v8/src/platform-linux.cc
mstarzinger@chromium.org 37759f4d64 Implement committed physical memory stats for Linux.
The patch introduces CommittedPhysicalMemory function to
the Heap class that reports committed *physical* memory acquired
for the heap from the OS.
It is important because some OSes may defer actual committment on e.g.
first access to the region.
So reporting just plain committed size led to various weird artifacts
like showing V8 allocated memory higher than the whole process
private size.

BUG=v8:2191

Review URL: https://codereview.chromium.org/11066118
Patch from Alexei Filippov <alph@chromium.org>.

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12793 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-10-22 16:33:10 +00:00

1323 lines
36 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for Linux goes here. For the POSIX comaptible parts
// the implementation is in platform-posix.cc.
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <sys/prctl.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <stdlib.h>
// Ubuntu Dapper requires memory pages to be marked as
// executable. Otherwise, OS raises an exception when executing code
// in that page.
#include <sys/types.h> // mmap & munmap
#include <sys/mman.h> // mmap & munmap
#include <sys/stat.h> // open
#include <fcntl.h> // open
#include <unistd.h> // sysconf
#if defined(__GLIBC__) && !defined(__UCLIBC__)
#include <execinfo.h> // backtrace, backtrace_symbols
#endif // defined(__GLIBC__) && !defined(__UCLIBC__)
#include <strings.h> // index
#include <errno.h>
#include <stdarg.h>
// GLibc on ARM defines mcontext_t has a typedef for 'struct sigcontext'.
// Old versions of the C library <signal.h> didn't define the type.
#if defined(__ANDROID__) && !defined(__BIONIC_HAVE_UCONTEXT_T) && \
defined(__arm__) && !defined(__BIONIC_HAVE_STRUCT_SIGCONTEXT)
#include <asm/sigcontext.h>
#endif
#undef MAP_TYPE
#include "v8.h"
#include "platform-posix.h"
#include "platform.h"
#include "v8threads.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
// 0 is never a valid thread id on Linux since tids and pids share a
// name space and pid 0 is reserved (see man 2 kill).
static const pthread_t kNoThread = (pthread_t) 0;
double ceiling(double x) {
return ceil(x);
}
static Mutex* limit_mutex = NULL;
void OS::PostSetUp() {
POSIXPostSetUp();
}
uint64_t OS::CpuFeaturesImpliedByPlatform() {
return 0; // Linux runs on anything.
}
#ifdef __arm__
static bool CPUInfoContainsString(const char * search_string) {
const char* file_name = "/proc/cpuinfo";
// This is written as a straight shot one pass parser
// and not using STL string and ifstream because,
// on Linux, it's reading from a (non-mmap-able)
// character special device.
FILE* f = NULL;
const char* what = search_string;
if (NULL == (f = fopen(file_name, "r")))
return false;
int k;
while (EOF != (k = fgetc(f))) {
if (k == *what) {
++what;
while ((*what != '\0') && (*what == fgetc(f))) {
++what;
}
if (*what == '\0') {
fclose(f);
return true;
} else {
what = search_string;
}
}
}
fclose(f);
// Did not find string in the proc file.
return false;
}
bool OS::ArmCpuHasFeature(CpuFeature feature) {
const char* search_string = NULL;
// Simple detection of VFP at runtime for Linux.
// It is based on /proc/cpuinfo, which reveals hardware configuration
// to user-space applications. According to ARM (mid 2009), no similar
// facility is universally available on the ARM architectures,
// so it's up to individual OSes to provide such.
switch (feature) {
case VFP2:
search_string = "vfp";
break;
case VFP3:
search_string = "vfpv3";
break;
case ARMv7:
search_string = "ARMv7";
break;
case SUDIV:
search_string = "idiva";
break;
default:
UNREACHABLE();
}
if (CPUInfoContainsString(search_string)) {
return true;
}
if (feature == VFP3) {
// Some old kernels will report vfp not vfpv3. Here we make a last attempt
// to detect vfpv3 by checking for vfp *and* neon, since neon is only
// available on architectures with vfpv3.
