v8/test/cctest/test-shared-strings.cc
Patrick Thier cc3c93f1a0 [string] Make String internalization threadsafe for shared strings
This CL fixes 2 issues with string internalization when the string table
is shared:
1. In-place migration of a string's map to Internalized was done before
   it was sure that the string is going to be internalized (outside the
   critical section). To fix this problem StringTableKey::AsHandle() is
   now split into StringTableKey::PrepareForInsertion(), which is
   invoked outside the critical section and creates a copy if
   necessary, and StringTableKey::GetHandleForInsertion(), which is
   invoked inside the critical section only for string table misses.
   Migration of the map is handled by this method.
2. TryStringToIndexOrLookupExisting() didn't handle already internalized
   strings. So far this was impossible, as this method was only invoked
   for strings that were checked not to be internalized. However with
   a shared string table, the string could be internalized after the
   checks.

Bug: v8:12007
Change-Id: I193d6b54dc41360eee47d21cbcaa36d2652d85dd
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3368103
Reviewed-by: Shu-yu Guo <syg@chromium.org>
Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Commit-Queue: Patrick Thier <pthier@chromium.org>
Cr-Commit-Position: refs/heads/main@{#78600}
2022-01-13 11:32:25 +00:00

707 lines
26 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "include/v8-initialization.h"
#include "src/base/strings.h"
#include "src/heap/factory.h"
#include "src/heap/heap-inl.h"
#include "src/objects/objects-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-utils.h"
namespace v8 {
namespace internal {
namespace test_shared_strings {
class MultiClientIsolateTest {
public:
MultiClientIsolateTest() {
std::unique_ptr<v8::ArrayBuffer::Allocator> allocator(
v8::ArrayBuffer::Allocator::NewDefaultAllocator());
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = allocator.get();
shared_isolate_ =
reinterpret_cast<v8::Isolate*>(Isolate::NewShared(create_params));
}
~MultiClientIsolateTest() {
for (v8::Isolate* client_isolate : client_isolates_) {
client_isolate->Dispose();
}
Isolate::Delete(i_shared_isolate());
}
v8::Isolate* shared_isolate() const { return shared_isolate_; }
Isolate* i_shared_isolate() const {
return reinterpret_cast<Isolate*>(shared_isolate_);
}
const std::vector<v8::Isolate*>& client_isolates() const {
return client_isolates_;
}
v8::Isolate* NewClientIsolate() {
CHECK_NOT_NULL(shared_isolate_);
std::unique_ptr<v8::ArrayBuffer::Allocator> allocator(
v8::ArrayBuffer::Allocator::NewDefaultAllocator());
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = allocator.get();
create_params.experimental_attach_to_shared_isolate = shared_isolate_;
v8::Isolate* client = v8::Isolate::New(create_params);
{
base::MutexGuard vector_write_guard(&vector_mutex_);
client_isolates_.push_back(client);
}
return client;
}
private:
v8::Isolate* shared_isolate_;
std::vector<v8::Isolate*> client_isolates_;
base::Mutex vector_mutex_;
};
UNINITIALIZED_TEST(InPlaceInternalizableStringsAreShared) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
v8::Isolate* isolate1 = test.NewClientIsolate();
Isolate* i_isolate1 = reinterpret_cast<Isolate*>(isolate1);
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Old generation 1- and 2-byte seq strings are in-place internalizable.
Handle<String> old_one_byte_seq =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
CHECK(old_one_byte_seq->InSharedHeap());
Handle<String> old_two_byte_seq =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(old_two_byte_seq->InSharedHeap());
// Young generation are not internalizable and not shared when sharing the
// string table.
Handle<String> young_one_byte_seq =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kYoung);
CHECK(!young_one_byte_seq->InSharedHeap());
Handle<String> young_two_byte_seq =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
CHECK(!young_two_byte_seq->InSharedHeap());
// Internalized strings are shared.
Handle<String> one_byte_intern = factory1->NewOneByteInternalizedString(
base::OneByteVector(raw_one_byte), 1);
CHECK(one_byte_intern->InSharedHeap());
Handle<String> two_byte_intern =
factory1->NewTwoByteInternalizedString(two_byte, 1);
CHECK(two_byte_intern->InSharedHeap());
}
UNINITIALIZED_TEST(InPlaceInternalization) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
v8::Isolate* isolate1 = test.NewClientIsolate();
v8::Isolate* isolate2 = test.NewClientIsolate();
Isolate* i_isolate1 = reinterpret_cast<Isolate*>(isolate1);
Factory* factory1 = i_isolate1->factory();
Isolate* i_isolate2 = reinterpret_cast<Isolate*>(isolate2);
Factory* factory2 = i_isolate2->factory();
HandleScope scope1(i_isolate1);
HandleScope scope2(i_isolate2);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Allocate two in-place internalizable strings in isolate1 then intern
// them.
