v8/test/cctest/test-shared-strings.cc
Shu-yu Guo 31e17fe62d [shared-struct, api] Support shared isolates in API
Currently the ability to create shared isolates is partially exposed to
API. Instead of fully exposing it, this CL makes shared isolate and
shared heap handling transparent to the embedder.

If a flag that requires the shared heap is true (currently
--shared-string-table and --harmony-struct), the first isolate created
in the process will create and attach to a process-wide shared isolate.
Subsequent isolates will attach to that shared isolate. When that first isolate is deleted, the shared isolate is also deleted.

Bug: v8:12547
Change-Id: Idaf2947bc354066c44f2d10243e10162b1b7e4d6
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3848825
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Owners-Override: Shu-yu Guo <syg@chromium.org>
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Commit-Queue: Shu-yu Guo <syg@chromium.org>
Reviewed-by: Camillo Bruni <cbruni@chromium.org>
Cr-Commit-Position: refs/heads/main@{#82756}
2022-08-26 23:41:57 +00:00

889 lines
32 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "include/v8-initialization.h"
#include "src/base/strings.h"
#include "src/common/globals.h"
#include "src/heap/factory.h"
#include "src/heap/heap-inl.h"
#include "src/heap/memory-chunk-layout.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/parked-scope.h"
#include "src/heap/remembered-set.h"
#include "src/objects/fixed-array.h"
#include "src/objects/objects-inl.h"
#include "src/objects/string-forwarding-table-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-utils.h"
namespace v8 {
namespace internal {
namespace test_shared_strings {
struct V8_NODISCARD IsolateWrapper {
explicit IsolateWrapper(v8::Isolate* isolate) : isolate(isolate) {}
~IsolateWrapper() { isolate->Dispose(); }
v8::Isolate* const isolate;
};
// Some tests in this file allocate two Isolates in the same thread to directly
// test shared string behavior. Because both are considered running, when
// disposing these Isolates, one must be parked to not cause a deadlock in the
// shared heap verification that happens on client Isolate disposal.
struct V8_NODISCARD IsolateParkOnDisposeWrapper {
IsolateParkOnDisposeWrapper(v8::Isolate* isolate,
v8::Isolate* isolate_to_park)
: isolate(isolate), isolate_to_park(isolate_to_park) {}
~IsolateParkOnDisposeWrapper() {
{
i::ParkedScope parked(reinterpret_cast<Isolate*>(isolate_to_park)
->main_thread_local_isolate());
isolate->Dispose();
}
}
v8::Isolate* const isolate;
v8::Isolate* const isolate_to_park;
};
class MultiClientIsolateTest {
public:
MultiClientIsolateTest() {
std::unique_ptr<v8::ArrayBuffer::Allocator> allocator(
v8::ArrayBuffer::Allocator::NewDefaultAllocator());
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = allocator.get();
main_isolate_ = v8::Isolate::New(create_params);
}
~MultiClientIsolateTest() { main_isolate_->Dispose(); }
v8::Isolate* main_isolate() const { return main_isolate_; }
Isolate* i_main_isolate() const {
return reinterpret_cast<Isolate*>(main_isolate_);
}
v8::Isolate* NewClientIsolate() {
CHECK_NOT_NULL(main_isolate_);
std::unique_ptr<v8::ArrayBuffer::Allocator> allocator(
v8::ArrayBuffer::Allocator::NewDefaultAllocator());
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = allocator.get();
return v8::Isolate::New(create_params);
}
private:
v8::Isolate* main_isolate_;
};
UNINITIALIZED_TEST(InPlaceInternalizableStringsAreShared) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
HandleScope handle_scope(i_isolate1);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Old generation 1- and 2-byte seq strings are in-place internalizable.
Handle<String> old_one_byte_seq =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
CHECK(old_one_byte_seq->InSharedHeap());
Handle<String> old_two_byte_seq =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(old_two_byte_seq->InSharedHeap());
// Young generation are not internalizable and not shared when sharing the
// string table.
