|
|
// different types (for some definition of different) never alias each other.
|
|
// Thus the following code does not work:
|
|
//
|
|
// float f = foo();
|
|
// int fbits = *(int*)(&f);
|
|
//
|
|
// The compiler 'knows' that the int pointer can't refer to f since the types
|
|
// don't match, so the compiler may cache f in a register, leaving random data
|
|
// in fbits. Using C++ style casts makes no difference, however a pointer to
|
|
// char data is assumed to alias any other pointer. This is the 'memcpy
|
|
// exception'.
|
|
//
|
|
// Bit_cast uses the memcpy exception to move the bits from a variable of one
|
|
// type of a variable of another type. Of course the end result is likely to
|
|
// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
|
|
// will completely optimize BitCast away.
|
|
//
|
|
// There is an additional use for BitCast.
|
|
// Recent gccs will warn when they see casts that may result in breakage due to
|
|
// the type-based aliasing rule. If you have checked that there is no breakage
|
|
// you can use BitCast to cast one pointer type to another. This confuses gcc
|
|
// enough that it can no longer see that you have cast one pointer type to
|
|
// another thus avoiding the warning.
|
|
|
|
// We need different implementations of BitCast for pointer and non-pointer
|
|
// values. We use partial specialization of auxiliary struct to work around
|
|
// issues with template functions overloading.
|
|
template <class Dest, class Source>
|
|
struct BitCastHelper {
|
|
STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
|
|
|
|
INLINE(static Dest cast(const Source& source)) {
|
|
Dest dest;
|
|
memcpy(&dest, &source, sizeof(dest));
|
|
return dest;
|
|
}
|
|
};
|
|
|
|
template <class Dest, class Source>
|
|
struct BitCastHelper<Dest, Source*> {
|
|
INLINE(static Dest cast(Source* source)) {
|
|
return BitCastHelper<Dest, uintptr_t>::
|
|
cast(reinterpret_cast<uintptr_t>(source));
|
|
}
|
|
};
|
|
|
|
template <class Dest, class Source>
|
|
INLINE(Dest BitCast(const Source& source));
|
|
|
|
template <class Dest, class Source>
|
|
inline Dest BitCast(const Source& source) {
|
|
return BitCastHelper<Dest, Source>::cast(source);
|
|
}
|
|
|
|
|
|
template<typename ElementType, int NumElements>
|
|
class EmbeddedContainer {
|
|
public:
|
|
EmbeddedContainer() : elems_() { }
|
|
|
|
int length() const { return NumElements; }
|
|
const ElementType& operator[](int i) const {
|
|
ASSERT(i < length());
|
|
return elems_[i];
|
|
}
|
|
ElementType& operator[](int i) {
|
|
ASSERT(i < length());
|
|
return elems_[i];
|
|
}
|
|
|
|
private:
|
|
ElementType elems_[NumElements];
|
|
};
|
|
|
|
|
|
template<typename ElementType>
|
|
class EmbeddedContainer<ElementType, 0> {
|
|
public:
|
|
int length() const { return 0; }
|
|
const ElementType& operator[](int i) const {
|
|
UNREACHABLE();
|
|
static ElementType t = 0;
|
|
return t;
|
|
}
|
|
ElementType& operator[](int i) {
|
|
UNREACHABLE();
|
|
static ElementType t = 0;
|
|
return t;
|
|
}
|
|
};
|
|
|
|
|
|
// Helper class for building result strings in a character buffer. The
|
|
// purpose of the class is to use safe operations that checks the
|
|
// buffer bounds on all operations in debug mode.
|
|
// This simple base class does not allow formatted output.
|
|
class SimpleStringBuilder {
|
|
public:
|
|
// Create a string builder with a buffer of the given size. The
|
|
// buffer is allocated through NewArray<char> and must be
|
|
// deallocated by the caller of Finalize().
|
|
explicit SimpleStringBuilder(int size);
|
|
|
|
SimpleStringBuilder(char* buffer, int size)
|
|
: buffer_(buffer, size), position_(0) { }
|
|
|
|
~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
|
|
|
|
int size() const { return buffer_.length(); }
|
|
|
|
// Get the current position in the builder.
