v8/src/ast.cc

1340 lines
42 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "ast.h"
#include <cmath> // For isfinite.
#include "builtins.h"
#include "code-stubs.h"
#include "contexts.h"
#include "conversions.h"
#include "hashmap.h"
#include "parser.h"
#include "property-details.h"
#include "property.h"
#include "scopes.h"
#include "string-stream.h"
#include "type-info.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// All the Accept member functions for each syntax tree node type.
#define DECL_ACCEPT(type) \
void type::Accept(AstVisitor* v) { v->Visit##type(this); }
AST_NODE_LIST(DECL_ACCEPT)
#undef DECL_ACCEPT
// ----------------------------------------------------------------------------
// Implementation of other node functionality.
bool Expression::IsSmiLiteral() {
return AsLiteral() != NULL && AsLiteral()->value()->IsSmi();
}
bool Expression::IsStringLiteral() {
return AsLiteral() != NULL && AsLiteral()->value()->IsString();
}
bool Expression::IsNullLiteral() {
return AsLiteral() != NULL && AsLiteral()->value()->IsNull();
}
bool Expression::IsUndefinedLiteral(Isolate* isolate) {
VariableProxy* var_proxy = AsVariableProxy();
if (var_proxy == NULL) return false;
Variable* var = var_proxy->var();
// The global identifier "undefined" is immutable. Everything
// else could be reassigned.
return var != NULL && var->location() == Variable::UNALLOCATED &&
var_proxy->name()->Equals(isolate->heap()->undefined_string());
}
VariableProxy::VariableProxy(Isolate* isolate, Variable* var, int position)
: Expression(isolate, position),
name_(var->name()),
var_(NULL), // Will be set by the call to BindTo.
is_this_(var->is_this()),
is_trivial_(false),
is_lvalue_(false),
interface_(var->interface()) {
BindTo(var);
}
VariableProxy::VariableProxy(Isolate* isolate,
Handle<String> name,
bool is_this,
Interface* interface,
int position)
: Expression(isolate, position),
name_(name),
var_(NULL),
is_this_(is_this),
is_trivial_(false),
is_lvalue_(false),
interface_(interface) {
// Names must be canonicalized for fast equality checks.
ASSERT(name->IsInternalizedString());
}
void VariableProxy::BindTo(Variable* var) {
ASSERT(var_ == NULL); // must be bound only once
ASSERT(var != NULL); // must bind
ASSERT(!FLAG_harmony_modules || interface_->IsUnified(var->interface()));
ASSERT((is_this() && var->is_this()) || name_.is_identical_to(var->name()));
// Ideally CONST-ness should match. However, this is very hard to achieve
// because we don't know the exact semantics of conflicting (const and
// non-const) multiple variable declarations, const vars introduced via
// eval() etc. Const-ness and variable declarations are a complete mess
// in JS. Sigh...
var_ = var;
var->set_is_used(true);
}
Assignment::Assignment(Isolate* isolate,
Token::Value op,
Expression* target,
Expression* value,
int pos)
: Expression(isolate, pos),
op_(op),
target_(target),
value_(value),
binary_operation_(NULL),
assignment_id_(GetNextId(isolate)),
is_monomorphic_(false),
is_uninitialized_(false),
is_pre_monomorphic_(false),
store_mode_(STANDARD_STORE) { }
Token::Value Assignment::binary_op() const {
switch (op_) {
case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
case Token::ASSIGN_SHL: return Token::SHL;
case Token::ASSIGN_SAR: return Token::SAR;
case Token::ASSIGN_SHR: return Token::SHR;
case Token::ASSIGN_ADD: return Token::ADD;
case Token::ASSIGN_SUB: return Token::SUB;
case Token::ASSIGN_MUL: return Token::MUL;
case Token::ASSIGN_DIV: return Token::DIV;
case Token::ASSIGN_MOD: return Token::MOD;
default: UNREACHABLE();
}
return Token::ILLEGAL;
}
bool FunctionLiteral::AllowsLazyCompilation() {
return scope()->AllowsLazyCompilation();
}
bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
return scope()->AllowsLazyCompilationWithoutContext();
}
int FunctionLiteral::start_position() const {
return scope()->start_position();
}
int FunctionLiteral::end_position() const {
return scope()->end_position();
}
LanguageMode FunctionLiteral::language_mode() const {
return scope()->language_mode();
}
ObjectLiteralProperty::ObjectLiteralProperty(Literal* key,
Expression* value,
Isolate* isolate) {
emit_store_ = true;
key_ = key;
value_ = value;
Object* k = *key->value();
if (k->IsInternalizedString() &&
isolate->heap()->proto_string()->Equals(String::cast(k))) {
kind_ = PROTOTYPE;
} else if (value_->AsMaterializedLiteral() != NULL) {
kind_ = MATERIALIZED_LITERAL;
} else if (value_->AsLiteral() != NULL) {
kind_ = CONSTANT;
} else {
kind_ = COMPUTED;
}
}
ObjectLiteralProperty::ObjectLiteralProperty(bool is_getter,
FunctionLiteral* value) {
emit_store_ = true;
value_ = value;
kind_ = is_getter ? GETTER : SETTER;
}
bool ObjectLiteral::Property::IsCompileTimeValue() {
return kind_ == CONSTANT ||
(kind_ == MATERIALIZED_LITERAL &&
CompileTimeValue::IsCompileTimeValue(value_));
}
void ObjectLiteral::Property::set_emit_store(bool emit_store) {
emit_store_ = emit_store;
}
bool ObjectLiteral::Property::emit_store() {
return emit_store_;
}
void ObjectLiteral::CalculateEmitStore(Zone* zone) {
ZoneAllocationPolicy allocator(zone);
ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
allocator);
for (int i = properties()->length() - 1; i >= 0; i--) {
ObjectLiteral::Property* property = properties()->at(i);
Literal* literal = property->key();
if (literal->value()->IsNull()) continue;
uint32_t hash = literal->Hash();
// If the key of a computed property is in the table, do not emit
// a store for the property later.
