eca5b5d7ab
* Hash code is now just done with a private own symbol instead of the hidden string, which predates symbols. * In the long run we should do all hidden properties this way and get rid of the hidden magic 0-length string with the zero hash code. The advantages include less complexity and being able to do things from JS in a natural way. * Initially, the performance of weak set regressed, because it's a little harder to do the lookup in C++. Instead of heroics in C++ to make things faster I moved some functionality into JS and got the performance back. JS is supposed to be good at looking up named properties on objects. * This also changes hash codes of Smis so that they are always Smis. Performance figures are in the comments to the code review. Summary: Most of js-perf-test/Collections is neutral. Set and Map with object keys are 40-50% better. WeakMap is -5% and WeakSet is +9%. After the measurements, I fixed global proxies, which cost 1% on most tests and 5% on the weak ones :-(. In the code review comments is a patch with an example of the heroics we could do in C++ to make lookup faster (I hope we don't have to do this. Instead of checking for the property, then doing a new lookup to insert it, we could do one lookup and handle the addition immediately). With the current benchmarks above this buys us nothing, but if we go back to doing more lookups in C++ instead of in stubs and JS then it's a win. In a similar vein we could give the magic zero hash code to the hash code symbol. Then when we look up the hash code we would sometimes see the table with all the hidden properties. This dual use of the field for either the hash code or the table with all hidden properties and the hash code is rather ugly, and this CL gets rid of it. I'd be loath to bring it back. On the benchmarks quoted above it's slightly slower than moving the hash code lookup to JS like in this CL. One worry is that the benchmark results above are more monomorphic than real world code, so may be overstating the performance benefits of moving to JS. I think this is part of a general issue we have with handling polymorphic code in JS and any solutions there will benefit this solution, which boils down to regular property access. Any improvement there will lift all boats. R=adamk@chromium.org, verwaest@chromium.org BUG= Review URL: https://codereview.chromium.org/1149863005 Cr-Commit-Position: refs/heads/master@{#28622}
375 lines
9.7 KiB
JavaScript
375 lines
9.7 KiB
JavaScript
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
var rngstate; // Initialized to a Uint32Array during genesis.
|
|
|
|
(function(global, utils) {
|
|
"use strict";
|
|
|
|
%CheckIsBootstrapping();
|
|
|
|
// -------------------------------------------------------------------
|
|
// Imports
|
|
|
|
var GlobalObject = global.Object;
|
|
var InternalArray = utils.InternalArray;
|
|
|
|
//-------------------------------------------------------------------
|
|
|
|
// ECMA 262 - 15.8.2.1
|
|
function MathAbs(x) {
|
|
x = +x;
|
|
return (x > 0) ? x : 0 - x;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.2
|
|
function MathAcosJS(x) {
|
|
return %_MathAcos(+x);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.3
|
|
function MathAsinJS(x) {
|
|
return %_MathAsin(+x);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.4
|
|
function MathAtanJS(x) {
|
|
return %_MathAtan(+x);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.5
|
|
// The naming of y and x matches the spec, as does the order in which
|
|
// ToNumber (valueOf) is called.
|
|
function MathAtan2JS(y, x) {
|
|
y = +y;
|
|
x = +x;
|
|
return %_MathAtan2(y, x);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.6
|
|
function MathCeil(x) {
|
|
return -%_MathFloor(-x);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.8
|
|
function MathExp(x) {
|
|
return %MathExpRT(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.9
|
|
function MathFloorJS(x) {
|
|
return %_MathFloor(+x);
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.10
|
|
function MathLog(x) {
|
|
return %_MathLogRT(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.11
|
|
function MathMax(arg1, arg2) { // length == 2
|
|
var length = %_ArgumentsLength();
|
|
if (length == 2) {
|
|
arg1 = TO_NUMBER_INLINE(arg1);
|
|
arg2 = TO_NUMBER_INLINE(arg2);
|
|
if (arg2 > arg1) return arg2;
|
|
if (arg1 > arg2) return arg1;
|
|
if (arg1 == arg2) {
|
|
// Make sure -0 is considered less than +0.
|
|
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg2 : arg1;
|
|
}
|
|
// All comparisons failed, one of the arguments must be NaN.
|
|
return NAN;
|
|
}
|
|
var r = -INFINITY;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
n = TO_NUMBER_INLINE(n);
|
|
// Make sure +0 is considered greater than -0.
|
|
if (NUMBER_IS_NAN(n) || n > r || (r === 0 && n === 0 && %_IsMinusZero(r))) {
|
|
r = n;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.12
|
|
function MathMin(arg1, arg2) { // length == 2
|
|
var length = %_ArgumentsLength();
|
|
if (length == 2) {
|
|
arg1 = TO_NUMBER_INLINE(arg1);
|
|
arg2 = TO_NUMBER_INLINE(arg2);
|
|
if (arg2 > arg1) return arg1;
|
|
if (arg1 > arg2) return arg2;
|
|
if (arg1 == arg2) {
|
|
// Make sure -0 is considered less than +0.