|
|
int position() const {
|
|
ASSERT(!is_finalized());
|
|
return position_;
|
|
}
|
|
|
|
// Reset the position.
|
|
void Reset() { position_ = 0; }
|
|
|
|
// Add a single character to the builder. It is not allowed to add
|
|
// 0-characters; use the Finalize() method to terminate the string
|
|
// instead.
|
|
void AddCharacter(char c) {
|
|
ASSERT(c != '\0');
|
|
ASSERT(!is_finalized() && position_ < buffer_.length());
|
|
buffer_[position_++] = c;
|
|
}
|
|
|
|
// Add an entire string to the builder. Uses strlen() internally to
|
|
// compute the length of the input string.
|
|
void AddString(const char* s);
|
|
|
|
// Add the first 'n' characters of the given string 's' to the
|
|
// builder. The input string must have enough characters.
|
|
void AddSubstring(const char* s, int n);
|
|
|
|
// Add character padding to the builder. If count is non-positive,
|
|
// nothing is added to the builder.
|
|
void AddPadding(char c, int count);
|
|
|
|
// Add the decimal representation of the value.
|
|
void AddDecimalInteger(int value);
|
|
|
|
// Finalize the string by 0-terminating it and returning the buffer.
|
|
char* Finalize();
|
|
|
|
protected:
|
|
Vector<char> buffer_;
|
|
int position_;
|
|
|
|
bool is_finalized() const { return position_ < 0; }
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
|
|
};
|
|
|
|
|
|
// A poor man's version of STL's bitset: A bit set of enums E (without explicit
|
|
// values), fitting into an integral type T.
|
|
template <class E, class T = int>
|
|
class EnumSet {
|
|
public:
|
|
explicit EnumSet(T bits = 0) : bits_(bits) {}
|
|
bool IsEmpty() const { return bits_ == 0; }
|
|
bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
|
|
bool ContainsAnyOf(const EnumSet& set) const {
|
|
return (bits_ & set.bits_) != 0;
|
|
}
|
|
void Add(E element) { bits_ |= Mask(element); }
|
|
void Add(const EnumSet& set) { bits_ |= set.bits_; }
|
|
void Remove(E element) { bits_ &= ~Mask(element); }
|
|
void Remove(const EnumSet& set) { bits_ &= ~set.bits_; }
|
|
void RemoveAll() { bits_ = 0; }
|
|
void Intersect(const EnumSet& set) { bits_ &= set.bits_; }
|
|
T ToIntegral() const { return bits_; }
|
|
bool operator==(const EnumSet& set) { return bits_ == set.bits_; }
|
|
bool operator!=(const EnumSet& set) { return bits_ != set.bits_; }
|
|
EnumSet<E, T> operator|(const EnumSet& set) const {
|
|
return EnumSet<E, T>(bits_ | set.bits_);
|
|
}
|
|
|
|
private:
|
|
T Mask(E element) const {
|
|
// The strange typing in ASSERT is necessary to avoid stupid warnings, see:
|
|
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
|
|
ASSERT(static_cast<int>(element) < static_cast<int>(sizeof(T) * CHAR_BIT));
|
|
return static_cast<T>(1) << element;
|
|
}
|
|
|
|
T bits_;
|
|
};
|
|
|
|
// Bit field extraction.
|
|
inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
|
|
return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
|
|
}
|
|
|
|
inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
|
|
return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
|
|
}
|
|
|
|
inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
|
|
return (x << (31 - msb)) >> (lsb + 31 - msb);
|
|
}
|
|
|
|
inline int signed_bitextract_64(int msb, int lsb, int x) {
|
|
// TODO(jbramley): This is broken for big bitfields.
|
|
return (x << (63 - msb)) >> (lsb + 63 - msb);
|
|
}
|
|
|
|
// Check number width.
