v8/test/cctest/test-swiss-name-dictionary-infra.h
Clemens Backes f1644a4b95 Revert "[dict-proto] C++ implementation of SwissNameDictionary, pt. 10"
This reverts commit 8e6047e51d.

Reason for revert: Tests time out on TSan: https://ci.chromium.org/ui/p/v8/builders/ci/V8%20Linux64%20TSAN/36003/overview

Original change's description:
> [dict-proto] C++ implementation of SwissNameDictionary, pt. 10
>
> This CL is part of a series that adds the C++ implementation of
> SwissNameDictionary, a deterministic property backing store based on
> Swiss Tables.
>
> This CL adds the actual tests for SwissNameDictionary, defined in
> test-swiss-name-dictionary-shared-tests.h, using the infrastructure
> in test-swiss-name-dictionary-infra.[h|cc].
>
> Bug: v8:11388
> Change-Id: I5d91cede4f74b85a4101c5f2de3deda01a72edb2
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2744138
> Reviewed-by: Igor Sheludko <ishell@chromium.org>
> Reviewed-by: Marja Hölttä <marja@chromium.org>
> Commit-Queue: Frank Emrich <emrich@google.com>
> Cr-Commit-Position: refs/heads/master@{#73572}

Bug: v8:11388
Change-Id: I5d11e9f847545fe2b9c561ca8441eecb204bcfa1
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2779032
Auto-Submit: Clemens Backes <clemensb@chromium.org>
Commit-Queue: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Bot-Commit: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Cr-Commit-Position: refs/heads/master@{#73575}
2021-03-22 16:56:07 +00:00

