v8/test/fuzzer/wasm-compile.cc
Clemens Hammacher 3c3e76a304 [wasm] [fuzzer] Generate sequences of kWasmStmt
We were generating sequences of instructions for generating i32, i64,
f32 and f64 values, but not for generating an instruction without a
result value. This CL adds that.

R=ahaas@chromium.org

Change-Id: I5c17d4182dfc6a827c7cdaa611ba7941b9c5d12f
Reviewed-on: https://chromium-review.googlesource.com/897790
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Commit-Queue: Clemens Hammacher <clemensh@chromium.org>
Cr-Commit-Position: refs/heads/master@{#51058}
2018-02-02 11:26:06 +00:00

829 lines
26 KiB
C++

// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <algorithm>
#include "include/v8.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects.h"
#include "src/ostreams.h"
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-module-runner.h"
#include "test/fuzzer/fuzzer-support.h"
#include "test/fuzzer/wasm-fuzzer-common.h"
typedef uint8_t byte;
namespace v8 {
namespace internal {
namespace wasm {
namespace fuzzer {
namespace {
constexpr int kMaxFunctions = 4;
constexpr int kMaxGlobals = 64;
class DataRange {
const uint8_t* data_;
size_t size_;
public:
DataRange(const uint8_t* data, size_t size) : data_(data), size_(size) {}
// Don't accidentally pass DataRange by value. This will reuse bytes and might
// lead to OOM because the end might not be reached.
// Define move constructor and move assignment, disallow copy constructor and
// copy assignment (below).
DataRange(DataRange&& other) : DataRange(other.data_, other.size_) {
other.data_ = nullptr;
other.size_ = 0;
}
DataRange& operator=(DataRange&& other) {
data_ = other.data_;
size_ = other.size_;
other.data_ = nullptr;
other.size_ = 0;
return *this;
}
size_t size() const { return size_; }
DataRange split() {
uint16_t num_bytes = get<uint16_t>() % std::max(size_t{1}, size_);
DataRange split(data_, num_bytes);
data_ += num_bytes;
size_ -= num_bytes;
return split;
}
template <typename T>
T get() {
// We want to support the case where we have less than sizeof(T) bytes
// remaining in the slice. For example, if we emit an i32 constant, it's
// okay if we don't have a full four bytes available, we'll just use what
// we have. We aren't concerned about endianness because we are generating
// arbitrary expressions.
const size_t num_bytes = std::min(sizeof(T), size_);
T result = T();
memcpy(&result, data_, num_bytes);
data_ += num_bytes;
size_ -= num_bytes;
return result;
}
DISALLOW_COPY_AND_ASSIGN(DataRange);
};
ValueType GetValueType(DataRange& data) {
switch (data.get<uint8_t>() % 4) {
case 0:
return kWasmI32;
case 1:
return kWasmI64;
case 2:
return kWasmF32;
case 3:
return kWasmF64;
}
UNREACHABLE();
}
class WasmGenerator {
template <WasmOpcode Op, ValueType... Args>
void op(DataRange& data) {
Generate<Args...>(data);
builder_->Emit(Op);
}
class BlockScope {
public:
BlockScope(WasmGenerator* gen, WasmOpcode block_type, ValueType result_type,
ValueType br_type)
: gen_(gen) {
gen->blocks_.push_back(br_type);
gen->builder_->EmitWithU8(block_type,
WasmOpcodes::ValueTypeCodeFor(result_type));
}
~BlockScope() {
gen_->builder_->Emit(kExprEnd);
gen_->blocks_.pop_back();
}
private:
WasmGenerator* const gen_;
};
template <ValueType T>
void block(DataRange& data) {
BlockScope block_scope(this, kExprBlock, T, T);
Generate<T>(data);
}
template <ValueType T>
void loop(DataRange& data) {
// When breaking to a loop header, don't provide any input value (hence
// kWasmStmt).
