v8/src/execution.h
Wez b9c81f51d4 Remove unused StackGuard::HandleGCInterrupt API.
Change-Id: I58f3eb9259822650a3b31010213e3df030821be2
Reviewed-on: https://chromium-review.googlesource.com/1042187
Reviewed-by: Hannes Payer <hpayer@chromium.org>
Commit-Queue: Wez <wez@chromium.org>
Cr-Commit-Position: refs/heads/master@{#52980}
2018-05-04 08:48:57 +00:00

236 lines
8.7 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_EXECUTION_H_
#define V8_EXECUTION_H_
#include "src/base/atomicops.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
template <typename T>
class Handle;
class Execution final : public AllStatic {
public:
// Whether to report pending messages, or keep them pending on the isolate.
enum class MessageHandling { kReport, kKeepPending };
enum class Target { kCallable, kRunMicrotasks };
// Call a function, the caller supplies a receiver and an array
// of arguments.
//
// When the function called is not in strict mode, receiver is
// converted to an object.
//
V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Call(
Isolate* isolate, Handle<Object> callable, Handle<Object> receiver,
int argc, Handle<Object> argv[]);
// Construct object from function, the caller supplies an array of
// arguments.
V8_WARN_UNUSED_RESULT static MaybeHandle<Object> New(
Isolate* isolate, Handle<Object> constructor, int argc,
Handle<Object> argv[]);
V8_WARN_UNUSED_RESULT static MaybeHandle<Object> New(
Isolate* isolate, Handle<Object> constructor, Handle<Object> new_target,
int argc, Handle<Object> argv[]);
// Call a function, just like Call(), but handle don't report exceptions
// externally.
// The return value is either the result of calling the function (if no
// exception occurred), or an empty handle.
// If message_handling is MessageHandling::kReport, exceptions (except for
// termination exceptions) will be stored in exception_out (if not a
// nullptr).
static MaybeHandle<Object> TryCall(Isolate* isolate, Handle<Object> callable,
Handle<Object> receiver, int argc,
Handle<Object> argv[],
MessageHandling message_handling,
MaybeHandle<Object>* exception_out,
Target target = Target::kCallable);
// Convenience method for performing RunMicrotasks
static MaybeHandle<Object> RunMicrotasks(Isolate* isolate,
MessageHandling message_handling,
MaybeHandle<Object>* exception_out);
};
class ExecutionAccess;
class InterruptsScope;
// StackGuard contains the handling of the limits that are used to limit the
// number of nested invocations of JavaScript and the stack size used in each
// invocation.
class V8_EXPORT_PRIVATE StackGuard final {
public:
// Pass the address beyond which the stack should not grow. The stack
// is assumed to grow downwards.
void SetStackLimit(uintptr_t limit);
// The simulator uses a separate JS stack. Limits on the JS stack might have
// to be adjusted in order to reflect overflows of the C stack, because we
// cannot rely on the interleaving of frames on the simulator.
void AdjustStackLimitForSimulator();
// Threading support.
char* ArchiveStackGuard(char* to);
char* RestoreStackGuard(char* from);
static int ArchiveSpacePerThread() { return sizeof(ThreadLocal); }
void FreeThreadResources();
// Sets up the default stack guard for this thread if it has not
// already been set up.
void InitThread(const ExecutionAccess& lock);
// Clears the stack guard for this thread so it does not look as if
// it has been set up.
void ClearThread(const ExecutionAccess& lock);
#define INTERRUPT_LIST(V) \
V(DEBUGBREAK, DebugBreak, 0) \
V(TERMINATE_EXECUTION, TerminateExecution, 1) \
V(GC_REQUEST, GC, 2) \
V(INSTALL_CODE, InstallCode, 3) \
V(API_INTERRUPT, ApiInterrupt, 4) \
V(DEOPT_MARKED_ALLOCATION_SITES, DeoptMarkedAllocationSites, 5)
#define V(NAME, Name, id) \
inline bool Check##Name() { return CheckInterrupt(NAME); } \
inline bool CheckAndClear##Name() { return CheckAndClearInterrupt(NAME); } \
inline void Request##Name() { RequestInterrupt(NAME); } \
inline void Clear##Name() { ClearInterrupt(NAME); }
INTERRUPT_LIST(V)
#undef V
// Flag used to set the interrupt causes.