// Checking neon on its own is not enough as it is possible to have neon
// without vfp.
if (CPUInfoContainsString("vfp") && CPUInfoContainsString("neon")) {
return true;
}
}
return false;
}
CpuImplementer OS::GetCpuImplementer() {
static bool use_cached_value = false;
static CpuImplementer cached_value = UNKNOWN_IMPLEMENTER;
if (use_cached_value) {
return cached_value;
}
if (CPUInfoContainsString("CPU implementer\t: 0x41")) {
cached_value = ARM_IMPLEMENTER;
} else if (CPUInfoContainsString("CPU implementer\t: 0x51")) {
cached_value = QUALCOMM_IMPLEMENTER;
} else {
cached_value = UNKNOWN_IMPLEMENTER;
}
use_cached_value = true;
return cached_value;
}
bool OS::ArmUsingHardFloat() {
// GCC versions 4.6 and above define __ARM_PCS or __ARM_PCS_VFP to specify
// the Floating Point ABI used (PCS stands for Procedure Call Standard).
// We use these as well as a couple of other defines to statically determine
// what FP ABI used.
// GCC versions 4.4 and below don't support hard-fp.
// GCC versions 4.5 may support hard-fp without defining __ARM_PCS or
// __ARM_PCS_VFP.
#define GCC_VERSION (__GNUC__ * 10000 \
+ __GNUC_MINOR__ * 100 \
+ __GNUC_PATCHLEVEL__)
#if GCC_VERSION >= 40600
#if defined(__ARM_PCS_VFP)
return true;
#else
return false;
#endif
#elif GCC_VERSION < 40500
return false;
#else
#if defined(__ARM_PCS_VFP)
return true;
#elif defined(__ARM_PCS) || defined(__SOFTFP) || !defined(__VFP_FP__)
return false;
#else
#error "Your version of GCC does not report the FP ABI compiled for." \
"Please report it on this issue" \
"http://code.google.com/p/v8/issues/detail?id=2140"
#endif
#endif
#undef GCC_VERSION
}
#endif // def __arm__
#ifdef __mips__
bool OS::MipsCpuHasFeature(CpuFeature feature) {
const char* search_string = NULL;
const char* file_name = "/proc/cpuinfo";
// Simple detection of FPU at runtime for Linux.
// It is based on /proc/cpuinfo, which reveals hardware configuration
// to user-space applications. According to MIPS (early 2010), no similar
// facility is universally available on the MIPS architectures,
// so it's up to individual OSes to provide such.
//
// This is written as a straight shot one pass parser
// and not using STL string and ifstream because,
// on Linux, it's reading from a (non-mmap-able)
// character special device.
switch (feature) {
case FPU:
search_string = "FPU";
break;
default:
UNREACHABLE();
}
FILE* f = NULL;
const char* what = search_string;
if (NULL == (f = fopen(file_name, "r")))
return false;
int k;
while (EOF != (k = fgetc(f))) {
if (k == *what) {
++what;
while ((*what != '\0') && (*what == fgetc(f))) {
++what;
}
if (*what == '\0') {
fclose(f);
return true;
} else {
what = search_string;
}
}
}
fclose(f);
// Did not find string in the proc file.
return false;
}
#endif // def __mips__
int OS::ActivationFrameAlignment() {
#ifdef V8_TARGET_ARCH_ARM
// On EABI ARM targets this is required for fp correctness in the
// runtime system.
return 8;
#elif V8_TARGET_ARCH_MIPS
return 8;
#endif
// With gcc 4.4 the tree vectorization optimizer can generate code
// that requires 16 byte alignment such as movdqa on x86.
return 16;
}
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
#if (defined(V8_TARGET_ARCH_ARM) && defined(__arm__)) || \
(defined(V8_TARGET_ARCH_MIPS) && defined(__mips__))
// Only use on ARM or MIPS hardware.
MemoryBarrier();
#else
__asm__ __volatile__("" : : : "memory");
// An x86 store acts as a release barrier.