|
|
inline bool is_intn(int64_t x, unsigned n) {
|
|
ASSERT((0 < n) && (n < 64));
|
|
int64_t limit = static_cast<int64_t>(1) << (n - 1);
|
|
return (-limit <= x) && (x < limit);
|
|
}
|
|
|
|
inline bool is_uintn(int64_t x, unsigned n) {
|
|
ASSERT((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
|
|
return !(x >> n);
|
|
}
|
|
|
|
template <class T>
|
|
inline T truncate_to_intn(T x, unsigned n) {
|
|
ASSERT((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
|
|
return (x & ((static_cast<T>(1) << n) - 1));
|
|
}
|
|
|
|
#define INT_1_TO_63_LIST(V) \
|
|
V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \
|
|
V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \
|
|
V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \
|
|
V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \
|
|
V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
|
|
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \
|
|
V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \
|
|
V(57) V(58) V(59) V(60) V(61) V(62) V(63)
|
|
|
|
#define DECLARE_IS_INT_N(N) \
|
|
inline bool is_int##N(int64_t x) { return is_intn(x, N); }
|
|
#define DECLARE_IS_UINT_N(N) \
|
|
template <class T> \
|
|
inline bool is_uint##N(T x) { return is_uintn(x, N); }
|
|
#define DECLARE_TRUNCATE_TO_INT_N(N) \
|
|
template <class T> \
|
|
inline T truncate_to_int##N(T x) { return truncate_to_intn(x, N); }
|
|
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
|
|
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
|
|
INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
|
|
#undef DECLARE_IS_INT_N
|
|
#undef DECLARE_IS_UINT_N
|
|
#undef DECLARE_TRUNCATE_TO_INT_N
|
|
|
|
class TypeFeedbackId {
|
|
public:
|
|
explicit TypeFeedbackId(int id) : id_(id) { }
|
|
int ToInt() const { return id_; }
|
|
|
|
static TypeFeedbackId None() { return TypeFeedbackId(kNoneId); }
|
|
bool IsNone() const { return id_ == kNoneId; }
|
|
|
|
private:
|
|
static const int kNoneId = -1;
|
|
|
|
int id_;
|
|
};
|
|
|
|
|
|
class BailoutId {
|
|
public:
|
|
explicit BailoutId(int id) : id_(id) { }
|
|
int ToInt() const { return id_; }
|
|
|
|
static BailoutId None() { return BailoutId(kNoneId); }
|
|
static BailoutId FunctionEntry() { return BailoutId(kFunctionEntryId); }
|
|
static BailoutId Declarations() { return BailoutId(kDeclarationsId); }
|
|
static BailoutId FirstUsable() { return BailoutId(kFirstUsableId); }
|
|
static BailoutId StubEntry() { return BailoutId(kStubEntryId); }
|
|
|
|
bool IsNone() const { return id_ == kNoneId; }
|
|
bool operator==(const BailoutId& other) const { return id_ == other.id_; }
|
|
bool operator!=(const BailoutId& other) const { return id_ != other.id_; }
|
|
|
|
private:
|
|
static const int kNoneId = -1;
|
|
|
|
// Using 0 could disguise errors.
|
|
static const int kFunctionEntryId = 2;
|
|
|
|
// This AST id identifies the point after the declarations have been visited.
|
|
// We need it to capture the environment effects of declarations that emit
|
|
// code (function declarations).
|
|
static const int kDeclarationsId = 3;
|
|
|
|
// Every FunctionState starts with this id.
|
|
static const int kFirstUsableId = 4;
|
|
|
|
// Every compiled stub starts with this id.
|
|
static const int kStubEntryId = 5;
|
|
|
|
int id_;
|
|
};
|
|
|
|
|
|
template <class C>
|
|
class ContainerPointerWrapper {
|
|
public:
|
|
typedef typename C::iterator iterator;
|
|
typedef typename C::reverse_iterator reverse_iterator;
|
|
explicit ContainerPointerWrapper(C* container) : container_(container) {}
|
|
iterator begin() { return container_->begin(); }
|
|
iterator end() { return container_->end(); }
|
|
reverse_iterator rbegin() { return container_->rbegin(); }
|
|
reverse_iterator rend() { return container_->rend(); }
|
|
private:
|
|
C* container_;
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// I/O support.
