v8/test/cctest/compiler/test-atomic-load-store-codegen.cc
Feng Yu 4392e0a4ad [test] Migrate cctest/compiler/test-codegen to unittests/
This changeset include:
1. [prepare for migrate] move `cctest/compiler/value-helper.h`,
`cctest/compiler/c-signature.h`, and `cctest/compiler/call-tester.h` to
`test/common` directory because both `test-codegen` and a lot of cctest file
include it.
2. [prepare for migrate] separate the tester helper part of `test-codegen`
into a new `codegen-tester` file.
3. finally, migrate test-codegen.cc to `codegen-unittest.cc`

Bug: v8:12781
Change-Id: Ia2f52c1d3b6b62501066dc1c4308a2c09d699e92
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3831146
Reviewed-by: Clemens Backes <clemensb@chromium.org>
Commit-Queue: Clemens Backes <clemensb@chromium.org>
Cr-Commit-Position: refs/heads/main@{#82630}
2022-08-22 17:28:27 +00:00

399 lines
15 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved. Use of this
// source code is governed by a BSD-style license that can be found in the
// LICENSE file.
#include "src/base/bits.h"
#include "src/objects/objects-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/common/value-helper.h"
namespace v8 {
namespace internal {
namespace compiler {
#if V8_TARGET_LITTLE_ENDIAN
#define LSB(addr, bytes) addr
#elif V8_TARGET_BIG_ENDIAN
#define LSB(addr, bytes) reinterpret_cast<byte*>(addr + 1) - (bytes)
#else
#error "Unknown Architecture"
#endif
#define TEST_ATOMIC_LOAD_INTEGER(ctype, itype, mach_type, order) \
do { \
ctype buffer[1]; \
\
RawMachineAssemblerTester<ctype> m; \
Node* base = m.PointerConstant(&buffer[0]); \
Node* index = m.Int32Constant(0); \
AtomicLoadParameters params(mach_type, order); \
if (mach_type.MemSize() == 8) { \
m.Return(m.AtomicLoad64(params, base, index)); \
} else { \
m.Return(m.AtomicLoad(params, base, index)); \
} \
\
FOR_INPUTS(ctype, itype, i) { \
buffer[0] = i; \
CHECK_EQ(i, m.Call()); \
} \
} while (false)
TEST(AcquireLoadInteger) {
TEST_ATOMIC_LOAD_INTEGER(int8_t, int8, MachineType::Int8(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_LOAD_INTEGER(uint8_t, uint8, MachineType::Uint8(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_LOAD_INTEGER(int16_t, int16, MachineType::Int16(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_LOAD_INTEGER(uint16_t, uint16, MachineType::Uint16(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_LOAD_INTEGER(int32_t, int32, MachineType::Int32(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_LOAD_INTEGER(uint32_t, uint32, MachineType::Uint32(),
AtomicMemoryOrder::kAcqRel);
#if V8_TARGET_ARCH_64_BIT
TEST_ATOMIC_LOAD_INTEGER(uint64_t, uint64, MachineType::Uint64(),
AtomicMemoryOrder::kAcqRel);
#endif
}
TEST(SeqCstLoadInteger) {
TEST_ATOMIC_LOAD_INTEGER(int8_t, int8, MachineType::Int8(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_LOAD_INTEGER(uint8_t, uint8, MachineType::Uint8(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_LOAD_INTEGER(int16_t, int16, MachineType::Int16(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_LOAD_INTEGER(uint16_t, uint16, MachineType::Uint16(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_LOAD_INTEGER(int32_t, int32, MachineType::Int32(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_LOAD_INTEGER(uint32_t, uint32, MachineType::Uint32(),
AtomicMemoryOrder::kSeqCst);
#if V8_TARGET_ARCH_64_BIT
TEST_ATOMIC_LOAD_INTEGER(uint64_t, uint64, MachineType::Uint64(),
AtomicMemoryOrder::kSeqCst);
#endif
}
namespace {
// Mostly same as CHECK_EQ() but customized for compressed tagged values.
template <typename CType>
void CheckEq(CType in_value, CType out_value) {
CHECK_EQ(in_value, out_value);
}
#ifdef V8_COMPRESS_POINTERS
// Specializations for checking the result of compressing store.
template <>
void CheckEq<Object>(Object in_value, Object out_value) {
// Compare only lower 32-bits of the value because tagged load/stores are
// 32-bit operations anyway.
