v8/src/typing-asm.cc
bradnelson 2cb3b9eaf3 Increase strictness of asm type conversions.
Only cast to integer with xor (closer to the spec which allows only ~~).
Check type matching on the bitwise operations.
Prevent mixing of types with the arthimetic operations.

BUG= https://code.google.com/p/v8/issues/detail?id=4203
TEST=test-asm-validator
R=titzer@chromium.org,aseemgarg@chromium.org
LOG=N

Review URL: https://codereview.chromium.org/1405383007

Cr-Commit-Position: refs/heads/master@{#31764}
2015-11-03 22:46:54 +00:00

1110 lines
35 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/typing-asm.h"
#include "src/ast.h"
#include "src/codegen.h"
#include "src/scopes.h"
#include "src/type-cache.h"
namespace v8 {
namespace internal {
#define FAIL(node, msg) \
do { \
valid_ = false; \
int line = node->position() == RelocInfo::kNoPosition \
? -1 \
: script_->GetLineNumber(node->position()); \
base::OS::SNPrintF(error_message_, sizeof(error_message_), \
"asm: line %d: %s\n", line + 1, msg); \
return; \
} while (false)
#define RECURSE(call) \
do { \
DCHECK(!HasStackOverflow()); \
call; \
if (HasStackOverflow()) return; \
if (!valid_) return; \
} while (false)
AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script,
FunctionLiteral* root)
: zone_(zone),
script_(script),
root_(root),
valid_(true),
stdlib_types_(zone),
stdlib_heap_types_(zone),
stdlib_math_types_(zone),
global_variable_type_(HashMap::PointersMatch,
ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)),
local_variable_type_(HashMap::PointersMatch,
ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)),
in_function_(false),
building_function_tables_(false),
cache_(TypeCache::Get()) {
InitializeAstVisitor(isolate);
InitializeStdlib();
}
bool AsmTyper::Validate() {
VisitAsmModule(root_);
return valid_ && !HasStackOverflow();
}
void AsmTyper::VisitAsmModule(FunctionLiteral* fun) {
Scope* scope = fun->scope();
if (!scope->is_function_scope()) FAIL(fun, "not at function scope");
// Module parameters.
for (int i = 0; i < scope->num_parameters(); ++i) {
Variable* param = scope->parameter(i);
DCHECK(GetType(param) == NULL);
SetType(param, Type::None(zone()));
}
ZoneList<Declaration*>* decls = scope->declarations();
// Set all globals to type Any.
VariableDeclaration* decl = scope->function();
if (decl != NULL) SetType(decl->proxy()->var(), Type::None());
RECURSE(VisitDeclarations(scope->declarations()));
// Validate global variables.
RECURSE(VisitStatements(fun->body()));
// Validate function annotations.
for (int i = 0; i < decls->length(); ++i) {
FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration();
if (decl != NULL) {
RECURSE(VisitFunctionAnnotation(decl->fun()));
Variable* var = decl->proxy()->var();
DCHECK(GetType(var) == NULL);
SetType(var, computed_type_);
DCHECK(GetType(var) != NULL);
}
}
// Build function tables.
building_function_tables_ = true;
RECURSE(VisitStatements(fun->body()));
building_function_tables_ = false;
// Validate function bodies.
for (int i = 0; i < decls->length(); ++i) {
FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration();
if (decl != NULL) {
RECURSE(
VisitWithExpectation(decl->fun(), Type::Any(zone()), "UNREACHABLE"));
if (!computed_type_->IsFunction()) {
FAIL(decl->fun(), "function literal expected to be a function");
}
}
}
// Validate exports.
ReturnStatement* stmt = fun->body()->last()->AsReturnStatement();
RECURSE(VisitWithExpectation(stmt->expression(), Type::Object(),
"expected object export"));
}
void AsmTyper::VisitVariableDeclaration(VariableDeclaration* decl) {
Variable* var = decl->proxy()->var();
if (var->location() != VariableLocation::PARAMETER) {
if (GetType(var) == NULL) {
SetType(var, Type::Any(zone()));
} else {
DCHECK(!GetType(var)->IsFunction());
}
}
DCHECK(GetType(var) != NULL);
intish_ = 0;
}
void AsmTyper::VisitFunctionDeclaration(FunctionDeclaration* decl) {
if (in_function_) {
FAIL(decl, "function declared inside another");
}
}
void AsmTyper::VisitFunctionAnnotation(FunctionLiteral* fun) {
// Extract result type.