#endif
*ptr = value;
}
const char* OS::LocalTimezone(double time) {
if (isnan(time)) return "";
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return "";
return t->tm_zone;
}
double OS::LocalTimeOffset() {
time_t tv = time(NULL);
struct tm* t = localtime(&tv);
// tm_gmtoff includes any daylight savings offset, so subtract it.
return static_cast<double>(t->tm_gmtoff * msPerSecond -
(t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
}
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification). The estimate is conservative, i.e., not all addresses in
// 'allocated' space are actually allocated to our heap. The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
static void UpdateAllocatedSpaceLimits(void* address, int size) {
ASSERT(limit_mutex != NULL);
ScopedLock lock(limit_mutex);
lowest_ever_allocated = Min(lowest_ever_allocated, address);
highest_ever_allocated =
Max(highest_ever_allocated,
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}
bool OS::IsOutsideAllocatedSpace(void* address) {
return address < lowest_ever_allocated || address >= highest_ever_allocated;
}
size_t OS::AllocateAlignment() {
return sysconf(_SC_PAGESIZE);
}
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, AllocateAlignment());
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* addr = OS::GetRandomMmapAddr();
void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (mbase == MAP_FAILED) {
LOG(i::Isolate::Current(),
StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
UpdateAllocatedSpaceLimits(mbase, msize);
return mbase;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): munmap has a return value which is ignored here.
int result = munmap(address, size);
USE(result);
ASSERT(result == 0);
}
void OS::Sleep(int milliseconds) {
unsigned int ms = static_cast<unsigned int>(milliseconds);
usleep(1000 * ms);
}
void OS::Abort() {
// Redirect to std abort to signal abnormal program termination.
if (FLAG_break_on_abort) {
DebugBreak();
}
abort();
}
void OS::DebugBreak() {
// TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
// which is the architecture of generated code).
#if (defined(__arm__) || defined(__thumb__))
# if defined(CAN_USE_ARMV5_INSTRUCTIONS)
asm("bkpt 0");
# endif
#elif defined(__mips__)
asm("break");
#else
asm("int $3");
#endif
}
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
public:
PosixMemoryMappedFile(FILE* file, void* memory, int size)
: file_(file), memory_(memory), size_(size) { }
virtual ~PosixMemoryMappedFile();
virtual void* memory() { return memory_; }
virtual int size() { return size_; }
private:
FILE* file_;
void* memory_;
int size_;
};
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
FILE* file = fopen(name, "r+");
if (file == NULL) return NULL;
fseek(file, 0, SEEK_END);
int size = ftell(file);
void* memory =
mmap(OS::GetRandomMmapAddr(),
size,
PROT_READ | PROT_WRITE,
MAP_SHARED,
fileno(file),
0);
return new PosixMemoryMappedFile(file, memory, size);
}
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
void* initial) {
FILE* file = fopen(name, "w+");
if (file == NULL) return NULL;
int result = fwrite(initial, size, 1, file);
if (result < 1) {
fclose(file);
return NULL;
}
void* memory =
mmap(OS::GetRandomMmapAddr(),
size,
PROT_READ | PROT_WRITE,
MAP_SHARED,
fileno(file),
0);
return new PosixMemoryMappedFile(file, memory, size);
}
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
if (memory_) OS::Free(memory_, size_);
fclose(file_);
}
void OS::LogSharedLibraryAddresses() {
// This function assumes that the layout of the file is as follows:
// hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
// If we encounter an unexpected situation we abort scanning further entries.
FILE* fp = fopen("/proc/self/maps", "r");
if (fp == NULL) return;
// Allocate enough room to be able to store a full file name.
const int kLibNameLen = FILENAME_MAX + 1;
char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
i::Isolate* isolate = ISOLATE;
// This loop will terminate once the scanning hits an EOF.
while (true) {
uintptr_t start, end;
char attr_r, attr_w, attr_x, attr_p;
// Parse the addresses and permission bits at the beginning of the line.
if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
int c;
if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
// Found a read-only executable entry. Skip characters until we reach
// the beginning of the filename or the end of the line.
do {
c = getc(fp);
} while ((c != EOF) && (c != '\n') && (c != '/'));
if (c == EOF) break; // EOF: Was unexpected, just exit.
// Process the filename if found.
if (c == '/') {
ungetc(c, fp); // Push the '/' back into the stream to be read below.
// Read to the end of the line. Exit if the read fails.
if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
// Drop the newline character read by fgets. We do not need to check
// for a zero-length string because we know that we at least read the
// '/' character.
lib_name[strlen(lib_name) - 1] = '\0';
} else {
// No library name found, just record the raw address range.
snprintf(lib_name, kLibNameLen,
"%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
}
LOG(isolate, SharedLibraryEvent(lib_name, start, end));
} else {
// Entry not describing executable data. Skip to end of line to set up
// reading the next entry.
do {
c = getc(fp);
} while ((c != EOF) && (c != '\n'));
if (c == EOF) break;
}
}
free(lib_name);
fclose(fp);
}
void OS::SignalCodeMovingGC() {
// Support for ll_prof.py.