CHECK_EQ(static_cast<Tagged_t>(in_value.ptr()),
static_cast<Tagged_t>(out_value.ptr()));
}
template <>
void CheckEq<HeapObject>(HeapObject in_value, HeapObject out_value) {
return CheckEq<Object>(in_value, out_value);
}
template <>
void CheckEq<Smi>(Smi in_value, Smi out_value) {
return CheckEq<Object>(in_value, out_value);
}
#endif
template <typename TaggedT>
void InitBuffer(TaggedT* buffer, size_t length, MachineType type) {
const size_t kBufferSize = sizeof(TaggedT) * length;
// Tagged field loads require values to be properly tagged because of
// pointer decompression that may be happenning during load.
Isolate* isolate = CcTest::InitIsolateOnce();
Smi* smi_view = reinterpret_cast<Smi*>(&buffer[0]);
if (type.IsTaggedSigned()) {
for (size_t i = 0; i < length; i++) {
smi_view[i] = Smi::FromInt(static_cast<int>(i + kBufferSize) ^ 0xABCDEF0);
}
} else {
memcpy(&buffer[0], &isolate->roots_table(), kBufferSize);
if (!type.IsTaggedPointer()) {
// Also add some Smis if we are checking AnyTagged case.
for (size_t i = 0; i < length / 2; i++) {
smi_view[i] =
Smi::FromInt(static_cast<int>(i + kBufferSize) ^ 0xABCDEF0);
}
}
}
}
template <typename TaggedT>
void AtomicLoadTagged(MachineType type, AtomicMemoryOrder order) {
const int kNumElems = 16;
TaggedT buffer[kNumElems];
InitBuffer(buffer, kNumElems, type);
for (int i = 0; i < kNumElems; i++) {
BufferedRawMachineAssemblerTester<TaggedT> m;
TaggedT* base_pointer = &buffer[0];
if (COMPRESS_POINTERS_BOOL) {
base_pointer = reinterpret_cast<TaggedT*>(LSB(base_pointer, kTaggedSize));
}
Node* base = m.PointerConstant(base_pointer);
Node* index = m.Int32Constant(i * sizeof(buffer[0]));
AtomicLoadParameters params(type, order);
Node* load;
if (kTaggedSize == 8) {
load = m.AtomicLoad64(params, base, index);
} else {
load = m.AtomicLoad(params, base, index);
}
m.Return(load);
CheckEq<TaggedT>(buffer[i], m.Call());
}
}
} // namespace
TEST(AcquireLoadTagged) {
AtomicLoadTagged<Smi>(MachineType::TaggedSigned(),
AtomicMemoryOrder::kAcqRel);
AtomicLoadTagged<HeapObject>(MachineType::TaggedPointer(),
AtomicMemoryOrder::kAcqRel);
AtomicLoadTagged<Object>(MachineType::AnyTagged(),
AtomicMemoryOrder::kAcqRel);
}
TEST(SeqCstLoadTagged) {
AtomicLoadTagged<Smi>(MachineType::TaggedSigned(),
AtomicMemoryOrder::kSeqCst);
AtomicLoadTagged<HeapObject>(MachineType::TaggedPointer(),
AtomicMemoryOrder::kSeqCst);
AtomicLoadTagged<Object>(MachineType::AnyTagged(),
AtomicMemoryOrder::kSeqCst);
}
#define TEST_ATOMIC_STORE_INTEGER(ctype, itype, mach_type, order) \
do { \
ctype buffer[1]; \
buffer[0] = static_cast<ctype>(-1); \
\
BufferedRawMachineAssemblerTester<int32_t> m(mach_type); \
Node* value = m.Parameter(0); \
Node* base = m.PointerConstant(&buffer[0]); \
Node* index = m.Int32Constant(0); \
AtomicStoreParameters params(mach_type.representation(), kNoWriteBarrier, \
order); \
if (mach_type.MemSize() == 8) { \
m.AtomicStore64(params, base, index, value, nullptr); \
} else { \
m.AtomicStore(params, base, index, value); \
} \
\
int32_t OK = 0x29000; \
m.Return(m.Int32Constant(OK)); \
\
FOR_INPUTS(ctype, itype, i) { \
CHECK_EQ(OK, m.Call(i)); \
CHECK_EQ(i, buffer[0]); \
} \
} while (false)
TEST(ReleaseStoreInteger) {
