v8/test/unittests/interpreter/constant-array-builder-unittest.cc
rmcilroy c68f7194c2 Use a better hash function in IdentityMap.
Reduces time for ConstantArrayBuilderTest.AllocateAllEntries from 21000ms to 106ms in
debug mode.

BUG=v8:4280
LOG=N

Review URL: https://codereview.chromium.org/1696363002

Cr-Commit-Position: refs/heads/master@{#34038}
2016-02-16 14:09:06 +00:00

223 lines
8.4 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/factory.h"
#include "src/handles-inl.h"
#include "src/interpreter/constant-array-builder.h"
#include "src/isolate.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
class ConstantArrayBuilderTest : public TestWithIsolateAndZone {
public:
ConstantArrayBuilderTest() {}
~ConstantArrayBuilderTest() override {}
static const size_t kLowCapacity = ConstantArrayBuilder::kLowCapacity;
static const size_t kMaxCapacity = ConstantArrayBuilder::kMaxCapacity;
};
STATIC_CONST_MEMBER_DEFINITION const size_t
ConstantArrayBuilderTest::kMaxCapacity;
STATIC_CONST_MEMBER_DEFINITION const size_t
ConstantArrayBuilderTest::kLowCapacity;
TEST_F(ConstantArrayBuilderTest, AllocateAllEntries) {
ConstantArrayBuilder builder(isolate(), zone());
for (size_t i = 0; i < kMaxCapacity; i++) {
builder.Insert(handle(Smi::FromInt(static_cast<int>(i)), isolate()));
}
CHECK_EQ(builder.size(), kMaxCapacity);
for (size_t i = 0; i < kMaxCapacity; i++) {
CHECK_EQ(Handle<Smi>::cast(builder.At(i))->value(), i);
}
}
TEST_F(ConstantArrayBuilderTest, AllocateEntriesWithIdx8Reservations) {
for (size_t reserved = 1; reserved < kLowCapacity; reserved *= 3) {
ConstantArrayBuilder builder(isolate(), zone());
for (size_t i = 0; i < reserved; i++) {
OperandSize operand_size = builder.CreateReservedEntry();
CHECK(operand_size == OperandSize::kByte);
}
for (size_t i = 0; i < 2 * kLowCapacity; i++) {
Handle<Object> object = isolate()->factory()->NewNumberFromSize(i);
builder.Insert(object);
if (i + reserved < kLowCapacity) {
CHECK_LE(builder.size(), kLowCapacity);
CHECK_EQ(builder.size(), i + 1);
CHECK(builder.At(i)->SameValue(*object));
} else {
CHECK_GE(builder.size(), kLowCapacity);
CHECK_EQ(builder.size(), i + reserved + 1);
CHECK(builder.At(i + reserved)->SameValue(*object));
}
}
CHECK_EQ(builder.size(), 2 * kLowCapacity + reserved);
// Check reserved values represented by the hole.
for (size_t i = 0; i < reserved; i++) {
Handle<Object> empty = builder.At(kLowCapacity - reserved + i);
CHECK(empty->SameValue(isolate()->heap()->the_hole_value()));
}
// Commmit reserved entries with duplicates and check size does not change.
DCHECK_EQ(reserved + 2 * kLowCapacity, builder.size());
size_t duplicates_in_idx8_space =
std::min(reserved, kLowCapacity - reserved);
for (size_t i = 0; i < duplicates_in_idx8_space; i++) {
builder.CommitReservedEntry(OperandSize::kByte,
isolate()->factory()->NewNumberFromSize(i));
DCHECK_EQ(reserved + 2 * kLowCapacity, builder.size());
}
// Check all committed values match expected (holes where
// duplicates_in_idx8_space allocated).
for (size_t i = 0; i < kLowCapacity - reserved; i++) {
Smi* smi = Smi::FromInt(static_cast<int>(i));
CHECK(Handle<Smi>::cast(builder.At(i))->SameValue(smi));
}
for (size_t i = kLowCapacity; i < 2 * kLowCapacity + reserved; i++) {
Smi* smi = Smi::FromInt(static_cast<int>(i - reserved));
CHECK(Handle<Smi>::cast(builder.At(i))->SameValue(smi));
}
for (size_t i = 0; i < reserved; i++) {
size_t index = kLowCapacity - reserved + i;
CHECK(builder.At(index)->IsTheHole());
}
// Now make reservations, and commit them with unique entries.
for (size_t i = 0; i < duplicates_in_idx8_space; i++) {
OperandSize operand_size = builder.CreateReservedEntry();
CHECK(operand_size == OperandSize::kByte);
}
for (size_t i = 0; i < duplicates_in_idx8_space; i++) {
Handle<Object> object =
isolate()->factory()->NewNumberFromSize(2 * kLowCapacity + i);
size_t index = builder.CommitReservedEntry(OperandSize::kByte, object);
CHECK_EQ(static_cast<int>(index), kLowCapacity - reserved + i);
CHECK(builder.At(static_cast<int>(index))->SameValue(*object));