BlockScope block_scope(this, kExprLoop, T, kWasmStmt);
Generate<T>(data);
}
enum IfType { kIf, kIfElse };
template <ValueType T, IfType type>
void if_(DataRange& data) {
static_assert(T == kWasmStmt || type == kIfElse,
"if without else cannot produce a value");
Generate<kWasmI32>(data);
BlockScope block_scope(this, kExprIf, T, T);
Generate<T>(data);
if (type == kIfElse) {
builder_->Emit(kExprElse);
Generate<T>(data);
}
}
void br(DataRange& data) {
// There is always at least the block representing the function body.
DCHECK(!blocks_.empty());
const uint32_t target_block = data.get<uint32_t>() % blocks_.size();
const ValueType break_type = blocks_[target_block];
Generate(break_type, data);
builder_->EmitWithI32V(
kExprBr, static_cast<uint32_t>(blocks_.size()) - 1 - target_block);
}
template <ValueType wanted_type>
void br_if(DataRange& data) {
// There is always at least the block representing the function body.
DCHECK(!blocks_.empty());
const uint32_t target_block = data.get<uint32_t>() % blocks_.size();
const ValueType break_type = blocks_[target_block];
Generate(break_type, data);
Generate(kWasmI32, data);
builder_->EmitWithI32V(
kExprBrIf, static_cast<uint32_t>(blocks_.size()) - 1 - target_block);
ConvertOrGenerate(break_type, wanted_type, data);
}
// TODO(eholk): make this function constexpr once gcc supports it
static uint8_t max_alignment(WasmOpcode memop) {
switch (memop) {
case kExprI64LoadMem:
case kExprF64LoadMem:
case kExprI64StoreMem:
case kExprF64StoreMem:
return 3;
case kExprI32LoadMem:
case kExprI64LoadMem32S:
case kExprI64LoadMem32U:
case kExprF32LoadMem:
case kExprI32StoreMem:
case kExprI64StoreMem32:
case kExprF32StoreMem:
return 2;
case kExprI32LoadMem16S:
case kExprI32LoadMem16U:
case kExprI64LoadMem16S:
case kExprI64LoadMem16U:
case kExprI32StoreMem16:
case kExprI64StoreMem16:
return 1;
case kExprI32LoadMem8S:
case kExprI32LoadMem8U:
case kExprI64LoadMem8S:
case kExprI64LoadMem8U:
case kExprI32StoreMem8:
case kExprI64StoreMem8:
return 0;
default:
return 0;
}
}
template <WasmOpcode memory_op, ValueType... arg_types>
void memop(DataRange& data) {
const uint8_t align = data.get<uint8_t>() % (max_alignment(memory_op) + 1);
const uint32_t offset = data.get<uint32_t>();
// Generate the index and the arguments, if any.
Generate<kWasmI32, arg_types...>(data);
builder_->Emit(memory_op);
builder_->EmitU32V(align);
builder_->EmitU32V(offset);
}
void drop(DataRange& data) {
Generate(GetValueType(data), data);
builder_->Emit(kExprDrop);
}
template <ValueType wanted_type>
void call(DataRange& data) {
call(data, wanted_type);
}
void Convert(ValueType src, ValueType dst) {
auto idx = [](ValueType t) -> int {
switch (t) {
case kWasmI32:
return 0;
case kWasmI64:
return 1;
case kWasmF32:
return 2;
case kWasmF64:
return 3;
default:
UNREACHABLE();
}
};
static constexpr WasmOpcode kConvertOpcodes[] = {
// {i32, i64, f32, f64} -> i32
kExprNop, kExprI32ConvertI64, kExprI32SConvertF32, kExprI32SConvertF64,
// {i32, i64, f32, f64} -> i64
kExprI64SConvertI32, kExprNop, kExprI64SConvertF32, kExprI64SConvertF64,
// {i32, i64, f32, f64} -> f32
kExprF32SConvertI32, kExprF32SConvertI64, kExprNop, kExprF32ConvertF64,
// {i32, i64, f32, f64} -> f64
kExprF64SConvertI32, kExprF64SConvertI64, kExprF64ConvertF32, kExprNop};
int arr_idx = idx(dst) << 2 | idx(src);
builder_->Emit(kConvertOpcodes[arr_idx]);
}
void ConvertOrGenerate(ValueType src, ValueType dst, DataRange& data) {
if (src == dst) return;
if (src == kWasmStmt && dst != kWasmStmt) {
Generate(dst, data);
} else if (dst == kWasmStmt && src != kWasmStmt) {
builder_->Emit(kExprDrop);
} else {
Convert(src, dst);
}
}
void call(DataRange& data, ValueType wanted_type) {
int func_index = data.get<uint8_t>() % functions_.size();
FunctionSig* sig = functions_[func_index];
// Generate arguments.