if ((property->kind() == ObjectLiteral::Property::MATERIALIZED_LITERAL ||
property->kind() == ObjectLiteral::Property::COMPUTED) &&
table.Lookup(literal, hash, false, allocator) != NULL) {
property->set_emit_store(false);
} else {
// Add key to the table.
table.Lookup(literal, hash, true, allocator);
}
}
}
bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
return property != NULL &&
property->kind() != ObjectLiteral::Property::PROTOTYPE;
}
void ObjectLiteral::BuildConstantProperties(Isolate* isolate, int* depth) {
if (!constant_properties_.is_null()) return;
// Allocate a fixed array to hold all the constant properties.
Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
boilerplate_properties_ * 2, TENURED);
int position = 0;
// Accumulate the value in local variables and store it at the end.
bool is_simple = true;
int depth_acc = 1;
uint32_t max_element_index = 0;
uint32_t elements = 0;
for (int i = 0; i < properties()->length(); i++) {
ObjectLiteral::Property* property = properties()->at(i);
if (!IsBoilerplateProperty(property)) {
is_simple = false;
continue;
}
MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
if (m_literal != NULL) {
int inner_depth = 1;
m_literal->BuildConstants(isolate, &inner_depth);
if (inner_depth >= depth_acc) depth_acc = inner_depth + 1;
}
// Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
// value for COMPUTED properties, the real value is filled in at
// runtime. The enumeration order is maintained.
Handle<Object> key = property->key()->value();
Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
// Ensure objects that may, at any point in time, contain fields with double
// representation are always treated as nested objects. This is true for
// computed fields (value is undefined), and smi and double literals
// (value->IsNumber()).
// TODO(verwaest): Remove once we can store them inline.
if (FLAG_track_double_fields &&
(value->IsNumber() || value->IsUninitialized())) {
may_store_doubles_ = true;
}
is_simple = is_simple && !value->IsUninitialized();
// Keep track of the number of elements in the object literal and
// the largest element index. If the largest element index is
// much larger than the number of elements, creating an object
// literal with fast elements will be a waste of space.
uint32_t element_index = 0;
if (key->IsString()
&& Handle<String>::cast(key)->AsArrayIndex(&element_index)
&& element_index > max_element_index) {
max_element_index = element_index;
elements++;
} else if (key->IsSmi()) {
int key_value = Smi::cast(*key)->value();
if (key_value > 0
&& static_cast<uint32_t>(key_value) > max_element_index) {
max_element_index = key_value;
}
elements++;
}
// Add name, value pair to the fixed array.
constant_properties->set(position++, *key);
constant_properties->set(position++, *value);
}
constant_properties_ = constant_properties;
fast_elements_ =
(max_element_index <= 32) || ((2 * elements) >= max_element_index);
set_is_simple(is_simple);
if (depth != NULL) *depth = depth_acc;
}
void ArrayLiteral::BuildConstantElements(Isolate* isolate, int* depth) {
if (!constant_elements_.is_null()) return;
// Allocate a fixed array to hold all the object literals.