TEST_ATOMIC_STORE_INTEGER(int8_t, int8, MachineType::Int8(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_STORE_INTEGER(uint8_t, uint8, MachineType::Uint8(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_STORE_INTEGER(int16_t, int16, MachineType::Int16(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_STORE_INTEGER(uint16_t, uint16, MachineType::Uint16(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_STORE_INTEGER(int32_t, int32, MachineType::Int32(),
AtomicMemoryOrder::kAcqRel);
TEST_ATOMIC_STORE_INTEGER(uint32_t, uint32, MachineType::Uint32(),
AtomicMemoryOrder::kAcqRel);
#if V8_TARGET_ARCH_64_BIT
TEST_ATOMIC_STORE_INTEGER(uint64_t, uint64, MachineType::Uint64(),
AtomicMemoryOrder::kAcqRel);
#endif
}
TEST(SeqCstStoreInteger) {
TEST_ATOMIC_STORE_INTEGER(int8_t, int8, MachineType::Int8(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_STORE_INTEGER(uint8_t, uint8, MachineType::Uint8(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_STORE_INTEGER(int16_t, int16, MachineType::Int16(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_STORE_INTEGER(uint16_t, uint16, MachineType::Uint16(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_STORE_INTEGER(int32_t, int32, MachineType::Int32(),
AtomicMemoryOrder::kSeqCst);
TEST_ATOMIC_STORE_INTEGER(uint32_t, uint32, MachineType::Uint32(),
AtomicMemoryOrder::kSeqCst);
#if V8_TARGET_ARCH_64_BIT
TEST_ATOMIC_STORE_INTEGER(uint64_t, uint64, MachineType::Uint64(),
AtomicMemoryOrder::kSeqCst);
#endif
}
namespace {
template <typename TaggedT>
void AtomicStoreTagged(MachineType type, AtomicMemoryOrder order) {
// This tests that tagged values are correctly transferred by atomic loads and
// stores from in_buffer to out_buffer. For each particular element in
// in_buffer, it is copied to a different index in out_buffer, and all other
// indices are zapped, to test instructions of the correct width are emitted.
const int kNumElems = 16;
TaggedT in_buffer[kNumElems];
TaggedT out_buffer[kNumElems];
uintptr_t zap_data[] = {kZapValue, kZapValue};
TaggedT zap_value;
static_assert(sizeof(TaggedT) <= sizeof(zap_data));
MemCopy(&zap_value, &zap_data, sizeof(TaggedT));
InitBuffer(in_buffer, kNumElems, type);
#ifdef V8_TARGET_BIG_ENDIAN
int offset = sizeof(TaggedT) - ElementSizeInBytes(type.representation());
#else
int offset = 0;
#endif
for (int32_t x = 0; x < kNumElems; x++) {
int32_t y = kNumElems - x - 1;
RawMachineAssemblerTester<int32_t> m;
int32_t OK = 0x29000 + x;
Node* in_base = m.PointerConstant(in_buffer);
Node* in_index = m.IntPtrConstant(x * sizeof(TaggedT) + offset);
Node* out_base = m.PointerConstant(out_buffer);
Node* out_index = m.IntPtrConstant(y * sizeof(TaggedT) + offset);
Node* load;
AtomicLoadParameters load_params(type, order);
AtomicStoreParameters store_params(type.representation(), kNoWriteBarrier,
order);
if (kTaggedSize == 4) {
load = m.AtomicLoad(load_params, in_base, in_index);
m.AtomicStore(store_params, out_base, out_index, load);
} else {
DCHECK(m.machine()->Is64());
load = m.AtomicLoad64(load_params, in_base, in_index);
m.AtomicStore64(store_params, out_base, out_index, load, nullptr);
}
m.Return(m.Int32Constant(OK));
for (int32_t z = 0; z < kNumElems; z++) {
out_buffer[z] = zap_value;
}
CHECK_NE(in_buffer[x], out_buffer[y]);
CHECK_EQ(OK, m.Call());
// Mostly same as CHECK_EQ() but customized for compressed tagged values.