for (size_t i = 0; i < sig->parameter_count(); ++i) {
Generate(sig->GetParam(i), data);
}
// Emit call.
builder_->EmitWithU32V(kExprCallFunction, func_index);
// Convert the return value to the wanted type.
ValueType return_type =
sig->return_count() == 0 ? kWasmStmt : sig->GetReturn(0);
if (return_type == kWasmStmt && wanted_type != kWasmStmt) {
// The call did not generate a value. Thus just generate it here.
Generate(wanted_type, data);
} else if (return_type != kWasmStmt && wanted_type == kWasmStmt) {
// The call did generate a value, but we did not want one.
builder_->Emit(kExprDrop);
} else if (return_type != wanted_type) {
// If the returned type does not match the wanted type, convert it.
Convert(return_type, wanted_type);
}
}
struct Var {
uint32_t index;
ValueType type = kWasmStmt;
Var() = default;
Var(uint32_t index, ValueType type) : index(index), type(type) {}
bool is_valid() const { return type != kWasmStmt; }
};
Var GetRandomLocal(DataRange& data) {
uint32_t num_params =
static_cast<uint32_t>(builder_->signature()->parameter_count());
uint32_t num_locals = static_cast<uint32_t>(locals_.size());
if (num_params + num_locals == 0) return {};
uint32_t index = data.get<uint8_t>() % (num_params + num_locals);
ValueType type = index < num_params ? builder_->signature()->GetParam(index)
: locals_[index - num_params];
return {index, type};
}
template <ValueType wanted_type>
void local_op(DataRange& data, WasmOpcode opcode) {
Var local = GetRandomLocal(data);
// If there are no locals and no parameters, just generate any value (if a
// value is needed), or do nothing.
if (!local.is_valid()) {
if (wanted_type == kWasmStmt) return;
return Generate<wanted_type>(data);
}
if (opcode != kExprGetLocal) Generate(local.type, data);
builder_->EmitWithU32V(opcode, local.index);
if (wanted_type != kWasmStmt && local.type != wanted_type) {
Convert(local.type, wanted_type);
}
}
template <ValueType wanted_type>
void get_local(DataRange& data) {
static_assert(wanted_type != kWasmStmt, "illegal type");
local_op<wanted_type>(data, kExprGetLocal);
}
void set_local(DataRange& data) { local_op<kWasmStmt>(data, kExprSetLocal); }
template <ValueType wanted_type>
void tee_local(DataRange& data) {
local_op<wanted_type>(data, kExprTeeLocal);
}
Var GetRandomGlobal(DataRange& data, bool ensure_mutable) {
uint32_t index;
if (ensure_mutable) {
if (mutable_globals_.empty()) return {};
index = mutable_globals_[data.get<uint8_t>() % mutable_globals_.size()];
} else {
if (globals_.empty()) return {};
index = data.get<uint8_t>() % globals_.size();
}
ValueType type = globals_[index];
return {index, type};
}
template <ValueType wanted_type>
void global_op(DataRange& data) {
constexpr bool is_set = wanted_type == kWasmStmt;
Var global = GetRandomGlobal(data, is_set);
// If there are no globals, just generate any value (if a value is needed),
// or do nothing.