|
|
|
|
#if __GNUC__ >= 4
|
|
// On gcc we can ask the compiler to check the types of %d-style format
|
|
// specifiers and their associated arguments. TODO(erikcorry) fix this
|
|
// so it works on MacOSX.
|
|
#if defined(__MACH__) && defined(__APPLE__)
|
|
#define PRINTF_CHECKING
|
|
#define FPRINTF_CHECKING
|
|
#define PRINTF_METHOD_CHECKING
|
|
#define FPRINTF_METHOD_CHECKING
|
|
#else // MacOsX.
|
|
#define PRINTF_CHECKING __attribute__ ((format (printf, 1, 2)))
|
|
#define FPRINTF_CHECKING __attribute__ ((format (printf, 2, 3)))
|
|
#define PRINTF_METHOD_CHECKING __attribute__ ((format (printf, 2, 3)))
|
|
#define FPRINTF_METHOD_CHECKING __attribute__ ((format (printf, 3, 4)))
|
|
#endif
|
|
#else
|
|
#define PRINTF_CHECKING
|
|
#define FPRINTF_CHECKING
|
|
#define PRINTF_METHOD_CHECKING
|
|
#define FPRINTF_METHOD_CHECKING
|
|
#endif
|
|
|
|
// Our version of printf().
|
|
void PRINTF_CHECKING PrintF(const char* format, ...);
|
|
void FPRINTF_CHECKING PrintF(FILE* out, const char* format, ...);
|
|
|
|
// Prepends the current process ID to the output.
|
|
void PRINTF_CHECKING PrintPID(const char* format, ...);
|
|
|
|
// Our version of fflush.
|
|
void Flush(FILE* out);
|
|
|
|
inline void Flush() {
|
|
Flush(stdout);
|
|
}
|
|
|
|
|
|
// Read a line of characters after printing the prompt to stdout. The resulting
|
|
// char* needs to be disposed off with DeleteArray by the caller.
|
|
char* ReadLine(const char* prompt);
|
|
|
|
|
|
// Read and return the raw bytes in a file. the size of the buffer is returned
|
|
// in size.
|
|
// The returned buffer must be freed by the caller.
|
|
byte* ReadBytes(const char* filename, int* size, bool verbose = true);
|
|
|
|
|
|
// Append size chars from str to the file given by filename.
|
|
// The file is overwritten. Returns the number of chars written.
|
|
int AppendChars(const char* filename,
|
|
const char* str,
|
|
int size,
|
|
bool verbose = true);
|
|
|
|
|
|
// Write size chars from str to the file given by filename.
|
|
// The file is overwritten. Returns the number of chars written.
|
|
int WriteChars(const char* filename,
|
|
const char* str,
|
|
int size,
|
|
bool verbose = true);
|
|
|
|
|
|
// Write size bytes to the file given by filename.
|
|
// The file is overwritten. Returns the number of bytes written.
|
|
int WriteBytes(const char* filename,
|
|
const byte* bytes,
|
|
int size,
|
|
bool verbose = true);
|
|
|
|
|
|
// Write the C code
|
|
// const char* <varname> = "<str>";
|
|
// const int <varname>_len = <len>;
|
|
// to the file given by filename. Only the first len chars are written.
|
|
int WriteAsCFile(const char* filename, const char* varname,
|
|
const char* str, int size, bool verbose = true);
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Data structures
|
|
|
|
template <typename T>
|
|
inline Vector< Handle<Object> > HandleVector(v8::internal::Handle<T>* elms,
|
|
int length) {
|
|
return Vector< Handle<Object> >(
|
|
reinterpret_cast<v8::internal::Handle<Object>*>(elms), length);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Memory
|
|
|
|
// Copies words from |src| to |dst|. The data spans must not overlap.
|
|
template <typename T>
|
|
inline void CopyWords(T* dst, const T* src, size_t num_words) {
|
|
STATIC_ASSERT(sizeof(T) == kPointerSize);
|
|
// TODO(mvstanton): disabled because mac builds are bogus failing on this
|
|
// assert. They are doing a signed comparison. Investigate in
|
|
// the morning.