ZoneList<Statement*>* body = fun->body();
Type* result_type = Type::Undefined(zone());
if (body->length() > 0) {
ReturnStatement* stmt = body->last()->AsReturnStatement();
if (stmt != NULL) {
RECURSE(VisitExpressionAnnotation(stmt->expression()));
result_type = computed_type_;
}
}
Type::FunctionType* type =
Type::Function(result_type, Type::Any(), fun->parameter_count(), zone())
->AsFunction();
// Extract parameter types.
bool good = true;
for (int i = 0; i < fun->parameter_count(); ++i) {
good = false;
if (i >= body->length()) break;
ExpressionStatement* stmt = body->at(i)->AsExpressionStatement();
if (stmt == NULL) break;
Assignment* expr = stmt->expression()->AsAssignment();
if (expr == NULL || expr->is_compound()) break;
VariableProxy* proxy = expr->target()->AsVariableProxy();
if (proxy == NULL) break;
Variable* var = proxy->var();
if (var->location() != VariableLocation::PARAMETER || var->index() != i)
break;
RECURSE(VisitExpressionAnnotation(expr->value()));
SetType(var, computed_type_);
type->InitParameter(i, computed_type_);
good = true;
}
if (!good) FAIL(fun, "missing parameter type annotations");
SetResult(fun, type);
}
void AsmTyper::VisitExpressionAnnotation(Expression* expr) {
// Normal +x or x|0 annotations.
BinaryOperation* bin = expr->AsBinaryOperation();
if (bin != NULL) {
Literal* right = bin->right()->AsLiteral();
if (right != NULL) {
switch (bin->op()) {
case Token::MUL: // We encode +x as 1*x
if (right->raw_value()->ContainsDot() &&
right->raw_value()->AsNumber() == 1.0) {
SetResult(expr, cache_.kFloat64);
return;
}
break;
case Token::BIT_OR:
if (!right->raw_value()->ContainsDot() &&
right->raw_value()->AsNumber() == 0.0) {
SetResult(expr, cache_.kInt32);
return;
}
break;
default:
break;
}
}
FAIL(expr, "invalid type annotation on binary op");
}
// Numbers or the undefined literal (for empty returns).
if (expr->IsLiteral()) {
RECURSE(VisitWithExpectation(expr, Type::Any(), "invalid literal"));
return;
}
Call* call = expr->AsCall();
if (call != NULL) {
if (call->expression()->IsVariableProxy()) {
RECURSE(VisitWithExpectation(
call->expression(), Type::Any(zone()),
"only fround allowed on expression annotations"));
if (!computed_type_->Is(
Type::Function(cache_.kFloat32, Type::Number(zone()), zone()))) {
FAIL(call->expression(),
"only fround allowed on expression annotations");
}
if (call->arguments()->length() != 1) {
FAIL(call, "invalid argument count calling fround");
}
SetResult(expr, cache_.kFloat32);
return;
}
}
FAIL(expr, "invalid type annotation");
}
void AsmTyper::VisitStatements(ZoneList<Statement*>* stmts) {
for (int i = 0; i < stmts->length(); ++i) {
Statement* stmt = stmts->at(i);
RECURSE(Visit(stmt));
}
}
void AsmTyper::VisitBlock(Block* stmt) {
RECURSE(VisitStatements(stmt->statements()));
}
void AsmTyper::VisitExpressionStatement(ExpressionStatement* stmt) {
RECURSE(VisitWithExpectation(stmt->expression(), Type::Any(),
"expression statement expected to be any"));
}
void AsmTyper::VisitEmptyStatement(EmptyStatement* stmt) {}
void AsmTyper::VisitSloppyBlockFunctionStatement(
SloppyBlockFunctionStatement* stmt) {
Visit(stmt->statement());
}
void AsmTyper::VisitEmptyParentheses(EmptyParentheses* expr) { UNREACHABLE(); }
void AsmTyper::VisitIfStatement(IfStatement* stmt) {
if (!in_function_) {
FAIL(stmt, "if statement inside module body");
}
RECURSE(VisitWithExpectation(stmt->condition(), cache_.kInt32,
"if condition expected to be integer"));
RECURSE(Visit(stmt->then_statement()));
RECURSE(Visit(stmt->else_statement()));
}
void AsmTyper::VisitContinueStatement(ContinueStatement* stmt) {
if (!in_function_) {
FAIL(stmt, "continue statement inside module body");
}
}
void AsmTyper::VisitBreakStatement(BreakStatement* stmt) {
if (!in_function_) {
FAIL(stmt, "continue statement inside module body");
}
}
void AsmTyper::VisitReturnStatement(ReturnStatement* stmt) {
// Handle module return statement in VisitAsmModule.