//
// The Linux profiler built into the kernel logs all mmap's with
// PROT_EXEC so that analysis tools can properly attribute ticks. We
// do a mmap with a name known by ll_prof.py and immediately munmap
// it. This injects a GC marker into the stream of events generated
// by the kernel and allows us to synchronize V8 code log and the
// kernel log.
int size = sysconf(_SC_PAGESIZE);
FILE* f = fopen(FLAG_gc_fake_mmap, "w+");
void* addr = mmap(OS::GetRandomMmapAddr(),
size,
PROT_READ | PROT_EXEC,
MAP_PRIVATE,
fileno(f),
0);
ASSERT(addr != MAP_FAILED);
OS::Free(addr, size);
fclose(f);
}
int OS::StackWalk(Vector<OS::StackFrame> frames) {
// backtrace is a glibc extension.
#if defined(__GLIBC__) && !defined(__UCLIBC__)
int frames_size = frames.length();
ScopedVector<void*> addresses(frames_size);
int frames_count = backtrace(addresses.start(), frames_size);
char** symbols = backtrace_symbols(addresses.start(), frames_count);
if (symbols == NULL) {
return kStackWalkError;
}
for (int i = 0; i < frames_count; i++) {
frames[i].address = addresses[i];
// Format a text representation of the frame based on the information
// available.
SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
"%s",
symbols[i]);
// Make sure line termination is in place.
frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
}
free(symbols);
return frames_count;
#else // defined(__GLIBC__) && !defined(__UCLIBC__)
return 0;
#endif // defined(__GLIBC__) && !defined(__UCLIBC__)
}
// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size) {
address_ = ReserveRegion(size);
size_ = size;
}
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* reservation = mmap(OS::GetRandomMmapAddr(),
request_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (reservation == MAP_FAILED) return;
Address base = static_cast<Address>(reservation);
Address aligned_base = RoundUp(base, alignment);
ASSERT_LE(base, aligned_base);
// Unmap extra memory reserved before and after the desired block.
if (aligned_base != base) {
size_t prefix_size = static_cast<size_t>(aligned_base - base);
OS::Free(base, prefix_size);
request_size -= prefix_size;
}
size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
ASSERT_LE(aligned_size, request_size);
if (aligned_size != request_size) {
size_t suffix_size = request_size - aligned_size;
OS::Free(aligned_base + aligned_size, suffix_size);
request_size -= suffix_size;
}
ASSERT(aligned_size == request_size);
address_ = static_cast<void*>(aligned_base);
size_ = aligned_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address(), size());
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return UncommitRegion(address, size);
}
bool VirtualMemory::Guard(void* address) {
OS::Guard(address, OS::CommitPageSize());
return true;
}
void* VirtualMemory::ReserveRegion(size_t size) {
void* result = mmap(OS::GetRandomMmapAddr(),
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (result == MAP_FAILED) return NULL;
return result;
}
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
if (MAP_FAILED == mmap(base,
size,
prot,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
kMmapFd,
kMmapFdOffset)) {
return false;
}
UpdateAllocatedSpaceLimits(base, size);
return true;
}
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
return mmap(base,
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
kMmapFd,
kMmapFdOffset) != MAP_FAILED;
}
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
return munmap(base, size) == 0;
}
bool VirtualMemory::HasLazyCommits() {
return true;
}
class Thread::PlatformData : public Malloced {
public:
PlatformData() : thread_(kNoThread) {}
pthread_t thread_; // Thread handle for pthread.
};
Thread::Thread(const Options& options)
: data_(new PlatformData()),
stack_size_(options.stack_size()) {
set_name(options.name());
}
Thread::~Thread() {
delete data_;
}
static void* ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// This is also initialized by the first argument to pthread_create() but we
// don't know which thread will run first (the original thread or the new
// one) so we initialize it here too.