Handle<JSArray> array =
isolate->factory()->NewJSArray(0, FAST_HOLEY_SMI_ELEMENTS);
isolate->factory()->SetElementsCapacityAndLength(
array, values()->length(), values()->length());
// Fill in the literals.
bool is_simple = true;
int depth_acc = 1;
bool is_holey = false;
for (int i = 0, n = values()->length(); i < n; i++) {
Expression* element = values()->at(i);
MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
if (m_literal != NULL) {
int inner_depth = 1;
m_literal->BuildConstants(isolate, &inner_depth);
if (inner_depth + 1 > depth_acc) depth_acc = inner_depth + 1;
}
Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
if (boilerplate_value->IsTheHole()) {
is_holey = true;
} else if (boilerplate_value->IsUninitialized()) {
is_simple = false;
JSObject::SetOwnElement(
array, i, handle(Smi::FromInt(0), isolate), kNonStrictMode);
} else {
JSObject::SetOwnElement(array, i, boilerplate_value, kNonStrictMode);
}
}
Handle<FixedArrayBase> element_values(array->elements());
// Simple and shallow arrays can be lazily copied, we transform the
// elements array to a copy-on-write array.
if (is_simple && depth_acc == 1 && values()->length() > 0 &&
array->HasFastSmiOrObjectElements()) {
element_values->set_map(isolate->heap()->fixed_cow_array_map());
}
// Remember both the literal's constant values as well as the ElementsKind
// in a 2-element FixedArray.
Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
ElementsKind kind = array->GetElementsKind();
kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
literals->set(0, Smi::FromInt(kind));
literals->set(1, *element_values);
constant_elements_ = literals;
set_is_simple(is_simple);
if (depth != NULL) *depth = depth_acc;
}
Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
Isolate* isolate) {
if (expression->AsLiteral() != NULL) {
return expression->AsLiteral()->value();
}
if (CompileTimeValue::IsCompileTimeValue(expression)) {
return CompileTimeValue::GetValue(isolate, expression);
}
return isolate->factory()->uninitialized_value();
}
void MaterializedLiteral::BuildConstants(Isolate* isolate, int* depth) {
if (IsArrayLiteral()) {
return AsArrayLiteral()->BuildConstantElements(isolate, depth);
}
if (IsObjectLiteral()) {
return AsObjectLiteral()->BuildConstantProperties(isolate, depth);
}
ASSERT(IsRegExpLiteral());
}
void TargetCollector::AddTarget(Label* target, Zone* zone) {
// Add the label to the collector, but discard duplicates.
int length = targets_.length();
for (int i = 0; i < length; i++) {
if (targets_[i] == target) return;
}
targets_.Add(target, zone);
}
void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
// TODO(olivf) If this Operation is used in a test context, then the
// expression has a ToBoolean stub and we want to collect the type
// information. However the GraphBuilder expects it to be on the instruction
// corresponding to the TestContext, therefore we have to store it here and
// not on the operand.
set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
}
void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
// TODO(olivf) If this Operation is used in a test context, then the right
// hand side has a ToBoolean stub and we want to collect the type information.
// However the GraphBuilder expects it to be on the instruction corresponding
// to the TestContext, therefore we have to store it here and not on the
// right hand operand.
set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
}
bool BinaryOperation::ResultOverwriteAllowed() {
switch (op_) {
case Token::COMMA:
case Token::OR:
case Token::AND:
return false;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
return true;
default:
UNREACHABLE();
}
return false;
}
static bool IsTypeof(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
}
// Check for the pattern: typeof <expression> equals <string literal>.
static bool MatchLiteralCompareTypeof(Expression* left,
Token::Value op,
Expression* right,
Expression** expr,
Handle<String>* check) {
if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
*expr = left->AsUnaryOperation()->expression();
*check = Handle<String>::cast(right->AsLiteral()->value());
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
Handle<String>* check) {
return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
}
static bool IsVoidOfLiteral(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL &&
maybe_unary->op() == Token::VOID &&
maybe_unary->expression()->AsLiteral() != NULL;
}
// Check for the pattern: void <literal> equals <expression> or
// undefined equals <expression>
static bool MatchLiteralCompareUndefined(Expression* left,
Token::Value op,
Expression* right,
Expression** expr,
Isolate* isolate) {
if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
if (left->IsUndefinedLiteral(isolate) && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareUndefined(
Expression** expr, Isolate* isolate) {
return MatchLiteralCompareUndefined(left_, op_, right_, expr, isolate) ||
MatchLiteralCompareUndefined(right_, op_, left_, expr, isolate);
}
// Check for the pattern: null equals <expression>
static bool MatchLiteralCompareNull(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
return MatchLiteralCompareNull(left_, op_, right_, expr) ||
MatchLiteralCompareNull(right_, op_, left_, expr);
}
// ----------------------------------------------------------------------------
// Inlining support
bool Declaration::IsInlineable() const {
return proxy()->var()->IsStackAllocated();
}
bool FunctionDeclaration::IsInlineable() const {
return false;
}
// ----------------------------------------------------------------------------
// Recording of type feedback
// TODO(rossberg): all RecordTypeFeedback functions should disappear
// once we use the common type field in the AST consistently.
void ForInStatement::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
for_in_type_ = static_cast<ForInType>(oracle->ForInType(this));
}
void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
to_boolean_types_ = oracle->ToBooleanTypes(test_id());
}
void Property::RecordTypeFeedback(TypeFeedbackOracle* oracle,
Zone* zone) {
// Record type feedback from the oracle in the AST.