if (!in_function_) {
return;
}
RECURSE(
VisitWithExpectation(stmt->expression(), return_type_,
"return expression expected to have return type"));
}
void AsmTyper::VisitWithStatement(WithStatement* stmt) {
FAIL(stmt, "bad with statement");
}
void AsmTyper::VisitSwitchStatement(SwitchStatement* stmt) {
if (!in_function_) {
FAIL(stmt, "switch statement inside module body");
}
RECURSE(VisitWithExpectation(stmt->tag(), cache_.kInt32,
"switch expression non-integer"));
ZoneList<CaseClause*>* clauses = stmt->cases();
for (int i = 0; i < clauses->length(); ++i) {
CaseClause* clause = clauses->at(i);
if (clause->is_default()) continue;
Expression* label = clause->label();
RECURSE(
VisitWithExpectation(label, cache_.kInt32, "case label non-integer"));
if (!label->IsLiteral()) FAIL(label, "non-literal case label");
Handle<Object> value = label->AsLiteral()->value();
int32_t value32;
if (!value->ToInt32(&value32)) FAIL(label, "illegal case label value");
// TODO(bradnelson): Detect duplicates.
ZoneList<Statement*>* stmts = clause->statements();
RECURSE(VisitStatements(stmts));
}
}
void AsmTyper::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); }
void AsmTyper::VisitDoWhileStatement(DoWhileStatement* stmt) {
if (!in_function_) {
FAIL(stmt, "do statement inside module body");
}
RECURSE(Visit(stmt->body()));
RECURSE(VisitWithExpectation(stmt->cond(), cache_.kInt32,
"do condition expected to be integer"));
}
void AsmTyper::VisitWhileStatement(WhileStatement* stmt) {
if (!in_function_) {
FAIL(stmt, "while statement inside module body");
}
RECURSE(VisitWithExpectation(stmt->cond(), cache_.kInt32,
"while condition expected to be integer"));
RECURSE(Visit(stmt->body()));
}
void AsmTyper::VisitForStatement(ForStatement* stmt) {
if (!in_function_) {
FAIL(stmt, "for statement inside module body");
}
if (stmt->init() != NULL) {
RECURSE(Visit(stmt->init()));
}
if (stmt->cond() != NULL) {
RECURSE(VisitWithExpectation(stmt->cond(), cache_.kInt32,
"for condition expected to be integer"));
}
if (stmt->next() != NULL) {
RECURSE(Visit(stmt->next()));
}
RECURSE(Visit(stmt->body()));
}
void AsmTyper::VisitForInStatement(ForInStatement* stmt) {
FAIL(stmt, "for-in statement encountered");
}
void AsmTyper::VisitForOfStatement(ForOfStatement* stmt) {
FAIL(stmt, "for-of statement encountered");
}
void AsmTyper::VisitTryCatchStatement(TryCatchStatement* stmt) {
FAIL(stmt, "try statement encountered");
}
void AsmTyper::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
FAIL(stmt, "try statement encountered");
}
void AsmTyper::VisitDebuggerStatement(DebuggerStatement* stmt) {
FAIL(stmt, "debugger statement encountered");
}
void AsmTyper::VisitFunctionLiteral(FunctionLiteral* expr) {
Scope* scope = expr->scope();
DCHECK(scope->is_function_scope());
if (in_function_) {
FAIL(expr, "invalid nested function");
}
if (!expr->bounds().upper->IsFunction()) {
FAIL(expr, "invalid function literal");
}
Type::FunctionType* type = expr->bounds().upper->AsFunction();
Type* save_return_type = return_type_;
return_type_ = type->Result();
in_function_ = true;
local_variable_type_.Clear();
RECURSE(VisitDeclarations(scope->declarations()));
RECURSE(VisitStatements(expr->body()));
in_function_ = false;
return_type_ = save_return_type;
IntersectResult(expr, type);
}