Handle<String> old_one_byte_seq1 =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> old_two_byte_seq1 =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
Handle<String> one_byte_intern1 =
factory1->InternalizeString(old_one_byte_seq1);
Handle<String> two_byte_intern1 =
factory1->InternalizeString(old_two_byte_seq1);
CHECK(old_one_byte_seq1->InSharedHeap());
CHECK(old_two_byte_seq1->InSharedHeap());
CHECK(one_byte_intern1->InSharedHeap());
CHECK(two_byte_intern1->InSharedHeap());
CHECK(old_one_byte_seq1.equals(one_byte_intern1));
CHECK(old_two_byte_seq1.equals(two_byte_intern1));
CHECK_EQ(*old_one_byte_seq1, *one_byte_intern1);
CHECK_EQ(*old_two_byte_seq1, *two_byte_intern1);
// Allocate two in-place internalizable strings with the same contents in
// isolate2 then intern them. They should be the same as the interned strings
// from isolate1.
Handle<String> old_one_byte_seq2 =
factory2->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> old_two_byte_seq2 =
factory2->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
Handle<String> one_byte_intern2 =
factory2->InternalizeString(old_one_byte_seq2);
Handle<String> two_byte_intern2 =
factory2->InternalizeString(old_two_byte_seq2);
CHECK(old_one_byte_seq2->InSharedHeap());
CHECK(old_two_byte_seq2->InSharedHeap());
CHECK(one_byte_intern2->InSharedHeap());
CHECK(two_byte_intern2->InSharedHeap());
CHECK(!old_one_byte_seq2.equals(one_byte_intern2));
CHECK(!old_two_byte_seq2.equals(two_byte_intern2));
CHECK_NE(*old_one_byte_seq2, *one_byte_intern2);
CHECK_NE(*old_two_byte_seq2, *two_byte_intern2);
CHECK_EQ(*one_byte_intern1, *one_byte_intern2);
CHECK_EQ(*two_byte_intern1, *two_byte_intern2);
}
UNINITIALIZED_TEST(YoungInternalization) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
v8::Isolate* isolate1 = test.NewClientIsolate();
v8::Isolate* isolate2 = test.NewClientIsolate();
Isolate* i_isolate1 = reinterpret_cast<Isolate*>(isolate1);
Factory* factory1 = i_isolate1->factory();
Isolate* i_isolate2 = reinterpret_cast<Isolate*>(isolate2);
Factory* factory2 = i_isolate2->factory();
HandleScope scope1(i_isolate1);
HandleScope scope2(i_isolate2);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Allocate two young strings in isolate1 then intern them. Young strings
// aren't in-place internalizable and are copied when internalized.
Handle<String> young_one_byte_seq1 =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kYoung);
Handle<String> young_two_byte_seq1 =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
Handle<String> one_byte_intern1 =
factory1->InternalizeString(young_one_byte_seq1);
Handle<String> two_byte_intern1 =
factory1->InternalizeString(young_two_byte_seq1);
CHECK(!young_one_byte_seq1->InSharedHeap());
CHECK(!young_two_byte_seq1->InSharedHeap());
CHECK(one_byte_intern1->InSharedHeap());
CHECK(two_byte_intern1->InSharedHeap());
CHECK(!young_one_byte_seq1.equals(one_byte_intern1));
CHECK(!young_two_byte_seq1.equals(two_byte_intern1));
CHECK_NE(*young_one_byte_seq1, *one_byte_intern1);
CHECK_NE(*young_two_byte_seq1, *two_byte_intern1);
// Allocate two young strings with the same contents in isolate2 then intern
// them. They should be the same as the interned strings from isolate1.