Handle<String> young_one_byte_seq =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kYoung);
CHECK(!young_one_byte_seq->InSharedHeap());
Handle<String> young_two_byte_seq =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
CHECK(!young_two_byte_seq->InSharedHeap());
// Internalized strings are shared.
uint64_t seed = HashSeed(i_isolate1);
Handle<String> one_byte_intern = factory1->NewOneByteInternalizedString(
base::OneByteVector(raw_one_byte),
StringHasher::HashSequentialString<char>(raw_one_byte, 3, seed));
CHECK(one_byte_intern->InSharedHeap());
Handle<String> two_byte_intern = factory1->NewTwoByteInternalizedString(
two_byte,
StringHasher::HashSequentialString<uint16_t>(raw_two_byte, 3, seed));
CHECK(two_byte_intern->InSharedHeap());
}
UNINITIALIZED_TEST(InPlaceInternalization) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
IsolateParkOnDisposeWrapper isolate_wrapper(test.NewClientIsolate(),
test.main_isolate());
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
Isolate* i_isolate2 = reinterpret_cast<Isolate*>(isolate_wrapper.isolate);
Factory* factory2 = i_isolate2->factory();
HandleScope scope1(i_isolate1);
HandleScope scope2(i_isolate2);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Allocate two in-place internalizable strings in isolate1 then intern
// them.
Handle<String> old_one_byte_seq1 =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> old_two_byte_seq1 =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
Handle<String> one_byte_intern1 =
factory1->InternalizeString(old_one_byte_seq1);
Handle<String> two_byte_intern1 =
factory1->InternalizeString(old_two_byte_seq1);
CHECK(old_one_byte_seq1->InSharedHeap());
CHECK(old_two_byte_seq1->InSharedHeap());
CHECK(one_byte_intern1->InSharedHeap());
CHECK(two_byte_intern1->InSharedHeap());
CHECK(old_one_byte_seq1.equals(one_byte_intern1));
CHECK(old_two_byte_seq1.equals(two_byte_intern1));
CHECK_EQ(*old_one_byte_seq1, *one_byte_intern1);
CHECK_EQ(*old_two_byte_seq1, *two_byte_intern1);
// Allocate two in-place internalizable strings with the same contents in
// isolate2 then intern them. They should be the same as the interned strings
// from isolate1.
Handle<String> old_one_byte_seq2 =
factory2->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> old_two_byte_seq2 =
factory2->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
Handle<String> one_byte_intern2 =
factory2->InternalizeString(old_one_byte_seq2);
Handle<String> two_byte_intern2 =
factory2->InternalizeString(old_two_byte_seq2);
CHECK(old_one_byte_seq2->InSharedHeap());
CHECK(old_two_byte_seq2->InSharedHeap());
CHECK(one_byte_intern2->InSharedHeap());
CHECK(two_byte_intern2->InSharedHeap());
CHECK(!old_one_byte_seq2.equals(one_byte_intern2));
CHECK(!old_two_byte_seq2.equals(two_byte_intern2));
CHECK_NE(*old_one_byte_seq2, *one_byte_intern2);
CHECK_NE(*old_two_byte_seq2, *two_byte_intern2);
CHECK_EQ(*one_byte_intern1, *one_byte_intern2);
CHECK_EQ(*two_byte_intern1, *two_byte_intern2);
}
UNINITIALIZED_TEST(YoungInternalization) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
IsolateParkOnDisposeWrapper isolate_wrapper(test.NewClientIsolate(),
test.main_isolate());
Isolate* i_isolate1 = test.i_main_isolate();
Factory* factory1 = i_isolate1->factory();
Isolate* i_isolate2 = reinterpret_cast<Isolate*>(isolate_wrapper.isolate);
Factory* factory2 = i_isolate2->factory();
HandleScope scope1(i_isolate1);
HandleScope scope2(i_isolate2);
const char raw_one_byte[] = "foo";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
// Allocate two young strings in isolate1 then intern them. Young strings
// aren't in-place internalizable and are copied when internalized.