void AsmTyper::VisitNativeFunctionLiteral(NativeFunctionLiteral* expr) {
FAIL(expr, "function info literal encountered");
}
void AsmTyper::VisitDoExpression(DoExpression* expr) {
FAIL(expr, "do-expression encountered");
}
void AsmTyper::VisitConditional(Conditional* expr) {
RECURSE(VisitWithExpectation(expr->condition(), cache_.kInt32,
"condition expected to be integer"));
RECURSE(VisitWithExpectation(
expr->then_expression(), expected_type_,
"conditional then branch type mismatch with enclosing expression"));
Type* then_type = computed_type_;
RECURSE(VisitWithExpectation(
expr->else_expression(), expected_type_,
"conditional else branch type mismatch with enclosing expression"));
Type* else_type = computed_type_;
Type* type = Type::Union(then_type, else_type, zone());
if (!(type->Is(cache_.kInt32) || type->Is(cache_.kUint32) ||
type->Is(cache_.kFloat32) || type->Is(cache_.kFloat64))) {
FAIL(expr, "ill-typed conditional");
}
IntersectResult(expr, type);
}
void AsmTyper::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->var();
if (GetType(var) == NULL) {
FAIL(expr, "unbound variable");
}
Type* type = Type::Intersect(GetType(var), expected_type_, zone());
if (type->Is(cache_.kInt32)) {
type = cache_.kInt32;
}
SetType(var, type);
intish_ = 0;
IntersectResult(expr, type);
}
void AsmTyper::VisitLiteral(Literal* expr) {
intish_ = 0;
Handle<Object> value = expr->value();
if (value->IsNumber()) {
int32_t i;
uint32_t u;
if (expr->raw_value()->ContainsDot()) {
IntersectResult(expr, cache_.kFloat64);
} else if (value->ToUint32(&u)) {
IntersectResult(expr, cache_.kInt32);
} else if (value->ToInt32(&i)) {
IntersectResult(expr, cache_.kInt32);
} else {
FAIL(expr, "illegal number");
}
} else if (value->IsString()) {
IntersectResult(expr, Type::String());
} else if (value->IsUndefined()) {
IntersectResult(expr, Type::Undefined());
} else {
FAIL(expr, "illegal literal");
}
}
void AsmTyper::VisitRegExpLiteral(RegExpLiteral* expr) {
FAIL(expr, "regular expression encountered");
}
void AsmTyper::VisitObjectLiteral(ObjectLiteral* expr) {
if (in_function_) {
FAIL(expr, "object literal in function");
}
// Allowed for asm module's export declaration.
ZoneList<ObjectLiteralProperty*>* props = expr->properties();
for (int i = 0; i < props->length(); ++i) {
ObjectLiteralProperty* prop = props->at(i);
RECURSE(VisitWithExpectation(prop->value(), Type::Any(zone()),
"object property expected to be a function"));
if (!computed_type_->IsFunction()) {
FAIL(prop->value(), "non-function in function table");
}
}
IntersectResult(expr, Type::Object(zone()));
}
void AsmTyper::VisitArrayLiteral(ArrayLiteral* expr) {
if (in_function_) {
FAIL(expr, "array literal inside a function");
}
// Allowed for function tables.
ZoneList<Expression*>* values = expr->values();
Type* elem_type = Type::None(zone());
for (int i = 0; i < values->length(); ++i) {
Expression* value = values->at(i);
RECURSE(VisitWithExpectation(value, Type::Any(), "UNREACHABLE"));
if (!computed_type_->IsFunction()) {
FAIL(value, "array component expected to be a function");
}
elem_type = Type::Union(elem_type, computed_type_, zone());
}
array_size_ = values->length();
IntersectResult(expr, Type::Array(elem_type, zone()));
}
void AsmTyper::VisitAssignment(Assignment* expr) {
// Handle function tables and everything else in different passes.