is_uninitialized_ = oracle->LoadIsUninitialized(this);
if (is_uninitialized_) return;
is_pre_monomorphic_ = oracle->LoadIsPreMonomorphic(this);
is_monomorphic_ = oracle->LoadIsMonomorphicNormal(this);
ASSERT(!is_pre_monomorphic_ || !is_monomorphic_);
receiver_types_.Clear();
if (key()->IsPropertyName()) {
FunctionPrototypeStub proto_stub(Code::LOAD_IC);
if (oracle->LoadIsStub(this, &proto_stub)) {
is_function_prototype_ = true;
} else {
Literal* lit_key = key()->AsLiteral();
ASSERT(lit_key != NULL && lit_key->value()->IsString());
Handle<String> name = Handle<String>::cast(lit_key->value());
oracle->LoadReceiverTypes(this, name, &receiver_types_);
}
} else if (oracle->LoadIsBuiltin(this, Builtins::kKeyedLoadIC_String)) {
is_string_access_ = true;
} else if (is_monomorphic_) {
receiver_types_.Add(oracle->LoadMonomorphicReceiverType(this), zone);
} else if (oracle->LoadIsPolymorphic(this)) {
receiver_types_.Reserve(kMaxKeyedPolymorphism, zone);
oracle->CollectKeyedReceiverTypes(PropertyFeedbackId(), &receiver_types_);
}
}
void Assignment::RecordTypeFeedback(TypeFeedbackOracle* oracle,
Zone* zone) {
Property* prop = target()->AsProperty();
ASSERT(prop != NULL);
TypeFeedbackId id = AssignmentFeedbackId();
is_uninitialized_ = oracle->StoreIsUninitialized(id);
if (is_uninitialized_) return;
is_pre_monomorphic_ = oracle->StoreIsPreMonomorphic(id);
is_monomorphic_ = oracle->StoreIsMonomorphicNormal(id);
ASSERT(!is_pre_monomorphic_ || !is_monomorphic_);
receiver_types_.Clear();
if (prop->key()->IsPropertyName()) {
Literal* lit_key = prop->key()->AsLiteral();
ASSERT(lit_key != NULL && lit_key->value()->IsString());
Handle<String> name = Handle<String>::cast(lit_key->value());
oracle->StoreReceiverTypes(this, name, &receiver_types_);
} else if (is_monomorphic_) {
// Record receiver type for monomorphic keyed stores.
receiver_types_.Add(oracle->StoreMonomorphicReceiverType(id), zone);
store_mode_ = oracle->GetStoreMode(id);
} else if (oracle->StoreIsKeyedPolymorphic(id)) {
receiver_types_.Reserve(kMaxKeyedPolymorphism, zone);
oracle->CollectKeyedReceiverTypes(id, &receiver_types_);
store_mode_ = oracle->GetStoreMode(id);
}
}
void CountOperation::RecordTypeFeedback(TypeFeedbackOracle* oracle,
Zone* zone) {
TypeFeedbackId id = CountStoreFeedbackId();
is_monomorphic_ = oracle->StoreIsMonomorphicNormal(id);
receiver_types_.Clear();
if (is_monomorphic_) {
// Record receiver type for monomorphic keyed stores.
receiver_types_.Add(
oracle->StoreMonomorphicReceiverType(id), zone);
} else if (oracle->StoreIsKeyedPolymorphic(id)) {
receiver_types_.Reserve(kMaxKeyedPolymorphism, zone);
oracle->CollectKeyedReceiverTypes(id, &receiver_types_);
} else {
oracle->CollectPolymorphicStoreReceiverTypes(id, &receiver_types_);
}
store_mode_ = oracle->GetStoreMode(id);
type_ = oracle->IncrementType(this);
}
void CaseClause::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
compare_type_ = oracle->ClauseType(CompareId());
}
bool Call::ComputeTarget(Handle<Map> type, Handle<String> name) {
// If there is an interceptor, we can't compute the target for a direct call.
if (type->has_named_interceptor()) return false;
if (check_type_ == RECEIVER_MAP_CHECK) {
// For primitive checks the holder is set up to point to the corresponding
// prototype object, i.e. one step of the algorithm below has been already
// performed. For non-primitive checks we clear it to allow computing
// targets for polymorphic calls.
holder_ = Handle<JSObject>::null();
}
LookupResult lookup(type->GetIsolate());
while (true) {
// If a dictionary map is found in the prototype chain before the actual
// target, a new target can always appear. In that case, bail out.
// TODO(verwaest): Alternatively a runtime negative lookup on the normal
// receiver or prototype could be added.
if (type->is_dictionary_map()) return false;
type->LookupDescriptor(NULL, *name, &lookup);
if (lookup.IsFound()) {
switch (lookup.type()) {
case CONSTANT: {
// We surely know the target for a constant function.