if (!global.is_valid()) {
if (wanted_type == kWasmStmt) return;
return Generate<wanted_type>(data);
}
if (is_set) Generate(global.type, data);
builder_->EmitWithU32V(is_set ? kExprSetGlobal : kExprGetGlobal,
global.index);
if (!is_set && global.type != wanted_type) {
Convert(global.type, wanted_type);
}
}
template <ValueType wanted_type>
void get_global(DataRange& data) {
static_assert(wanted_type != kWasmStmt, "illegal type");
global_op<wanted_type>(data);
}
void set_global(DataRange& data) { global_op<kWasmStmt>(data); }
template <ValueType T1, ValueType T2>
void sequence(DataRange& data) {
Generate<T1, T2>(data);
}
void current_memory(DataRange& data) {
builder_->EmitWithU8(kExprMemorySize, 0);
}
void grow_memory(DataRange& data);
using generate_fn = void (WasmGenerator::*const)(DataRange&);
template <size_t N>
void GenerateOneOf(generate_fn (&alternates)[N], DataRange& data) {
static_assert(N < std::numeric_limits<uint8_t>::max(),
"Too many alternates. Replace with a bigger type if needed.");
const auto which = data.get<uint8_t>();
generate_fn alternate = alternates[which % N];
(this->*alternate)(data);
}
struct GeneratorRecursionScope {
explicit GeneratorRecursionScope(WasmGenerator* gen) : gen(gen) {
++gen->recursion_depth;
DCHECK_LE(gen->recursion_depth, kMaxRecursionDepth);
}
~GeneratorRecursionScope() {
DCHECK_GT(gen->recursion_depth, 0);
--gen->recursion_depth;
}
WasmGenerator* gen;
};
public:
WasmGenerator(WasmFunctionBuilder* fn,
const std::vector<FunctionSig*>& functions,
const std::vector<ValueType>& globals,
const std::vector<uint8_t>& mutable_globals, DataRange& data)
: builder_(fn),
functions_(functions),
globals_(globals),
mutable_globals_(mutable_globals) {
FunctionSig* sig = fn->signature();
DCHECK_GE(1, sig->return_count());
blocks_.push_back(sig->return_count() == 0 ? kWasmStmt : sig->GetReturn(0));
constexpr uint32_t kMaxLocals = 32;
locals_.resize(data.get<uint8_t>() % kMaxLocals);
for (ValueType& local : locals_) {
local = GetValueType(data);
fn->AddLocal(local);
}
}
void Generate(ValueType type, DataRange& data);
template <ValueType T>
void Generate(DataRange& data);
template <ValueType T1, ValueType T2, ValueType... Ts>
void Generate(DataRange& data) {
// TODO(clemensh): Implement a more even split.
auto first_data = data.split();
Generate<T1>(first_data);
Generate<T2, Ts...>(data);
}
private:
WasmFunctionBuilder* builder_;
std::vector<ValueType> blocks_;
const std::vector<FunctionSig*>& functions_;
std::vector<ValueType> locals_;
std::vector<ValueType> globals_;
std::vector<uint8_t> mutable_globals_; // indexes into {globals_}.