if (!in_function_) {
if (expr->value()->IsArrayLiteral()) {
if (!building_function_tables_) {
return;
}
} else {
if (building_function_tables_) {
return;
}
}
}
if (expr->is_compound()) FAIL(expr, "compound assignment encountered");
Type* type = expected_type_;
RECURSE(VisitWithExpectation(
expr->value(), type, "assignment value expected to match surrounding"));
if (intish_ != 0) {
FAIL(expr, "value still an intish");
}
RECURSE(VisitWithExpectation(expr->target(), computed_type_,
"assignment target expected to match value"));
if (intish_ != 0) {
FAIL(expr, "value still an intish");
}
IntersectResult(expr, computed_type_);
}
void AsmTyper::VisitYield(Yield* expr) {
FAIL(expr, "yield expression encountered");
}
void AsmTyper::VisitThrow(Throw* expr) {
FAIL(expr, "throw statement encountered");
}
int AsmTyper::ElementShiftSize(Type* type) {
if (type->Is(cache_.kInt8) || type->Is(cache_.kUint8)) return 0;
if (type->Is(cache_.kInt16) || type->Is(cache_.kUint16)) return 1;
if (type->Is(cache_.kInt32) || type->Is(cache_.kUint32) ||
type->Is(cache_.kFloat32))
return 2;
if (type->Is(cache_.kFloat64)) return 3;
return -1;
}
void AsmTyper::VisitHeapAccess(Property* expr) {
Type::ArrayType* array_type = computed_type_->AsArray();
size_t size = array_size_;
Type* type = array_type->AsArray()->Element();
if (type->IsFunction()) {
BinaryOperation* bin = expr->key()->AsBinaryOperation();
if (bin == NULL || bin->op() != Token::BIT_AND) {
FAIL(expr->key(), "expected & in call");
}
RECURSE(VisitWithExpectation(bin->left(), cache_.kInt32,
"array index expected to be integer"));
Literal* right = bin->right()->AsLiteral();
if (right == NULL || right->raw_value()->ContainsDot()) {
FAIL(right, "call mask must be integer");
}
RECURSE(VisitWithExpectation(bin->right(), cache_.kInt32,
"call mask expected to be integer"));
if (static_cast<size_t>(right->raw_value()->AsNumber()) != size - 1) {
FAIL(right, "call mask must match function table");
}
bin->set_bounds(Bounds(cache_.kInt32));
} else {
BinaryOperation* bin = expr->key()->AsBinaryOperation();
if (bin == NULL || bin->op() != Token::SAR) {
FAIL(expr->key(), "expected >> in heap access");
}
RECURSE(VisitWithExpectation(bin->left(), cache_.kInt32,
"array index expected to be integer"));
Literal* right = bin->right()->AsLiteral();
if (right == NULL || right->raw_value()->ContainsDot()) {
FAIL(right, "heap access shift must be integer");
}
RECURSE(VisitWithExpectation(bin->right(), cache_.kInt32,
"array shift expected to be integer"));
int n = static_cast<int>(right->raw_value()->AsNumber());
int expected_shift = ElementShiftSize(type);
if (expected_shift < 0 || n != expected_shift) {
FAIL(right, "heap access shift must match element size");
}
bin->set_bounds(Bounds(cache_.kInt32));
}
IntersectResult(expr, type);
}
void AsmTyper::VisitProperty(Property* expr) {
// stdlib.Math.x
Property* inner_prop = expr->obj()->AsProperty();
if (inner_prop != NULL) {
// Get property name.
Literal* key = expr->key()->AsLiteral();
if (key == NULL || !key->IsPropertyName())
FAIL(expr, "invalid type annotation on property 2");
Handle<String> name = key->AsPropertyName();
// Check that inner property name is "Math".
Literal* math_key = inner_prop->key()->AsLiteral();
if (math_key == NULL || !math_key->IsPropertyName() ||
!math_key->AsPropertyName()->IsUtf8EqualTo(CStrVector("Math")))
FAIL(expr, "invalid type annotation on stdlib (a1)");
// Check that object is stdlib.
VariableProxy* proxy = inner_prop->obj()->AsVariableProxy();
if (proxy == NULL) FAIL(expr, "invalid type annotation on stdlib (a2)");
Variable* var = proxy->var();
if (var->location() != VariableLocation::PARAMETER || var->index() != 0)
FAIL(expr, "invalid type annotation on stdlib (a3)");
// Look up library type.
Type* type = LibType(stdlib_math_types_, name);
if (type == NULL) FAIL(expr, "unknown standard function 3 ");
SetResult(expr, type);
return;
}
// Only recurse at this point so that we avoid needing
// stdlib.Math to have a real type.
RECURSE(VisitWithExpectation(expr->obj(), Type::Any(),
"property holder expected to be object"));
// For heap view or function table access.
if (computed_type_->IsArray()) {
VisitHeapAccess(expr);
return;
}
// Get property name.
Literal* key = expr->key()->AsLiteral();
if (key == NULL || !key->IsPropertyName())
FAIL(expr, "invalid type annotation on property 3");
Handle<String> name = key->AsPropertyName();
// stdlib.x or foreign.x
VariableProxy* proxy = expr->obj()->AsVariableProxy();
if (proxy != NULL) {
Variable* var = proxy->var();
if (var->location() != VariableLocation::PARAMETER) {
FAIL(expr, "invalid type annotation on variable");
}
switch (var->index()) {
case 0: {
// Object is stdlib, look up library type.