Handle<String> young_one_byte_seq1 =
factory1->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kYoung);
Handle<String> young_two_byte_seq1 =
factory1->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
Handle<String> one_byte_intern1 =
factory1->InternalizeString(young_one_byte_seq1);
Handle<String> two_byte_intern1 =
factory1->InternalizeString(young_two_byte_seq1);
CHECK(!young_one_byte_seq1->InSharedHeap());
CHECK(!young_two_byte_seq1->InSharedHeap());
CHECK(one_byte_intern1->InSharedHeap());
CHECK(two_byte_intern1->InSharedHeap());
CHECK(!young_one_byte_seq1.equals(one_byte_intern1));
CHECK(!young_two_byte_seq1.equals(two_byte_intern1));
CHECK_NE(*young_one_byte_seq1, *one_byte_intern1);
CHECK_NE(*young_two_byte_seq1, *two_byte_intern1);
// Allocate two young strings with the same contents in isolate2 then intern
// them. They should be the same as the interned strings from isolate1.
Handle<String> young_one_byte_seq2 =
factory2->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kYoung);
Handle<String> young_two_byte_seq2 =
factory2->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
Handle<String> one_byte_intern2 =
factory2->InternalizeString(young_one_byte_seq2);
Handle<String> two_byte_intern2 =
factory2->InternalizeString(young_two_byte_seq2);
CHECK(!young_one_byte_seq2.equals(one_byte_intern2));
CHECK(!young_two_byte_seq2.equals(two_byte_intern2));
CHECK_NE(*young_one_byte_seq2, *one_byte_intern2);
CHECK_NE(*young_two_byte_seq2, *two_byte_intern2);
CHECK_EQ(*one_byte_intern1, *one_byte_intern2);
CHECK_EQ(*two_byte_intern1, *two_byte_intern2);
}
class ConcurrentStringThreadBase : public v8::base::Thread {
public:
ConcurrentStringThreadBase(const char* name, MultiClientIsolateTest* test,
Handle<FixedArray> shared_strings,
ParkingSemaphore* sema_ready,
ParkingSemaphore* sema_execute_start,
ParkingSemaphore* sema_execute_complete)
: v8::base::Thread(base::Thread::Options(name)),
test_(test),
shared_strings_(shared_strings),
sema_ready_(sema_ready),
sema_execute_start_(sema_execute_start),
sema_execute_complete_(sema_execute_complete) {}
virtual void Setup() {}
virtual void RunForString(Handle<String> string) = 0;
virtual void Teardown() {}
void Run() override {
IsolateWrapper isolate_wrapper(test_->NewClientIsolate());
i_isolate = reinterpret_cast<Isolate*>(isolate_wrapper.isolate);
Setup();
sema_ready_->Signal();
sema_execute_start_->ParkedWait(i_isolate->main_thread_local_isolate());
{
HandleScope scope(i_isolate);
for (int i = 0; i < shared_strings_->length(); i++) {
Handle<String> input_string(String::cast(shared_strings_->get(i)),
i_isolate);
RunForString(input_string);
}
}
sema_execute_complete_->Signal();
Teardown();
i_isolate = nullptr;
}
void ParkedJoin(const ParkedScope& scope) {
USE(scope);
Join();
}
protected:
using base::Thread::Join;
Isolate* i_isolate;
MultiClientIsolateTest* test_;
Handle<FixedArray> shared_strings_;
ParkingSemaphore* sema_ready_;
ParkingSemaphore* sema_execute_start_;
ParkingSemaphore* sema_execute_complete_;
};
enum TestHitOrMiss { kTestMiss, kTestHit };
class ConcurrentInternalizationThread final
: public ConcurrentStringThreadBase {
public:
ConcurrentInternalizationThread(MultiClientIsolateTest* test,
Handle<FixedArray> shared_strings,
TestHitOrMiss hit_or_miss,
ParkingSemaphore* sema_ready,
ParkingSemaphore* sema_execute_start,
ParkingSemaphore* sema_execute_complete)
: ConcurrentStringThreadBase("ConcurrentInternalizationThread", test,
shared_strings, sema_ready,
sema_execute_start, sema_execute_complete),
hit_or_miss_(hit_or_miss) {}
void Setup() override { factory = i_isolate->factory(); }
void RunForString(Handle<String> input_string) override {
CHECK(input_string->IsShared());
Handle<String> interned = factory->InternalizeString(input_string);
CHECK(interned->IsShared());
CHECK(interned->IsInternalizedString());
if (hit_or_miss_ == kTestMiss) {
CHECK_EQ(*input_string, *interned);
} else {
CHECK(input_string->HasForwardingIndex(kAcquireLoad));
CHECK(String::Equals(i_isolate, input_string, interned));
}
}
private:
TestHitOrMiss hit_or_miss_;
Factory* factory;
};
namespace {
Handle<FixedArray> CreateSharedOneByteStrings(Isolate* isolate,
Factory* factory, int count,
bool internalize) {
Handle<FixedArray> shared_strings =
factory->NewFixedArray(count, AllocationType::kSharedOld);
for (int i = 0; i < count; i++) {
char* ascii = new char[i + 3];
// Don't make single character strings, which will end up deduplicating to
// an RO string and mess up the string table hit test.