|
|
return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg1 : arg2;
|
|
}
|
|
// All comparisons failed, one of the arguments must be NaN.
|
|
return NAN;
|
|
}
|
|
var r = INFINITY;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
n = TO_NUMBER_INLINE(n);
|
|
// Make sure -0 is considered less than +0.
|
|
if (NUMBER_IS_NAN(n) || n < r || (r === 0 && n === 0 && %_IsMinusZero(n))) {
|
|
r = n;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.13
|
|
function MathPowJS(x, y) {
|
|
return %_MathPow(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.14
|
|
function MathRandom() {
|
|
var r0 = (MathImul(18030, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0;
|
|
rngstate[0] = r0;
|
|
var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0;
|
|
rngstate[1] = r1;
|
|
var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0;
|
|
// Division by 0x100000000 through multiplication by reciprocal.
|
|
return (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10;
|
|
}
|
|
|
|
function MathRandomRaw() {
|
|
var r0 = (MathImul(18030, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0;
|
|
rngstate[0] = r0;
|
|
var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0;
|
|
rngstate[1] = r1;
|
|
var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0;
|
|
return x & 0x3fffffff;
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.15
|
|
function MathRound(x) {
|
|
return %RoundNumber(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ECMA 262 - 15.8.2.17
|
|
function MathSqrtJS(x) {
|
|
return %_MathSqrt(+x);
|
|
}
|
|
|
|
// Non-standard extension.
|
|
function MathImul(x, y) {
|
|
return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.28.
|
|
function MathSign(x) {
|
|
x = +x;
|
|
if (x > 0) return 1;
|
|
if (x < 0) return -1;
|
|
// -0, 0 or NaN.
|
|
return x;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.34.
|
|
function MathTrunc(x) {
|
|
x = +x;
|
|
if (x > 0) return %_MathFloor(x);
|
|
if (x < 0) return -%_MathFloor(-x);
|
|
// -0, 0 or NaN.
|
|
return x;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.33.
|
|
function MathTanh(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
// Idempotent for +/-0.
|
|
if (x === 0) return x;
|
|
// Returns +/-1 for +/-Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return MathSign(x);
|
|
var exp1 = MathExp(x);
|
|
var exp2 = MathExp(-x);
|
|
return (exp1 - exp2) / (exp1 + exp2);
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.5.
|
|
function MathAsinh(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
// Idempotent for NaN, +/-0 and +/-Infinity.
|
|
if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
|
|
if (x > 0) return MathLog(x + %_MathSqrt(x * x + 1));
|
|
// This is to prevent numerical errors caused by large negative x.
|
|
return -MathLog(-x + %_MathSqrt(x * x + 1));
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.3.
|
|
function MathAcosh(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
if (x < 1) return NAN;
|
|
// Idempotent for NaN and +Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return x;
|
|
return MathLog(x + %_MathSqrt(x + 1) * %_MathSqrt(x - 1));
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.7.
|
|
function MathAtanh(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
// Idempotent for +/-0.
|
|
if (x === 0) return x;
|
|
// Returns NaN for NaN and +/- Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return NAN;
|
|
return 0.5 * MathLog((1 + x) / (1 - x));
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.17.
|
|
function MathHypot(x, y) { // Function length is 2.
|
|
// We may want to introduce fast paths for two arguments and when
|
|
// normalization to avoid overflow is not necessary. For now, we
|
|
// simply assume the general case.
|
|
var length = %_ArgumentsLength();
|
|
var args = new InternalArray(length);
|
|
var max = 0;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
n = TO_NUMBER_INLINE(n);
|
|
if (n === INFINITY || n === -INFINITY) return INFINITY;
|
|
n = MathAbs(n);
|
|
if (n > max) max = n;
|
|
args[i] = n;
|
|
}
|
|
|
|
// Kahan summation to avoid rounding errors.
|
|
// Normalize the numbers to the largest one to avoid overflow.
|
|
if (max === 0) max = 1;
|
|
var sum = 0;
|
|
var compensation = 0;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = args[i] / max;
|
|
var summand = n * n - compensation;
|
|
var preliminary = sum + summand;
|
|
compensation = (preliminary - sum) - summand;
|
|
sum = preliminary;
|
|
}
|
|
return %_MathSqrt(sum) * max;
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.16.
|
|
function MathFroundJS(x) {
|
|
return %MathFround(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
// ES6 draft 07-18-14, section 20.2.2.11
|
|
function MathClz32JS(x) {
|
|
return %_MathClz32(x >>> 0);
|
|
}
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.9.