Type* type = LibType(stdlib_types_, name);
if (type == NULL) {
FAIL(expr, "unknown standard function 4");
}
SetResult(expr, type);
return;
}
case 1:
// Object is foreign lib.
SetResult(expr, expected_type_);
return;
default:
FAIL(expr, "invalid type annotation on parameter");
}
}
FAIL(expr, "invalid property access");
}
void AsmTyper::VisitCall(Call* expr) {
RECURSE(VisitWithExpectation(expr->expression(), Type::Any(),
"callee expected to be any"));
if (computed_type_->IsFunction()) {
Type::FunctionType* fun_type = computed_type_->AsFunction();
ZoneList<Expression*>* args = expr->arguments();
if (fun_type->Arity() != args->length()) {
FAIL(expr, "call with wrong arity");
}
for (int i = 0; i < args->length(); ++i) {
Expression* arg = args->at(i);
RECURSE(VisitWithExpectation(
arg, fun_type->Parameter(i),
"call argument expected to match callee parameter"));
}
IntersectResult(expr, fun_type->Result());
} else if (computed_type_->Is(Type::Any())) {
// For foreign calls.
ZoneList<Expression*>* args = expr->arguments();
for (int i = 0; i < args->length(); ++i) {
Expression* arg = args->at(i);
RECURSE(VisitWithExpectation(arg, Type::Any(),
"foreign call argument expected to be any"));
}
IntersectResult(expr, Type::Number());
} else {
FAIL(expr, "invalid callee");
}
}
void AsmTyper::VisitCallNew(CallNew* expr) {
if (in_function_) {
FAIL(expr, "new not allowed in module function");
}
RECURSE(VisitWithExpectation(expr->expression(), Type::Any(),
"expected stdlib function"));
if (computed_type_->IsFunction()) {
Type::FunctionType* fun_type = computed_type_->AsFunction();
ZoneList<Expression*>* args = expr->arguments();
if (fun_type->Arity() != args->length())
FAIL(expr, "call with wrong arity");
for (int i = 0; i < args->length(); ++i) {
Expression* arg = args->at(i);
RECURSE(VisitWithExpectation(
arg, fun_type->Parameter(i),
"constructor argument expected to match callee parameter"));
}
IntersectResult(expr, fun_type->Result());
return;
}
FAIL(expr, "ill-typed new operator");
}
void AsmTyper::VisitCallRuntime(CallRuntime* expr) {
// Allow runtime calls for now.
}
void AsmTyper::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::NOT: // Used to encode != and !==
RECURSE(VisitWithExpectation(expr->expression(), cache_.kInt32,
"operand expected to be integer"));
IntersectResult(expr, cache_.kInt32);
return;
case Token::DELETE:
FAIL(expr, "delete operator encountered");
case Token::VOID:
FAIL(expr, "void operator encountered");
case Token::TYPEOF:
FAIL(expr, "typeof operator encountered");
default:
UNREACHABLE();
}
}
void AsmTyper::VisitCountOperation(CountOperation* expr) {
FAIL(expr, "increment or decrement operator encountered");
}
void AsmTyper::VisitIntegerBitwiseOperator(BinaryOperation* expr,
Type* left_expected,
Type* right_expected,
Type* result_type, bool conversion) {
RECURSE(VisitWithExpectation(expr->left(), left_expected,
"left bit operand expected to be integer"));
int left_intish = intish_;
Type* left_type = computed_type_;
RECURSE(VisitWithExpectation(expr->right(), right_expected,
"right bit operand expected to be integer"));
int right_intish = intish_;
Type* right_type = computed_type_;
if (left_intish > kMaxUncombinedAdditiveSteps) {
FAIL(expr, "too many consecutive additive ops");
}
if (right_intish > kMaxUncombinedAdditiveSteps) {
FAIL(expr, "too many consecutive additive ops");
}
intish_ = 0;
if (!conversion) {
if (!left_type->Is(right_type) || !right_type->Is(left_type)) {
FAIL(expr, "ill typed bitwise operation");
}
}
IntersectResult(expr, result_type);
}
void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) {
switch (expr->op()) {
case Token::COMMA: {
RECURSE(VisitWithExpectation(expr->left(), Type::Any(),
"left comma operand expected to be any"));
RECURSE(VisitWithExpectation(expr->right(), Type::Any(),
"right comma operand expected to be any"));
IntersectResult(expr, computed_type_);
return;
}
case Token::OR:
case Token::AND:
FAIL(expr, "logical operator encountered");
case Token::BIT_OR: {
// BIT_OR allows Any since it is used as a type coercion.