for (int j = 0; j < i + 2; j++) ascii[j] = 'a';
ascii[i + 2] = '\0';
if (internalize) {
// When testing concurrent string table hits, pre-internalize a string of
// the same contents so all subsequent internalizations are hits.
factory->InternalizeString(factory->NewStringFromAsciiChecked(ascii));
}
Handle<String> string = String::Share(
isolate,
factory->NewStringFromAsciiChecked(ascii, AllocationType::kOld));
CHECK(string->IsShared());
string->EnsureHash();
shared_strings->set(i, *string);
delete[] ascii;
}
return shared_strings;
}
void TestConcurrentInternalization(TestHitOrMiss hit_or_miss) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
constexpr int kThreads = 4;
constexpr int kStrings = 4096;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
Handle<FixedArray> shared_strings = CreateSharedOneByteStrings(
i_isolate, factory, kStrings, hit_or_miss == kTestHit);
ParkingSemaphore sema_ready(0);
ParkingSemaphore sema_execute_start(0);
ParkingSemaphore sema_execute_complete(0);
std::vector<std::unique_ptr<ConcurrentInternalizationThread>> threads;
for (int i = 0; i < kThreads; i++) {
auto thread = std::make_unique<ConcurrentInternalizationThread>(
&test, shared_strings, hit_or_miss, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
LocalIsolate* local_isolate = i_isolate->main_thread_local_isolate();
for (int i = 0; i < kThreads; i++) {
sema_ready.ParkedWait(local_isolate);
}
for (int i = 0; i < kThreads; i++) {
sema_execute_start.Signal();
}
for (int i = 0; i < kThreads; i++) {
sema_execute_complete.ParkedWait(local_isolate);
}
ParkedScope parked(local_isolate);
for (auto& thread : threads) {
thread->ParkedJoin(parked);
}
}
} // namespace
UNINITIALIZED_TEST(ConcurrentInternalizationMiss) {
TestConcurrentInternalization(kTestMiss);
}
UNINITIALIZED_TEST(ConcurrentInternalizationHit) {
TestConcurrentInternalization(kTestHit);
}
class ConcurrentStringTableLookupThread final
: public ConcurrentStringThreadBase {
public:
ConcurrentStringTableLookupThread(MultiClientIsolateTest* test,
Handle<FixedArray> shared_strings,
ParkingSemaphore* sema_ready,
ParkingSemaphore* sema_execute_start,
ParkingSemaphore* sema_execute_complete)
: ConcurrentStringThreadBase("ConcurrentStringTableLookup", test,
shared_strings, sema_ready,
sema_execute_start, sema_execute_complete) {}
void RunForString(Handle<String> input_string) override {
CHECK(input_string->IsShared());
Object result = Object(StringTable::TryStringToIndexOrLookupExisting(
i_isolate, input_string->ptr()));
if (result.IsString()) {
String internalized = String::cast(result);
CHECK(internalized.IsInternalizedString());
CHECK_IMPLIES(input_string->IsInternalizedString(),
*input_string == internalized);
} else {
CHECK_EQ(Smi::cast(result).value(), ResultSentinel::kNotFound);
}
}
};
UNINITIALIZED_TEST(ConcurrentStringTableLookup) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
constexpr int kTotalThreads = 4;
constexpr int kInternalizationThreads = 1;
constexpr int kStrings = 4096;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
Handle<FixedArray> shared_strings =
CreateSharedOneByteStrings(i_isolate, factory, kStrings, false);
ParkingSemaphore sema_ready(0);