#ifdef PR_SET_NAME
prctl(PR_SET_NAME,
reinterpret_cast<unsigned long>(thread->name()), // NOLINT
0, 0, 0);
#endif
thread->data()->thread_ = pthread_self();
ASSERT(thread->data()->thread_ != kNoThread);
thread->Run();
return NULL;
}
void Thread::set_name(const char* name) {
strncpy(name_, name, sizeof(name_));
name_[sizeof(name_) - 1] = '\0';
}
void Thread::Start() {
pthread_attr_t* attr_ptr = NULL;
pthread_attr_t attr;
if (stack_size_ > 0) {
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
attr_ptr = &attr;
}
int result = pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
CHECK_EQ(0, result);
ASSERT(data_->thread_ != kNoThread);
}
void Thread::Join() {
pthread_join(data_->thread_, NULL);
}
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
pthread_key_t key;
int result = pthread_key_create(&key, NULL);
USE(result);
ASSERT(result == 0);
return static_cast<LocalStorageKey>(key);
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
int result = pthread_key_delete(pthread_key);
USE(result);
ASSERT(result == 0);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
return pthread_getspecific(pthread_key);
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
pthread_setspecific(pthread_key, value);
}
void Thread::YieldCPU() {
sched_yield();
}
class LinuxMutex : public Mutex {
public:
LinuxMutex() {
pthread_mutexattr_t attrs;
int result = pthread_mutexattr_init(&attrs);
ASSERT(result == 0);
result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
ASSERT(result == 0);
result = pthread_mutex_init(&mutex_, &attrs);
ASSERT(result == 0);
USE(result);
}
virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
virtual int Lock() {
int result = pthread_mutex_lock(&mutex_);
return result;
}
virtual int Unlock() {
int result = pthread_mutex_unlock(&mutex_);
return result;
}
virtual bool TryLock() {
int result = pthread_mutex_trylock(&mutex_);
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT(result == 0); // Verify no other errors.
return true;
}
private:
pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
};
Mutex* OS::CreateMutex() {
return new LinuxMutex();
}
class LinuxSemaphore : public Semaphore {
public:
explicit LinuxSemaphore(int count) { sem_init(&sem_, 0, count); }
virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
virtual void Wait();
virtual bool Wait(int timeout);
virtual void Signal() { sem_post(&sem_); }
private:
sem_t sem_;
};
void LinuxSemaphore::Wait() {
while (true) {
int result = sem_wait(&sem_);
if (result == 0) return; // Successfully got semaphore.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
#ifndef TIMEVAL_TO_TIMESPEC
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
(ts)->tv_sec = (tv)->tv_sec; \
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
} while (false)
#endif
bool LinuxSemaphore::Wait(int timeout) {
const long kOneSecondMicros = 1000000; // NOLINT
// Split timeout into second and nanosecond parts.
struct timeval delta;
delta.tv_usec = timeout % kOneSecondMicros;
delta.tv_sec = timeout / kOneSecondMicros;
struct timeval current_time;
// Get the current time.
if (gettimeofday(&current_time, NULL) == -1) {
return false;
}
// Calculate time for end of timeout.
struct timeval end_time;
timeradd(&current_time, &delta, &end_time);
struct timespec ts;
TIMEVAL_TO_TIMESPEC(&end_time, &ts);
// Wait for semaphore signalled or timeout.
while (true) {
int result = sem_timedwait(&sem_, &ts);
if (result == 0) return true; // Successfully got semaphore.
if (result > 0) {
// For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
errno = result;
result = -1;
}
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
Semaphore* OS::CreateSemaphore(int count) {
return new LinuxSemaphore(count);
}
#if defined(__ANDROID__) && !defined(__BIONIC_HAVE_UCONTEXT_T)
// Not all versions of Android's C library provide ucontext_t.
// Detect this and provide custom but compatible definitions. Note that these
// follow the GLibc naming convention to access register values from
// mcontext_t.
//
// See http://code.google.com/p/android/issues/detail?id=34784
#if defined(__arm__)
typedef struct sigcontext mcontext_t;
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
#elif defined(__mips__)
// MIPS version of sigcontext, for Android bionic.
typedef struct {
uint32_t regmask;
uint32_t status;
uint64_t pc;
uint64_t gregs[32];
uint64_t fpregs[32];
uint32_t acx;
uint32_t fpc_csr;
uint32_t fpc_eir;
uint32_t used_math;
uint32_t dsp;
uint64_t mdhi;
uint64_t mdlo;
uint32_t hi1;
uint32_t lo1;
uint32_t hi2;
uint32_t lo2;
uint32_t hi3;
uint32_t lo3;
} mcontext_t;
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
#elif defined(__i386__)
// x86 version for Android.