VisitIntegerBitwiseOperator(expr, Type::Any(), cache_.kIntegral32,
cache_.kInt32, true);
return;
}
case Token::BIT_XOR: {
// BIT_XOR allows Number since it is used as a type coercion (via ~~).
VisitIntegerBitwiseOperator(expr, Type::Number(), cache_.kIntegral32,
cache_.kInt32, true);
return;
}
case Token::SHR: {
VisitIntegerBitwiseOperator(expr, cache_.kIntegral32, cache_.kIntegral32,
cache_.kUint32, false);
return;
}
case Token::SHL:
case Token::SAR:
case Token::BIT_AND: {
VisitIntegerBitwiseOperator(expr, cache_.kIntegral32, cache_.kIntegral32,
cache_.kInt32, false);
return;
}
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD: {
RECURSE(VisitWithExpectation(
expr->left(), Type::Number(),
"left arithmetic operand expected to be number"));
Type* left_type = computed_type_;
int left_intish = intish_;
RECURSE(VisitWithExpectation(
expr->right(), Type::Number(),
"right arithmetic operand expected to be number"));
Type* right_type = computed_type_;
int right_intish = intish_;
Type* type = Type::Union(left_type, right_type, zone());
if (type->Is(cache_.kInt32) || type->Is(cache_.kUint32)) {
if (expr->op() == Token::MUL) {
if (!expr->left()->IsLiteral() && !expr->right()->IsLiteral()) {
FAIL(expr, "direct integer multiply forbidden");
}
intish_ = 0;
IntersectResult(expr, cache_.kInt32);
return;
} else {
intish_ = left_intish + right_intish + 1;
if (expr->op() == Token::ADD || expr->op() == Token::SUB) {
if (intish_ > kMaxUncombinedAdditiveSteps) {
FAIL(expr, "too many consecutive additive ops");
}
} else {
if (intish_ > kMaxUncombinedMultiplicativeSteps) {
FAIL(expr, "too many consecutive multiplicative ops");
}
}
IntersectResult(expr, cache_.kInt32);
return;
}
} else if (expr->op() == Token::MUL &&
left_type->Is(cache_.kIntegral32) &&
right_type->Is(cache_.kFloat64)) {
// For unary +, expressed as x * 1.0
IntersectResult(expr, cache_.kFloat64);
return;
} else if (type->Is(cache_.kFloat32) && expr->op() != Token::MOD) {
IntersectResult(expr, cache_.kFloat32);
return;
} else if (type->Is(cache_.kFloat64)) {
IntersectResult(expr, cache_.kFloat64);
return;
} else {
FAIL(expr, "ill-typed arithmetic operation");
}
}
default:
UNREACHABLE();
}
}
void AsmTyper::VisitCompareOperation(CompareOperation* expr) {
RECURSE(
VisitWithExpectation(expr->left(), Type::Number(),
"left comparison operand expected to be number"));
Type* left_type = computed_type_;
RECURSE(
VisitWithExpectation(expr->right(), Type::Number(),
"right comparison operand expected to be number"));
Type* right_type = computed_type_;
Type* type = Type::Union(left_type, right_type, zone());
expr->set_combined_type(type);
if (type->Is(cache_.kInt32) || type->Is(cache_.kUint32) ||
type->Is(cache_.kFloat32) || type->Is(cache_.kFloat64)) {
IntersectResult(expr, cache_.kInt32);
} else {
FAIL(expr, "ill-typed comparison operation");
}
}
void AsmTyper::VisitThisFunction(ThisFunction* expr) {
FAIL(expr, "this function not allowed");
}
void AsmTyper::VisitDeclarations(ZoneList<Declaration*>* decls) {
for (int i = 0; i < decls->length(); ++i) {
Declaration* decl = decls->at(i);
RECURSE(Visit(decl));
}
}
void AsmTyper::VisitImportDeclaration(ImportDeclaration* decl) {
FAIL(decl, "import declaration encountered");
}
void AsmTyper::VisitExportDeclaration(ExportDeclaration* decl) {
FAIL(decl, "export declaration encountered");
}
void AsmTyper::VisitClassLiteral(ClassLiteral* expr) {
FAIL(expr, "class literal not allowed");
}
void AsmTyper::VisitSpread(Spread* expr) { FAIL(expr, "spread not allowed"); }
void AsmTyper::VisitSuperPropertyReference(SuperPropertyReference* expr) {
FAIL(expr, "super property reference not allowed");
}
void AsmTyper::VisitSuperCallReference(SuperCallReference* expr) {
FAIL(expr, "call reference not allowed");
}
void AsmTyper::InitializeStdlib() {
Type* number_type = Type::Number(zone());
Type* double_type = cache_.kFloat64;
Type* double_fn1_type = Type::Function(double_type, double_type, zone());
Type* double_fn2_type =
Type::Function(double_type, double_type, double_type, zone());
Type* fround_type = Type::Function(cache_.kFloat32, number_type, zone());
Type* imul_type =
Type::Function(cache_.kInt32, cache_.kInt32, cache_.kInt32, zone());
// TODO(bradnelson): currently only approximating the proper intersection type
// (which we cannot currently represent).