|
|
// ASSERT(Min(dst, const_cast<T*>(src)) + num_words <=
|
|
// Max(dst, const_cast<T*>(src)));
|
|
ASSERT(num_words > 0);
|
|
|
|
// Use block copying MemCopy if the segment we're copying is
|
|
// enough to justify the extra call/setup overhead.
|
|
static const size_t kBlockCopyLimit = 16;
|
|
|
|
if (num_words < kBlockCopyLimit) {
|
|
do {
|
|
num_words--;
|
|
*dst++ = *src++;
|
|
} while (num_words > 0);
|
|
} else {
|
|
MemCopy(dst, src, num_words * kPointerSize);
|
|
}
|
|
}
|
|
|
|
|
|
// Copies words from |src| to |dst|. No restrictions.
|
|
template <typename T>
|
|
inline void MoveWords(T* dst, const T* src, size_t num_words) {
|
|
STATIC_ASSERT(sizeof(T) == kPointerSize);
|
|
ASSERT(num_words > 0);
|
|
|
|
// Use block copying MemCopy if the segment we're copying is
|
|
// enough to justify the extra call/setup overhead.
|
|
static const size_t kBlockCopyLimit = 16;
|
|
|
|
if (num_words < kBlockCopyLimit &&
|
|
((dst < src) || (dst >= (src + num_words * kPointerSize)))) {
|
|
T* end = dst + num_words;
|
|
do {
|
|
num_words--;
|
|
*dst++ = *src++;
|
|
} while (num_words > 0);
|
|
} else {
|
|
MemMove(dst, src, num_words * kPointerSize);
|
|
}
|
|
}
|
|
|
|
|
|
// Copies data from |src| to |dst|. The data spans must not overlap.
|
|
template <typename T>
|
|
inline void CopyBytes(T* dst, const T* src, size_t num_bytes) {
|
|
STATIC_ASSERT(sizeof(T) == 1);
|
|
ASSERT(Min(dst, const_cast<T*>(src)) + num_bytes <=
|
|
Max(dst, const_cast<T*>(src)));
|
|
if (num_bytes == 0) return;
|
|
|
|
// Use block copying MemCopy if the segment we're copying is
|
|
// enough to justify the extra call/setup overhead.
|
|
static const int kBlockCopyLimit = kMinComplexMemCopy;
|
|
|
|
if (num_bytes < static_cast<size_t>(kBlockCopyLimit)) {
|
|
do {
|
|
num_bytes--;
|
|
*dst++ = *src++;
|
|
} while (num_bytes > 0);
|
|
} else {
|
|
MemCopy(dst, src, num_bytes);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T, typename U>
|
|
inline void MemsetPointer(T** dest, U* value, int counter) {
|
|
#ifdef DEBUG
|
|
T* a = NULL;
|
|
U* b = NULL;
|
|
a = b; // Fake assignment to check assignability.
|
|
USE(a);
|
|
#endif // DEBUG
|
|
#if V8_HOST_ARCH_IA32
|
|
#define STOS "stosl"
|
|
#elif V8_HOST_ARCH_X64
|
|
#define STOS "stosq"
|
|
#endif
|
|
#if defined(__native_client__)
|
|
// This STOS sequence does not validate for x86_64 Native Client.
|
|
// Here we #undef STOS to force use of the slower C version.
|
|
// TODO(bradchen): Profile V8 and implement a faster REP STOS
|
|
// here if the profile indicates it matters.
|
|
#undef STOS
|
|
#endif
|
|
|
|
#if defined(MEMORY_SANITIZER)
|
|
// MemorySanitizer does not understand inline assembly.
|
|
#undef STOS
|
|
#endif
|
|
|
|
#if defined(__GNUC__) && defined(STOS)
|
|
asm volatile(
|
|
"cld;"
|
|
"rep ; " STOS
|
|
: "+&c" (counter), "+&D" (dest)
|
|
: "a" (value)
|
|
: "memory", "cc");
|
|
#else
|
|
for (int i = 0; i < counter; i++) {
|
|
dest[i] = value;
|
|
}
|
|
#endif
|
|
|
|
#undef STOS
|
|
}
|
|
|
|
|
|
// Simple wrapper that allows an ExternalString to refer to a
|
|
// Vector<const char>. Doesn't assume ownership of the data.