Handle<Object> constant(lookup.GetConstantFromMap(*type),
type->GetIsolate());
if (constant->IsJSFunction()) {
target_ = Handle<JSFunction>::cast(constant);
return true;
}
// Fall through.
}
case NORMAL:
case FIELD:
case CALLBACKS:
case HANDLER:
case INTERCEPTOR:
// We don't know the target.
return false;
case TRANSITION:
case NONEXISTENT:
UNREACHABLE();
break;
}
}
// If we reach the end of the prototype chain, we don't know the target.
if (!type->prototype()->IsJSObject()) return false;
// Go up the prototype chain, recording where we are currently.
holder_ = Handle<JSObject>(JSObject::cast(type->prototype()));
type = Handle<Map>(holder()->map());
}
}
bool Call::ComputeGlobalTarget(Handle<GlobalObject> global,
LookupResult* lookup) {
target_ = Handle<JSFunction>::null();
cell_ = Handle<Cell>::null();
ASSERT(lookup->IsFound() &&
lookup->type() == NORMAL &&
lookup->holder() == *global);
cell_ = Handle<Cell>(global->GetPropertyCell(lookup));
if (cell_->value()->IsJSFunction()) {
Handle<JSFunction> candidate(JSFunction::cast(cell_->value()));
// If the function is in new space we assume it's more likely to
// change and thus prefer the general IC code.
if (!lookup->isolate()->heap()->InNewSpace(*candidate)) {
target_ = candidate;
return true;
}
}
return false;
}
Handle<JSObject> Call::GetPrototypeForPrimitiveCheck(
CheckType check, Isolate* isolate) {
v8::internal::Context* native_context = isolate->context()->native_context();
JSFunction* function = NULL;
switch (check) {
case RECEIVER_MAP_CHECK:
UNREACHABLE();
break;
case STRING_CHECK:
function = native_context->string_function();
break;
case SYMBOL_CHECK:
function = native_context->symbol_function();
break;
case NUMBER_CHECK:
function = native_context->number_function();
break;
case BOOLEAN_CHECK:
function = native_context->boolean_function();
break;
}
ASSERT(function != NULL);
return Handle<JSObject>(JSObject::cast(function->instance_prototype()));
}
void Call::RecordTypeFeedback(TypeFeedbackOracle* oracle,
CallKind call_kind) {
is_monomorphic_ = oracle->CallIsMonomorphic(this);
Property* property = expression()->AsProperty();
if (property == NULL) {
// Function call. Specialize for monomorphic calls.
if (is_monomorphic_) target_ = oracle->GetCallTarget(this);
} else if (property->key()->IsPropertyName()) {
// Method call. Specialize for the receiver types seen at runtime.
Literal* key = property->key()->AsLiteral();
ASSERT(key != NULL && key->value()->IsString());
Handle<String> name = Handle<String>::cast(key->value());
check_type_ = oracle->GetCallCheckType(this);
receiver_types_.Clear();
if (check_type_ == RECEIVER_MAP_CHECK) {
oracle->CallReceiverTypes(this, name, call_kind, &receiver_types_);
is_monomorphic_ = is_monomorphic_ && receiver_types_.length() > 0;
} else {
holder_ = GetPrototypeForPrimitiveCheck(check_type_, oracle->isolate());
receiver_types_.Add(handle(holder_->map()), oracle->zone());
}
#ifdef ENABLE_SLOW_ASSERTS
if (FLAG_enable_slow_asserts) {
int length = receiver_types_.length();
for (int i = 0; i < length; i++) {
Handle<Map> map = receiver_types_.at(i);
ASSERT(!map.is_null() && *map != NULL);
}
}
#endif
if (is_monomorphic_) {
Handle<Map> map = receiver_types_.first();
is_monomorphic_ = ComputeTarget(map, name);
}
} else {
if (is_monomorphic_) {
keyed_array_call_is_holey_ = oracle->KeyedArrayCallIsHoley(this);
}
}
}
void CallNew::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
allocation_info_cell_ = oracle->GetCallNewAllocationInfoCell(this);
is_monomorphic_ = oracle->CallNewIsMonomorphic(this);
if (is_monomorphic_) {
target_ = oracle->GetCallNewTarget(this);
Object* value = allocation_info_cell_->value();
ASSERT(!value->IsTheHole());
if (value->IsAllocationSite()) {
AllocationSite* site = AllocationSite::cast(value);
elements_kind_ = site->GetElementsKind();
}
}
}
void ObjectLiteral::Property::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
receiver_type_ = oracle->ObjectLiteralStoreIsMonomorphic(this)
? oracle->GetObjectLiteralStoreMap(this)
: Handle<Map>::null();
}