uint32_t recursion_depth = 0;
static constexpr uint32_t kMaxRecursionDepth = 64;
bool recursion_limit_reached() {
return recursion_depth >= kMaxRecursionDepth;
}
};
template <>
void WasmGenerator::Generate<kWasmStmt>(DataRange& data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data.size() == 0) return;
constexpr generate_fn alternates[] = {
&WasmGenerator::sequence<kWasmStmt, kWasmStmt>,
&WasmGenerator::block<kWasmStmt>,
&WasmGenerator::loop<kWasmStmt>,
&WasmGenerator::if_<kWasmStmt, kIf>,
&WasmGenerator::if_<kWasmStmt, kIfElse>,
&WasmGenerator::br,
&WasmGenerator::br_if<kWasmStmt>,
&WasmGenerator::memop<kExprI32StoreMem, kWasmI32>,
&WasmGenerator::memop<kExprI32StoreMem8, kWasmI32>,
&WasmGenerator::memop<kExprI32StoreMem16, kWasmI32>,
&WasmGenerator::memop<kExprI64StoreMem, kWasmI64>,
&WasmGenerator::memop<kExprI64StoreMem8, kWasmI64>,
&WasmGenerator::memop<kExprI64StoreMem16, kWasmI64>,
&WasmGenerator::memop<kExprI64StoreMem32, kWasmI64>,
&WasmGenerator::memop<kExprF32StoreMem, kWasmF32>,
&WasmGenerator::memop<kExprF64StoreMem, kWasmF64>,
&WasmGenerator::drop,
&WasmGenerator::call<kWasmStmt>,
&WasmGenerator::set_local,
&WasmGenerator::set_global};
GenerateOneOf(alternates, data);
}
template <>
void WasmGenerator::Generate<kWasmI32>(DataRange& data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data.size() <= sizeof(uint32_t)) {
builder_->EmitI32Const(data.get<uint32_t>());
return;
}
constexpr generate_fn alternates[] = {
&WasmGenerator::sequence<kWasmStmt, kWasmI32>,
&WasmGenerator::op<kExprI32Eqz, kWasmI32>,
&WasmGenerator::op<kExprI32Eq, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Ne, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32LtS, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32LtU, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32GeS, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32GeU, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI64Eqz, kWasmI64>,
&WasmGenerator::op<kExprI64Eq, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Ne, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64LtS, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64LtU, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64GeS, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64GeU, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprF32Eq, kWasmF32, kWasmF32>,
&WasmGenerator::op<kExprF32Ne, kWasmF32, kWasmF32>,
&WasmGenerator::op<kExprF32Lt, kWasmF32, kWasmF32>,
&WasmGenerator::op<kExprF32Ge, kWasmF32, kWasmF32>,
&WasmGenerator::op<kExprF64Eq, kWasmF64, kWasmF64>,
&WasmGenerator::op<kExprF64Ne, kWasmF64, kWasmF64>,
&WasmGenerator::op<kExprF64Lt, kWasmF64, kWasmF64>,
&WasmGenerator::op<kExprF64Ge, kWasmF64, kWasmF64>,
&WasmGenerator::op<kExprI32Add, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Sub, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Mul, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32DivS, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32DivU, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32RemS, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32RemU, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32And, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Ior, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Xor, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Shl, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32ShrU, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32ShrS, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Ror, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Rol, kWasmI32, kWasmI32>,
&WasmGenerator::op<kExprI32Clz, kWasmI32>,
&WasmGenerator::op<kExprI32Ctz, kWasmI32>,
&WasmGenerator::op<kExprI32Popcnt, kWasmI32>,
&WasmGenerator::op<kExprI32ConvertI64, kWasmI64>,
&WasmGenerator::op<kExprI32SConvertF32, kWasmF32>,
&WasmGenerator::op<kExprI32UConvertF32, kWasmF32>,
&WasmGenerator::op<kExprI32SConvertF64, kWasmF64>,
&WasmGenerator::op<kExprI32UConvertF64, kWasmF64>,
&WasmGenerator::op<kExprI32ReinterpretF32, kWasmF32>,
&WasmGenerator::block<kWasmI32>,
&WasmGenerator::loop<kWasmI32>,
&WasmGenerator::if_<kWasmI32, kIfElse>,
&WasmGenerator::br_if<kWasmI32>,
&WasmGenerator::memop<kExprI32LoadMem>,
&WasmGenerator::memop<kExprI32LoadMem8S>,
&WasmGenerator::memop<kExprI32LoadMem8U>,
&WasmGenerator::memop<kExprI32LoadMem16S>,
&WasmGenerator::memop<kExprI32LoadMem16U>,