ParkingSemaphore sema_execute_start(0);
ParkingSemaphore sema_execute_complete(0);
std::vector<std::unique_ptr<ConcurrentStringThreadBase>> threads;
for (int i = 0; i < kInternalizationThreads; i++) {
auto thread = std::make_unique<ConcurrentInternalizationThread>(
&test, shared_strings, kTestMiss, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
for (int i = 0; i < kTotalThreads - kInternalizationThreads; i++) {
auto thread = std::make_unique<ConcurrentStringTableLookupThread>(
&test, shared_strings, &sema_ready, &sema_execute_start,
&sema_execute_complete);
CHECK(thread->Start());
threads.push_back(std::move(thread));
}
LocalIsolate* local_isolate = i_isolate->main_thread_local_isolate();
for (int i = 0; i < kTotalThreads; i++) {
sema_ready.ParkedWait(local_isolate);
}
for (int i = 0; i < kTotalThreads; i++) {
sema_execute_start.Signal();
}
for (int i = 0; i < kTotalThreads; i++) {
sema_execute_complete.ParkedWait(local_isolate);
}
ParkedScope parked(local_isolate);
for (auto& thread : threads) {
thread->ParkedJoin(parked);
}
}
namespace {
void CheckSharedStringIsEqualCopy(Handle<String> shared,
Handle<String> original) {
CHECK(shared->IsShared());
CHECK(shared->Equals(*original));
CHECK_NE(*shared, *original);
}
Handle<String> ShareAndVerify(Isolate* isolate, Handle<String> string) {
Handle<String> shared = String::Share(isolate, string);
CHECK(shared->IsShared());
#ifdef VERIFY_HEAP
shared->ObjectVerify(isolate);
string->ObjectVerify(isolate);
#endif // VERIFY_HEAP
return shared;
}
} // namespace
UNINITIALIZED_TEST(StringShare) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
// A longer string so that concatenated to itself, the result is >
// ConsString::kMinLength.
const char raw_one_byte[] =
"Lorem ipsum dolor sit amet, consectetur adipiscing elit";
base::uc16 raw_two_byte[] = {2001, 2002, 2003};
base::Vector<const base::uc16> two_byte(raw_two_byte, 3);
{
// Old-generation sequential strings are shared in-place.
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(!one_byte_seq->IsShared());
CHECK(!two_byte_seq->IsShared());
Handle<String> shared_one_byte = ShareAndVerify(i_isolate, one_byte_seq);
Handle<String> shared_two_byte = ShareAndVerify(i_isolate, two_byte_seq);
CHECK_EQ(*one_byte_seq, *shared_one_byte);
CHECK_EQ(*two_byte_seq, *shared_two_byte);
}
{
// Internalized strings are always shared.
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte, AllocationType::kOld);
Handle<String> two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kOld)
.ToHandleChecked();
CHECK(!one_byte_seq->IsShared());
CHECK(!two_byte_seq->IsShared());
Handle<String> one_byte_intern = factory->InternalizeString(one_byte_seq);
Handle<String> two_byte_intern = factory->InternalizeString(two_byte_seq);
CHECK(one_byte_intern->IsShared());
CHECK(two_byte_intern->IsShared());
Handle<String> shared_one_byte_intern =
ShareAndVerify(i_isolate, one_byte_intern);
Handle<String> shared_two_byte_intern =
ShareAndVerify(i_isolate, two_byte_intern);
CHECK_EQ(*one_byte_intern, *shared_one_byte_intern);
CHECK_EQ(*two_byte_intern, *shared_two_byte_intern);
}
// All other strings are flattened then copied if the flatten didn't already
// create a new copy.