// ----------------------------------------------------------------------------
// Implementation of AstVisitor
void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
for (int i = 0; i < declarations->length(); i++) {
Visit(declarations->at(i));
}
}
void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
Statement* stmt = statements->at(i);
Visit(stmt);
if (stmt->IsJump()) break;
}
}
void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
for (int i = 0; i < expressions->length(); i++) {
// The variable statement visiting code may pass NULL expressions
// to this code. Maybe this should be handled by introducing an
// undefined expression or literal? Revisit this code if this
// changes
Expression* expression = expressions->at(i);
if (expression != NULL) Visit(expression);
}
}
// ----------------------------------------------------------------------------
// Regular expressions
#define MAKE_ACCEPT(Name) \
void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
return visitor->Visit##Name(this, data); \
}
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
#undef MAKE_ACCEPT
#define MAKE_TYPE_CASE(Name) \
RegExp##Name* RegExpTree::As##Name() { \
return NULL; \
} \
bool RegExpTree::Is##Name() { return false; }
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
#undef MAKE_TYPE_CASE
#define MAKE_TYPE_CASE(Name) \
RegExp##Name* RegExp##Name::As##Name() { \
return this; \
} \
bool RegExp##Name::Is##Name() { return true; }
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
#undef MAKE_TYPE_CASE
static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
Interval result = Interval::Empty();
for (int i = 0; i < children->length(); i++)
result = result.Union(children->at(i)->CaptureRegisters());
return result;
}
Interval RegExpAlternative::CaptureRegisters() {
return ListCaptureRegisters(nodes());
}
Interval RegExpDisjunction::CaptureRegisters() {
return ListCaptureRegisters(alternatives());
}
Interval RegExpLookahead::CaptureRegisters() {
return body()->CaptureRegisters();
}
Interval RegExpCapture::CaptureRegisters() {
Interval self(StartRegister(index()), EndRegister(index()));
return self.Union(body()->CaptureRegisters());
}
Interval RegExpQuantifier::CaptureRegisters() {
return body()->CaptureRegisters();
}
bool RegExpAssertion::IsAnchoredAtStart() {
return assertion_type() == RegExpAssertion::START_OF_INPUT;
}
bool RegExpAssertion::IsAnchoredAtEnd() {
return assertion_type() == RegExpAssertion::END_OF_INPUT;
}
bool RegExpAlternative::IsAnchoredAtStart() {
ZoneList<RegExpTree*>* nodes = this->nodes();
for (int i = 0; i < nodes->length(); i++) {
RegExpTree* node = nodes->at(i);
if (node->IsAnchoredAtStart()) { return true; }
if (node->max_match() > 0) { return false; }
}
return false;
}
bool RegExpAlternative::IsAnchoredAtEnd() {
ZoneList<RegExpTree*>* nodes = this->nodes();
for (int i = nodes->length() - 1; i >= 0; i--) {
RegExpTree* node = nodes->at(i);
if (node->IsAnchoredAtEnd()) { return true; }
if (node->max_match() > 0) { return false; }
}
return false;
}
bool RegExpDisjunction::IsAnchoredAtStart() {
ZoneList<RegExpTree*>* alternatives = this->alternatives();
for (int i = 0; i < alternatives->length(); i++) {
if (!alternatives->at(i)->IsAnchoredAtStart())
return false;
}
return true;
}
bool RegExpDisjunction::IsAnchoredAtEnd() {
ZoneList<RegExpTree*>* alternatives = this->alternatives();
for (int i = 0; i < alternatives->length(); i++) {
if (!alternatives->at(i)->IsAnchoredAtEnd())
return false;
}
return true;
}
bool RegExpLookahead::IsAnchoredAtStart() {
return is_positive() && body()->IsAnchoredAtStart();
}
bool RegExpCapture::IsAnchoredAtStart() {
return body()->IsAnchoredAtStart();
}
bool RegExpCapture::IsAnchoredAtEnd() {
return body()->IsAnchoredAtEnd();
}
// Convert regular expression trees to a simple sexp representation.
// This representation should be different from the input grammar
// in as many cases as possible, to make it more difficult for incorrect
// parses to look as correct ones which is likely if the input and
// output formats are alike.