enum InterruptFlag {
#define V(NAME, Name, id) NAME = (1 << id),
INTERRUPT_LIST(V)
#undef V
#define V(NAME, Name, id) NAME |
ALL_INTERRUPTS = INTERRUPT_LIST(V) 0
#undef V
};
uintptr_t climit() { return thread_local_.climit(); }
uintptr_t jslimit() { return thread_local_.jslimit(); }
// This provides an asynchronous read of the stack limits for the current
// thread. There are no locks protecting this, but it is assumed that you
// have the global V8 lock if you are using multiple V8 threads.
uintptr_t real_climit() {
return thread_local_.real_climit_;
}
uintptr_t real_jslimit() {
return thread_local_.real_jslimit_;
}
Address address_of_jslimit() {
return reinterpret_cast<Address>(&thread_local_.jslimit_);
}
Address address_of_real_jslimit() {
return reinterpret_cast<Address>(&thread_local_.real_jslimit_);
}
// If the stack guard is triggered, but it is not an actual
// stack overflow, then handle the interruption accordingly.
Object* HandleInterrupts();
private:
StackGuard();
bool CheckInterrupt(InterruptFlag flag);
void RequestInterrupt(InterruptFlag flag);
void ClearInterrupt(InterruptFlag flag);
bool CheckAndClearInterrupt(InterruptFlag flag);
// You should hold the ExecutionAccess lock when calling this method.
bool has_pending_interrupts(const ExecutionAccess& lock) {
return thread_local_.interrupt_flags_ != 0;
}
// You should hold the ExecutionAccess lock when calling this method.
inline void set_interrupt_limits(const ExecutionAccess& lock);
// Reset limits to actual values. For example after handling interrupt.
// You should hold the ExecutionAccess lock when calling this method.
inline void reset_limits(const ExecutionAccess& lock);
// Enable or disable interrupts.
void EnableInterrupts();
void DisableInterrupts();
#if V8_TARGET_ARCH_64_BIT
static const uintptr_t kInterruptLimit = uintptr_t{0xfffffffffffffffe};
static const uintptr_t kIllegalLimit = uintptr_t{0xfffffffffffffff8};
#else
static const uintptr_t kInterruptLimit = 0xfffffffe;
static const uintptr_t kIllegalLimit = 0xfffffff8;
#endif
void PushInterruptsScope(InterruptsScope* scope);
void PopInterruptsScope();
class ThreadLocal final {
public:
ThreadLocal() { Clear(); }
// You should hold the ExecutionAccess lock when you call Initialize or
// Clear.
void Clear();
// Returns true if the heap's stack limits should be set, false if not.
bool Initialize(Isolate* isolate);
// The stack limit is split into a JavaScript and a C++ stack limit. These
// two are the same except when running on a simulator where the C++ and
// JavaScript stacks are separate. Each of the two stack limits have two
// values. The one eith the real_ prefix is the actual stack limit
// set for the VM. The one without the real_ prefix has the same value as
// the actual stack limit except when there is an interruption (e.g. debug
// break or preemption) in which case it is lowered to make stack checks
// fail. Both the generated code and the runtime system check against the
// one without the real_ prefix.
uintptr_t real_jslimit_; // Actual JavaScript stack limit set for the VM.
uintptr_t real_climit_; // Actual C++ stack limit set for the VM.
// jslimit_ and climit_ can be read without any lock.
// Writing requires the ExecutionAccess lock.
base::AtomicWord jslimit_;
base::AtomicWord climit_;
uintptr_t jslimit() {
return bit_cast<uintptr_t>(base::Relaxed_Load(&jslimit_));
}
void set_jslimit(uintptr_t limit) {
return base::Relaxed_Store(&jslimit_,
static_cast<base::AtomicWord>(limit));
}
uintptr_t climit() {
return bit_cast<uintptr_t>(base::Relaxed_Load(&climit_));
}
void set_climit(uintptr_t limit) {
return base::Relaxed_Store(&climit_,
static_cast<base::AtomicWord>(limit));
}
InterruptsScope* interrupt_scopes_;
int interrupt_flags_;
};
// TODO(isolates): Technically this could be calculated directly from a
// pointer to StackGuard.
Isolate* isolate_;
ThreadLocal thread_local_;
friend class Isolate;
friend class StackLimitCheck;
friend class InterruptsScope;
DISALLOW_COPY_AND_ASSIGN(StackGuard);
};
} // namespace internal
} // namespace v8
#endif // V8_EXECUTION_H_