if (!FLAG_single_generation) {
// Young strings
Handle<String> young_one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
Handle<String> young_two_byte_seq =
factory->NewStringFromTwoByte(two_byte, AllocationType::kYoung)
.ToHandleChecked();
CHECK(Heap::InYoungGeneration(*young_one_byte_seq));
CHECK(Heap::InYoungGeneration(*young_two_byte_seq));
CHECK(!young_one_byte_seq->IsShared());
CHECK(!young_two_byte_seq->IsShared());
Handle<String> shared_one_byte =
ShareAndVerify(i_isolate, young_one_byte_seq);
Handle<String> shared_two_byte =
ShareAndVerify(i_isolate, young_two_byte_seq);
CheckSharedStringIsEqualCopy(shared_one_byte, young_one_byte_seq);
CheckSharedStringIsEqualCopy(shared_two_byte, young_two_byte_seq);
}
if (!FLAG_always_use_string_forwarding_table) {
// Thin strings
Handle<String> one_byte_seq1 =
factory->NewStringFromAsciiChecked(raw_one_byte);
Handle<String> one_byte_seq2 =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq1->IsShared());
CHECK(!one_byte_seq2->IsShared());
factory->InternalizeString(one_byte_seq1);
factory->InternalizeString(one_byte_seq2);
CHECK(StringShape(*one_byte_seq2).IsThin());
Handle<String> shared = ShareAndVerify(i_isolate, one_byte_seq2);
CheckSharedStringIsEqualCopy(shared, one_byte_seq2);
}
{
// Cons strings
Handle<String> one_byte_seq1 =
factory->NewStringFromAsciiChecked(raw_one_byte);
Handle<String> one_byte_seq2 =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq1->IsShared());
CHECK(!one_byte_seq2->IsShared());
Handle<String> cons =
factory->NewConsString(one_byte_seq1, one_byte_seq2).ToHandleChecked();
CHECK(!cons->IsShared());
CHECK(cons->IsConsString());
Handle<String> shared = ShareAndVerify(i_isolate, cons);
CheckSharedStringIsEqualCopy(shared, cons);
}
{
// Sliced strings
Handle<String> one_byte_seq =
factory->NewStringFromAsciiChecked(raw_one_byte);
CHECK(!one_byte_seq->IsShared());
Handle<String> sliced =
factory->NewSubString(one_byte_seq, 1, one_byte_seq->length());
CHECK(!sliced->IsShared());
CHECK(sliced->IsSlicedString());
Handle<String> shared = ShareAndVerify(i_isolate, sliced);
CheckSharedStringIsEqualCopy(shared, sliced);
}
}
UNINITIALIZED_TEST(PromotionMarkCompact) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
FLAG_shared_string_table = true;
FLAG_manual_evacuation_candidates_selection = true;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
// Heap* shared_heap = test.i_shared_isolate()->heap();
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
// heap::SealCurrentObjects(heap);
// heap::SealCurrentObjects(shared_heap);
Handle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(heap->InSpace(*one_byte_seq, NEW_SPACE));
// 1st GC moves `one_byte_seq` to old space and 2nd GC evacuates it within
// old space.
heap->CollectAllGarbage(Heap::kNoGCFlags,
GarbageCollectionReason::kTesting);
heap::ForceEvacuationCandidate(i::Page::FromHeapObject(*one_byte_seq));
heap->CollectAllGarbage(Heap::kNoGCFlags,
GarbageCollectionReason::kTesting);
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(!heap->Contains(*one_byte_seq));
CHECK(heap->SharedHeapContains(*one_byte_seq));
}
}
UNINITIALIZED_TEST(PromotionScavenge) {
if (FLAG_minor_mc) return;
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
// Heap* shared_heap = test.i_shared_isolate()->heap();
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
// heap::SealCurrentObjects(heap);
// heap::SealCurrentObjects(shared_heap);
Handle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(heap->InSpace(*one_byte_seq, NEW_SPACE));
for (int i = 0; i < 2; i++) {
heap->CollectGarbage(NEW_SPACE, GarbageCollectionReason::kTesting);
}
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(!heap->Contains(*one_byte_seq));
CHECK(heap->SharedHeapContains(*one_byte_seq));
}
}
UNINITIALIZED_TEST(PromotionScavengeOldToShared) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
if (FLAG_stress_concurrent_allocation) return;
FLAG_shared_string_table = true;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
ManualGCScope manual_gc(i_isolate);
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
Handle<FixedArray> old_object =
factory->NewFixedArray(1, AllocationType::kOld);
MemoryChunk* old_object_chunk = MemoryChunk::FromHeapObject(*old_object);
CHECK(!old_object_chunk->InYoungGeneration());
Handle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(MemoryChunk::FromHeapObject(*one_byte_seq)->InYoungGeneration());
old_object->set(0, *one_byte_seq);
ObjectSlot slot = old_object->GetFirstElementAddress();
CHECK(
RememberedSet<OLD_TO_NEW>::Contains(old_object_chunk, slot.address()));
for (int i = 0; i < 2; i++) {
heap->CollectGarbage(NEW_SPACE, GarbageCollectionReason::kTesting);
}
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(!heap->Contains(*one_byte_seq));
CHECK(heap->SharedHeapContains(*one_byte_seq));
// Since the GC promoted that string into shared heap, it also needs to
// create an OLD_TO_SHARED slot.