typedef struct {
uint32_t gregs[19];
void* fpregs;
uint32_t oldmask;
uint32_t cr2;
} mcontext_t;
typedef uint32_t kernel_sigset_t[2]; // x86 kernel uses 64-bit signal masks
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 };
#endif
#endif // __ANDROID__ && !defined(__BIONIC_HAVE_UCONTEXT_T)
static int GetThreadID() {
#if defined(__ANDROID__)
// Android's C library provides gettid(2).
return gettid();
#else
// Glibc doesn't provide a wrapper for gettid(2).
return syscall(SYS_gettid);
#endif
}
static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
USE(info);
if (signal != SIGPROF) return;
Isolate* isolate = Isolate::UncheckedCurrent();
if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
// We require a fully initialized and entered isolate.
return;
}
if (v8::Locker::IsActive() &&
!isolate->thread_manager()->IsLockedByCurrentThread()) {
return;
}
Sampler* sampler = isolate->logger()->sampler();
if (sampler == NULL || !sampler->IsActive()) return;
TickSample sample_obj;
TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
if (sample == NULL) sample = &sample_obj;
// Extracting the sample from the context is extremely machine dependent.
ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
mcontext_t& mcontext = ucontext->uc_mcontext;
sample->state = isolate->current_vm_state();
#if V8_HOST_ARCH_IA32
sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
#elif V8_HOST_ARCH_X64
sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
#elif V8_HOST_ARCH_ARM
#if defined(__GLIBC__) && !defined(__UCLIBC__) && \
(__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
// Old GLibc ARM versions used a gregs[] array to access the register
// values from mcontext_t.
sample->pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
sample->sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
sample->fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
#else
sample->pc = reinterpret_cast<Address>(mcontext.arm_pc);
sample->sp = reinterpret_cast<Address>(mcontext.arm_sp);
sample->fp = reinterpret_cast<Address>(mcontext.arm_fp);
#endif // defined(__GLIBC__) && !defined(__UCLIBC__) &&
// (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
#elif V8_HOST_ARCH_MIPS
sample->pc = reinterpret_cast<Address>(mcontext.pc);
sample->sp = reinterpret_cast<Address>(mcontext.gregs[29]);
sample->fp = reinterpret_cast<Address>(mcontext.gregs[30]);
#endif // V8_HOST_ARCH_*
sampler->SampleStack(sample);
sampler->Tick(sample);
}
class Sampler::PlatformData : public Malloced {
public:
PlatformData() : vm_tid_(GetThreadID()) {}
int vm_tid() const { return vm_tid_; }
private:
const int vm_tid_;
};
class SignalSender : public Thread {
public:
enum SleepInterval {
HALF_INTERVAL,
FULL_INTERVAL
};
static const int kSignalSenderStackSize = 64 * KB;
explicit SignalSender(int interval)
: Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
vm_tgid_(getpid()),
interval_(interval) {}
static void SetUp() { if (!mutex_) mutex_ = OS::CreateMutex(); }
static void TearDown() { delete mutex_; }
static void InstallSignalHandler() {
struct sigaction sa;
sa.sa_sigaction = ProfilerSignalHandler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART | SA_SIGINFO;
signal_handler_installed_ =
(sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
}
static void RestoreSignalHandler() {
if (signal_handler_installed_) {
sigaction(SIGPROF, &old_signal_handler_, 0);
signal_handler_installed_ = false;
}
}
static void AddActiveSampler(Sampler* sampler) {
ScopedLock lock(mutex_);
SamplerRegistry::AddActiveSampler(sampler);
if (instance_ == NULL) {
// Start a thread that will send SIGPROF signal to VM threads,
// when CPU profiling will be enabled.
instance_ = new SignalSender(sampler->interval());
instance_->Start();
} else {
ASSERT(instance_->interval_ == sampler->interval());
}
}
static void RemoveActiveSampler(Sampler* sampler) {
ScopedLock lock(mutex_);
SamplerRegistry::RemoveActiveSampler(sampler);
if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
delete instance_;
instance_ = NULL;
RestoreSignalHandler();
}
}
// Implement Thread::Run().