class RegExpUnparser V8_FINAL : public RegExpVisitor {
public:
explicit RegExpUnparser(Zone* zone);
void VisitCharacterRange(CharacterRange that);
SmartArrayPointer<const char> ToString() { return stream_.ToCString(); }
#define MAKE_CASE(Name) virtual void* Visit##Name(RegExp##Name*, \
void* data) V8_OVERRIDE;
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
#undef MAKE_CASE
private:
StringStream* stream() { return &stream_; }
HeapStringAllocator alloc_;
StringStream stream_;
Zone* zone_;
};
RegExpUnparser::RegExpUnparser(Zone* zone) : stream_(&alloc_), zone_(zone) {
}
void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
stream()->Add("(|");
for (int i = 0; i < that->alternatives()->length(); i++) {
stream()->Add(" ");
that->alternatives()->at(i)->Accept(this, data);
}
stream()->Add(")");
return NULL;
}
void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
stream()->Add("(:");
for (int i = 0; i < that->nodes()->length(); i++) {
stream()->Add(" ");
that->nodes()->at(i)->Accept(this, data);
}
stream()->Add(")");
return NULL;
}
void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
stream()->Add("%k", that.from());
if (!that.IsSingleton()) {
stream()->Add("-%k", that.to());
}
}
void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
void* data) {
if (that->is_negated())
stream()->Add("^");
stream()->Add("[");
for (int i = 0; i < that->ranges(zone_)->length(); i++) {
if (i > 0) stream()->Add(" ");
VisitCharacterRange(that->ranges(zone_)->at(i));
}
stream()->Add("]");
return NULL;
}
void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
switch (that->assertion_type()) {
case RegExpAssertion::START_OF_INPUT:
stream()->Add("@^i");
break;
case RegExpAssertion::END_OF_INPUT:
stream()->Add("@$i");
break;
case RegExpAssertion::START_OF_LINE:
stream()->Add("@^l");
break;
case RegExpAssertion::END_OF_LINE:
stream()->Add("@$l");
break;
case RegExpAssertion::BOUNDARY:
stream()->Add("@b");
break;
case RegExpAssertion::NON_BOUNDARY:
stream()->Add("@B");
break;
}
return NULL;
}
void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
stream()->Add("'");
Vector<const uc16> chardata = that->data();
for (int i = 0; i < chardata.length(); i++) {
stream()->Add("%k", chardata[i]);
}
stream()->Add("'");
return NULL;
}
void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
if (that->elements()->length() == 1) {
that->elements()->at(0).tree()->Accept(this, data);
} else {
stream()->Add("(!");
for (int i = 0; i < that->elements()->length(); i++) {
stream()->Add(" ");
that->elements()->at(i).tree()->Accept(this, data);
}
stream()->Add(")");
}
return NULL;
}
void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
stream()->Add("(# %i ", that->min());
if (that->max() == RegExpTree::kInfinity) {
stream()->Add("- ");
} else {
stream()->Add("%i ", that->max());
}
stream()->Add(that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
that->body()->Accept(this, data);
stream()->Add(")");
return NULL;
}
void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
stream()->Add("(^ ");
that->body()->Accept(this, data);
stream()->Add(")");
return NULL;
}
void* RegExpUnparser::VisitLookahead(RegExpLookahead* that, void* data) {
stream()->Add("(-> ");
stream()->Add(that->is_positive() ? "+ " : "- ");
that->body()->Accept(this, data);
stream()->Add(")");
return NULL;
}
void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
void* data) {
stream()->Add("(<- %i)", that->index());
return NULL;
}
void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
stream()->Put('%');
return NULL;
}
SmartArrayPointer<const char> RegExpTree::ToString(Zone* zone) {
RegExpUnparser unparser(zone);
Accept(&unparser, NULL);
return unparser.ToString();
}
RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
: alternatives_(alternatives) {
ASSERT(alternatives->length() > 1);
RegExpTree* first_alternative = alternatives->at(0);
min_match_ = first_alternative->min_match();
max_match_ = first_alternative->max_match();
for (int i = 1; i < alternatives->length(); i++) {
RegExpTree* alternative = alternatives->at(i);
min_match_ = Min(min_match_, alternative->min_match());
max_match_ = Max(max_match_, alternative->max_match());
}
}
static int IncreaseBy(int previous, int increase) {
if (RegExpTree::kInfinity - previous < increase) {
return RegExpTree::kInfinity;
} else {
return previous + increase;
}
}
RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