Handle<String> young_one_byte_seq2 =
factory2->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kYoung);
Handle<String> young_two_byte_seq2 =
factory2->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
Handle<String> one_byte_intern2 =
factory2->InternalizeString(young_one_byte_seq2);
Handle<String> two_byte_intern2 =
factory2->InternalizeString(young_two_byte_seq2);
CHECK(!young_one_byte_seq2.equals(one_byte_intern2));
CHECK(!young_two_byte_seq2.equals(two_byte_intern2));
CHECK_NE(*young_one_byte_seq2, *one_byte_intern2);
CHECK_NE(*young_two_byte_seq2, *two_byte_intern2);
CHECK_EQ(*one_byte_intern1, *one_byte_intern2);
CHECK_EQ(*two_byte_intern1, *two_byte_intern2);
}
class ConcurrentStringThreadBase : public v8::base::Thread {
public:
ConcurrentStringThreadBase(const char* name, MultiClientIsolateTest* test,
Handle<FixedArray> shared_strings,
base::Semaphore* sema_ready,
base::Semaphore* sema_execute_start,
base::Semaphore* sema_execute_complete)
: v8::base::Thread(base::Thread::Options(name)), // typeid(this).name?
test_(test),
shared_strings_(shared_strings),
sema_ready_(sema_ready),
sema_execute_start_(sema_execute_start),
sema_execute_complete_(sema_execute_complete) {}
virtual void Setup() {}
virtual void RunForString(Handle<String> string) = 0;
virtual void Teardown() {}
void Run() override {
isolate = test_->NewClientIsolate();
i_isolate = reinterpret_cast<Isolate*>(isolate);
Setup();
sema_ready_->Signal();
sema_execute_start_->Wait();
HandleScope scope(i_isolate);
for (int i = 0; i < shared_strings_->length(); i++) {
Handle<String> input_string(String::cast(shared_strings_->get(i)),
i_isolate);
RunForString(input_string);
}
sema_execute_complete_->Signal();
Teardown();
}
protected:
v8::Isolate* isolate;
Isolate* i_isolate;
MultiClientIsolateTest* test_;
Handle<FixedArray> shared_strings_;
base::Semaphore* sema_ready_;
base::Semaphore* sema_execute_start_;
base::Semaphore* sema_execute_complete_;
};
enum TestHitOrMiss { kTestMiss, kTestHit };
class ConcurrentInternalizationThread final
: public ConcurrentStringThreadBase {
public:
ConcurrentInternalizationThread(MultiClientIsolateTest* test,
Handle<FixedArray> shared_strings,
TestHitOrMiss hit_or_miss,
base::Semaphore* sema_ready,
base::Semaphore* sema_execute_start,
base::Semaphore* sema_execute_complete)
: ConcurrentStringThreadBase("ConcurrentInternalizationThread", test,
shared_strings, sema_ready,
sema_execute_start, sema_execute_complete),
hit_or_miss_(hit_or_miss) {}
void Setup() override { factory = i_isolate->factory(); }
void RunForString(Handle<String> input_string) override {
CHECK(input_string->IsShared());
Handle<String> interned = factory->InternalizeString(input_string);
CHECK(interned->IsShared());
if (hit_or_miss_ == kTestMiss) {
CHECK_EQ(*input_string, *interned);
} else {
// TODO(v8:12007): In-place internalization currently do not migrate
// shared strings to ThinStrings. This is triviailly threadsafe for
// character access but bad for performance, as run-time
// internalizations do not speed up comparisons for shared strings.
CHECK(!input_string->IsThinString());
CHECK_NE(*input_string, *interned);
CHECK(String::Equals(i_isolate, input_string, interned));
}
}
private:
TestHitOrMiss hit_or_miss_;
Factory* factory;
};
namespace {
Handle<FixedArray> CreateSharedOneByteStrings(Isolate* isolate,
Factory* factory, int count,
bool internalize) {
Handle<FixedArray> shared_strings =
factory->NewFixedArray(count, AllocationType::kSharedOld);
for (int i = 0; i < count; i++) {
char* ascii = new char[i + 3];
// Don't make single character strings, which will end up deduplicating to
// an RO string and mess up the string table hit test.
for (int j = 0; j < i + 2; j++) ascii[j] = 'a';
ascii[i + 2] = '\0';
if (internalize) {
// When testing concurrent string table hits, pre-internalize a string of
// the same contents so all subsequent internalizations are hits.