virtual void Run() {
SamplerRegistry::State state;
while ((state = SamplerRegistry::GetState()) !=
SamplerRegistry::HAS_NO_SAMPLERS) {
bool cpu_profiling_enabled =
(state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
if (cpu_profiling_enabled && !signal_handler_installed_) {
InstallSignalHandler();
} else if (!cpu_profiling_enabled && signal_handler_installed_) {
RestoreSignalHandler();
}
// When CPU profiling is enabled both JavaScript and C++ code is
// profiled. We must not suspend.
if (!cpu_profiling_enabled) {
if (rate_limiter_.SuspendIfNecessary()) continue;
}
if (cpu_profiling_enabled && runtime_profiler_enabled) {
if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
return;
}
Sleep(HALF_INTERVAL);
if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
return;
}
Sleep(HALF_INTERVAL);
} else {
if (cpu_profiling_enabled) {
if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
this)) {
return;
}
}
if (runtime_profiler_enabled) {
if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
NULL)) {
return;
}
}
Sleep(FULL_INTERVAL);
}
}
}
static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
if (!sampler->IsProfiling()) return;
SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
}
static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
if (!sampler->isolate()->IsInitialized()) return;
sampler->isolate()->runtime_profiler()->NotifyTick();
}
void SendProfilingSignal(int tid) {
if (!signal_handler_installed_) return;
// Glibc doesn't provide a wrapper for tgkill(2).
#if defined(ANDROID)
syscall(__NR_tgkill, vm_tgid_, tid, SIGPROF);
#else
syscall(SYS_tgkill, vm_tgid_, tid, SIGPROF);
#endif
}
void Sleep(SleepInterval full_or_half) {
// Convert ms to us and subtract 100 us to compensate delays
// occuring during signal delivery.
useconds_t interval = interval_ * 1000 - 100;
if (full_or_half == HALF_INTERVAL) interval /= 2;
#if defined(ANDROID)
usleep(interval);
#else
int result = usleep(interval);
#ifdef DEBUG
if (result != 0 && errno != EINTR) {
fprintf(stderr,
"SignalSender usleep error; interval = %u, errno = %d\n",
interval,
errno);
ASSERT(result == 0 || errno == EINTR);
}
#endif // DEBUG
USE(result);
#endif // ANDROID
}
const int vm_tgid_;
const int interval_;
RuntimeProfilerRateLimiter rate_limiter_;
// Protects the process wide state below.
static Mutex* mutex_;
static SignalSender* instance_;
static bool signal_handler_installed_;
static struct sigaction old_signal_handler_;
private:
DISALLOW_COPY_AND_ASSIGN(SignalSender);
};
Mutex* SignalSender::mutex_ = NULL;
SignalSender* SignalSender::instance_ = NULL;
struct sigaction SignalSender::old_signal_handler_;
bool SignalSender::signal_handler_installed_ = false;
void OS::SetUp() {
// Seed the random number generator. We preserve microsecond resolution.
uint64_t seed = Ticks() ^ (getpid() << 16);
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
#ifdef __arm__
// When running on ARM hardware check that the EABI used by V8 and
// by the C code is the same.
bool hard_float = OS::ArmUsingHardFloat();
if (hard_float) {
#if !USE_EABI_HARDFLOAT
PrintF("ERROR: Binary compiled with -mfloat-abi=hard but without "
"-DUSE_EABI_HARDFLOAT\n");
exit(1);
#endif
} else {
#if USE_EABI_HARDFLOAT
PrintF("ERROR: Binary not compiled with -mfloat-abi=hard but with "
"-DUSE_EABI_HARDFLOAT\n");
exit(1);
#endif
}
#endif
SignalSender::SetUp();
}
void OS::TearDown() {
SignalSender::TearDown();
delete limit_mutex;
}
Sampler::Sampler(Isolate* isolate, int interval)
: isolate_(isolate),
interval_(interval),
profiling_(false),
active_(false),
samples_taken_(0) {
data_ = new PlatformData;
}
Sampler::~Sampler() {
ASSERT(!IsActive());
delete data_;
}
void Sampler::Start() {
ASSERT(!IsActive());
SetActive(true);
SignalSender::AddActiveSampler(this);
}
void Sampler::Stop() {
ASSERT(IsActive());
SignalSender::RemoveActiveSampler(this);
SetActive(false);
}
} } // namespace v8::internal