298 lines
9.2 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_TEST_CCTEST_TEST_SWISS_NAME_DICTIONARY_INFRA_H_
#define V8_TEST_CCTEST_TEST_SWISS_NAME_DICTIONARY_INFRA_H_
#include <memory>
#include <utility>
#include "src/codegen/code-stub-assembler.h"
#include "src/init/v8.h"
#include "src/objects/objects-inl.h"
#include "src/objects/swiss-name-dictionary-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/code-assembler-tester.h"
#include "test/cctest/compiler/function-tester.h"
namespace v8 {
namespace internal {
namespace test_swiss_hash_table {
using Value = std::string;
using ValueOpt = base::Optional<Value>;
using PropertyDetailsOpt = base::Optional<PropertyDetails>;
using IndexOpt = base::Optional<InternalIndex>;
static const ValueOpt kNoValue;
static const PropertyDetailsOpt kNoDetails;
static const base::Optional<int> kNoInt;
static const IndexOpt kNoIndex;
static const std::vector<int> interesting_initial_capacities = {
4,
8,
16,
128,
1 << (sizeof(uint16_t) * 8),
1 << (sizeof(uint16_t) * 8 + 1)};
extern const std::vector<PropertyDetails> distinct_property_details;
// Wrapping this in a struct makes the tests a bit more readable.
struct FakeH1 {
uint32_t value;
explicit FakeH1(int value) : value{static_cast<uint32_t>(value)} {}
bool operator==(const FakeH1& other) const { return value == other.value; }
};
// Wrapping this in a struct makes the tests a bit more readable.
struct FakeH2 {
uint8_t value;
bool operator==(const FakeH2& other) const { return value == other.value; }
};
using FakeH1Opt = base::Optional<FakeH1>;
using FakeH2Opt = base::Optional<FakeH2>;
// Representation of keys used when writing test cases.
struct Key {
std::string str;
// If present, contains the value we faked the key's H1 hash with.
FakeH1Opt h1_override = FakeH1Opt();
// If present, contains the value we faked the key's H2 hash with.
FakeH2Opt h2_override = FakeH2Opt();
};
// Internal representation of keys. See |create_key_with_hash| for details.
struct CachedKey {
Handle<Symbol> key_symbol;
// If present, contains the value we faked the key's H1 hash with.
FakeH1Opt h1_override;
// If present, contains the value we faked the key's H2 hash with.
FakeH2Opt h2_override;
};
using KeyCache = std::unordered_map<std::string, CachedKey>;
Handle<Name> CreateKeyWithHash(Isolate* isolate, KeyCache& keys,
const Key& key);
class RuntimeTestRunner;
class CSATestRunner;
// Abstraction over executing a sequence of operations on a single hash table.
// Actually performing those operations is done by the TestRunner.
template <typename TestRunner>
class TestSequence {
public:
explicit TestSequence(Isolate* isolate, int initial_capacity)
: isolate{isolate},
initial_capacity{initial_capacity},
keys_{},
runner_{isolate, initial_capacity, keys_} {}
// Determines whether or not to run VerifyHeap after each operation. Can make
// debugging easier.
static constexpr bool kVerifyAfterEachStep = false;
void Add(Handle<Name> key, Handle<Object> value, PropertyDetails details) {
runner_.Add(key, value, details);
if (kVerifyAfterEachStep) {
runner_.VerifyHeap();
}
}
void Add(const Key& key, ValueOpt value = kNoValue,
PropertyDetailsOpt details = kNoDetails) {
if (!value) {
value = "dummy_value";
}
if (!details) {
details = PropertyDetails::Empty();
}
Handle<Name> key_handle = CreateKeyWithHash(isolate, keys_, key);
Handle<Object> value_handle = isolate->factory()->NewStringFromAsciiChecked(
value.value().c_str(), AllocationType::kYoung);
Add(key_handle, value_handle, details.value());
}
void UpdateByKey(Handle<Name> key, Handle<Object> new_value,
PropertyDetails new_details) {
InternalIndex entry = runner_.FindEntry(key);
CHECK(entry.is_found());
runner_.Put(entry, new_value, new_details);
if (kVerifyAfterEachStep) {
runner_.VerifyHeap();
}
}
void UpdateByKey(const Key& existing_key, Value new_value,
PropertyDetails new_details) {
Handle<Name> key_handle = CreateKeyWithHash(isolate, keys_, existing_key);
Handle<Object> value_handle = isolate->factory()->NewStringFromAsciiChecked(
new_value.c_str(), AllocationType::kYoung);
UpdateByKey(key_handle, value_handle, new_details);
}
void DeleteByKey(Handle<Name> key) {
InternalIndex entry = runner_.FindEntry(key);
CHECK(entry.is_found());
runner_.Delete(entry);
if (kVerifyAfterEachStep) {
runner_.VerifyHeap();
}
}
void DeleteByKey(const Key& existing_key) {
Handle<Name> key_handle = CreateKeyWithHash(isolate, keys_, existing_key);
DeleteByKey(key_handle);
}
void CheckDataAtKey(Handle<Name> key, IndexOpt expected_index_opt,
base::Optional<Handle<Object>> expected_value_opt,
PropertyDetailsOpt expected_details_opt) {
InternalIndex actual_index = runner_.FindEntry(key);
if (expected_index_opt) {
CHECK_EQ(expected_index_opt.value(), actual_index);
}
if (actual_index.is_found()) {
Handle<FixedArray> data = runner_.GetData(actual_index);
CHECK_EQ(*key, data->get(0));
if (expected_value_opt) {
CHECK(expected_value_opt.value()->StrictEquals(data->get(1)));
}
if (expected_details_opt) {
CHECK_EQ(expected_details_opt.value().AsSmi(), data->get(2));
}
}
}
void CheckDataAtKey(const Key& expected_key, IndexOpt expected_index,
ValueOpt expected_value = kNoValue,
PropertyDetailsOpt expected_details = kNoDetails) {
Handle<Name> key_handle = CreateKeyWithHash(isolate, keys_, expected_key);
base::Optional<Handle<Object>> value_handle_opt;
if (expected_value) {
value_handle_opt = isolate->factory()->NewStringFromAsciiChecked(
expected_value.value().c_str(), AllocationType::kYoung);
}
CheckDataAtKey(key_handle, expected_index, value_handle_opt,
expected_details);
}
void CheckKeyAbsent(Handle<Name> key) {
CHECK(runner_.FindEntry(key).is_not_found());
}
void CheckKeyAbsent(const Key& expected_key) {
Handle<Name> key_handle = CreateKeyWithHash(isolate, keys_, expected_key);
CheckKeyAbsent(key_handle);
}
void CheckHasKey(const Key& expected_key) {
Handle<Name> key_handle = CreateKeyWithHash(isolate, keys_, expected_key);
CHECK(runner_.FindEntry(key_handle).is_found());
}
void CheckCounts(base::Optional<int> capacity,
base::Optional<int> elements = base::Optional<int>(),
base::Optional<int> deleted = base::Optional<int>()) {
runner_.CheckCounts(capacity, elements, deleted);
}
void CheckEnumerationOrder(const std::vector<std::string>& keys) {
runner_.CheckEnumerationOrder(keys);
}
void RehashInplace() { runner_.RehashInplace(); }
void Shrink() { runner_.Shrink(); }
void CheckCopy() { runner_.CheckCopy(); }
static constexpr bool IsRuntimeTest() {
return std::is_same<TestRunner, RuntimeTestRunner>::value;
}
void VerifyHeap() { runner_.VerifyHeap(); }
// Just for debugging
void Print() { runner_.PrintTable(); }
static std::vector<int> boundary_indices(int capacity) {
if (capacity == 4 && SwissNameDictionary::MaxUsableCapacity(4) < 4) {
// If we cannot put 4 entries in a capacity 4 table without resizing, just
// work with 3 boundary indices.
return {0, capacity - 2, capacity - 1};
}
return {0, 1, capacity - 2, capacity - 1};
}
// Contains all possible PropertyDetails suitable for storing in a
// SwissNameDictionary (i.e., PropertyDetails for dictionary mode objects
// without storing an enumeration index). Used to ensure that we can correctly
// store an retrieve all possible such PropertyDetails.
static const std::vector<PropertyDetails> distinct_property_details;
static void WithAllInterestingInitialCapacities(
std::function<void(TestSequence&)> manipulate_sequence) {
WithInitialCapacities(interesting_initial_capacities, manipulate_sequence);
}
static void WithInitialCapacity(
int capacity, std::function<void(TestSequence&)> manipulate_sequence) {
WithInitialCapacities({capacity}, manipulate_sequence);
}
// For each capacity in |capacities|, create a TestSequence and run the given
// function on it.
static void WithInitialCapacities(
const std::vector<int>& capacities,
std::function<void(TestSequence&)> manipulate_sequence) {
for (int capacity : capacities) {
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope{isolate};
TestSequence<TestRunner> s(isolate, capacity);
manipulate_sequence(s);
}
}
Isolate* const isolate;
const int initial_capacity;
private:
// Caches keys used in this TestSequence. See |create_key_with_hash| for
// details.
KeyCache keys_;
TestRunner runner_;
};
} // namespace test_swiss_hash_table
} // namespace internal
} // namespace v8
#endif // V8_TEST_CCTEST_TEST_SWISS_NAME_DICTIONARY_INFRA_H_