|
|
class AsciiStringAdapter: public v8::String::ExternalAsciiStringResource {
|
|
public:
|
|
explicit AsciiStringAdapter(Vector<const char> data) : data_(data) {}
|
|
|
|
virtual const char* data() const { return data_.start(); }
|
|
|
|
virtual size_t length() const { return data_.length(); }
|
|
|
|
private:
|
|
Vector<const char> data_;
|
|
};
|
|
|
|
|
|
// Simple support to read a file into a 0-terminated C-string.
|
|
// The returned buffer must be freed by the caller.
|
|
// On return, *exits tells whether the file existed.
|
|
Vector<const char> ReadFile(const char* filename,
|
|
bool* exists,
|
|
bool verbose = true);
|
|
Vector<const char> ReadFile(FILE* file,
|
|
bool* exists,
|
|
bool verbose = true);
|
|
|
|
|
|
template <typename sourcechar, typename sinkchar>
|
|
INLINE(static void CopyCharsUnsigned(sinkchar* dest,
|
|
const sourcechar* src,
|
|
int chars));
|
|
#if defined(V8_HOST_ARCH_ARM)
|
|
INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, int chars));
|
|
INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint8_t* src, int chars));
|
|
INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, int chars));
|
|
#elif defined(V8_HOST_ARCH_MIPS)
|
|
INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, int chars));
|
|
INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, int chars));
|
|
#endif
|
|
|
|
// Copy from ASCII/16bit chars to ASCII/16bit chars.
|
|
template <typename sourcechar, typename sinkchar>
|
|
INLINE(void CopyChars(sinkchar* dest, const sourcechar* src, int chars));
|
|
|
|
template<typename sourcechar, typename sinkchar>
|
|
void CopyChars(sinkchar* dest, const sourcechar* src, int chars) {
|
|
ASSERT(sizeof(sourcechar) <= 2);
|
|
ASSERT(sizeof(sinkchar) <= 2);
|
|
if (sizeof(sinkchar) == 1) {
|
|
if (sizeof(sourcechar) == 1) {
|
|
CopyCharsUnsigned(reinterpret_cast<uint8_t*>(dest),
|
|
reinterpret_cast<const uint8_t*>(src),
|
|
chars);
|
|
} else {
|
|
CopyCharsUnsigned(reinterpret_cast<uint8_t*>(dest),
|
|
reinterpret_cast<const uint16_t*>(src),
|
|
chars);
|
|
}
|
|
} else {
|
|
if (sizeof(sourcechar) == 1) {
|
|
CopyCharsUnsigned(reinterpret_cast<uint16_t*>(dest),
|
|
reinterpret_cast<const uint8_t*>(src),
|
|
chars);
|
|
} else {
|
|
CopyCharsUnsigned(reinterpret_cast<uint16_t*>(dest),
|
|
reinterpret_cast<const uint16_t*>(src),
|
|
chars);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename sourcechar, typename sinkchar>
|
|
void CopyCharsUnsigned(sinkchar* dest, const sourcechar* src, int chars) {
|
|
sinkchar* limit = dest + chars;
|
|
#ifdef V8_HOST_CAN_READ_UNALIGNED
|
|
if (sizeof(*dest) == sizeof(*src)) {
|
|
if (chars >= static_cast<int>(kMinComplexMemCopy / sizeof(*dest))) {
|
|
MemCopy(dest, src, chars * sizeof(*dest));
|
|
return;
|
|
}
|
|
// Number of characters in a uintptr_t.
|
|
static const int kStepSize = sizeof(uintptr_t) / sizeof(*dest); // NOLINT
|
|
ASSERT(dest + kStepSize > dest); // Check for overflow.