Type* abs_type = Type::Function(number_type, number_type, zone());
struct Assignment {
const char* name;
Type* type;
};
const Assignment math[] = {
{"PI", double_type}, {"E", double_type},
{"LN2", double_type}, {"LN10", double_type},
{"LOG2E", double_type}, {"LOG10E", double_type},
{"SQRT2", double_type}, {"SQRT1_2", double_type},
{"imul", imul_type}, {"abs", abs_type},
{"ceil", double_fn1_type}, {"floor", double_fn1_type},
{"fround", fround_type}, {"pow", double_fn2_type},
{"exp", double_fn1_type}, {"log", double_fn1_type},
{"min", double_fn2_type}, {"max", double_fn2_type},
{"sqrt", double_fn1_type}, {"cos", double_fn1_type},
{"sin", double_fn1_type}, {"tan", double_fn1_type},
{"acos", double_fn1_type}, {"asin", double_fn1_type},
{"atan", double_fn1_type}, {"atan2", double_fn2_type}};
for (unsigned i = 0; i < arraysize(math); ++i) {
stdlib_math_types_[math[i].name] = math[i].type;
}
stdlib_types_["Infinity"] = double_type;
stdlib_types_["NaN"] = double_type;
Type* buffer_type = Type::Any(zone());
#define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \
stdlib_types_[#TypeName "Array"] = \
Type::Function(cache_.k##TypeName##Array, buffer_type, zone());
TYPED_ARRAYS(TYPED_ARRAY)
#undef TYPED_ARRAY
#define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \
stdlib_heap_types_[#TypeName "Array"] = \
Type::Function(cache_.k##TypeName##Array, buffer_type, zone());
TYPED_ARRAYS(TYPED_ARRAY)
#undef TYPED_ARRAY
}
Type* AsmTyper::LibType(ObjectTypeMap map, Handle<String> name) {
base::SmartArrayPointer<char> aname = name->ToCString();
ObjectTypeMap::iterator i = map.find(std::string(aname.get()));
if (i == map.end()) {
return NULL;
}
return i->second;
}
void AsmTyper::SetType(Variable* variable, Type* type) {
ZoneHashMap::Entry* entry;
if (in_function_) {
entry = local_variable_type_.LookupOrInsert(
variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone()));
} else {
entry = global_variable_type_.LookupOrInsert(
variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone()));
}
entry->value = reinterpret_cast<void*>(type);
}
Type* AsmTyper::GetType(Variable* variable) {
i::ZoneHashMap::Entry* entry = NULL;
if (in_function_) {
entry = local_variable_type_.Lookup(variable, ComputePointerHash(variable));
}
if (entry == NULL) {
entry =
global_variable_type_.Lookup(variable, ComputePointerHash(variable));
}
if (entry == NULL) {
return NULL;
} else {
return reinterpret_cast<Type*>(entry->value);
}
}
void AsmTyper::SetResult(Expression* expr, Type* type) {
computed_type_ = type;
expr->set_bounds(Bounds(computed_type_));
}
void AsmTyper::IntersectResult(Expression* expr, Type* type) {
computed_type_ = type;
Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone());
expr->set_bounds(Bounds(bounded_type));
}
void AsmTyper::VisitWithExpectation(Expression* expr, Type* expected_type,
const char* msg) {
Type* save = expected_type_;
expected_type_ = expected_type;
RECURSE(Visit(expr));
Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone());
if (bounded_type->Is(Type::None(zone()))) {
#ifdef DEBUG
PrintF("Computed type: ");
computed_type_->Print();
PrintF("Expected type: ");
expected_type_->Print();
#endif
FAIL(expr, msg);
}
expected_type_ = save;
}
} // namespace internal
} // namespace v8