factory->InternalizeString(factory->NewStringFromAsciiChecked(ascii));
}
Handle<String> string = String::Share(
isolate,
factory->NewStringFromAsciiChecked(ascii, AllocationType::kOld));
CHECK(string->IsShared());
string->EnsureHash();
shared_strings->set(i, *string);
delete[] ascii;
}
return shared_strings;
}
void TestConcurrentInternalization(TestHitOrMiss hit_or_miss) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
constexpr int kThreads = 4;
constexpr int kStrings = 4096;
v8::Isolate* isolate = test.NewClientIsolate();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
Handle<FixedArray> shared_strings = CreateSharedOneByteStrings(
i_isolate, factory, kStrings, hit_or_miss == kTestHit);
base::Semaphore sema_ready(0);
base::Semaphore sema_execute_start(0);
base::Semaphore sema_execute_complete(0);
std::vector<std::unique_ptr<ConcurrentInternalizationThread>> threads;
for (int i = 0; i < kThreads; i++) {
auto thread = std::make_unique<ConcurrentInternalizationThread>(
&test, shared_strings, hit_or_miss, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
for (int i = 0; i < kThreads; i++) sema_ready.Wait();
for (int i = 0; i < kThreads; i++) sema_execute_start.Signal();
for (int i = 0; i < kThreads; i++) sema_execute_complete.Wait();
for (auto& thread : threads) {
thread->Join();
}
}
} // namespace
UNINITIALIZED_TEST(ConcurrentInternalizationMiss) {
TestConcurrentInternalization(kTestMiss);
}
UNINITIALIZED_TEST(ConcurrentInternalizationHit) {
TestConcurrentInternalization(kTestHit);
}
class ConcurrentStringTableLookupThread final
: public ConcurrentStringThreadBase {
public:
ConcurrentStringTableLookupThread(MultiClientIsolateTest* test,
Handle<FixedArray> shared_strings,
base::Semaphore* sema_ready,
base::Semaphore* sema_execute_start,
base::Semaphore* sema_execute_complete)
: ConcurrentStringThreadBase("ConcurrentStringTableLookup", test,
shared_strings, sema_ready,
sema_execute_start, sema_execute_complete) {}
void RunForString(Handle<String> input_string) override {
CHECK(input_string->IsShared());
Object result = Object(StringTable::TryStringToIndexOrLookupExisting(
i_isolate, input_string->ptr()));
if (result.IsString()) {
String internalized = String::cast(result);
CHECK(internalized.IsInternalizedString());
CHECK_IMPLIES(input_string->IsInternalizedString(),
*input_string == internalized);
} else {
CHECK_EQ(Smi::cast(result).value(), ResultSentinel::kNotFound);
}
}
};
UNINITIALIZED_TEST(ConcurrentStringTableLookup) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
constexpr int kTotalThreads = 4;
constexpr int kInternalizationThreads = 1;
constexpr int kStrings = 4096;
v8::Isolate* isolate = test.NewClientIsolate();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
Handle<FixedArray> shared_strings =
CreateSharedOneByteStrings(i_isolate, factory, kStrings, false);
base::Semaphore sema_ready(0);
base::Semaphore sema_execute_start(0);
base::Semaphore sema_execute_complete(0);
std::vector<std::unique_ptr<v8::base::Thread>> threads;
for (int i = 0; i < kInternalizationThreads; i++) {
auto thread = std::make_unique<ConcurrentInternalizationThread>(
&test, shared_strings, kTestMiss, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
for (int i = 0; i < kTotalThreads - kInternalizationThreads; i++) {
auto thread = std::make_unique<ConcurrentStringTableLookupThread>(
&test, shared_strings, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
for (int i = 0; i < kTotalThreads; i++) sema_ready.Wait();
for (int i = 0; i < kTotalThreads; i++) sema_execute_start.Signal();
for (int i = 0; i < kTotalThreads; i++) sema_execute_complete.Wait();
for (auto& thread : threads) {
thread->Join();
}
}
namespace {
void CheckSharedStringIsEqualCopy(Handle<String> shared,
Handle<String> original) {
CHECK(shared->IsShared());
CHECK(shared->Equals(*original));
CHECK_NE(*shared, *original);
}
Handle<String> ShareAndVerify(Isolate* isolate, Handle<String> string) {
Handle<String> shared = String::Share(isolate, string);
CHECK(shared->IsShared());
#ifdef VERIFY_HEAP
shared->ObjectVerify(isolate);
string->ObjectVerify(isolate);
#endif // VERIFY_HEAP
return shared;
}
} // namespace
UNINITIALIZED_TEST(StringShare) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
v8::Isolate* isolate = test.NewClientIsolate();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
// A longer string so that concatenated to itself, the result is >
// ConsString::kMinLength.
const char raw_one_byte[] =
"Lorem ipsum dolor sit amet, consectetur adipiscing elit";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
{
// Old-generation sequential strings are shared in-place.
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(!one_byte_seq->IsShared());
CHECK(!two_byte_seq->IsShared());
Handle<String> shared_one_byte = ShareAndVerify(i_isolate, one_byte_seq);
Handle<String> shared_two_byte = ShareAndVerify(i_isolate, two_byte_seq);
CHECK_EQ(*one_byte_seq, *shared_one_byte);
CHECK_EQ(*two_byte_seq, *shared_two_byte);
}
{
// Internalized strings are always shared.