|
|
// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
|
|
// Using initial approximation adapted from Kahan's cbrt and 4 iterations
|
|
// of Newton's method.
|
|
function MathCbrt(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
if (x == 0 || !NUMBER_IS_FINITE(x)) return x;
|
|
return x >= 0 ? CubeRoot(x) : -CubeRoot(-x);
|
|
}
|
|
|
|
macro NEWTON_ITERATION_CBRT(x, approx)
|
|
(1.0 / 3.0) * (x / (approx * approx) + 2 * approx);
|
|
endmacro
|
|
|
|
function CubeRoot(x) {
|
|
var approx_hi = MathFloorJS(%_DoubleHi(x) / 3) + 0x2A9F7893;
|
|
var approx = %_ConstructDouble(approx_hi, 0);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
return NEWTON_ITERATION_CBRT(x, approx);
|
|
}
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// Instance class name can only be set on functions. That is the only
|
|
// purpose for MathConstructor.
|
|
function MathConstructor() {}
|
|
|
|
var Math = new MathConstructor();
|
|
|
|
%InternalSetPrototype(Math, GlobalObject.prototype);
|
|
%AddNamedProperty(global, "Math", Math, DONT_ENUM);
|
|
%FunctionSetInstanceClassName(MathConstructor, 'Math');
|
|
|
|
%AddNamedProperty(Math, symbolToStringTag, "Math", READ_ONLY | DONT_ENUM);
|
|
|
|
// Set up math constants.
|
|
utils.InstallConstants(Math, [
|
|
// ECMA-262, section 15.8.1.1.
|
|
"E", 2.7182818284590452354,
|
|
// ECMA-262, section 15.8.1.2.
|
|
"LN10", 2.302585092994046,
|
|
// ECMA-262, section 15.8.1.3.
|
|
"LN2", 0.6931471805599453,
|
|
// ECMA-262, section 15.8.1.4.
|
|
"LOG2E", 1.4426950408889634,
|
|
"LOG10E", 0.4342944819032518,
|
|
"PI", 3.1415926535897932,
|
|
"SQRT1_2", 0.7071067811865476,
|
|
"SQRT2", 1.4142135623730951
|
|
]);
|
|
|
|
// Set up non-enumerable functions of the Math object and
|
|
// set their names.
|
|
utils.InstallFunctions(Math, DONT_ENUM, [
|
|
"random", MathRandom,
|
|
"abs", MathAbs,
|
|
"acos", MathAcosJS,
|
|
"asin", MathAsinJS,
|
|
"atan", MathAtanJS,
|
|
"ceil", MathCeil,
|
|
"exp", MathExp,
|
|
"floor", MathFloorJS,
|
|
"log", MathLog,
|
|
"round", MathRound,
|
|
"sqrt", MathSqrtJS,
|
|
"atan2", MathAtan2JS,
|
|
"pow", MathPowJS,
|
|
"max", MathMax,
|
|
"min", MathMin,
|
|
"imul", MathImul,
|
|
"sign", MathSign,
|
|
"trunc", MathTrunc,
|
|
"tanh", MathTanh,
|
|
"asinh", MathAsinh,
|
|
"acosh", MathAcosh,
|
|
"atanh", MathAtanh,
|
|
"hypot", MathHypot,
|
|
"fround", MathFroundJS,
|
|
"clz32", MathClz32JS,
|
|
"cbrt", MathCbrt
|
|
]);
|
|
|
|
%SetForceInlineFlag(MathAbs);
|
|
%SetForceInlineFlag(MathAcosJS);
|
|
%SetForceInlineFlag(MathAsinJS);
|
|
%SetForceInlineFlag(MathAtanJS);
|
|
%SetForceInlineFlag(MathAtan2JS);
|
|
%SetForceInlineFlag(MathCeil);
|
|
%SetForceInlineFlag(MathClz32JS);
|
|
%SetForceInlineFlag(MathFloorJS);
|
|
%SetForceInlineFlag(MathRandom);
|
|
%SetForceInlineFlag(MathSign);
|
|
%SetForceInlineFlag(MathSqrtJS);
|
|
%SetForceInlineFlag(MathTrunc);
|
|
|
|
// -------------------------------------------------------------------
|
|
// Exports
|
|
|
|
utils.Export(function(to) {
|
|
to.MathAbs = MathAbs;
|
|
to.MathExp = MathExp;
|
|
to.MathFloor = MathFloorJS;
|
|
to.IntRandom = MathRandomRaw;
|
|
to.MathMax = MathMax;
|
|
to.MathMin = MathMin;
|
|
});
|
|
|
|
})
|