|
|
while (dest + kStepSize <= limit) {
|
|
*reinterpret_cast<uintptr_t*>(dest) =
|
|
*reinterpret_cast<const uintptr_t*>(src);
|
|
dest += kStepSize;
|
|
src += kStepSize;
|
|
}
|
|
}
|
|
#endif
|
|
while (dest < limit) {
|
|
*dest++ = static_cast<sinkchar>(*src++);
|
|
}
|
|
}
|
|
|
|
|
|
#if defined(V8_HOST_ARCH_ARM)
|
|
void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, int chars) {
|
|
switch (static_cast<unsigned>(chars)) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
*dest = *src;
|
|
break;
|
|
case 2:
|
|
memcpy(dest, src, 2);
|
|
break;
|
|
case 3:
|
|
memcpy(dest, src, 3);
|
|
break;
|
|
case 4:
|
|
memcpy(dest, src, 4);
|
|
break;
|
|
case 5:
|
|
memcpy(dest, src, 5);
|
|
break;
|
|
case 6:
|
|
memcpy(dest, src, 6);
|
|
break;
|
|
case 7:
|
|
memcpy(dest, src, 7);
|
|
break;
|
|
case 8:
|
|
memcpy(dest, src, 8);
|
|
break;
|
|
case 9:
|
|
memcpy(dest, src, 9);
|
|
break;
|
|
case 10:
|
|
memcpy(dest, src, 10);
|
|
break;
|
|
case 11:
|
|
memcpy(dest, src, 11);
|
|
break;
|
|
case 12:
|
|
memcpy(dest, src, 12);
|
|
break;
|
|
case 13:
|
|
memcpy(dest, src, 13);
|
|
break;
|
|
case 14:
|
|
memcpy(dest, src, 14);
|
|
break;
|
|
case 15:
|
|
memcpy(dest, src, 15);
|
|
break;
|
|
default:
|
|
MemCopy(dest, src, chars);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void CopyCharsUnsigned(uint16_t* dest, const uint8_t* src, int chars) {
|
|
if (chars >= kMinComplexConvertMemCopy) {
|
|
MemCopyUint16Uint8(dest, src, chars);
|
|
} else {
|
|
MemCopyUint16Uint8Wrapper(dest, src, chars);
|
|
}
|
|
}
|
|
|
|
|
|
void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, int chars) {
|
|
switch (static_cast<unsigned>(chars)) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
*dest = *src;
|
|
break;
|
|
case 2:
|
|
memcpy(dest, src, 4);
|
|
break;
|
|
case 3:
|
|
memcpy(dest, src, 6);
|
|
break;
|
|
case 4:
|
|
memcpy(dest, src, 8);
|
|
break;
|
|
case 5:
|
|
memcpy(dest, src, 10);
|
|
break;
|
|
case 6:
|
|
memcpy(dest, src, 12);
|
|
break;
|
|
case 7:
|
|
memcpy(dest, src, 14);
|
|
break;
|
|
default:
|
|
MemCopy(dest, src, chars * sizeof(*dest));
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
#elif defined(V8_HOST_ARCH_MIPS)
|
|
void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, int chars) {
|
|
if (chars < kMinComplexMemCopy) {
|
|
memcpy(dest, src, chars);
|
|
} else {
|
|
MemCopy(dest, src, chars);
|
|
}
|
|
}
|
|
|
|
void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src, int chars) {
|
|
if (chars < kMinComplexMemCopy) {
|
|
memcpy(dest, src, chars * sizeof(*dest));
|
|
} else {
|
|
MemCopy(dest, src, chars * sizeof(*dest));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
class StringBuilder : public SimpleStringBuilder {
|
|
public:
|
|
explicit StringBuilder(int size) : SimpleStringBuilder(size) { }
|
|
StringBuilder(char* buffer, int size) : SimpleStringBuilder(buffer, size) { }
|
|
|
|
// Add formatted contents to the builder just like printf().
|
|
void AddFormatted(const char* format, ...);
|
|
|
|
// Add formatted contents like printf based on a va_list.
|
|
void AddFormattedList(const char* format, va_list list);
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
|
|
};
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_UTILS_H_
|