}
CHECK_EQ(builder.size(), 2 * kLowCapacity + reserved);
}
}
TEST_F(ConstantArrayBuilderTest, AllocateEntriesWithIdx16Reservations) {
for (size_t reserved = 1; reserved < kLowCapacity; reserved *= 3) {
ConstantArrayBuilder builder(isolate(), zone());
for (size_t i = 0; i < kLowCapacity; i++) {
Handle<Object> object = isolate()->factory()->NewNumberFromSize(i);
builder.Insert(object);
CHECK(builder.At(i)->SameValue(*object));
CHECK_EQ(builder.size(), i + 1);
}
for (size_t i = 0; i < reserved; i++) {
OperandSize operand_size = builder.CreateReservedEntry();
CHECK(operand_size == OperandSize::kShort);
CHECK_EQ(builder.size(), kLowCapacity);
}
for (size_t i = 0; i < reserved; i++) {
builder.DiscardReservedEntry(OperandSize::kShort);
CHECK_EQ(builder.size(), kLowCapacity);
}
for (size_t i = 0; i < reserved; i++) {
OperandSize operand_size = builder.CreateReservedEntry();
CHECK(operand_size == OperandSize::kShort);
Handle<Object> object = isolate()->factory()->NewNumberFromSize(i);
builder.CommitReservedEntry(operand_size, object);
CHECK_EQ(builder.size(), kLowCapacity);
}
for (size_t i = kLowCapacity; i < kLowCapacity + reserved; i++) {
OperandSize operand_size = builder.CreateReservedEntry();
CHECK(operand_size == OperandSize::kShort);
Handle<Object> object = isolate()->factory()->NewNumberFromSize(i);
builder.CommitReservedEntry(operand_size, object);
CHECK_EQ(builder.size(), i + 1);
}
}
}
TEST_F(ConstantArrayBuilderTest, ToFixedArray) {
ConstantArrayBuilder builder(isolate(), zone());
static const size_t kNumberOfElements = 37;
for (size_t i = 0; i < kNumberOfElements; i++) {
Handle<Object> object = isolate()->factory()->NewNumberFromSize(i);
builder.Insert(object);
CHECK(builder.At(i)->SameValue(*object));
}
Handle<FixedArray> constant_array = builder.ToFixedArray();
CHECK_EQ(constant_array->length(), kNumberOfElements);
for (size_t i = 0; i < kNumberOfElements; i++) {
CHECK(constant_array->get(static_cast<int>(i))->SameValue(*builder.At(i)));
}
}
TEST_F(ConstantArrayBuilderTest, GapFilledWhenLowReservationCommitted) {
ConstantArrayBuilder builder(isolate(), zone());
for (size_t i = 0; i < kLowCapacity; i++) {
OperandSize operand_size = builder.CreateReservedEntry();
CHECK(OperandSize::kByte == operand_size);
CHECK_EQ(builder.size(), 0);
}
for (size_t i = 0; i < kLowCapacity; i++) {
Handle<Object> object = isolate()->factory()->NewNumberFromSize(i);
builder.Insert(object);
CHECK_EQ(builder.size(), i + kLowCapacity + 1);
}
for (size_t i = 0; i < kLowCapacity; i++) {
builder.CommitReservedEntry(OperandSize::kByte,
builder.At(i + kLowCapacity));
CHECK_EQ(builder.size(), 2 * kLowCapacity);
}
for (size_t i = 0; i < kLowCapacity; i++) {
Handle<Object> original = builder.At(kLowCapacity + i);
Handle<Object> duplicate = builder.At(i);
CHECK(original->SameValue(*duplicate));
Handle<Object> reference = isolate()->factory()->NewNumberFromSize(i);
CHECK(original->SameValue(*reference));
}
}
TEST_F(ConstantArrayBuilderTest, GapNotFilledWhenLowReservationDiscarded) {
ConstantArrayBuilder builder(isolate(), zone());
for (size_t i = 0; i < kLowCapacity; i++) {
OperandSize operand_size = builder.CreateReservedEntry();
CHECK(OperandSize::kByte == operand_size);
CHECK_EQ(builder.size(), 0);
}
for (size_t i = 0; i < kLowCapacity; i++) {
Handle<Object> object = isolate()->factory()->NewNumberFromSize(i);
builder.Insert(object);
CHECK_EQ(builder.size(), i + kLowCapacity + 1);
}
for (size_t i = 0; i < kLowCapacity; i++) {
builder.DiscardReservedEntry(OperandSize::kByte);
builder.Insert(builder.At(i + kLowCapacity));
CHECK_EQ(builder.size(), 2 * kLowCapacity);
}
for (size_t i = 0; i < kLowCapacity; i++) {
Handle<Object> reference = isolate()->factory()->NewNumberFromSize(i);
Handle<Object> original = builder.At(kLowCapacity + i);
CHECK(original->SameValue(*reference));
Handle<Object> duplicate = builder.At(i);
CHECK(duplicate->SameValue(*isolate()->factory()->the_hole_value()));
}
}
} // namespace interpreter
} // namespace internal
} // namespace v8