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(!one_byte_seq->IsShared());
CHECK(!two_byte_seq->IsShared());
Handle<String> one_byte_intern = factory->InternalizeString(one_byte_seq);
Handle<String> two_byte_intern = factory->InternalizeString(two_byte_seq);
CHECK(one_byte_intern->IsShared());
CHECK(two_byte_intern->IsShared());
Handle<String> shared_one_byte_intern =
ShareAndVerify(i_isolate, one_byte_intern);
Handle<String> shared_two_byte_intern =
ShareAndVerify(i_isolate, two_byte_intern);
CHECK_EQ(*one_byte_intern, *shared_one_byte_intern);
CHECK_EQ(*two_byte_intern, *shared_two_byte_intern);
}
// All other strings are flattened then copied if the flatten didn't already
// create a new copy.
if (!FLAG_single_generation) {
// Young strings
Handle<String> young_one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
Handle<String> young_two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
CHECK(Heap::InYoungGeneration(*young_one_byte_seq));
CHECK(Heap::InYoungGeneration(*young_two_byte_seq));
CHECK(!young_one_byte_seq->IsShared());
CHECK(!young_two_byte_seq->IsShared());
Handle<String> shared_one_byte =
ShareAndVerify(i_isolate, young_one_byte_seq);
Handle<String> shared_two_byte =
ShareAndVerify(i_isolate, young_two_byte_seq);
CheckSharedStringIsEqualCopy(shared_one_byte, young_one_byte_seq);
CheckSharedStringIsEqualCopy(shared_two_byte, young_two_byte_seq);
}
{
// Thin strings
Handle<String> one_byte_seq1 =
factory->NewStringFromAsciiChecked(raw_one_byte);
Handle<String> one_byte_seq2 =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq1->IsShared());
CHECK(!one_byte_seq2->IsShared());
factory->InternalizeString(one_byte_seq1);
factory->InternalizeString(one_byte_seq2);
CHECK(StringShape(*one_byte_seq2).IsThin());
Handle<String> shared = ShareAndVerify(i_isolate, one_byte_seq2);
CheckSharedStringIsEqualCopy(shared, one_byte_seq2);
}
{
// Cons strings
Handle<String> one_byte_seq1 =
factory->NewStringFromAsciiChecked(raw_one_byte);
Handle<String> one_byte_seq2 =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq1->IsShared());
CHECK(!one_byte_seq2->IsShared());
Handle<String> cons =
factory->NewConsString(one_byte_seq1, one_byte_seq2).ToHandleChecked();
CHECK(!cons->IsShared());
CHECK(cons->IsConsString());
Handle<String> shared = ShareAndVerify(i_isolate, cons);
CheckSharedStringIsEqualCopy(shared, cons);
}
{
// Sliced strings
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq->IsShared());
Handle<String> sliced =
factory->NewSubString(one_byte_seq, 1, one_byte_seq->length());
CHECK(!sliced->IsShared());
CHECK(sliced->IsSlicedString());
Handle<String> shared = ShareAndVerify(i_isolate, sliced);
CheckSharedStringIsEqualCopy(shared, sliced);
}
}
UNINITIALIZED_TEST(PromotionMarkCompact) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
v8::Isolate* isolate = test.NewClientIsolate();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
// Heap* shared_heap = test.i_shared_isolate()->heap();
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
// heap::SealCurrentObjects(heap);
// heap::SealCurrentObjects(shared_heap);
Handle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(heap->InSpace(*one_byte_seq, NEW_SPACE));
for (int i = 0; i < 2; i++) {
heap->CollectAllGarbage(Heap::kNoGCFlags,
GarbageCollectionReason::kTesting);
}
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(!heap->Contains(*one_byte_seq));
CHECK(heap->SharedHeapContains(*one_byte_seq));
}
}
UNINITIALIZED_TEST(PromotionScavenge) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
v8::Isolate* isolate = test.NewClientIsolate();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
// Heap* shared_heap = test.i_shared_isolate()->heap();
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
// heap::SealCurrentObjects(heap);
// heap::SealCurrentObjects(shared_heap);
Handle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(heap->InSpace(*one_byte_seq, NEW_SPACE));
for (int i = 0; i < 2; i++) {
heap->CollectGarbage(NEW_SPACE, GarbageCollectionReason::kTesting);
}
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(!heap->Contains(*one_byte_seq));
CHECK(heap->SharedHeapContains(*one_byte_seq));
}
}
} // namespace test_shared_strings
} // namespace internal
} // namespace v8