&WasmGenerator::current_memory,
&WasmGenerator::grow_memory,
&WasmGenerator::get_local<kWasmI32>,
&WasmGenerator::tee_local<kWasmI32>,
&WasmGenerator::get_global<kWasmI32>,
&WasmGenerator::call<kWasmI32>};
GenerateOneOf(alternates, data);
}
template <>
void WasmGenerator::Generate<kWasmI64>(DataRange& data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data.size() <= sizeof(uint64_t)) {
builder_->EmitI64Const(data.get<int64_t>());
return;
}
constexpr generate_fn alternates[] = {
&WasmGenerator::sequence<kWasmStmt, kWasmI64>,
&WasmGenerator::op<kExprI64Add, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Sub, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Mul, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64DivS, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64DivU, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64RemS, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64RemU, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64And, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Ior, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Xor, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Shl, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64ShrU, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64ShrS, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Ror, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Rol, kWasmI64, kWasmI64>,
&WasmGenerator::op<kExprI64Clz, kWasmI64>,
&WasmGenerator::op<kExprI64Ctz, kWasmI64>,
&WasmGenerator::op<kExprI64Popcnt, kWasmI64>,
&WasmGenerator::block<kWasmI64>,
&WasmGenerator::loop<kWasmI64>,
&WasmGenerator::if_<kWasmI64, kIfElse>,
&WasmGenerator::br_if<kWasmI64>,
&WasmGenerator::memop<kExprI64LoadMem>,
&WasmGenerator::memop<kExprI64LoadMem8S>,
&WasmGenerator::memop<kExprI64LoadMem8U>,
&WasmGenerator::memop<kExprI64LoadMem16S>,
&WasmGenerator::memop<kExprI64LoadMem16U>,
&WasmGenerator::memop<kExprI64LoadMem32S>,
&WasmGenerator::memop<kExprI64LoadMem32U>,
&WasmGenerator::get_local<kWasmI64>,
&WasmGenerator::tee_local<kWasmI64>,
&WasmGenerator::get_global<kWasmI64>,
&WasmGenerator::call<kWasmI64>};
GenerateOneOf(alternates, data);
}
template <>
void WasmGenerator::Generate<kWasmF32>(DataRange& data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data.size() <= sizeof(float)) {
builder_->EmitF32Const(data.get<float>());
return;
}
constexpr generate_fn alternates[] = {
&WasmGenerator::sequence<kWasmStmt, kWasmF32>,
&WasmGenerator::op<kExprF32Add, kWasmF32, kWasmF32>,
&WasmGenerator::op<kExprF32Sub, kWasmF32, kWasmF32>,
&WasmGenerator::op<kExprF32Mul, kWasmF32, kWasmF32>,
&WasmGenerator::block<kWasmF32>,
&WasmGenerator::loop<kWasmF32>,
&WasmGenerator::if_<kWasmF32, kIfElse>,
&WasmGenerator::br_if<kWasmF32>,
&WasmGenerator::memop<kExprF32LoadMem>,
&WasmGenerator::get_local<kWasmF32>,
&WasmGenerator::tee_local<kWasmF32>,
&WasmGenerator::get_global<kWasmF32>,
&WasmGenerator::call<kWasmF32>};
GenerateOneOf(alternates, data);
}
template <>
void WasmGenerator::Generate<kWasmF64>(DataRange& data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data.size() <= sizeof(double)) {
builder_->EmitF64Const(data.get<double>());
return;
}
constexpr generate_fn alternates[] = {
&WasmGenerator::sequence<kWasmStmt, kWasmF64>,
&WasmGenerator::op<kExprF64Add, kWasmF64, kWasmF64>,
&WasmGenerator::op<kExprF64Sub, kWasmF64, kWasmF64>,
&WasmGenerator::op<kExprF64Mul, kWasmF64, kWasmF64>,
&WasmGenerator::block<kWasmF64>,
&WasmGenerator::loop<kWasmF64>,
&WasmGenerator::if_<kWasmF64, kIfElse>,
&WasmGenerator::br_if<kWasmF64>,
&WasmGenerator::memop<kExprF64LoadMem>,
&WasmGenerator::get_local<kWasmF64>,
&WasmGenerator::tee_local<kWasmF64>,
&WasmGenerator::get_global<kWasmF64>,
&WasmGenerator::call<kWasmF64>};
GenerateOneOf(alternates, data);
}
void WasmGenerator::grow_memory(DataRange& data) {
Generate<kWasmI32>(data);
builder_->EmitWithU8(kExprGrowMemory, 0);
}
void WasmGenerator::Generate(ValueType type, DataRange& data) {
switch (type) {
case kWasmStmt:
return Generate<kWasmStmt>(data);
case kWasmI32:
return Generate<kWasmI32>(data);
case kWasmI64:
return Generate<kWasmI64>(data);
case kWasmF32:
return Generate<kWasmF32>(data);
case kWasmF64:
return Generate<kWasmF64>(data);
default:
UNREACHABLE();
}
}
FunctionSig* GenerateSig(Zone* zone, DataRange& data) {
// Generate enough parameters to spill some to the stack.