: nodes_(nodes) {
ASSERT(nodes->length() > 1);
min_match_ = 0;
max_match_ = 0;
for (int i = 0; i < nodes->length(); i++) {
RegExpTree* node = nodes->at(i);
int node_min_match = node->min_match();
min_match_ = IncreaseBy(min_match_, node_min_match);
int node_max_match = node->max_match();
max_match_ = IncreaseBy(max_match_, node_max_match);
}
}
CaseClause::CaseClause(Isolate* isolate,
Expression* label,
ZoneList<Statement*>* statements,
int pos)
: AstNode(pos),
label_(label),
statements_(statements),
compare_type_(Type::None(), isolate),
compare_id_(AstNode::GetNextId(isolate)),
entry_id_(AstNode::GetNextId(isolate)) {
}
#define REGULAR_NODE(NodeType) \
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
increase_node_count(); \
}
#define DONT_OPTIMIZE_NODE(NodeType) \
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
increase_node_count(); \
set_dont_optimize_reason(k##NodeType); \
add_flag(kDontInline); \
add_flag(kDontSelfOptimize); \
}
#define DONT_SELFOPTIMIZE_NODE(NodeType) \
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
increase_node_count(); \
add_flag(kDontSelfOptimize); \
}
#define DONT_CACHE_NODE(NodeType) \
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
increase_node_count(); \
set_dont_optimize_reason(k##NodeType); \
add_flag(kDontInline); \
add_flag(kDontSelfOptimize); \
add_flag(kDontCache); \
}
REGULAR_NODE(VariableDeclaration)
REGULAR_NODE(FunctionDeclaration)
REGULAR_NODE(Block)
REGULAR_NODE(ExpressionStatement)
REGULAR_NODE(EmptyStatement)
REGULAR_NODE(IfStatement)
REGULAR_NODE(ContinueStatement)
REGULAR_NODE(BreakStatement)
REGULAR_NODE(ReturnStatement)
REGULAR_NODE(SwitchStatement)
REGULAR_NODE(CaseClause)
REGULAR_NODE(Conditional)
REGULAR_NODE(Literal)
REGULAR_NODE(ArrayLiteral)
REGULAR_NODE(ObjectLiteral)
REGULAR_NODE(RegExpLiteral)
REGULAR_NODE(FunctionLiteral)
REGULAR_NODE(Assignment)
REGULAR_NODE(Throw)
REGULAR_NODE(Property)
REGULAR_NODE(UnaryOperation)
REGULAR_NODE(CountOperation)
REGULAR_NODE(BinaryOperation)
REGULAR_NODE(CompareOperation)
REGULAR_NODE(ThisFunction)
REGULAR_NODE(Call)
REGULAR_NODE(CallNew)
// In theory, for VariableProxy we'd have to add:
// if (node->var()->IsLookupSlot()) add_flag(kDontInline);
// But node->var() is usually not bound yet at VariableProxy creation time, and
// LOOKUP variables only result from constructs that cannot be inlined anyway.
REGULAR_NODE(VariableProxy)
// We currently do not optimize any modules.
DONT_OPTIMIZE_NODE(ModuleDeclaration)
DONT_OPTIMIZE_NODE(ImportDeclaration)
DONT_OPTIMIZE_NODE(ExportDeclaration)
DONT_OPTIMIZE_NODE(ModuleVariable)
DONT_OPTIMIZE_NODE(ModulePath)
DONT_OPTIMIZE_NODE(ModuleUrl)
DONT_OPTIMIZE_NODE(ModuleStatement)
DONT_OPTIMIZE_NODE(Yield)
DONT_OPTIMIZE_NODE(WithStatement)
DONT_OPTIMIZE_NODE(TryCatchStatement)
DONT_OPTIMIZE_NODE(TryFinallyStatement)
DONT_OPTIMIZE_NODE(DebuggerStatement)
DONT_OPTIMIZE_NODE(NativeFunctionLiteral)
DONT_SELFOPTIMIZE_NODE(DoWhileStatement)
DONT_SELFOPTIMIZE_NODE(WhileStatement)
DONT_SELFOPTIMIZE_NODE(ForStatement)
DONT_SELFOPTIMIZE_NODE(ForInStatement)
DONT_SELFOPTIMIZE_NODE(ForOfStatement)
DONT_CACHE_NODE(ModuleLiteral)
void AstConstructionVisitor::VisitCallRuntime(CallRuntime* node) {
increase_node_count();
if (node->is_jsruntime()) {
// Don't try to inline JS runtime calls because we don't (currently) even
// optimize them.
add_flag(kDontInline);
} else if (node->function()->intrinsic_type == Runtime::INLINE &&
(node->name()->IsOneByteEqualTo(
STATIC_ASCII_VECTOR("_ArgumentsLength")) ||
node->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_Arguments")))) {
// Don't inline the %_ArgumentsLength or %_Arguments because their
// implementation will not work. There is no stack frame to get them
// from.
add_flag(kDontInline);
}
}
#undef REGULAR_NODE
#undef DONT_OPTIMIZE_NODE
#undef DONT_SELFOPTIMIZE_NODE
#undef DONT_CACHE_NODE
Handle<String> Literal::ToString() {
if (value_->IsString()) return Handle<String>::cast(value_);
ASSERT(value_->IsNumber());
char arr[100];
Vector<char> buffer(arr, ARRAY_SIZE(arr));
const char* str;
if (value_->IsSmi()) {
// Optimization only, the heap number case would subsume this.
OS::SNPrintF(buffer, "%d", Smi::cast(*value_)->value());
str = arr;
} else {
str = DoubleToCString(value_->Number(), buffer);
}
return isolate_->factory()->NewStringFromAscii(CStrVector(str));
}
} } // namespace v8::internal