CHECK(RememberedSet<OLD_TO_SHARED>::Contains(old_object_chunk,
slot.address()));
}
}
UNINITIALIZED_TEST(PromotionMarkCompactOldToShared) {
if (FLAG_single_generation) return;
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
if (FLAG_stress_concurrent_allocation) return;
FLAG_shared_string_table = true;
FLAG_manual_evacuation_candidates_selection = true;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
ManualGCScope manual_gc(i_isolate);
const char raw_one_byte[] = "foo";
{
HandleScope scope(i_isolate);
Handle<FixedArray> old_object =
factory->NewFixedArray(1, AllocationType::kOld);
MemoryChunk* old_object_chunk = MemoryChunk::FromHeapObject(*old_object);
CHECK(!old_object_chunk->InYoungGeneration());
Handle<String> one_byte_seq = factory->NewStringFromAsciiChecked(
raw_one_byte, AllocationType::kYoung);
CHECK(String::IsInPlaceInternalizable(*one_byte_seq));
CHECK(MemoryChunk::FromHeapObject(*one_byte_seq)->InYoungGeneration());
old_object->set(0, *one_byte_seq);
ObjectSlot slot = old_object->GetFirstElementAddress();
CHECK(
RememberedSet<OLD_TO_NEW>::Contains(old_object_chunk, slot.address()));
heap->CollectGarbage(OLD_SPACE, GarbageCollectionReason::kTesting);
// In-place-internalizable strings are promoted into the shared heap when
// sharing.
CHECK(!heap->Contains(*one_byte_seq));
CHECK(heap->SharedHeapContains(*one_byte_seq));
// Since the GC promoted that string into shared heap, it also needs to
// create an OLD_TO_SHARED slot.
CHECK(RememberedSet<OLD_TO_SHARED>::Contains(old_object_chunk,
slot.address()));
}
}
UNINITIALIZED_TEST(SharedStringsTransitionDuringGC) {
if (!ReadOnlyHeap::IsReadOnlySpaceShared()) return;
if (!COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) return;
FLAG_shared_string_table = true;
constexpr int kStrings = 4096;
MultiClientIsolateTest test;
Isolate* i_isolate = test.i_main_isolate();
Factory* factory = i_isolate->factory();
HandleScope scope(i_isolate);
// Run two times to test that everything is reset correctly during GC.
for (int run = 0; run < 2; run++) {
Handle<FixedArray> shared_strings =
CreateSharedOneByteStrings(i_isolate, factory, kStrings, run == 0);
// Check strings are in the forwarding table after internalization.
for (int i = 0; i < shared_strings->length(); i++) {
Handle<String> input_string(String::cast(shared_strings->get(i)),
i_isolate);
Handle<String> interned = factory->InternalizeString(input_string);
CHECK(input_string->IsShared());
CHECK(!input_string->IsThinString());
CHECK(input_string->HasForwardingIndex(kAcquireLoad));
CHECK(String::Equals(i_isolate, input_string, interned));
}
// Trigger garbage collection on the shared isolate.
i_isolate->heap()->CollectSharedGarbage(GarbageCollectionReason::kTesting);
// Check that GC cleared the forwarding table.
CHECK_EQ(i_isolate->string_forwarding_table()->size(), 0);
// Check all strings are transitioned to ThinStrings
for (int i = 0; i < shared_strings->length(); i++) {
Handle<String> input_string(String::cast(shared_strings->get(i)),
i_isolate);
CHECK(input_string->IsThinString());
}
}
}
} // namespace test_shared_strings
} // namespace internal
} // namespace v8