constexpr int kMaxParameters = 15;
int num_params = int{data.get<uint8_t>()} % (kMaxParameters + 1);
bool has_return = data.get<bool>();
FunctionSig::Builder builder(zone, has_return ? 1 : 0, num_params);
if (has_return) builder.AddReturn(GetValueType(data));
for (int i = 0; i < num_params; ++i) builder.AddParam(GetValueType(data));
return builder.Build();
}
} // namespace
class WasmCompileFuzzer : public WasmExecutionFuzzer {
bool GenerateModule(
Isolate* isolate, Zone* zone, const uint8_t* data, size_t size,
ZoneBuffer& buffer, int32_t& num_args,
std::unique_ptr<WasmValue[]>& interpreter_args,
std::unique_ptr<Handle<Object>[]>& compiler_args) override {
TestSignatures sigs;
WasmModuleBuilder builder(zone);
DataRange range(data, static_cast<uint32_t>(size));
std::vector<FunctionSig*> function_signatures;
function_signatures.push_back(sigs.i_iii());
static_assert(kMaxFunctions >= 1, "need min. 1 function");
int num_functions = 1 + (range.get<uint8_t>() % kMaxFunctions);
for (int i = 1; i < num_functions; ++i) {
function_signatures.push_back(GenerateSig(zone, range));
}
int num_globals = range.get<uint8_t>() % (kMaxGlobals + 1);
std::vector<ValueType> globals;
std::vector<uint8_t> mutable_globals;
globals.reserve(num_globals);
mutable_globals.reserve(num_globals);
for (int i = 0; i < num_globals; ++i) {
ValueType type = GetValueType(range);
const bool exported = range.get<bool>();
// 1/8 of globals are immutable.
const bool mutability = (range.get<uint8_t>() % 8) != 0;
builder.AddGlobal(type, exported, mutability, WasmInitExpr());
globals.push_back(type);
if (mutability) mutable_globals.push_back(static_cast<uint8_t>(i));
}
for (int i = 0; i < num_functions; ++i) {
DataRange function_range =
i == num_functions - 1 ? std::move(range) : range.split();
FunctionSig* sig = function_signatures[i];
WasmFunctionBuilder* f = builder.AddFunction(sig);
WasmGenerator gen(f, function_signatures, globals, mutable_globals,
function_range);
ValueType return_type =
sig->return_count() == 0 ? kWasmStmt : sig->GetReturn(0);
gen.Generate(return_type, function_range);
f->Emit(kExprEnd);
if (i == 0) builder.AddExport(CStrVector("main"), f);
}
builder.SetMaxMemorySize(32);
builder.WriteTo(buffer);
num_args = 3;
interpreter_args.reset(
new WasmValue[3]{WasmValue(1), WasmValue(2), WasmValue(3)});
compiler_args.reset(new Handle<Object>[3]{
handle(Smi::FromInt(1), isolate), handle(Smi::FromInt(2), isolate),
handle(Smi::FromInt(3), isolate)});
return true;
}
};
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
constexpr bool require_valid = true;
return WasmCompileFuzzer().FuzzWasmModule(data, size, require_valid);
}
} // namespace fuzzer
} // namespace wasm
} // namespace internal
} // namespace v8