CheckEq<TaggedT>(in_buffer[x], out_buffer[y]);
for (int32_t z = 0; z < kNumElems; z++) {
if (z != y) CHECK_EQ(zap_value, out_buffer[z]);
}
}
}
} // namespace
TEST(ReleaseStoreTagged) {
AtomicStoreTagged<Smi>(MachineType::TaggedSigned(),
AtomicMemoryOrder::kAcqRel);
AtomicStoreTagged<HeapObject>(MachineType::TaggedPointer(),
AtomicMemoryOrder::kAcqRel);
AtomicStoreTagged<Object>(MachineType::AnyTagged(),
AtomicMemoryOrder::kAcqRel);
}
TEST(SeqCstStoreTagged) {
AtomicStoreTagged<Smi>(MachineType::TaggedSigned(),
AtomicMemoryOrder::kSeqCst);
AtomicStoreTagged<HeapObject>(MachineType::TaggedPointer(),
AtomicMemoryOrder::kSeqCst);
AtomicStoreTagged<Object>(MachineType::AnyTagged(),
AtomicMemoryOrder::kSeqCst);
}
#if V8_TARGET_ARCH_32_BIT
namespace {
void TestAtomicPairLoadInteger(AtomicMemoryOrder order) {
uint64_t buffer[1];
uint32_t high;
uint32_t low;
BufferedRawMachineAssemblerTester<int32_t> m;
Node* base = m.PointerConstant(&buffer[0]);
Node* index = m.Int32Constant(0);
Node* pair_load = m.AtomicLoad64(
AtomicLoadParameters(MachineType::Uint64(), order), base, index);
m.StoreToPointer(&low, MachineRepresentation::kWord32,
m.Projection(0, pair_load));
m.StoreToPointer(&high, MachineRepresentation::kWord32,
m.Projection(1, pair_load));
int32_t OK = 0x29000;
m.Return(m.Int32Constant(OK));
FOR_UINT64_INPUTS(i) {
buffer[0] = i;
CHECK_EQ(OK, m.Call());
CHECK_EQ(i, make_uint64(high, low));
}
}
} // namespace
TEST(AcquirePairLoadInteger) {
TestAtomicPairLoadInteger(AtomicMemoryOrder::kAcqRel);
}
TEST(SeqCstPairLoadInteger) {
TestAtomicPairLoadInteger(AtomicMemoryOrder::kSeqCst);
}
namespace {
void TestAtomicPairStoreInteger(AtomicMemoryOrder order) {
uint64_t buffer[1];
BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
MachineType::Uint32());
Node* base = m.PointerConstant(&buffer[0]);
Node* index = m.Int32Constant(0);
m.AtomicStore64(AtomicStoreParameters(MachineRepresentation::kWord64,
kNoWriteBarrier, order),
base, index, m.Parameter(0), m.Parameter(1));
int32_t OK = 0x29000;
m.Return(m.Int32Constant(OK));
FOR_UINT64_INPUTS(i) {
CHECK_EQ(OK, m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
static_cast<uint32_t>(i >> 32)));
CHECK_EQ(i, buffer[0]);
}
}
} // namespace
TEST(ReleasePairStoreInteger) {
TestAtomicPairStoreInteger(AtomicMemoryOrder::kAcqRel);
}
TEST(SeqCstPairStoreInteger) {
TestAtomicPairStoreInteger(AtomicMemoryOrder::kSeqCst);
}
#endif // V8_TARGET_ARCH_32_BIT
} // namespace compiler
} // namespace internal
} // namespace v8